Intestinal microsomal triglyceride transfer protein in type 2 diabetic and non-diabetic subjects: The relationship to triglyceride-rich postprandial lipoprotein composition
Microsomal triglyceride transfer protein (MTP) is responsible for the assembly of the triglyceride-rich lipoproteins (TRLs) and is increased in diabetic animal models. Human intestinal MTP expression has not been previously reported. This study examined the relationship between intestinal MTP gene e...
Saved in:
Published in | Atherosclerosis Vol. 187; no. 1; pp. 57 - 64 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Ireland Ltd
01.07.2006
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0021-9150 1879-1484 |
DOI | 10.1016/j.atherosclerosis.2005.08.020 |
Cover
Loading…
Abstract | Microsomal triglyceride transfer protein (MTP) is responsible for the assembly of the triglyceride-rich lipoproteins (TRLs) and is increased in diabetic animal models. Human intestinal MTP expression has not been previously reported. This study examined the relationship between intestinal MTP gene expression and postprandial TRL composition in diabetic and non-diabetic subjects. Since the MTP promoter region has a sterol response element the effect of statins on intestinal MTP mRNA was analysed.
Twenty-seven diabetic and 24 non-diabetic subjects were examined. Duodenal biopsies were taken during gastroscopy and MTP mRNA was measured by RNase protection assay. Postprandial lipoprotein composition was determined.
Diabetic subjects had significantly higher MTP mRNA than non-diabetic subjects. Statin therapy was associated with lower MTP mRNA in both groups. In the untreated diabetic patients compared to the untreated non-diabetic patients MTP mRNA was 25.0
±
25.1
amol/μg versus 13.1
±
5.6
amol/μg total RNA (
p
<
0.05). In the statin-treated diabetic group compared to statin-treated non-diabetic group MTP mRNA was 17.7
±
8.6
amol/μg versus 5.8
±
4.1
amol/μg total RNA (
p
<
0.05). In the whole group there was a positive correlation between the MTP mRNA and postprandial chylomicron cholesterol/B48 (
r
=
0.36,
p
<
0.01).
This is the first study to demonstrate increased MTP expression in diabetic subjects. MTP mRNA expression was lower in statin-treated patients confirming the suggestion that the insulin and sterol response elements of the MTP gene are important regulators of MTP transcription in diabetes. Our results show that MTP plays a central role in regulating the cholesterol content of the chylomicron particle. |
---|---|
AbstractList | Microsomal triglyceride transfer protein (MTP) is responsible for the assembly of the triglyceride-rich lipoproteins (TRLs) and is increased in diabetic animal models. Human intestinal MTP expression has not been previously reported. This study examined the relationship between intestinal MTP gene expression and postprandial TRL composition in diabetic and non-diabetic subjects. Since the MTP promoter region has a sterol response element the effect of statins on intestinal MTP mRNA was analysed.
Twenty-seven diabetic and 24 non-diabetic subjects were examined. Duodenal biopsies were taken during gastroscopy and MTP mRNA was measured by RNase protection assay. Postprandial lipoprotein composition was determined.
Diabetic subjects had significantly higher MTP mRNA than non-diabetic subjects. Statin therapy was associated with lower MTP mRNA in both groups. In the untreated diabetic patients compared to the untreated non-diabetic patients MTP mRNA was 25.0 +/- 25.1 amol/microg versus 13.1 +/- 5.6 amol/microg total RNA (p < 0.05). In the statin-treated diabetic group compared to statin-treated non-diabetic group MTP mRNA was 17.7 +/- 8.6 amol/microg versus 5.8 +/- 4.1 amol/microg total RNA (p < 0.05). In the whole group there was a positive correlation between the MTP mRNA and postprandial chylomicron cholesterol/B48 (r = 0.36, p < 0.01).
This is the first study to demonstrate increased MTP expression in diabetic subjects. MTP mRNA expression was lower in statin-treated patients confirming the suggestion that the insulin and sterol response elements of the MTP gene are important regulators of MTP transcription in diabetes. Our results show that MTP plays a central role in regulating the cholesterol content of the chylomicron particle. Microsomal triglyceride transfer protein (MTP) is responsible for the assembly of the triglyceride-rich lipoproteins (TRLs) and is increased in diabetic animal models. Human intestinal MTP expression has not been previously reported. This study examined the relationship between intestinal MTP gene expression and postprandial TRL composition in diabetic and non-diabetic subjects. Since the MTP promoter region has a sterol response element the effect of statins on intestinal MTP mRNA was analysed. Twenty-seven diabetic and 24 non-diabetic subjects were examined. Duodenal biopsies were taken during gastroscopy and MTP mRNA was measured by RNase protection assay. Postprandial lipoprotein composition was determined. Diabetic subjects had significantly higher MTP mRNA than non-diabetic subjects. Statin therapy was associated with lower MTP mRNA in both groups. In the untreated diabetic patients compared to the