Antioxidant Treatment Reduces Expansion and Contraction of Antigen-Specific CD8+ T Cells during Primary but Not Secondary Viral Infection

Article Usage Stats Services JVI Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue JVI About JVI Subscribers Authors Reviewers Advertisers Inquiries from...

Full description

Saved in:
Bibliographic Details
Published inJournal of Virology Vol. 78; no. 20; pp. 11246 - 11257
Main Authors LANIEWSKI, Nathan G, GRAYSON, Jason M
Format Journal Article
LanguageEnglish
Published Washington, DC American Society for Microbiology 01.10.2004
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Article Usage Stats Services JVI Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue JVI About JVI Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy JVI RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0022-538X Online ISSN: 1098-5514 Copyright © 2014 by the American Society for Microbiology.   For an alternate route to JVI .asm.org, visit: JVI       
AbstractList ABSTRACT During many viral infections, antigen-specific CD8 + T cells undergo large-scale expansion. After viral clearance, the vast majority of effector CD8 + T cells undergo apoptosis. Previous studies have implicated reactive oxygen intermediates (ROI) in lymphocyte apoptosis. The purpose of the experiments presented here was to determine the role of ROI in the expansion and contraction of CD8 + T cells in vivo during a physiological response such as viral infection. Mice were infected with lymphocytic choriomeningitis virus (LCMV) and treated with Mn(III)tetrakis(4-benzoic acid)porphyrin chloride (MnTBAP), a metalloporphyrin-mimetic compound with superoxide dismutase activity, from days 0 to 8 postinfection. At the peak of CD8 + -T-cell response, on day 8 postinfection, the numbers of antigen-specific cells were 10-fold lower in MnTBAP-treated mice than in control mice. From days 8 to 30, a contraction phase ensued where the numbers of antigen-specific CD8 + T cells declined 25-fold in vehicle-treated mice compared to a 3.5-fold decrease in MnTBAP-treated mice. Differences in contraction appeared to be due to greater proliferation in drug-treated mice. By day 38, the numbers of antigen-specific CD8 + memory T cells were equivalent for the two groups. The administration of MnTBAP during secondary viral infection had no effect on the expansion of antigen-specific CD8 + secondary effector T cells. These data suggest that ROI production is critical for the massive expansion and contraction of antigen-specific CD8 + T cells during primary, but not secondary, viral infection.
During many viral infections, antigen-specific CD8 + T cells undergo large-scale expansion. After viral clearance, the vast majority of effector CD8 + T cells undergo apoptosis. Previous studies have implicated reactive oxygen intermediates (ROI) in lymphocyte apoptosis. The purpose of the experiments presented here was to determine the role of ROI in the expansion and contraction of CD8 + T cells in vivo during a physiological response such as viral infection. Mice were infected with lymphocytic choriomeningitis virus (LCMV) and treated with Mn(III)tetrakis(4-benzoic acid)porphyrin chloride (MnTBAP), a metalloporphyrin-mimetic compound with superoxide dismutase activity, from days 0 to 8 postinfection. At the peak of CD8 + -T-cell response, on day 8 postinfection, the numbers of antigen-specific cells were 10-fold lower in MnTBAP-treated mice than in control mice. From days 8 to 30, a contraction phase ensued where the numbers of antigen-specific CD8 + T cells declined 25-fold in vehicle-treated mice compared to a 3.5-fold decrease in MnTBAP-treated mice. Differences in contraction appeared to be due to greater proliferation in drug-treated mice. By day 38, the numbers of antigen-specific CD8 + memory T cells were equivalent for the two groups. The administration of MnTBAP during secondary viral infection had no effect on the expansion of antigen-specific CD8 + secondary effector T cells. These data suggest that ROI production is critical for the massive expansion and contraction of antigen-specific CD8 + T cells during primary, but not secondary, viral infection.
