Full-scale testing of naturally buckling steel braces and evaluation of partially rib-strengthened sections to cumulative damage

Naturally buckling steel braces (NBBs) have been recently developed by the authors and co-workers to improve the buckling performance and energy dissipation capacity of braced framed structures. In NBBs, a low-yield-point steel (LYS) channel and a high-strength steel (HSS) channel are connected usin...

Full description

Saved in:
Bibliographic Details
Published inSoil Dynamics and Earthquake Engineering Vol. 147; p. 106611
Main Authors Hayashi, Kazuhiro, Skalomenos, Konstantinos A., Jamshiyas, Shadiya, Inamasu, Hiroyuki
Format Journal Article
LanguageEnglish
Published Barking Elsevier Ltd 01.08.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Naturally buckling steel braces (NBBs) have been recently developed by the authors and co-workers to improve the buckling performance and energy dissipation capacity of braced framed structures. In NBBs, a low-yield-point steel (LYS) channel and a high-strength steel (HSS) channel are connected using steel battens to build up a dual-material steel section. An intentional eccentricity is introduced along the brace length to subject the brace to bending loads in addition to axial loads. Previous experiments have demonstrated that this combined axial-flexural response stabilizes the compression behaviour of the brace and enhances its tensile post-yielding stiffness through a novel deformation mechanism. In this paper, the cyclic behaviour of two full-scale NBB specimens with different section sizes and eccentricities are investigated experimentally. Gusset plate pin-connections that accommodate in-plane buckling are used to release the brace ends from high ductility demands. Two low-cycle fatigue protocols with increasing amplitudes and repeated inelastic loading cycles at the event of local buckling are adopted. Test results show that both NBB specimens exhibited a stable hysteresis behaviour by delaying the onset of local buckling up to a 1.5 % story drift ratio (SDR). Notably, the specimen with larger section and larger eccentricity provided a stable tensile strength under five repeated loading cycles of 2.0 % SDR. An equivalent damping ratio of 0.4 was measured. In addition to the experimental research, a computational study is performed with the aid of the finite element software ABAQUS to evaluate partially strengthening method of the sections against local buckling. It was found that the energy dissipation capacity of NBBs can be enhanced up to 40% by using rib stiffeners at critical locations, while the use of thicker channel battens can provide further restrain to local buckling growth up to a 3.0% SDR. The paper develops the physical equations to support an analytical hysteretic model for predicting the force-displacement cyclic relationship of chevron NBBs. The accuracy and targeted conservatism of the proposed hysteretic model is confirmed through comparisons with the test results. •This work performs full-scale cyclic tests on a novel dual-material device named the Naturally Buckling Brace (NBB).•Test results highlight the benefits of high-strength and low-yield-point steels under the combined axial-flexural behaviour.•A stable energy dissipation capacity is provided up to a 2.0% lateral story drift with no reduction of the tensile strength.•The rib-strengthened steel sections reduce buckling and enhance energy dissipation capacity up to a 3.0% story drift.•Mathematical formulae are validated to develop the hysteretic analytical model of NBBs for cyclic/seismic analyses.
AbstractList Naturally buckling steel braces (NBBs) have been recently developed by the authors and co-workers to improve the buckling performance and energy dissipation capacity of braced framed structures. In NBBs, a low-yield-point steel (LYS) channel and a high-strength steel (HSS) channel are connected using steel battens to build up a dual-material steel section. An intentional eccentricity is introduced along the brace length to subject the brace to bending loads in addition to axial loads. Previous experiments have demonstrated that this combined axial-flexural response stabilizes the compression behaviour of the brace and enhances its tensile post-yielding stiffness through a novel deformation mechanism. In this paper, the cyclic behaviour of two full-scale NBB specimens with different section sizes and eccentricities are investigated experimentally. Gusset plate pin-connections that accommodate in-plane buckling are used to release the brace ends from high ductility demands. Two low-cycle fatigue protocols with increasing amplitudes and repeated inelastic loading cycles at the event of local buckling are adopted. Test results show that both NBB specimens exhibited a stable hysteresis behaviour by delaying the onset of local buckling up to a 1.5 % story drift ratio (SDR). Notably, the specimen with larger section and larger eccentricity provided a stable tensile strength under five repeated loading cycles of 2.0 % SDR. An equivalent damping ratio of 0.4 was measured. In addition to the experimental research, a computational study is performed with the aid of the finite element software ABAQUS to evaluate partially strengthening method of the sections against local buckling. It was found that the energy dissipation capacity of NBBs can be enhanced up to 40% by using rib stiffeners at critical locations, while the use of thicker channel battens can provide further restrain to local buckling growth up to a 3.0% SDR. The paper develops the physical equations to support an analytical hysteretic model for predicting the force-displacement cyclic relationship of chevron NBBs. The accuracy and targeted conservatism of the proposed hysteretic model is confirmed through comparisons with the test results. •This work performs full-scale cyclic tests on a novel dual-material device named the Naturally Buckling Brace (NBB).•Test results highlight the benefits of high-strength and low-yield-point steels under the combined axial-flexural behaviour.•A stable energy dissipation capacity is provided up to a 2.0% lateral story drift with no reduction of the tensile strength.•The rib-strengthened steel sections reduce buckling and enhance energy dissipation capacity up to a 3.0% story drift.•Mathematical formulae are validated to develop the hysteretic analytical model of NBBs for cyclic/seismic analyses.