untreated non-diabetic patients MTP mRNA was 25.0 ± 25.1 amol/μg versus 13.1 ± 5.6 amol/μg total RNA ( p < 0.05). In the statin-treated diabetic group compared to statin-treated non-diabetic group MTP mRNA was 17.7 ± 8.6 amol/μg versus 5.8 ± 4.1 amol/μg total RNA ( p < 0.05). In the whole group there was a positive correlation between the MTP mRNA and postprandial chylomicron cholesterol/B48 ( r = 0.36, p < 0.01). This is the first study to demonstrate increased MTP expression in diabetic subjects. MTP mRNA expression was lower in statin-treated patients confirming the suggestion that the insulin and sterol response elements of the MTP gene are important regulators of MTP transcription in diabetes. Our results show that MTP plays a central role in regulating the cholesterol content of the chylomicron particle. Microsomal triglyceride transfer protein (MTP) is responsible for the assembly of the triglyceride-rich lipoproteins (TRLs) and is increased in diabetic animal models. Human intestinal MTP expression has not been previously reported. This study examined the relationship between intestinal MTP gene expression and postprandial TRL composition in diabetic and non-diabetic subjects. Since the MTP promoter region has a sterol response element the effect of statins on intestinal MTP mRNA was analysed.BACKGROUNDMicrosomal triglyceride transfer protein (MTP) is responsible for the assembly of the triglyceride-rich lipoproteins (TRLs) and is increased in diabetic animal models. Human intestinal MTP expression has not been previously reported. This study examined the relationship between intestinal MTP gene expression and postprandial TRL composition in diabetic and non-diabetic subjects. Since the MTP promoter region has a sterol response element the effect of statins on intestinal MTP mRNA was analysed.Twenty-seven diabetic and 24 non-diabetic subjects were examined. Duodenal biopsies were taken during gastroscopy and MTP mRNA was measured by RNase protection assay. Postprandial lipoprotein composition was determined.METHODSTwenty-seven diabetic and 24 non-diabetic subjects were examined. Duodenal biopsies were taken during gastroscopy and MTP mRNA was measured by RNase protection assay. Postprandial lipoprotein composition was determined.Diabetic subjects had significantly higher MTP mRNA than non-diabetic subjects. Statin therapy was associated with lower MTP mRNA in both groups. In the untreated diabetic patients compared to the untreated non-diabetic patients MTP mRNA was 25.0 +/- 25.1 amol/microg versus 13.1 +/- 5.6 amol/microg total RNA (p < 0.05). In the statin-treated diabetic group compared to statin-treated non-diabetic group MTP mRNA was 17.7 +/- 8.6 amol/microg versus 5.8 +/- 4.1 amol/microg total RNA (p < 0.05). In the whole group there was a positive correlation between the MTP mRNA and postprandial chylomicron cholesterol/B48 (r = 0.36, p < 0.01).RESULTSDiabetic subjects had significantly higher MTP mRNA than non-diabetic subjects. Statin therapy was associated with lower MTP mRNA in both groups. In the untreated diabetic patients compared to the untreated non-diabetic patients MTP mRNA was 25.0 +/- 25.1 amol/microg versus 13.1 +/- 5.6 amol/microg total RNA (p < 0.05). In the statin-treated diabetic group compared to statin-treated non-diabetic group MTP mRNA was 17.7 +/- 8.6 amol/microg versus 5.8 +/- 4.1 amol/microg total RNA (p < 0.05). In the whole group there was a positive correlation between the MTP mRNA and postprandial chylomicron cholesterol/B48 (r = 0.36, p < 0.01).This is the first study to demonstrate increased MTP expression in diabetic subjects. MTP mRNA expression was lower in statin-treated patients confirming the suggestion that the insulin and sterol response elements of the MTP gene are important regulators of MTP transcription in diabetes. Our results show that MTP plays a central role in regulating the cholesterol content of the chylomicron particle.CONCLUSIONSThis is the first study to demonstrate increased MTP expression in diabetic subjects. MTP mRNA expression was lower in statin-treated patients confirming the suggestion that the insulin and sterol response elements of the MTP gene are important regulators of MTP transcription in diabetes. Our results show that MTP plays a central role in regulating the cholesterol content of the chylomicron particle. |
Author | Phillips, Catherine Owens, Daphne Mullan, Karen Tomkin, Gerald H. |
Author_xml | – sequence: 1 givenname: Catherine surname: Phillips fullname: Phillips, Catherine – sequence: 2 givenname: Karen surname: Mullan fullname: Mullan, Karen – sequence: 3 givenname: Daphne surname: Owens fullname: Owens, Daphne – sequence: 4 givenname: Gerald H. surname: Tomkin fullname: Tomkin, Gerald H. email: tomking@tcd.ie |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17885028$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/16183064$$D View this record in MEDLINE/PubMed |