Article Usage Stats Services JVI Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue JVI About JVI Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy JVI RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0022-538X Online ISSN: 1098-5514 Copyright © 2014 by the American Society for Microbiology.   For an alternate route to JVI .asm.org, visit: JVI       
During many viral infections, antigen-specific CD8(+) T cells undergo large-scale expansion. After viral clearance, the vast majority of effector CD8(+) T cells undergo apoptosis. Previous studies have implicated reactive oxygen intermediates (ROI) in lymphocyte apoptosis. The purpose of the experiments presented here was to determine the role of ROI in the expansion and contraction of CD8(+) T cells in vivo during a physiological response such as viral infection. Mice were infected with lymphocytic choriomeningitis virus (LCMV) and treated with Mn(III)tetrakis(4-benzoic acid)porphyrin chloride (MnTBAP), a metalloporphyrin-mimetic compound with superoxide dismutase activity, from days 0 to 8 postinfection. At the peak of CD8(+)-T-cell response, on day 8 postinfection, the numbers of antigen-specific cells were 10-fold lower in MnTBAP-treated mice than in control mice. From days 8 to 30, a contraction phase ensued where the numbers of antigen-specific CD8(+) T cells declined 25-fold in vehicle-treated mice compared to a 3.5-fold decrease in MnTBAP-treated mice. Differences in contraction appeared to be due to greater proliferation in drug-treated mice. By day 38, the numbers of antigen-specific CD8(+) memory T cells were equivalent for the two groups. The administration of MnTBAP during secondary viral infection had no effect on the expansion of antigen-specific CD8(+) secondary effector T cells. These data suggest that ROI production is critical for the massive expansion and contraction of antigen-specific CD8(+) T cells during primary, but not secondary, viral infection.
Author Jason M. Grayson
Nathan G. Laniewski
AuthorAffiliation Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
AuthorAffiliation_xml – name: Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
Author_xml – sequence: 1
  givenname: Nathan G
  surname: LANIEWSKI
  fullname: LANIEWSKI, Nathan G
  organization: Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
– sequence: 2
  givenname: Jason M
  surname: GRAYSON
  fullname: GRAYSON, Jason M
  organization: Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16160193$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/15452243$$D View this record in MEDLINE/PubMed
BookMark eNpVkd9u0zAUxi00xLrBKyALBDcoxXZsJ0HiYioDiiZArEzcWY590npK7GInYzwCb03SVmzcHPvYv-_80XeCjnzwgNAzSuaUsvL1p6vlvCjnbJdymY1RFGNK-AM0o6QqMyEoP0IzQhjLRF7-OEYnKV0TQjmX_BE6poILxng-Q3_OfO_CrbPa93gVQfcdjLdvYAcDCZ_fbrVPLnisvcWL4PuoTT_locGTdA0-u9yCcY0zePGufIVXeAFtm7AdovNr_DW6TsffuB56_Dn0-BJM8HZ6uXJRt3jpG9hVfIweNrpN8ORwnqLv789Xi4_ZxZcPy8XZRWZ4UfVZDdaKmtuaaV5V1kJpKpELYkjdyNrInJuKSWO1BFHaqhCGyqKUtGJAgBYsP0Vv93W3Q92BNTDt1Krtfk4VtFP__3i3UetwowSjJctH_cuDPoafA6RedS6ZcWXtIQxJSVkxOoYRfLMHTQwpRWj-9aBETUaq0UhVlIrtUi7Vzkg1GTmKn96f8k56cG4EXhwAnYxum6i9cemOk1QSWk3c8z23cevNLxdB6dSp6xt3v3P-F3MEt48
CitedBy_id crossref_primary_10_1146_annurev_immunol_101819_082015
crossref_primary_10_1007_s12026_008_8027_z
crossref_primary_10_4049_jimmunol_1400391
crossref_primary_10_4049_jimmunol_179_4_2115
crossref_primary_10_1089_ars_2011_4073
crossref_primary_10_3390_antiox13040499
crossref_primary_10_1038_nri1668
crossref_primary_10_1146_annurev_immunol_042617_053019
crossref_primary_10_3390_biom12070983
crossref_primary_10_1016_j_immuni_2012_10_020
crossref_primary_10_1128_JVI_01559_12
crossref_primary_10_1016_j_it_2018_01_005
crossref_primary_10_2337_db10_1222
crossref_primary_10_1016_j_cophys_2020_07_016