Naturally buckling steel braces (NBBs) have been recently developed by the authors and co-workers to improve the buckling performance and energy dissipation capacity of braced framed structures. In NBBs, a low-yield-point steel (LYS) channel and a high-strength steel (HSS) channel are connected using steel battens to build up a dual-material steel section. An intentional eccentricity is introduced along the brace length to subject the brace to bending loads in addition to axial loads. Previous experiments have demonstrated that this combined axial-flexural response stabilizes the compression behaviour of the brace and enhances its tensile post-yielding stiffness through a novel deformation mechanism. In this paper, the cyclic behaviour of two full-scale NBB specimens with different section sizes and eccentricities are investigated experimentally. Gusset plate pin-connections that accommodate in-plane buckling are used to release the brace ends from high ductility demands. Two low-cycle fatigue protocols with increasing amplitudes and repeated inelastic loading cycles at the event of local buckling are adopted. Test results show that both NBB specimens exhibited a stable hysteresis behaviour by delaying the onset of local buckling up to a 1.5 % story drift ratio (SDR). Notably, the specimen with larger section and larger eccentricity provided a stable tensile strength under five repeated loading cycles of 2.0 % SDR. An equivalent damping ratio of 0.4 was measured. In addition to the experimental research, a computational study is performed with the aid of the finite element software ABAQUS to evaluate partially strengthening method of the sections against local buckling. It was found that the energy dissipation capacity of NBBs can be enhanced up to 40% by using rib stiffeners at critical locations, while the use of thicker channel battens can provide further restrain to local buckling growth up to a 3.0% SDR. The paper develops the physical equations to support an analytical hysteretic model for predicting the force-displacement cyclic relationship of chevron NBBs. The accuracy and targeted conservatism of the proposed hysteretic model is confirmed through comparisons with the test results.
ArticleNumber 106611
Author Skalomenos, Konstantinos A.
Inamasu, Hiroyuki
Jamshiyas, Shadiya
Hayashi, Kazuhiro
Author_xml – sequence: 1
  givenname: Kazuhiro
  surname: Hayashi
  fullname: Hayashi, Kazuhiro
  organization: Department of Architecture, Chiba University, 1-33 Yayoicho, Inage-ku, Chiba, 263-8522, Japan
– sequence: 2
  givenname: Konstantinos A.
  surname: Skalomenos
  fullname: Skalomenos, Konstantinos A.
  email: k.skalomenos@bham.ac.uk
  organization: Department of Civil Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
– sequence: 3
  givenname: Shadiya
  surname: Jamshiyas
  fullname: Jamshiyas, Shadiya
  organization: Department of Civil Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
– sequence: 4
  givenname: Hiroyuki
  surname: Inamasu
  fullname: Inamasu, Hiroyuki
  organization: School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
BackLink https://cir.nii.ac.jp/crid/1872272492431080960$$DView record in CiNii
BookMark eNqFkUGL1DAUx4Os4OzqRxACeu2YpG3a4kFkcXVhwYuCt_CavI4ZM8mYpANz86ObTve0l70k8Pj_8t775Zpc-eCRkLecbTnj8sN-m4J15uy3gglealJy_oJseN8NVd3wX1dkw4Tsqk5I_opcp7RnjHe8lxvy7252rkoaHNKMKVu_o2GiHvIcwbkzHWf9xy3VlBEdHSNoTBS8oXgCN0O2wS_EEWK2FyLasUo5ot_l3-jR0IR6SSWaA9XzYXYFOiE1cIAdviYvJ3AJ3zzeN-Tn3Zcft9-qh-9f728_P1S66YZcaegF8BbGqTPDaFgDbdcaw7kWIKZBmrFuNZ96CUxOeuyNHJjBuh4bhnyAur4h79Z3jzH8ncumah_m6EtLJdqWi5Y1kpXUxzWlY0gp4qS0zZcdcwTrFGdqUa726lG5WpSrVXmh2yf0MdoDxPOz3PuV89aWhstZ_k6ITjSDaGrOejZchvu0xrB4OlmMKmmLXqOxsShWJthnGv0HenauXQ
CitedBy_id crossref_primary_10_1016_j_soildyn_2022_107248
Cites_doi 10.1016/j.soildyn.2018.08.029
10.1016/j.jcsr.2018.05.016
10.1016/j.engstruct.2012.02.037
10.1061/(ASCE)0733-9445(2008)134:5(822)
10.1016/S0141-0296(02)00175-X
10.1016/0263-8231(93)90010-8
10.1016/j.soildyn.2018.07.047
10.1016/S0143-974X(01)00104-3
10.1016/j.engstruct.2020.110461
10.1016/j.engstruct.2020.110668
10.1061/(ASCE)ST.1943-541X.0000380
10.1061/(ASCE)ST.1943-541X.0000679
10.1016/j.jcsr.2009.07.003
10.1061/(ASCE)0733-9445(2008)134:1(108)
10.1016/j.jcsr.2006.04.012
10.1016/j.soildyn.2017.12.028
10.1016/j.jcsr.2009.09.002
10.1016/S0020-7683(99)00077-3
10.1016/j.engstruct.2016.03.053
10.1016/S0951-8339(99)00032-5
10.3130/aijs.80.1165
10.1177/1369433216659491
10.1016/j.jcsr.2018.01.025
10.1007/s004190050252
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Aug 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Aug 2021
DBID RYH
AAYXX
CITATION
7ST
7TG
7UA
8FD
C1K
FR3
KL.