BookMark | eNqVkctuEzEUhi1URNPCKyBvym6CPVcbiQWKSqlUiU1ZW47nDDnBYw-2UynvxEPiISkVWRVpNNfvfPb8_wU5c94BIVecLTnj7fvtUqcNBB-Nnc8YlyVjzZKJJSvZC7LgopMFr0V9RhaMlbyQvGHn5CLGLWOs7rh4Rc55y0XF2npBft26BDGh05aOaLLRj_k2Bfxu9wYC9pAftIsDBDoFnwAdzUfaT0BL2qNeQ0JDtetp3mnx90XcrbdgUvxA7zdAA1id0Lu4wYkm_4-_CGg2dPIxTXmhLLDU4uQfFzN-zN9wnn5NXg7aRnhzvF6Sb5-v71dfiruvN7erT3eFqTuZClPVsuSVbGU_rNuh6nTH2rYxjA9QCc3LUq9FX3Wy6nnbDp3IaRnZZLQU5aBNdUneHbx5Dz93OR41YjRgrXbgd1G1gtVSNjKDb4_gbj1Cr6aAow579ZhvBq6OgI5G2yH_oMH4xHVCNKwUmft44OYGYoDhCWFq7l1t1Unvau5dMaFy73l-dTJvMP1JPJeH9tmWm4MFcrgPCEFFg-AM9Bhyl6r3-GzT9YnJWHSYI_gB-__w_AZzpPSg |
CitedBy_id | crossref_primary_10_15406_mojcsr_2017_04_00097 crossref_primary_10_1016_j_jlr_2022_100278 crossref_primary_10_2337_dc08_s260 crossref_primary_10_1124_jpet_110_177527 crossref_primary_10_1186_s12876_015_0342_y crossref_primary_10_1016_j_atherosclerosis_2008_04_035 crossref_primary_10_1016_j_atherosclerosis_2006_09_031 crossref_primary_10_3389_fendo_2020_00116 crossref_primary_10_3390_ijms241612720 crossref_primary_10_1371_journal_pone_0125934 crossref_primary_10_1152_ajpgi_00108_2018 crossref_primary_10_1161_ATVBAHA_118_310990 crossref_primary_10_7555_JBR_31_20160164 crossref_primary_10_1194_jlr_M007815 crossref_primary_10_1016_j_atherosclerosis_2015_07_040 crossref_primary_10_2337_db07_0848 crossref_primary_10_1194_jlr_M040071 crossref_primary_10_1249_MSS_0000000000001511 crossref_primary_10_1210_jc_2016_2728 crossref_primary_10_1186_s43042_025_00660_4 crossref_primary_10_1007_s00125_015_3525_8 crossref_primary_10_1007_s12170_011_0215_z crossref_primary_10_1016_j_cca_2015_10_033 crossref_primary_10_1139_h06_100 crossref_primary_10_1016_j_atherosclerosissup_2008_05_014 crossref_primary_10_1194_jlr_M005744 crossref_primary_10_1007_s00125_022_05765_8 crossref_primary_10_1586_erc_10_45 crossref_primary_10_1007_s00125_006_0177_8 crossref_primary_10_1016_S1957_2557_19_30043_4 crossref_primary_10_1017_S000711451400350X crossref_primary_10_1016_j_metabol_2006_10_028 crossref_primary_10_1016_j_arteri_2014_02_007 crossref_primary_10_1016_j_arteri_2013_11_006 crossref_primary_10_1016_j_cjca_2010_12_020 crossref_primary_10_1016_j_clinbiochem_2008_02_007 crossref_primary_10_1097_MOL_0b013e32831ac56c crossref_primary_10_1161_ATVBAHA_118_310882 crossref_primary_10_1194_jlr_P800061_JLR200 |
Cites_doi | 10.1007/s001250051252 10.1016/S0021-9150(03)00245-4 10.1210/en.2004-1143 10.1161/01.ATV.0000143859.75035.5a 10.1210/jc.85.11.4224 10.1016/S0022-2275(20)39974-0 10.1016/S0022-2275(20)37472-1 10.1016/S0026-0495(03)00281-6 10.1053/meta.2002.33350 10.1007/BF02048544 10.1016/S0021-9150(99)00397-4 10.1016/S0021-9150(99)00364-0 10.1016/j.lfs.2004.05.037 10.1074/jbc.M202015200 10.1007/BF00400677 10.1126/science.1439810 10.1074/jbc.274.35.24714 10.1016/S0021-9150(01)00721-3 10.1016/j.diabres.2004.04.002 10.1007/BF00399800 10.1515/CCLM.2003.120 10.5551/jat.10.132 10.2337/diabetes.52.5.1073 10.1016/S0021-9258(19)61967-8 10.1016/S0022-2275(20)39865-5 10.1248/bpb.28.247 10.1016/j.atherosclerosis.2003.08.030 10.1016/j.atherosclerosis.2004.12.033 10.1093/hmg/2.12.2109 10.1093/qjmed/hch130 10.1016/S0021-9150(99)00275-0 10.1016/S0026-0495(03)00315-9 10.1055/s-2001-18580 |
ContentType | Journal Article |
Copyright | 2005 Elsevier Ireland Ltd 2006 INIST-CNRS |
Copyright_xml | – notice: 2005 Elsevier Ireland Ltd – notice: 2006 INIST-CNRS |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.atherosclerosis.2005.08.020 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1879-1484 |
EndPage | 64 |
ExternalDocumentID | 16183064 17885028 10_1016_j_atherosclerosis_2005_08_020 S0021915005005423 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .1- .55 .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABLJU ABMAC ABMZM ABOCM ABXDB ACDAQ ACGFS ACIEU ACIUM ACRLP ACVFH ADBBV ADCNI ADEZE AEBSH AEIPS AEKER AENEX AEUPX AEVXI AEXQZ AFFNX AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEB HMK HMO HVGLF HZ~ IHE J1W J5H K-O KOM L7B M27 M41 MO0 N9A O-L O9- OAUVE OA~ OK1 OL0 OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SPCBC SSH SSZ T5K WUQ X7M Z5R ZGI ZXP ~G- ~KM 0SF AACTN AAIAV ABLVK ABYKQ AFCTW AFKWA AHPSJ AJBFU AJOXV AMFUW EFLBG LCYCR NCXOZ RIG ZA5 AAYXX AGRNS CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c479t-c349213969dfb6f37a70665c01fe38a122ab8d3793d166f78484c95b6f282fac3 |
IEDL.DBID | AIKHN |
ISSN | 0021-9150 |
IngestDate | Fri Jul 11 01:49:28 EDT 2025 Wed Feb 19 01:43:13 EST 2025 Mon Jul 21 09:14:45 EDT 2025 Thu Apr 24 23:04:10 EDT 2025 Tue Jul 01 04:19:21 EDT 2025 Fri Feb 23 02:32:24 EST 2024 Tue Aug 26 20:39:44 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | apo B48 Type 2 diabetes TRLs Triglyceride-rich lipoproteins Microsomal triglyceride transfer protein (MTP) VLDL apo B100 MTP D2 Statins Endocrinopathy Animal model Pancreatic hormone Lipids Cardiovascular disease Esterases Lipoprotein Small intestine Vascular disease Particle Chylomicron Atherosclerosis Apo B48 Endoscopy Human Duodenum Digestive system Enzyme Postprandial Metabolic diseases Statin derivative Gastroscopy Gene expression Triglyceride Insulin Cholesterol Treatment Biopsy Hydrolases Pancreatic ribonuclease Comparative study Apo B100 Antilipemic agent Sterol |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c479t-c349213969dfb6f37a70665c01fe38a122ab8d3793d166f78484c95b6f282fac3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 16183064 |