crossref_primary_10_3109_1547691X_2015_1058306
crossref_primary_10_1016_j_pharmthera_2020_107700
crossref_primary_10_1016_j_freeradbiomed_2016_04_198
crossref_primary_10_4049_jimmunol_179_10_6456
crossref_primary_10_1042_CS20211090
crossref_primary_10_4161_hv_25813
crossref_primary_10_1007_s00705_016_3130_2
crossref_primary_10_1111_j_1600_065X_2010_00920_x
crossref_primary_10_1074_jbc_TM117_000257
crossref_primary_10_1016_j_canlet_2008_03_012
crossref_primary_10_1016_j_molcel_2012_09_025
crossref_primary_10_1158_0008_5472_CAN_09_1176
crossref_primary_10_1186_s13045_022_01255_x
crossref_primary_10_1002_eji_201142289
crossref_primary_10_1128_JVI_02106_14
crossref_primary_10_1126_science_aaa7516
crossref_primary_10_1007_s00281_022_00959_z
crossref_primary_10_4049_jimmunol_1402180
crossref_primary_10_1038_s41577_020_00478_8
crossref_primary_10_1111_febs_16191
crossref_primary_10_1016_j_cub_2014_03_034
crossref_primary_10_4049_jimmunol_1402445
crossref_primary_10_1007_s10495_017_1424_9
crossref_primary_10_1146_annurev_pharmtox_052220_102509
crossref_primary_10_3389_fimmu_2022_927593
crossref_primary_10_1111_j_1600_065X_2010_00915_x
crossref_primary_10_1128_JVI_02714_12
crossref_primary_10_1007_s11064_020_03208_7
Cites_doi 10.4049/jimmunol.164.1.208
10.1038/90950
10.1038/nm866
10.4049/jimmunol.137.8.2646
10.1038/nri778
10.1097/00008480-200210000-00007
10.1165/ajrcmb.18.4.2958
10.1073/pnas.91.23.10854
10.1016/S1074-7613(00)80072-2
10.1038/ng0298-159
10.1084/jem.182.2.367
10.1023/A:1015913229650
10.4049/jimmunol.164.8.3950
10.1084/jem.188.12.2205
10.1038/ni804
10.2337/diabetes.51.2.347
10.4049/jimmunol.170.1.477
10.1016/S1074-7613(00)80470-7
10.1089/15230860260196209
10.4049/jimmunol.170.9.4745
10.1084/jem.191.7.1241
10.1016/S1074-7613(03)00116-X
10.1089/15230860260196227
10.1016/S1074-7613(00)80469-0
10.1084/jem.160.2.521
10.1016/S0098-2997(02)00018-3
10.1128/JVI.72.10.8281-8288.1998
10.1084/jem.20010659
10.1126/science.1058867
ContentType Journal Article
Copyright 2004 INIST-CNRS
Copyright © 2004, American Society for Microbiology 2004
Copyright_xml – notice: 2004 INIST-CNRS
– notice: Copyright © 2004, American Society for Microbiology 2004
DBID IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1128/JVI.78.20.11246-11257.2004
DatabaseName Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList CrossRef


MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1098-5514
EndPage 11257
ExternalDocumentID 10_1128_JVI_78_20_11246_11257_2004
15452243
16160193
jvi_78_20_11246
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.55
.GJ
08R
0R~
18M
29L
2WC
39C
3O-
4.4
41~
53G
5GY
5RE
5VS
6TJ
85S
AAUGY
AAYJJ
ABPPZ
ABPTK
ACGFO
ACNCT
ADBBV
AENEX
AFDAS
AFFNX
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
C1A
CS3
D0S
DIK
E3Z
EBS
EJD
F20
F5P
FRP
GX1
H13
HYE
HZ~
IH2
IQODW
KQ8
MVM
N9A
O9-
OHT
OK1
P2P
RHF
RHI
RNS
RPM
RSF
TR2
UCJ
UPT
VH1
W2D
W8F
WH7
WOQ
X7M
XFK
Y6R
YQT
ZA5
ZGI
ZXP
~02
~KM
AGVNZ
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-c479t-bedd5b4db2a499dde8c95350c0bf6bc634c926cda6e58d975c16786192e0e1723
IEDL.DBID RPM
ISSN 0022-538X
IngestDate Tue Sep 17 21:19:45 EDT 2024
Sat Aug 17 03:23:13 EDT 2024
Thu Sep 12 19:51:01 EDT 2024
Sat Sep 28 07:44:52 EDT 2024
Sun Oct 22 16:04:39 EDT 2023
Wed May 18 15:31:24 EDT 2016
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Keywords Infection
Treatment
Microbiology
Primary infection
Viral disease
T-Lymphocyte
Antioxidant
T antigen
Virology
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c479t-bedd5b4db2a499dde8c95350c0bf6bc634c926cda6e58d975c16786192e0e1723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Corresponding author. Mailing address: 5100A Gray Building, Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157. Phone: (336) 716-0268. Fax: (336) 716-9928. E-mail: jgrayson@wfubmc.edu.