KR7
SOI
DOI 10.1016/j.soildyn.2021.106611
DatabaseName CiNii Complete
CrossRef
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Engineering Research Database
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-341X
ExternalDocumentID 10_1016_j_soildyn_2021_106611
S0267726121000336
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACNNM
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
IMUCA
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSE
SST
SSZ
T5K
TN5
WUQ
Y6R
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
ACVFH
ADCNI
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
RYH
SSH
AAYXX
ABWVN
ACRPL
ADNMO
AFJKZ
AGQPQ
CITATION
7ST
7TG
7UA
8FD
C1K
EFKBS
FR3
KL.
KR7
SOI
ID FETCH-LOGICAL-c479t-ca82a15abf7d9bd04a575dd11c2a2f96db35c1f86a06fcb8d690de33b40e19a33
IEDL.DBID .~1
ISSN 0267-7261
IngestDate Wed Aug 13 09:14:02 EDT 2025
Thu Apr 24 22:52:36 EDT 2025
Tue Jul 01 03:38:00 EDT 2025
Fri Jun 27 00:18:13 EDT 2025
Fri Feb 23 02:45:05 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Dual strength
Rib stiffeners
Eccentricity
Hysteretic model
Full-scale cyclic tests
Buckling
Equivalent damping ratio
FEM
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c479t-ca82a15abf7d9bd04a575dd11c2a2f96db35c1f86a06fcb8d690de33b40e19a33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0734-3992
0000-0001-9224-3285
OpenAccessLink http://infoscience.epfl.ch/record/290787
PQID 2551250460
PQPubID 2045399
ParticipantIDs proquest_journals_2551250460
crossref_citationtrail_10_1016_j_soildyn_2021_106611
crossref_primary_10_1016_j_soildyn_2021_106611
nii_cinii_1872272492431080960
elsevier_sciencedirect_doi_10_1016_j_soildyn_2021_106611
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2021
2021-08-01
2021-08-00
20210801
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: August 2021
PublicationDecade 2020
PublicationPlace Barking
PublicationPlace_xml – name: Barking
PublicationTitle Soil Dynamics and Earthquake Engineering
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Scozzese F., Terracciano G., Zona A., Corte G.D., Dall'Asta A., Landolfo R. Analysis of seismic non-structural damage in single-storey industrial steel buildings 2018. Soil Dynam Earthq Eng 114: 505–519.
Shibata, Nakamura, Wakabayashi (bib2) 1982; 316
Chopra (bib41) 2012
Tremblay, Lacerte, Christopoulos (bib6) 2008; 134
Tremblay (bib4) 2002; 5–8
Inamasu, Skalomenos, Hsiao, Hayashi, Kurata, Nakashima (bib17) 2017; 143
Veismoradia, Cheraghia, Darvishan (bib14) 2018; 115
(bib43) 2015
Fell, Kanvinde, Deierlein, Myers, Fu (bib27) 2006
Takeuchi, Matsui (bib3) 2011; 137
Nakashima (bib39) 1995; 121
Hsiao, Cheng (bib21) 2020; 214
Sabelli, Mahin, Chang (bib8) 2003; 25
Hsiao, Hayashi, Inamasu, Luo, Nakashima (bib15) 2016; 142
Bazant (bib24) 2000; 37
Bazant (bib25) 1999; 69
Li, Wu, Ding, Zhao (bib28) 2017; 20
Fujikubo, Yao (bib32) 1999; 12
Azhari, Bradford (bib31) 1993; 15
Zheng, Pasternak (bib26) 2018; 144
Ji, Kato, Wang, Hitaka, Nakashima (bib12) 2009; 12
Matsui, Takeuchi, Hajjar, Nishimoto, Aiken (bib29) 2010; 66
Skalomenos, Inamasu, Shimada, Nakashima (bib19) 2017; 143
Black, Makris, Aiken (bib9) September 2002
Guerrero H., Escobar A.J., Teran-Gilmore A. Experimental damping on frame structures equipped with buckling-restrained braces (BRBs) working within their linear-elastic response. Soil Dynam Earthq Eng 106: 196–203.
Skalomenos, Kurata, Nishiyama (bib23) 2020; 211
Skalomenos, Kurata, Shimada, Nishiyama (bib22) 2018; 148
Miller, Fahnestock, Eatherton (bib5) 2012; 40
Kumar, Kumar, Kalyanaraman (bib7) 2007; 63
Okazaki, Lignos, Hikino, Kajiwara (bib37) 2013; 139
(bib35) 2016; 360
Mulligan, Teoman (bib30) 1983
Takeuchi, Suzuki, Ida, Yamada (bib11) 2008; 134
Hudson (bib40) 1965; vol. II
Hsiao, Lin (bib20) 2020; 165
López, Sabelli (bib1) 2004
Inamasu, Hsiao, Hayashi, Nakashima (bib16) 2015; 713
Inamasu, Skalomenos, Shimada, Kurata, Nakashima (bib18) 2016; 56
Li, Jiang, Jia, Lu (bib33) 2016; 119
MacDonald, Rhodes, Crawford, Taylor (bib42) 1996
Smith M. ABAQUS/Standard user's manual, version 2016. Dassault Systèmes Simulia Corp, Providence, RI.