PQID | 68049959 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_68049959 pubmed_primary_16183064 pascalfrancis_primary_17885028 crossref_primary_10_1016_j_atherosclerosis_2005_08_020 crossref_citationtrail_10_1016_j_atherosclerosis_2005_08_020 elsevier_sciencedirect_doi_10_1016_j_atherosclerosis_2005_08_020 elsevier_clinicalkey_doi_10_1016_j_atherosclerosis_2005_08_020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2006-07-01 |
PublicationDateYYYYMMDD | 2006-07-01 |
PublicationDate_xml | – month: 07 year: 2006 text: 2006-07-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam – name: Ireland |
PublicationTitle | Atherosclerosis |
PublicationTitleAlternate | Atherosclerosis |
PublicationYear | 2006 |
Publisher | Elsevier Ireland Ltd Elsevier |
Publisher_xml | – name: Elsevier Ireland Ltd – name: Elsevier |
References | Parhofer, Barrett, Schwandt (bib19) 2000; 85 Proctor, Vine, Mamo (bib12) 2004; 11 Wilhelm, Cooper (bib29) 2003; 10 Martins, Mortimer, Miller (bib30) 1996; 37 Sato, Miyamoto, Inoue (bib24) 1999; 274 Curtin, Deegan, Owens (bib10) 1995; 33 Lewis, Uffelman, Naples (bib8) 2005; 146 Hussein (bib26) 2000; 148 Wetterau, Aggerbeck, Bouma (bib1) 1992; 258 Westphal, Wiens, Guttler (bib17) 2003; 171 Mero, Malmstrom, Steiner (bib28) 2000; 150 Taskinen (bib27) 2001; 109 Shoulders, Brett, Bayliss (bib2) 1990; 2 Au, Kung, Lin (bib22) 2003; 52 Curtin, Deegan, Owens (bib9) 1994; 37 Betula, Fitzsimons, Moreno (bib16) 2000; 49 Hagan, Kienzle, Jamil (bib3) 1994; 269 Takayanagi, Onuma, Kato (bib14) 2004; 66 Kulinski, Rustaeus, Vance (bib25) 2002; 277 Phillips, Murugasu, Owens (bib20) 2000; 148 Koba, Hirano, Murayama (bib32) 2003; 170 Gleeson, Anderton, Owens (bib5) 1999; 42 Ueshima, Akihisa-Umeno, Nagayoshi (bib34) 2005; 28 Phillips, Anderton, Bennett (bib6) 2002; 51 Dane-Stewart, Watts, Pal (bib18) 2003; 52 Blackburn, Cote, Lamarche (bib13) 2003; 52 Phillips, Owens, Collins (bib7) 2002; 160 Lin, Gordon, Wetterau (bib4) 1995; 36 Karpe, Hamsten (bib21) 1994; 35 Phillips C, Owens D, Collins P, et al. Low density lipoprotein non-esterified fatty acids and lipoprotein lipase in diabetes, Atherosclerosis 2005;181:109–14. Rumley, Woodward, Rumley (bib15) 2004; 97 Ueshima, Akihisa-Umeno, Sawada (bib33) 2004; 26 Pal, Semorine, Watts (bib11) 2003; 41 Lahdenpera, Syvanne, Kahri (bib31) 1996; 39 Martins (10.1016/j.atherosclerosis.2005.08.020_bib30) 1996; 37 Westphal (10.1016/j.atherosclerosis.2005.08.020_bib17) 2003; 171 Kulinski (10.1016/j.atherosclerosis.2005.08.020_bib25) 2002; 277 Lahdenpera (10.1016/j.atherosclerosis.2005.08.020_bib31) 1996; 39 Gleeson (10.1016/j.atherosclerosis.2005.08.020_bib5) 1999; 42 Parhofer (10.1016/j.atherosclerosis.2005.08.020_bib19) 2000; 85 Phillips (10.1016/j.atherosclerosis.2005.08.020_bib20) 2000; 148 Takayanagi (10.1016/j.atherosclerosis.2005.08.020_bib14) 2004; 66 Curtin (10.1016/j.atherosclerosis.2005.08.020_bib10) 1995; 33 Wetterau (10.1016/j.atherosclerosis.2005.08.020_bib1) 1992; 258 Mero (10.1016/j.atherosclerosis.2005.08.020_bib28) 2000; 150 Lin (10.1016/j.atherosclerosis.2005.08.020_bib4) 1995; 36 Hagan (10.1016/j.atherosclerosis.2005.08.020_bib3) 1994; 269 Curtin (10.1016/j.atherosclerosis.2005.08.020_bib9) 1994; 37 Lewis (10.1016/j.atherosclerosis.2005.08.020_bib8) 2005; 146 Phillips (10.1016/j.atherosclerosis.2005.08.020_bib6) 2002; 51 Phillips (10.1016/j.atherosclerosis.2005.08.020_bib7) 2002; 160 Ueshima (10.1016/j.atherosclerosis.2005.08.020_bib33) 2004; 26 Hussein (10.1016/j.atherosclerosis.2005.08.020_bib26) 2000; 148 Koba (10.1016/j.atherosclerosis.2005.08.020_bib32) 2003; 170 10.1016/j.atherosclerosis.2005.08.020_bib23 Taskinen (10.1016/j.atherosclerosis.2005.08.020_bib27) 2001; 109 Betula (10.1016/j.atherosclerosis.2005.08.020_bib16) 2000; 49 Wilhelm (10.1016/j.atherosclerosis.2005.08.020_bib29) 2003; 10 Au (10.1016/j.atherosclerosis.2005.08.020_bib22) 2003; 52 Karpe (10.1016/j.atherosclerosis.2005.08.020_bib21) 1994; 35 Ueshima (10.1016/j.atherosclerosis.2005.08.020_bib34) 2005; 28 Dane-Stewart (10.1016/j.atherosclerosis.2005.08.020_bib18) 2003; 52 Sato (10.1016/j.atherosclerosis.2005.08.020_bib24) 1999; 274 Shoulders (10.1016/j.atherosclerosis.2005.08.020_bib2) 1990; 2 Pal (10.1016/j.atherosclerosis.2005.08.020_bib11) 2003; 41 Rumley (10.1016/j.atherosclerosis.2005.08.020_bib15) 2004; 97 Blackburn (10.1016/j.atherosclerosis.2005.08.020_bib13) 2003; 52 Proctor (10.1016/j.atherosclerosis.2005.08.020_bib12) 2004; 11 |
References_xml | – volume: 52 start-page: 1279 year: 2003 end-page: 1286 ident: bib18 article-title: Effect of atorvastatin on apolipoprotein B48 metabolism and low-density lipoprotein receptor activity in normolipidemic patients with coronary artery disease publication-title: Metabolism – volume: 170 start-page: 131 year: 2003 end-page: 140 ident: bib32 article-title: Small dense LDL phenotype is associated with postprandial increases of large VLDL and remnant-like particles in patients with acute myocardial infarction publication-title: Atherosclerosis – volume: 146 start-page: 247 year: 2005 end-page: 255 ident: bib8 article-title: Intestinal lipoprotein overproduction, a newly recognized component of insulin resistance, is ameliorated by the insulin sensitizer rosiglitazone: studies in the fructose-fed Syrian Golden hamster