OpenAccessLink https://europepmc.org/articles/pmc521823?pdf=render
PMID 15452243
PQID 66921669
PQPubID 23479
PageCount 12
ParticipantIDs pubmed_primary_15452243
pascalfrancis_primary_16160193
pubmedcentral_primary_oai_pubmedcentral_nih_gov_521823
proquest_miscellaneous_66921669
highwire_asm_jvi_78_20_11246
crossref_primary_10_1128_JVI_78_20_11246_11257_2004
PublicationCentury 2000
PublicationDate 2004-10-01
PublicationDateYYYYMMDD 2004-10-01
PublicationDate_xml – month: 10
  year: 2004
  text: 2004-10-01
  day: 01
PublicationDecade 2000
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
PublicationTitle Journal of Virology
PublicationTitleAlternate J Virol
PublicationYear 2004
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References 11264538 - Science. 2001 Mar 23;291(5512):2413-7
11781366 - J Exp Med. 2002 Jan 7;195(1):59-70
6332167 - J Exp Med. 1984 Aug 1;160(2):521-40
12001996 - Nat Rev Immunol. 2002 Apr;2(4):251-62
9491998 - Immunity. 1998 Feb;8(2):167-75
12215208 - Antioxid Redox Signal. 2002 Jun;4(3):405-14
7526382 - Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):10854-8
10748241 - J Exp Med. 2000 Apr 3;191(7):1241-6
12079772 - Mol Aspects Med. 2002 Feb-Jun;23(1-3):209-85
9858507 - J Exp Med. 1998 Dec 21;188(12):2205-13
11812741 - Diabetes. 2002 Feb;51(2):347-55
10605013 - J Immunol. 2000 Jan 1;164(1):208-16
12352255 - Curr Opin Pediatr. 2002 Oct;14(5):601-7
12055624 - Nat Immunol. 2002 Jul;3(7):619-26
12215210 - Antioxid Redox Signal. 2002 Jun;4(3):427-43
9533945 - Am J Respir Cell Mol Biol. 1998 Apr;18(4):562-9
12162460 - Mol Cell Biochem. 2002 May-Jun;234-235(1-2):49-62
9462746 - Nat Genet. 1998 Feb;18(2):159-63
12753740 - Immunity. 2003 May;18(5):631-42
11479623 - Nat Med. 2001 Aug;7(8):913-9
2944959 - J Immunol. 1986 Oct 15;137(8):2646-52
9491999 - Immunity. 1998 Feb;8(2):177-87
12496434 - J Immunol. 2003 Jan 1;170(1):477-86
7629499 - J Exp Med. 1995 Aug 1;182(2):367-77
12692546 - Nat Med. 2003 May;9(5):540-7
9733872 - J Virol. 1998 Oct;72(10):8281-8
10754284 - J Immunol. 2000 Apr 15;164(8):3950-4
12707355 - J Immunol. 2003 May 1;170(9):4745-51
10403648 - Immunity. 1999 Jun;10(6):735-44
e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_20_2
e_1_3_2_21_2
e_1_3_2_22_2
e_1_3_2_23_2
e_1_3_2_24_2
e_1_3_2_25_2
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_16_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_10_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_2_2
e_1_3_2_14_2
(e_1_3_2_8_2) 1986; 137
References_xml – ident: e_1_3_2_24_2
  doi: 10.4049/jimmunol.164.1.208
– ident: e_1_3_2_16_2
  doi: 10.1038/90950
– ident: e_1_3_2_5_2
  doi: 10.1038/nm866
– volume: 137
  start-page: 2646
  year: 1986
  ident: e_1_3_2_8_2
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.137.8.2646
– ident: e_1_3_2_18_2
  doi: 10.1038/nri778
– ident: e_1_3_2_6_2
  doi: 10.1097/00008480-200210000-00007
– ident: e_1_3_2_2_2
  doi: 10.1165/ajrcmb.18.4.2958
– ident: e_1_3_2_26_2
  doi: 10.1073/pnas.91.23.10854