(bib34) 2016; 341
Wang, Feng, Wu, Jiang, Chong (bib13) 2019
Kumar (10.1016/j.soildyn.2021.106611_bib7) 2007; 63
Hudson (10.1016/j.soildyn.2021.106611_bib40) 1965; vol. II
Fell (10.1016/j.soildyn.2021.106611_bib27) 2006
Tremblay (10.1016/j.soildyn.2021.106611_bib6) 2008; 134
Sabelli (10.1016/j.soildyn.2021.106611_bib8) 2003; 25
López (10.1016/j.soildyn.2021.106611_bib1) 2004
Takeuchi (10.1016/j.soildyn.2021.106611_bib3) 2011; 137
Skalomenos (10.1016/j.soildyn.2021.106611_bib22) 2018; 148
Hsiao (10.1016/j.soildyn.2021.106611_bib15) 2016; 142
Inamasu (10.1016/j.soildyn.2021.106611_bib16) 2015; 713
Hsiao (10.1016/j.soildyn.2021.106611_bib20) 2020; 165
Hsiao (10.1016/j.soildyn.2021.106611_bib21) 2020; 214
Bazant (10.1016/j.soildyn.2021.106611_bib24) 2000; 37
Takeuchi (10.1016/j.soildyn.2021.106611_bib11) 2008; 134
Tremblay (10.1016/j.soildyn.2021.106611_bib4) 2002; 5–8
Miller (10.1016/j.soildyn.2021.106611_bib5) 2012; 40
Skalomenos (10.1016/j.soildyn.2021.106611_bib23) 2020; 211
10.1016/j.soildyn.2021.106611_bib10
Bazant (10.1016/j.soildyn.2021.106611_bib25) 1999; 69
Inamasu (10.1016/j.soildyn.2021.106611_bib17) 2017; 143
Li (10.1016/j.soildyn.2021.106611_bib33) 2016; 119
(10.1016/j.soildyn.2021.106611_bib43) 2015
Li (10.1016/j.soildyn.2021.106611_bib28) 2017; 20
Matsui (10.1016/j.soildyn.2021.106611_bib29) 2010; 66
Azhari (10.1016/j.soildyn.2021.106611_bib31) 1993; 15
10.1016/j.soildyn.2021.106611_bib38
10.1016/j.soildyn.2021.106611_bib36
MacDonald (10.1016/j.soildyn.2021.106611_bib42) 1996
Shibata (10.1016/j.soildyn.2021.106611_bib2) 1982; 316
Nakashima (10.1016/j.soildyn.2021.106611_bib39) 1995; 121
Veismoradia (10.1016/j.soildyn.2021.106611_bib14) 2018; 115
Wang (10.1016/j.soildyn.2021.106611_bib13) 2019
(10.1016/j.soildyn.2021.106611_bib34) 2016; 341
Ji (10.1016/j.soildyn.2021.106611_bib12) 2009; 12
Zheng (10.1016/j.soildyn.2021.106611_bib26) 2018; 144
Mulligan (10.1016/j.soildyn.2021.106611_bib30) 1983
Okazaki (10.1016/j.soildyn.2021.106611_bib37) 2013; 139
Black (10.1016/j.soildyn.2021.106611_bib9) 2002
(10.1016/j.soildyn.2021.106611_bib35) 2016; 360
Inamasu (10.1016/j.soildyn.2021.106611_bib18) 2016; 56
Fujikubo (10.1016/j.soildyn.2021.106611_bib32) 1999; 12
Skalomenos (10.1016/j.soildyn.2021.106611_bib19) 2017; 143
Chopra (10.1016/j.soildyn.2021.106611_bib41) 2012
References_xml – volume: 63
  start-page: 254
  year: 2007
  end-page: 262
  ident: bib7
  article-title: Behaviour of frames with non-buckling bracings under earthquake loading
  publication-title: J Constr Steel Res
– reference: Scozzese F., Terracciano G., Zona A., Corte G.D., Dall'Asta A., Landolfo R. Analysis of seismic non-structural damage in single-storey industrial steel buildings 2018. Soil Dynam Earthq Eng 114: 505–519.