publication-title: Endocrinology – volume: 10 start-page: 132 year: 2003 end-page: 139 ident: bib29 article-title: Induction of atherosclerosis by human chylomicron remnants: a hypothesis publication-title: J Atheroscler Thromb – volume: 51 start-page: 847 year: 2002 end-page: 852 ident: bib6 article-title: Intestinal rather than hepatic microsomal triglyceride transfer protein as a cause of postprandial dyslipidaemia in diabetes publication-title: Metabolism – volume: 41 start-page: 792 year: 2003 end-page: 795 ident: bib11 article-title: Identification of lipoproteins of intestinal origin in human atherosclerotic plaque publication-title: Clin Chem Lab Med – volume: 37 start-page: 2696 year: 1996 end-page: 2705 ident: bib30 article-title: Effects of particle size and number on the plasma clearance of chylomicrons and remnants publication-title: J Lipid Res – volume: 274 start-page: 24714 year: 1999 end-page: 24720 ident: bib24 article-title: Sterol regulatory element-binding protein negatively regulates microsomal triglyceride transfer protein gene transcription publication-title: J Biol Chem – volume: 26 start-page: 179 year: 2004 end-page: 190 ident: bib33 article-title: Possible involvement of enhanced intestinal microsomal triglyceride transfer protein (MTP) gene expression in acceleration of lipid absorption by a western-type diet in apolipoprotein E knockout mice publication-title: Life Sci – volume: 11 start-page: 2162 year: 2004 end-page: 2167 ident: bib12 article-title: Arterial permeability and efflux of apolipoprotein B-containing lipoproteins assessed by in situ perfusion and three-dimensional quantitative confocal microscopy publication-title: Atheroscler Thromb Vasc Biol – volume: 277 start-page: 31516 year: 2002 end-page: 31525 ident: bib25 article-title: Microsomal triacylglycerol transfer protein is required for lumenal accretion of triacylglycerol not associated with ApoB, as well as for ApoB lipidation publication-title: J Biol Chem – volume: 109 start-page: S180 year: 2001 end-page: S188 ident: bib27 article-title: Pathogenesis of dyslipidaemia in type 2 diabetes publication-title: Exp Clin Endocrinol Diab – volume: 28 start-page: 247 year: 2005 end-page: 252 ident: bib34 article-title: Implitapide, a microsomal triglyceride transfer protein inhibitor, reduces progression of atherosclerosis in apolipoprotein E knockout mice fed a Western-type diet: involvement of the inhibition of postprandial triglyceride elevation publication-title: Biol Pharm Bull – volume: 269 start-page: 28737 year: 1994 end-page: 28744 ident: bib3 article-title: Transcriptional regulation of human and hamster microsomal triglyceride transfer protein genes. Cell type-specific expression and response to metabolic regulators publication-title: J Biol Chem – volume: 37 start-page: 1259 year: 1994 end-page: 1262 ident: bib9 article-title: Alterations in apolipoprotein B48 in the postprandial state publication-title: Diabetologia – volume: 42 start-page: 944 year: 1999 end-page: 949 ident: bib5 article-title: The role of microsomal triglyceride transfer protein and dietary cholesterol in chylomicron production in diabetes publication-title: Diabetologia – volume: 171 start-page: 369 year: 2003 end-page: 377 ident: bib17 article-title: Chylomicron remnants of various sizes are lowered more effectively by fenofibrate than by atorvastatin in patients with combined hyperlipidemia publication-title: Atherosclerosis – volume: 97 start-page: 809 year: 2004 end-page: 816 ident: bib15 article-title: Plasma lipid peroxides: relationships to cardiovascular risk factors and prevalent cardiovascular disease publication-title: QJM – volume: 160 start-page: 355 year: 2002 end-page: 360 ident: bib7 article-title: Microsomal triglyceride transfer protein: does insulin resistance play a role in the regulation of chylomicron assembly? publication-title: Atherosclerosis – volume: 148 start-page: 283 year: 2000 end-page: 291 ident: bib20 article-title: Improved metabolic control reduces the number of postprandial apolipoprotein B48-containing particles in Type 2 diabetes publication-title: Atherosclerosis – volume: 52 start-page: 1073 year: 2003 end-page: 1080 ident: bib22 article-title: Regulation of microsomal triglyceride transfer protein gene by insulin in HepG2 cells: roles of MAPKerk and MAPKp38 publication-title: Diabetes – volume: 150 start-page: 167 year: 2000 end-page: 177 ident: bib28 article-title: Postprandial metabolism of apolipoprotein B-48 and B-100 containing particles in type 2 diabetes mellitus: relations to angiographically verified severity of coronary artery disease publication-title: Atherosclerosis – volume: 36 start-page: 1073 year: 1995 end-page: 1081 ident: bib4 article-title: Microsomal triglyceride transfer protein (MTP) regulation in HepG2 cells: insulin negatively regulates MTP gene expression publication-title: J Lipid Res – reference: Phillips C, Owens D, Collins P, et al. Low density lipoprotein non-esterified fatty acids and lipoprotein lipase in diabetes, Atherosclerosis 2005;181:109–14. – volume: 52 start-page: 1379 year: 2003 end-page: 1386 ident: bib13 article-title: Impact of postprandial variation in triglyceridemia