– ident: e_1_3_2_15_2
  doi: 10.1016/S1074-7613(00)80072-2
– ident: e_1_3_2_20_2
  doi: 10.1038/ng0298-159
– ident: e_1_3_2_30_2
  doi: 10.1084/jem.182.2.367
– ident: e_1_3_2_10_2
  doi: 10.1023/A:1015913229650
– ident: e_1_3_2_13_2
  doi: 10.4049/jimmunol.164.8.3950
– ident: e_1_3_2_29_2
  doi: 10.1084/jem.188.12.2205
– ident: e_1_3_2_4_2
  doi: 10.1038/ni804
– ident: e_1_3_2_23_2
  doi: 10.2337/diabetes.51.2.347
– ident: e_1_3_2_11_2
  doi: 10.4049/jimmunol.170.1.477
– ident: e_1_3_2_21_2
  doi: 10.1016/S1074-7613(00)80470-7
– ident: e_1_3_2_25_2
  doi: 10.1089/15230860260196209
– ident: e_1_3_2_12_2
  doi: 10.4049/jimmunol.170.9.4745
– ident: e_1_3_2_14_2
  doi: 10.1084/jem.191.7.1241
– ident: e_1_3_2_27_2
  doi: 10.1016/S1074-7613(03)00116-X
– ident: e_1_3_2_22_2
  doi: 10.1089/15230860260196227
– ident: e_1_3_2_7_2
  doi: 10.1016/S1074-7613(00)80469-0
– ident: e_1_3_2_3_2
  doi: 10.1084/jem.160.2.521
– ident: e_1_3_2_17_2
  doi: 10.1016/S0098-2997(02)00018-3
– ident: e_1_3_2_28_2
  doi: 10.1128/JVI.72.10.8281-8288.1998
– ident: e_1_3_2_9_2
  doi: 10.1084/jem.20010659
– ident: e_1_3_2_19_2
  doi: 10.1126/science.1058867
SSID ssj0014464
Score 2.054556
Snippet Article Usage Stats Services JVI Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley...
During many viral infections, antigen-specific CD8(+) T cells undergo large-scale expansion. After viral clearance, the vast majority of effector CD8(+) T...
ABSTRACT During many viral infections, antigen-specific CD8 + T cells undergo large-scale expansion. After viral clearance, the vast majority of effector CD8 +...
During many viral infections, antigen-specific CD8 + T cells undergo large-scale expansion. After viral clearance, the vast majority of effector CD8 + T cells...
SourceID pubmedcentral
proquest
crossref
pubmed
pascalfrancis
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 11246
SubjectTerms Animals
Biological and medical sciences
CD8-Positive T-Lymphocytes - immunology
Female
Free Radical Scavengers - administration & dosage
Fundamental and applied biological sciences. Psychology
Immunologic Memory
Lymphocyte Activation - drug effects
Lymphocytic Choriomeningitis - immunology
Lymphocytic Choriomeningitis - virology
Lymphocytic choriomeningitis virus - immunology
Metalloporphyrins - administration & dosage
Mice
Mice, Inbred C57BL
Microbiology
Miscellaneous
Pathogenesis and Immunity
Reactive Oxygen Species - metabolism
Time Factors
Virology
Title Antioxidant Treatment Reduces Expansion and Contraction of Antigen-Specific CD8+ T Cells during Primary but Not Secondary Viral Infection
URI http://jvi.asm.org/content/78/20/11246.abstract
https://www.ncbi.nlm.nih.gov/pubmed/15452243
https://search.proquest.com/docview/66921669
https://pubmed.ncbi.nlm.nih.gov/PMC521823
Volume 78