– volume: 12
  start-page: 2148
  year: 2009
  end-page: 2156
  ident: bib12
  article-title: Effect of gravity columns on mitigation of drift concentration for braced frames
  publication-title: J Constr Steel Res
– volume: 5–8
  start-page: 665
  year: 2002
  end-page: 701
  ident: bib4
  article-title: Inelastic seismic response of steel bracing members
  publication-title: J Constr Steel Res
– year: 2019
  ident: bib13
  article-title: Deformation concentration effect of multistory buckling restrained braced frames
  publication-title: Adv Civ Eng
– volume: 148
  start-page: 112
  year: 2018
  end-page: 123
  ident: bib22
  article-title: Use of induction heating in steel structures: material properties and novel brace design
  publication-title: J Constr Steel Res
– start-page: 143
  year: 2015
  end-page: 152
  ident: bib43
  publication-title: Special project for reducing vulnerability for urban mega earthquake disasters (ii) Maintenance and recovery of functionality in urban infrastructures
– volume: 20
  start-page: 641
  year: 2017
  end-page: 657
  ident: bib28
  article-title: Experimental performance of buckling restrained braces with steel cores of H-section and half-wavelength evaluation of higher-order local buckling
  publication-title: Adv Struct Eng
– volume: 121
  year: 1995
  ident: bib39
  article-title: Strain hardening behavior of shear panels made of low-yield steel Part I: Test
  publication-title: J Struct Eng ASCE
– volume: 143
  year: 2017
  ident: bib19
  article-title: Development of a steel brace with intentional eccentricity and experimental validation
  publication-title: J Struct Eng ASCE
– volume: 119
  start-page: 186
  year: 2016
  end-page: 197
  ident: bib33
  article-title: Local buckling of bolted steel plates with different stiffener configuration
  publication-title: Eng Struct
– volume: 143
  year: 2017
  ident: bib17
  article-title: Gusset plate connections for naturally buckling braces
  publication-title: J Struct Eng ASCE
– volume: 115
  start-page: 205
  year: 2018
  end-page: 216
  ident: bib14
  article-title: Probabilistic mainshock-aftershock collapse risk assessment of buckling restrained braced frames
  publication-title: Soil Dynam Earthq Eng
– volume: 15
  start-page: 1
  year: 1993
  end-page: 13
  ident: bib31
  article-title: Local buckling of I- Section beams with longitudinal web stiffeners
  publication-title: Thin-Walled Struct
– volume: 211
  year: 2020
  ident: bib23
  article-title: Induction-heat treated steel braces with intentional eccentricity
  publication-title: Eng Struct
– volume: 713
  start-page: 1165
  year: 2015
  end-page: 1174
  ident: bib16
  article-title: Development and experiment of naturally buckling brace combining different types of steel material
  publication-title: Transactions of AIJ
– reference: Smith M. ABAQUS/Standard user's manual, version 2016. Dassault Systèmes Simulia Corp, Providence, RI.
– volume: 134
  start-page: 108
  year: 2008
  end-page: 120
  ident: bib6
  article-title: Seismic response of multistory buildings with self-centering energy dissipative steel braces
  publication-title: J Struct Eng ASCE
– volume: 142
  year: 2016
  ident: bib15
  article-title: Development and testing of naturally buckling steel braces
  publication-title: J Struct Eng ASCE
– volume: 139
  start-page: 515
  year: 2013
  end-page: 525
  ident: bib37
  article-title: Dynamic response of a chevron concentrically braced frame
  publication-title: J Struct Eng ASCE
– volume: 316
  start-page: 18
  year: 1982
  end-page: 24
  ident: bib2
  article-title: Mathematical expression of hysteretic behavior of braces: Part 1 Derivation of hysteresis functions
  publication-title: Transactions of AIJ
– volume: vol. II
  start-page: 185
  year: 1965
  end-page: 202
  ident: bib40
  article-title: Equivalent viscous friction for hysteretic systems with earthquake-like excitations
  publication-title: Proceedings of the 3rd world conference on earthquake engineering
– volume: 214
  year: 2020
  ident: bib21
  article-title: Effects of far-field and near-fault cyclic loadings on seismic performance of naturally buckling braces in pairs
  publication-title: Eng Struct
– volume: 37
  start-page: 69
  year: 2000
  end-page: 80
  ident: bib24
  article-title: Size effect
  publication-title: Int J Solid Struct
– volume: 56
  start-page: 433
  year: 2016
  end-page: 436
  ident: bib18
  article-title: Physical model and numerical investigation of seismic performance of naturally buckling brace
  publication-title: H28 AIJ Kinki conference
– volume: 12
  start-page: 543
  year: 1999
  end-page: 564
  ident: bib32
  article-title: Elastic local buckling strength of stiffened plate considering plate/stiffener interaction and welding residual stress
  publication-title: Mar Struct
– year: 2012
  ident: bib41
  article-title: Dynamics of structures: theory and applications to earthquake engineering
– volume: 69
  start-page: 703
  year: 1999
  end-page: 725
  ident: bib25
  article-title: Size effect on structural strength: a review
  publication-title: Arch Appl Mech
– volume: 165
  year: 2020
  ident: bib20
  article-title: Slenderness effects in naturally buckling braces under seismic loads
  publication-title: J Struct Eng ASCE
– year: 2004
  ident: bib1
  article-title: Seismic design of buckling-restrained braced frames
– volume: 25
  start-page: 655
  year: 2003
  end-page: 666
  ident: bib8
  article-title: Seismic demands on steel braced frame buildings with buckling-restrained braces
  publication-title: Eng Struct
– volume: 137
  start-page: 1311
  year: 2011
  end-page: 1318
  ident: bib3
  article-title: Cumulative cyclic deformation capacity of circular tubular braces under local buckling
  publication-title: J Struct Eng ASCE
– volume: 66
  start-page: 139
  year: 2010
  end-page: 149
  ident: bib29
  article-title: Local buckling restraint condition for core plates in buckling restrained braces
  publication-title: J Constr Steel Res
– volume: 341
  start-page: 16
  year: 2016
  ident: bib34
  article-title: Seismic provisions for structural steel building
  publication-title: AISC/ANSI Standard
– volume: 360
  start-page: 16
  year: 2016
  ident: bib35
  article-title: Specification for structural steel buildings
  publication-title: AISC/ANSI Standard
– volume: 134
  start-page: 822
  year: 2008
  end-page: 831
  ident: bib11
  article-title: Estimation of cumulative deformation capacity of buckling restrained braces
  publication-title: J Struct Eng ASCE
– volume: 144
  start-page: 176
  year: 2018
  end-page: 185
  ident: bib26
  article-title: Statistical size effect of flexural members in steel structures
  publication-title: J Constr Steel Res
– year: 2006
  ident: bib27
  article-title: Buckling and fracture of concentric braces under inelastic cyclic loading. Steel technical information and product service report (steel TIPS)
– reference: Guerrero H., Escobar A.J., Teran-Gilmore A. Experimental damping on frame structures equipped with buckling-restrained braces (BRBs) working within their linear-elastic response. Soil Dynam Earthq Eng 106: 196–203.