on low-density lipoprotein particle size publication-title: Metabolism – volume: 39 start-page: 453 year: 1996 end-page: 461 ident: bib31 article-title: Regulation of low density lipoprotein particle size and distribution in NIDDM and coronary artery disease: importance of serum triglycerides publication-title: Diabetologia – volume: 33 start-page: 205 year: 1995 end-page: 210 ident: bib10 article-title: Elevated triglyceride-rich lipoproteins in diabetes. A study of apolipoprotein B-48 publication-title: Acta Diabetol – volume: 35 start-page: 1311 year: 1994 end-page: 1317 ident: bib21 article-title: Determination of apolipoproteins B48 and B100 in triglyceride-rich lipoproteins by analytical SDS-PAGE publication-title: J Lipid Res – volume: 148 start-page: 1 year: 2000 end-page: 15 ident: bib26 article-title: A proposed model for the assembly of chylomicrons publication-title: Atherosclerosis – volume: 2 start-page: 2109 year: 1990 end-page: 2116 ident: bib2 article-title: Abetalipoproteinemia is caused by defects of the gene encoding the 97 publication-title: Hum Mol Genet – volume: 85 start-page: 4224 year: 2000 end-page: 4230 ident: bib19 article-title: Atorvastatin improves postprandial lipoprotein metabolism in normolipidemic subjects publication-title: J Clin Endcrinol Metab – volume: 258 start-page: 999 year: 1992 end-page: 1001 ident: bib1 article-title: Absence of microsomal triglyceride transfer protein in individuals with abetalipoproteinemia publication-title: Science – volume: 66 start-page: 245 year: 2004 end-page: 252 ident: bib14 article-title: Association between LDL particle size and postprandial increase of remnant-like particles in Japanese type 2 diabetic patients publication-title: Diab Res Clin Pract – volume: 49 start-page: 1 year: 2000 end-page: 7 ident: bib16 article-title: Post-prandial apolipoprotein B48 and B100-containing lipoproteins in Type 2 diabetes: do statins have a specific effect on triglyceride metabolism? publication-title: Metabolism – volume: 42 start-page: 944 year: 1999 ident: 10.1016/j.atherosclerosis.2005.08.020_bib5 article-title: The role of microsomal triglyceride transfer protein and dietary cholesterol in chylomicron production in diabetes publication-title: Diabetologia doi: 10.1007/s001250051252 – volume: 170 start-page: 131 year: 2003 ident: 10.1016/j.atherosclerosis.2005.08.020_bib32 article-title: Small dense LDL phenotype is associated with postprandial increases of large VLDL and remnant-like particles in patients with acute myocardial infarction publication-title: Atherosclerosis doi: 10.1016/S0021-9150(03)00245-4 – volume: 146 start-page: 247 year: 2005 ident: 10.1016/j.atherosclerosis.2005.08.020_bib8 article-title: Intestinal lipoprotein overproduction, a newly recognized component of insulin resistance, is ameliorated by the insulin sensitizer rosiglitazone: studies in the fructose-fed Syrian Golden hamster publication-title: Endocrinology doi: 10.1210/en.2004-1143 – volume: 11 start-page: 2162 year: 2004 ident: 10.1016/j.atherosclerosis.2005.08.020_bib12 article-title: Arterial permeability and efflux of apolipoprotein B-containing lipoproteins assessed by in situ perfusion and three-dimensional quantitative confocal microscopy publication-title: Atheroscler Thromb Vasc Biol doi: 10.1161/01.ATV.0000143859.75035.5a – volume: 85 start-page: 4224 year: 2000 ident: 10.1016/j.atherosclerosis.2005.08.020_bib19 article-title: Atorvastatin improves postprandial lipoprotein metabolism in normolipidemic subjects publication-title: J Clin Endcrinol Metab doi: 10.1210/jc.85.11.4224 – volume: 35 start-page: 1311 year: 1994 ident: 10.1016/j.atherosclerosis.2005.08.020_bib21 article-title: Determination of apolipoproteins B48 and B100 in triglyceride-rich lipoproteins by analytical SDS-PAGE publication-title: J Lipid Res doi: 10.1016/S0022-2275(20)39974-0 – volume: 37 start-page: 2696 year: 1996 ident: 10.1016/j.atherosclerosis.2005.08.020_bib30 article-title: Effects of particle size and number on the plasma clearance of chylomicrons and remnants publication-title: J Lipid Res doi: 10.1016/S0022-2275(20)37472-1 – volume: 52 start-page: 1279 year: 2003 ident: 10.1016/j.atherosclerosis.2005.08.020_bib18 article-title: Effect of atorvastatin on apolipoprotein B48 metabolism and low-density lipoprotein receptor activity in normolipidemic patients with coronary artery disease publication-title: Metabolism doi: 10.1016/S0026-0495(03)00281-6 – volume: 51 start-page: 847 year: 2002 ident: 10.1016/j.atherosclerosis.2005.08.020_bib6 article-title: Intestinal rather than hepatic microsomal triglyceride transfer protein as a cause of postprandial dyslipidaemia in diabetes publication-title: Metabolism doi: 10.1053/meta.2002.33350 – volume: 33 start-page: 205 year: 1995 ident: 10.1016/j.atherosclerosis.2005.08.020_bib10 article-title: Elevated triglyceride-rich lipoproteins in diabetes. A study of apolipoprotein B-48 publication-title: Acta Diabetol doi: 10.1007/BF02048544 – volume: 148 start-page: 1 year: 2000 ident: 10.1016/j.atherosclerosis.2005.08.020_bib26 article-title: A proposed model for the assembly of chylomicrons publication-title: Atherosclerosis doi: 10.1016/S0021-9150(99)00397-4 – volume: 150 start-page: 167 year: 2000 ident: 10.1016/j.atherosclerosis.2005.08.020_bib28 article-title: Postprandial metabolism of apolipoprotein B-48 and B-100 containing particles in type 2 diabetes mellitus: relations to angiographically verified severity of coronary artery disease publication-title: Atherosclerosis doi: 10.1016/S0021-9150(99)00364-0 – volume: 26 start-page: 179 year: 2004 ident: 10.1016/j.atherosclerosis.2005.08.020_bib33 article-title: Possible involvement of enhanced intestinal microsomal triglyceride transfer protein (MTP) gene expression in acceleration of lipid absorption by a western-type diet in apolipoprotein E knockout mice publication-title: Life Sci doi: 10.1016/j.lfs.2004.05.037 – volume: 277 start-page: 31516 year: 2002 ident: 10.1016/j.atherosclerosis.2005.08.020_bib25 article-title: Microsomal triacylglycerol transfer protein is required for lumenal accretion of triacylglycerol not associated with ApoB, as well as for ApoB lipidation publication-title: J Biol Chem doi: 10.1074/jbc.M202015200 – volume: 39 start-page: 453 year: 1996 ident: 10.1016/j.atherosclerosis.2005.08.020_bib31 article-title: Regulation of low density lipoprotein particle size and distribution in NIDDM and coronary artery disease: importance of serum triglycerides publication-title: Diabetologia doi: 10.1007/BF00400677 – volume: 49 start-page: 1 year: 2000 ident: 10.1016/j.atherosclerosis.2005.08.020_bib16 article-title: Post-prandial apolipoprotein B48 and B100-containing lipoproteins in Type 2 diabetes: do statins have a specific effect on triglyceride metabolism? publication-title: Metabolism – volume: 258 start-page: 999 year: 1992 ident: 10.1016/j.atherosclerosis.2005.08.020_bib1 article-title: Absence of microsomal triglyceride transfer protein in individuals with abetalipoproteinemia publication-title: Science doi: 10.1126/science.1439810 – volume: 274 start-page: 24714 year: 1999 ident: 10.1016/j.atherosclerosis.2005.08.020_bib24 article-title: Sterol regulatory element-binding protein negatively regulates microsomal triglyceride transfer protein gene transcription publication-title: J Biol Chem doi: 10.1074/jbc.274.35.24714 – volume: 160 start-page: 355 year: 2002 ident: 10.1016/j.atherosclerosis.2005.08.020_bib7 article-title: Microsomal triglyceride transfer protein: does insulin resistance play a role in the regulation of chylomicron assembly? publication-title: Atherosclerosis doi: 10.1016/S0021-9150(01)00721-3 – volume: 66 start-page: 245 year: 2004 ident: 10.1016/j.atherosclerosis.2005.08.020_bib14 article-title: Association between LDL particle size and postprandial increase of remnant-like particles in Japanese type 2 diabetic patients publication-title: Diab Res Clin Pract doi: 10.1016/j.diabres.2004.04.002 – volume: 37 start-page: 1259 year: 1994 ident: 10.1016/j.atherosclerosis.2005.08.020_bib9 article-title: Alterations in apolipoprotein B48 in the postprandial state publication-title: Diabetologia doi: 10.1007/BF00399800 – volume: 41 start-page: 792 year: 2003 ident: 10.1016/j.atherosclerosis.2005.08.020_bib11 article-title: Identification of lipoproteins of intestinal origin in human atherosclerotic plaque publication-title: Clin Chem Lab Med doi: 10.1515/CCLM.2003.120 – volume: 10 start-page: 132 year: 2003 ident: 10.1016/j.atherosclerosis.2005.08.020_bib29 article-title: Induction of atherosclerosis by human chylomicron remnants: a hypothesis publication-title: J Atheroscler Thromb doi: 10.5551/jat.10.132 – volume: 52 start-page: 1073 year: 2003 ident: 10.1016/j.atherosclerosis.2005.08.020_bib22 article-title: Regulation of microsomal triglyceride transfer protein gene by insulin in HepG2 cells: roles of MAPKerk and MAPKp38 publication-title: Diabetes doi: 10.2337/diabetes.52.5.1073 – volume: 269 start-page: 28737 year: 1994 ident: 10.1016/j.atherosclerosis.2005.08.020_bib3 article-title: Transcriptional regulation of human and hamster microsomal triglyceride transfer protein genes. Cell type-specific expression and response to metabolic regulators publication-title: J Biol Chem doi: 10.1016/S0021-9258(19)61967-8 – volume: 36 start-page: 1073 year: 1995 ident: 10.1016/j.atherosclerosis.2005.08.020_bib4 article-title: Microsomal triglyceride transfer protein (MTP) regulation in HepG2 cells: insulin negatively regulates MTP gene expression publication-title: J Lipid Res doi: 10.1016/S0022-2275(20)39865-5 – volume: 28 start-page: 247 year: 2005 ident: 10.1016/j.atherosclerosis.2005.08.020_bib34 article-title: Implitapide, a microsomal triglyceride transfer protein inhibitor, reduces progression of atherosclerosis in apolipoprotein E knockout mice fed a Western-type diet: involvement of the inhibition of postprandial triglyceride elevation publication-title: Biol Pharm Bull doi: 10.1248/bpb.28.247 – volume: 171 start-page: 369 year: 2003 ident: 10.1016/j.atherosclerosis.2005.08.020_bib17 article-title: Chylomicron remnants of various sizes are lowered more effectively by fenofibrate than by atorvastatin in patients with combined hyperlipidemia publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2003.08.030 – ident: 10.1016/j.atherosclerosis.2005.08.020_bib23 doi: 