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwGLXYJCReEHcCo_iBN5S2iS-JH6eyaR3aNEE39c2KLxFBrTstKRo_gX_NZzthK-KJl0i5OHJyfPlOcnw-hD6UhmuRT01aMFGn1NRVqmpvBJlZYWF-KbLwMefsnJ9c0tMlW_aLwtpeVum0asZutR675lvQVl6v9WTQiU0uzmbM246TyR7aKwgZGHr_5wDoDR0cwqEzL3ujURiGJ6dX83Hh5Vx-l_IUtqwIFDEk5_He4pTszk-DZ7CXTFYtvLU6prv4Vzz6t6zy3jx1_AQ97gNMfBgf5Cl6YN0z9DCmnPz5HP069PLG28bAG8WLQWWOv3gHV9vio1sYHfwHNFw5g7111U1c-YA3NfZFob2lIWd93Wg8-1R-xAs8s6tVi-OCR3wR7Suw2nb4fNPhr55xG3_kqoHq4nmv_nIv0OXx0WJ2kvbpGFJNC9GlyhrDFDUqr4AmwbBYasEIm-qpqrnSnFBAnWtTcctKIwqmM5gJPUGzUwtxEnmJ9t3G2dcIK2JtafLakx0KIYMAtKpKc5YZoZixCSIDCPI6VlsGtpKXElCURSnzsEu5DCj6bJo0QQcDXrJq1_L7j-b-lQka7WB4d2eeAS0VJEHvB1AldDL_56RydrNtJeciz2CToFcR4ruyfbNJEN8B_88F3r579wy06mDjHVvxm_8t-BY9iqaTXlh4gPa7m619BwFSp0ZADeafR6Ff_Ab52g9O
link.rule.ids 230,315,733,786,790,891,27955,27956,53825,53827
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLVgCLEXvhmBsfmBN5S0SWwneZzKpnas1cTaqW9W_BERaNNqSdHgH_CvubYTtk68wEukxHGUOMf2PcnxuQi9TxWTWdRXfkKzwieqyH1RGCPIUGca5pcktB9zxhM2nJHTOZ23i8LqVlZZSVEG1WIZVOUXq61cL2Wv04n1zscDamzH49599AC6a0Q7jt7-OwCCQzqPcCift1ajMBD3Ti9HQWIEXWaXMB-2NLEk0abnMe7iJN6eoTrXYCOazGtot8IlvPhbRHpXWHlrpjp5gmbdMzqByrdg04hA_rxj__ivjfAUPW5DV3zkSp-he7p6jh66ZJY_XqBfR0Y4eV0qeFd42unX8WfjDatrfHwN4475NIfzSmFjinXl1lTgVYFNVUCyf7HWViOIBx_TD3iKB3qxqLFbSonPnTEGFpsGT1YNvjBcXpkjlyU0Ax61urLqJZqdHE8HQ79N9OBLkmSNL7RSVBAlohwIGAy4qcxoTPuyLwomJIsJ4IlJlTNNU5UlVIYwxxrqp_saIrD4FdqpVpV-jbCItU5VVBgaRSAYyQAFeS4ZDVUmqNIeiruXy9futrnlQVHKAR08SXlkdwnjFh0mTyfx0H6HA57XS_71e3n7TA8dbGHj5sosBMKbxR467MDCofuafzJ5pVebmjOWRSFsPLTnoHNTt4Wjh9gWqP6cYIzBt0sAKtYg3EHjzf9WPESPhtPxGT8bTT69RbvO2tLIF_fRTnO10e8gDGvEge11vwGSbjAP
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFL0aQyBe-P4IjM0PvKG0TWI7yePUrVoHqyrWTePJij8iCm1arSka_AP-Ndd2wtaJp71ESmJHiXNs35McnwvwIdNc5XFPhynLy5DqsghlaY0gI5MbnF_SyH3MORnxozN6fMEutiBr18I40b6S0041m3eq6TenrVzOVbfViXXHJ31mbceT7lKX3XtwH7tsnLY8vfl_gCSHtj7heP6isRvFwbh7fD7spFbUZXcpD3HLUkcUXYoe6zBOk81ZqnUOtsLJYoVtV_qkF_-LSm-LK2_MVoMn8LV9Ti9S-dFZ17Kjft-ygLxLQzyFx00IS_Z9iWewZarn8MAntfz1Av7sWwHl1VTjOyOTVsdOvliPWLMih1c4_thPdKSoNLHmWJd-bQVZlMRWRUSHp0vjtIKkf5B9JBPSN7PZivgllWTsDTKIXNdktKjJqeX02h45n2JTkGGjL6tewtngcNI_CpuED6GiaV6H0mjNJNUyLpCI4cCbqZwlrKd6suRS8YQirrjSBTcs03nKVIRzraWApmcwEktewXa1qMwbIDIxJtNxaekUxaAkRyQUheIs0rlk2gSQtC9YLP1tC8eH4kwgQkSaidjtUi4cQmy-ThrATosFUazm4vvP6c2SAexu4OP6yjxC4psnAey1gBHYje2_maIyi_VKcJ7HEW4CeO3hc123gWQAfANY_wpYg_DNMwgXZxTu4fH2rhX34OH4YCA-D0ef3sEj73BpVYw7sF1frs17jMZques63l8RgzKP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antioxidant+Treatment+Reduces+Expansion+and+Contraction+of+Antigen-Specific+CD8+%2B+T+Cells+during+Primary+but+Not+Secondary+Viral+Infection&rft.jtitle=Journal+of+virology&rft.au=Laniewski%2C+Nathan+G.&rft.au=Grayson%2C+Jason+M.&rft.date=2004-10-01&rft.issn=0022-538X&rft.eissn=1098-5514&rft.volume=78&rft.issue=20&rft.spage=11246&rft.epage=11257&rft_id=info:doi/10.1128%2FJVI.78.20.11246-11257.2004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1128_JVI_78_20_11246_11257_2004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-538X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-538X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-538X&client=summon