– year: 1996
  ident: bib42
  article-title: A study on the effect of cold forming on the yield strength of stainless steel - hardness test approach
  publication-title: International specialty conference on cold-formed steel structures, St. Louis, Missouri, U.S.A., October 17-18
– year: September 2002
  ident: bib9
  article-title: Component testing, stability analysis and characterization of buckling-restrained unbonded braces
– start-page: 117
  year: 1983
  ident: bib30
  article-title: The influence of local buckling on the structural behavior of singly symmetric cold-formed steel columns
– volume: 40
  start-page: 288
  year: 2012
  end-page: 298
  ident: bib5
  article-title: Development and experimental validation of a nickel–titanium shape memory alloy self-centering buckling-restrained brace
  publication-title: Eng Struct
– volume: 115
  start-page: 205
  year: 2018
  ident: 10.1016/j.soildyn.2021.106611_bib14
  article-title: Probabilistic mainshock-aftershock collapse risk assessment of buckling restrained braced frames
  publication-title: Soil Dynam Earthq Eng
  doi: 10.1016/j.soildyn.2018.08.029
– volume: 148
  start-page: 112
  year: 2018
  ident: 10.1016/j.soildyn.2021.106611_bib22
  article-title: Use of induction heating in steel structures: material properties and novel brace design
  publication-title: J Constr Steel Res
  doi: 10.1016/j.jcsr.2018.05.016
– volume: 143
  issue: 8
  year: 2017
  ident: 10.1016/j.soildyn.2021.106611_bib17
  article-title: Gusset plate connections for naturally buckling braces
  publication-title: J Struct Eng ASCE
– volume: 40
  start-page: 288
  year: 2012
  ident: 10.1016/j.soildyn.2021.106611_bib5
  article-title: Development and experimental validation of a nickel–titanium shape memory alloy self-centering buckling-restrained brace
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2012.02.037
– volume: 134
  start-page: 822
  issue: 5
  year: 2008
  ident: 10.1016/j.soildyn.2021.106611_bib11
  article-title: Estimation of cumulative deformation capacity of buckling restrained braces
  publication-title: J Struct Eng ASCE
  doi: 10.1061/(ASCE)0733-9445(2008)134:5(822)
– volume: 25
  start-page: 655
  issue: 5
  year: 2003
  ident: 10.1016/j.soildyn.2021.106611_bib8
  article-title: Seismic demands on steel braced frame buildings with buckling-restrained braces
  publication-title: Eng Struct
  doi: 10.1016/S0141-0296(02)00175-X
– volume: 15
  start-page: 1
  year: 1993
  ident: 10.1016/j.soildyn.2021.106611_bib31
  article-title: Local buckling of I- Section beams with longitudinal web stiffeners
  publication-title: Thin-Walled Struct
  doi: 10.1016/0263-8231(93)90010-8
– ident: 10.1016/j.soildyn.2021.106611_bib36
  doi: 10.1016/j.soildyn.2018.07.047
– volume: 5–8
  start-page: 665
  issue: 58
  year: 2002
  ident: 10.1016/j.soildyn.2021.106611_bib4
  article-title: Inelastic seismic response of steel bracing members
  publication-title: J Constr Steel Res
  doi: 10.1016/S0143-974X(01)00104-3
– year: 2002
  ident: 10.1016/j.soildyn.2021.106611_bib9
– ident: 10.1016/j.soildyn.2021.106611_bib38
– volume: 211
  year: 2020
  ident: 10.1016/j.soildyn.2021.106611_bib23
  article-title: Induction-heat treated steel braces with intentional eccentricity
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2020.110461
– volume: 214
  year: 2020
  ident: 10.1016/j.soildyn.2021.106611_bib21
  article-title: Effects of far-field and near-fault cyclic loadings on seismic performance of naturally buckling braces in pairs
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2020.110668
– volume: 137
  start-page: 1311
  issue: 11
  year: 2011
  ident: 10.1016/j.soildyn.2021.106611_bib3
  article-title: Cumulative cyclic deformation capacity of circular tubular braces under local buckling
  publication-title: J Struct Eng ASCE
  doi: 10.1061/(ASCE)ST.1943-541X.0000380
– start-page: 117
  year: 1983
  ident: 10.1016/j.soildyn.2021.106611_bib30
– year: 1996
  ident: 10.1016/j.soildyn.2021.106611_bib42
  article-title: A study on the effect of cold forming on the yield strength of stainless steel - hardness test approach
– volume: 56
  start-page: 433
  year: 2016
  ident: 10.1016/j.soildyn.2021.106611_bib18
  article-title: Physical model and numerical investigation of seismic performance of naturally buckling brace
  publication-title: H28 AIJ Kinki conference
– volume: 139
  start-page: 515
  issue: 4
  year: 2013
  ident: 10.1016/j.soildyn.2021.106611_bib37
  article-title: Dynamic response of a chevron concentrically braced frame
  publication-title: J Struct Eng ASCE
  doi: 10.1061/(ASCE)ST.1943-541X.0000679
– year: 2004
  ident: 10.1016/j.soildyn.2021.106611_bib1
– volume: 12
  start-page: 2148
  issue: 65
  year: 2009
  ident: 10.1016/j.soildyn.2021.106611_bib12
  article-title: Effect of gravity columns on mitigation of drift concentration for braced frames
  publication-title: J Constr Steel Res
  doi: 10.1016/j.jcsr.2009.07.003
– volume: 121
  issue: 12