10.1016/j.atherosclerosis.2004.12.033 – volume: 2 start-page: 2109 year: 1990 ident: 10.1016/j.atherosclerosis.2005.08.020_bib2 article-title: Abetalipoproteinemia is caused by defects of the gene encoding the 97kDa subunit of a microsomal triglyceride transfer protein publication-title: Hum Mol Genet doi: 10.1093/hmg/2.12.2109 – volume: 97 start-page: 809 year: 2004 ident: 10.1016/j.atherosclerosis.2005.08.020_bib15 article-title: Plasma lipid peroxides: relationships to cardiovascular risk factors and prevalent cardiovascular disease publication-title: QJM doi: 10.1093/qjmed/hch130 – volume: 148 start-page: 283 year: 2000 ident: 10.1016/j.atherosclerosis.2005.08.020_bib20 article-title: Improved metabolic control reduces the number of postprandial apolipoprotein B48-containing particles in Type 2 diabetes publication-title: Atherosclerosis doi: 10.1016/S0021-9150(99)00275-0 – volume: 52 start-page: 1379 year: 2003 ident: 10.1016/j.atherosclerosis.2005.08.020_bib13 article-title: Impact of postprandial variation in triglyceridemia on low-density lipoprotein particle size publication-title: Metabolism doi: 10.1016/S0026-0495(03)00315-9 – volume: 109 start-page: S180 year: 2001 ident: 10.1016/j.atherosclerosis.2005.08.020_bib27 article-title: Pathogenesis of dyslipidaemia in type 2 diabetes publication-title: Exp Clin Endocrinol Diab doi: 10.1055/s-2001-18580 |
SSID | ssj0004718 |
Score | 2.0218337 |
Snippet | Microsomal triglyceride transfer protein (MTP) is responsible for the assembly of the triglyceride-rich lipoproteins (TRLs) and is increased in diabetic animal... |
SourceID | proquest pubmed pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 57 |
SubjectTerms | Apo B100 Apo B48 Associated diseases and complications Atherosclerosis (general aspects, experimental research) Biological and medical sciences Biopsy Blood and lymphatic vessels Cardiology. Vascular system Carrier Proteins - biosynthesis Case-Control Studies Cholesterol - metabolism Chylomicrons - metabolism Diabetes Mellitus, Type 2 - metabolism Diabetes. Impaired glucose tolerance Endocrine pancreas. Apud cells (diseases) Endocrinopathies Female Gene Expression Regulation Humans Intestines - metabolism Lipoproteins - chemistry Lipoproteins - metabolism Male Management. Various non-drug treatments. Langerhans islet grafts Medical sciences Microsomal triglyceride transfer protein (MTP) Middle Aged Postprandial Period Ribonucleases - metabolism RNA, Messenger - metabolism Statins Triglyceride-rich lipoproteins Triglycerides - metabolism Type 2 diabetes |
Title | Intestinal microsomal triglyceride transfer protein in type 2 diabetic and non-diabetic subjects: The relationship to triglyceride-rich postprandial lipoprotein composition |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0021915005005423 https://dx.doi.org/10.1016/j.atherosclerosis.2005.08.020 https://www.ncbi.nlm.nih.gov/pubmed/16183064 https://www.proquest.com/docview/68049959 |
Volume | 187 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED_aFMpglO473ZbpYXt0609ZHmO0lJVso31aoW9GkiXqktomdh720r-of-TuYjkhY4OOgWMcY51l-_TTT6c7HcD70I-VFlx5EfYHXhwUMU0SKk9y5YfKcBsoCnA-v-DTy_jbVXK1BadDLAy5VTrs7zF9idbuzJF7m0dNWVKML7Y25DM-bcgKtmEnjDIuRrBz8vX79GIdHpkGPSCTNwIW2IUPazevJc-qW5SK-7J1VhZx6FMG8D93VY8b2eILtH3mi79T02UXdbYPe45bspO--k9gy1RPYffczZ4_g3sy_2GTpotuyRGvrW_xsMMB-uynRlUsDP4hImvmbLmAQ1kx3MhMy0LWm2lLzWRVsKquvNWJdqHInNN-ZKh1bD74112XDevqDfkewu41a-q2a-YUUIO3n5VNPdyMHNydF9lzuDz78uN06rlsDZ6O06zzNK1ziHySZ4VV3EapTGlaR_uBNZGQQRhKJYoI8aAIOLepiEWsswQvxVGflTp6ASOsu3kFzEdS6Fv8cSmR4GiZ2AjlZFksDPIrMYZPw4fJtVvKnDJqzPLBZ-0m_-27UrrNJKeMm6E_Br4q3vRrejy04OdBC_IhcBWhNsfe56ECjlcCNrT8X0RMNtRv_QSpEAmyxTG8G_QxR6ig-R9ZmXrR5lzQ-DbJxvCyV9N1WY7IjuT04P_r9xoe9VYq8mh-A6NuvjBvkbd1agLbh3fBxLXOXym6Svs |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7SDaSFUvpKu30kOrRHN37IslxKaQgNmya7pwRyE5JsE5eNbdbeQ_9Tf2Rn1vIuW1pIKdjGNtZItkejT6N5ALwLfW6sFMaLcDzweJBxWiQ0nhbGD00uisCQg_N0JiZX_Nt1fL0DJ4MvDJlVOtnfy_SVtHZ3jtzXPGrKknx8sbchnvFpQ1RwD3YpOhUfwe7x2flktnGPTIJeIJM1AhbYg_cbM68VzqpbpIrHsnVaFvnBpwzgfx6qHja6xQ9Y9Jkv_g5NV0PU6WN45LAlO-6b_wR28uop7E3d6vkz-EnqP-zS9NAtGeK19S2edjhBn_-wyIpZjhcEZPMFWwVwKCuGG6lpWch6NW1pma4yVtWVt77RLg2pc9qPDLmOLQb7upuyYV29Rd9DsXvDmrrtmgU51GD187Kph8rIwN1ZkT2Hq9OvlycTz2Vr8CxP0s6zFOcQ8aRIs8KIIkp0Qss61g-KPJI6CENtZBahPMgCIYpEcsltGuOjOOsrtI32YYRtz18C8xEU-gXuQmsEOFbHRYR00pTLHPGVHMOn4cco60KZU0aNuRps1r6r3_4rpduMFWXcDP0xiHXxpo_pcdeCnwcuUIPjKopahaPPXQl8WRPY4vJ_IXGwxX6bN0ikjBEtjuFw4EeFooLWf3SV18tWCUnz2zgdw4ueTTdlBUp2BKev_r99h3B_cjm9UBdns_PX8KDXWJF18xsYdYtl_hYxXGcOXB_9BfXPTOM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intestinal+microsomal+triglyceride+transfer+protein+in+type+2+diabetic+and+non-diabetic+subjects%3A+the+relationship+to+triglyceride-rich+postprandial+lipoprotein+composition&rft.jtitle=Atherosclerosis&rft.au=Phillips%2C+Catherine&rft.au=Mullan%2C+Karen&rft.au=Owens%2C+Daphne&rft.au=Tomkin%2C+Gerald+H&rft.date=2006-07-01&rft.issn=0021-9150&rft.volume=187&rft.issue=1&rft.spage=57&rft_id=info:doi/10.1016%2Fj.atherosclerosis.2005.08.020&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9150&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9150&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9150&client=summon |