  year: 1995
  ident: 10.1016/j.soildyn.2021.106611_bib39
  article-title: Strain hardening behavior of shear panels made of low-yield steel Part I: Test
  publication-title: J Struct Eng ASCE
– year: 2006
  ident: 10.1016/j.soildyn.2021.106611_bib27
– volume: vol. II
  start-page: 185
  year: 1965
  ident: 10.1016/j.soildyn.2021.106611_bib40
  article-title: Equivalent viscous friction for hysteretic systems with earthquake-like excitations
– year: 2012
  ident: 10.1016/j.soildyn.2021.106611_bib41
– volume: 134
  start-page: 108
  issue: 1
  year: 2008
  ident: 10.1016/j.soildyn.2021.106611_bib6
  article-title: Seismic response of multistory buildings with self-centering energy dissipative steel braces
  publication-title: J Struct Eng ASCE
  doi: 10.1061/(ASCE)0733-9445(2008)134:1(108)
– volume: 63
  start-page: 254
  issue: 2
  year: 2007
  ident: 10.1016/j.soildyn.2021.106611_bib7
  article-title: Behaviour of frames with non-buckling bracings under earthquake loading
  publication-title: J Constr Steel Res
  doi: 10.1016/j.jcsr.2006.04.012
– volume: 341
  start-page: 16
  year: 2016
  ident: 10.1016/j.soildyn.2021.106611_bib34
  article-title: Seismic provisions for structural steel building
  publication-title: AISC/ANSI Standard
– ident: 10.1016/j.soildyn.2021.106611_bib10
  doi: 10.1016/j.soildyn.2017.12.028
– year: 2019
  ident: 10.1016/j.soildyn.2021.106611_bib13
  article-title: Deformation concentration effect of multistory buckling restrained braced frames
  publication-title: Adv Civ Eng
– volume: 143
  issue: 8
  year: 2017
  ident: 10.1016/j.soildyn.2021.106611_bib19
  article-title: Development of a steel brace with intentional eccentricity and experimental validation
  publication-title: J Struct Eng ASCE
– volume: 66
  start-page: 139
  year: 2010
  ident: 10.1016/j.soildyn.2021.106611_bib29
  article-title: Local buckling restraint condition for core plates in buckling restrained braces
  publication-title: J Constr Steel Res
  doi: 10.1016/j.jcsr.2009.09.002
– volume: 37
  start-page: 69
  year: 2000
  ident: 10.1016/j.soildyn.2021.106611_bib24
  article-title: Size effect
  publication-title: Int J Solid Struct
  doi: 10.1016/S0020-7683(99)00077-3
– volume: 119
  start-page: 186
  year: 2016
  ident: 10.1016/j.soildyn.2021.106611_bib33
  article-title: Local buckling of bolted steel plates with different stiffener configuration
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2016.03.053
– volume: 12
  start-page: 543
  year: 1999
  ident: 10.1016/j.soildyn.2021.106611_bib32
  article-title: Elastic local buckling strength of stiffened plate considering plate/stiffener interaction and welding residual stress
  publication-title: Mar Struct
  doi: 10.1016/S0951-8339(99)00032-5
– volume: 360
  start-page: 16
  year: 2016
  ident: 10.1016/j.soildyn.2021.106611_bib35
  article-title: Specification for structural steel buildings
  publication-title: AISC/ANSI Standard
– volume: 142
  issue: 1
  year: 2016
  ident: 10.1016/j.soildyn.2021.106611_bib15
  article-title: Development and testing of naturally buckling steel braces
  publication-title: J Struct Eng ASCE
– volume: 713
  start-page: 1165
  year: 2015
  ident: 10.1016/j.soildyn.2021.106611_bib16
  article-title: Development and experiment of naturally buckling brace combining different types of steel material
  publication-title: Transactions of AIJ
  doi: 10.3130/aijs.80.1165
– volume: 165
  issue: 5
  year: 2020
  ident: 10.1016/j.soildyn.2021.106611_bib20
  article-title: Slenderness effects in naturally buckling braces under seismic loads
  publication-title: J Struct Eng ASCE
– volume: 316
  start-page: 18
  year: 1982
  ident: 10.1016/j.soildyn.2021.106611_bib2
  article-title: Mathematical expression of hysteretic behavior of braces: Part 1 Derivation of hysteresis functions
  publication-title: Transactions of AIJ
– volume: 20
  start-page: 641
  issue: 4
  year: 2017
  ident: 10.1016/j.soildyn.2021.106611_bib28
  article-title: Experimental performance of buckling restrained braces with steel cores of H-section and half-wavelength evaluation of higher-order local buckling
  publication-title: Adv Struct Eng
  doi: 10.1177/1369433216659491
– volume: 144
  start-page: 176
  year: 2018
  ident: 10.1016/j.soildyn.2021.106611_bib26
  article-title: Statistical size effect of flexural members in steel structures
  publication-title: J Constr Steel Res
  doi: 10.1016/j.jcsr.2018.01.025
– volume: 69
  start-page: 703
  year: 1999
  ident: 10.1016/j.soildyn.2021.106611_bib25
  article-title: Size effect on structural strength: a review
  publication-title: Arch Appl Mech
  doi: 10.1007/s004190050252
– start-page: 143
  year: 2015
  ident: 10.1016/j.soildyn.2021.106611_bib43
SSID ssj0017186
ssib005901463
ssib006544337
ssib050601321
ssib006544338
Score 2.2949398
Snippet Naturally buckling steel braces (NBBs) have been recently developed by the authors and co-workers to improve the buckling performance and energy dissipation...
SourceID proquest
crossref
nii
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 106611
SubjectTerms Axial loads
Buckling
buildings
Compression
Computer applications
Cumulative damage
Damping ratio
Deformation mechanisms
Dual strength
Ductility
Eccentricity
Energy dissipation
Equivalent damping ratio
Experimental research
FEM
Finite element method
Frame structures
Full-scale cyclic tests
Gusset plates
High strength steels
Hysteresis
Hysteretic model
Low cycle fatigue
Mathematical models
Repeated loading
restrained braces
Rib stiffeners
Ribs (structural)
seismic response
Software radio
Steel
Stiffeners
Stiffness
Tensile strength
Title Full-scale testing of naturally buckling steel braces and evaluation of partially rib-strengthened sections to cumulative damage
URI https://dx.doi.org/10.1016/j.soildyn.2021.106611
https://cir.nii.ac.jp/crid/1872272492431080960
https://www.proquest.com/docview/2551250460
Volume 147
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEF_UvtSHotXitZ7sQ1_XyyabbPbxEOVaqS-t4NuyX5FIzB1eFO5F_NM7k4-zIkXwJZAlQ5aZyXxkZ35DyPc8SYRXImU-C5YJGQWWp5FnDrHFlHe5TbDB-ddFNrsUP6_Sqw1yMvTCYFllb_s7m95a635l0nNzsijLyW-cnSQ7BCycSIaw20JI1PLjx3WZBwfbm3X_WSTDp5-7eCY3iJdb-RXCoMYc1sBX8f_5p826LF_Z69YJne2QT330SKfdBnfJRqg_k-1_MAX3yBMmlWwJrA-0QQiN-prOC9oCeJqqWlGLp7m4CvINFYVsGUwFNbWnz8jfSLFANrQUd6Vl2FNSXyNUQvB02dZv1UvazKm7v20ngD0E6s0tWKd9cnl2-udkxvoxC8wJqRrmTB4bnhpbSK-sj4SBEM57zl1s4kJl3iap40WemSgrnM09JNQ-JIkVUeDKJMkXslXP63BAaKqUg7XI44Gr5MJwXkC-ZVVsCxxQPyJiYK52PQY5jsKo9FBsdqN7mWiUie5kMiLHa7JFB8LxFkE-SE6_0CYNjuIt0jFIGnaHV57LOJYIqghxFsTWkO6NyOGgA7r_3Jca8jKOWHBZ9PX9b_5GPuJdV114SLaau_swhoinsUetSh-RD9Mf57OLv4PjABU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9xADLaAHqCHqqWgLoV2DlyHzSSTxxwrVLRtgUtB4jaaV1BQyK7YUIlLxU-vnQe0qhASlxycWInsGT8y9meA_SJJpFcy5T4Llss8CrxII88dYYsp7wqbUIPzyWk2O5ffL9KLFTgce2GorHKw_b1N76z1QJkO0pwuqmr6k2Yn5T0CFk0ky1bhlcTtS2MMDn4_1HkINL5Z_6Ml5_T4YxvP9IoAc2t_RziosUAaOivxlINabarqP4PdeaGjt_BmCB_Zl_4L38FKaDbh9V-ggu_hnrJKvkTZB9YShkZzyeYl6xA8TV3fMUvHuURFBYeaYbqMtoKZxrNH6G_iWJAcOo6bynJqKmkuCSsheLbsCriaJWvnzN1edyPAfgXmzTWapy04P_p6djjjw5wF7mSuWu5MERuRGlvmXlkfSYMxnPdCuNjEpcq8TVInyiIzUVY6W3jMqH1IEiujIJRJkm1Ya-ZN-AAsVcohLfJ04poLaYQoMeGyKrYlTaifgByFq90AQk6zMGo9Vptd6UEnmnSie51M4OCBbdGjcDzHUIya0_8sJ42e4jnWPdQ0fh1dRZHHcU6oihhoYXCN-d4Edsc1oIf9vtSYmAkCg8uinZe_-TOsz85OjvXxt9MfH2GD7vSlhruw1t7chj0Mf1r7qVvefwBOeAGj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Full-scale+testing+of+naturally+buckling+steel+braces+and+evaluation+of+partially+rib-strengthened+sections+to+cumulative+damage&rft.jtitle=Soil+dynamics+and+earthquake+engineering+%281984%29&rft.au=Hayashi%2C+Kazuhiro&rft.au=Skalomenos%2C+Konstantinos+A&rft.au=Jamshiyas%2C+Shadiya&rft.au=Inamasu%2C+Hiroyuki&rft.date=2021-08-01&rft.pub=Elsevier+BV&rft.issn=0267-7261&rft.eissn=1879-341X&rft.volume=147&rft.spage=1&rft_id=info:doi/10.1016%2Fj.soildyn.2021.106611&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0267-7261&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0267-7261&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0267-7261&client=summon