Generation of influenza A viruses as live but replication-incompetent virus vaccines

The conversion of life-threatening viruses into live but avirulent vaccines represents a revolution in vaccinology. In a proof-of-principle study, we expanded the genetic code of the genome of influenza A virus via a transgenic cell line containing orthogonal translation machinery. This generated pr...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 354; no. 6316; pp. 1170 - 1173
Main Authors Si, Longlong, Xu, Huan, Zhou, Xueying, Zhang, Ziwei, Tian, Zhenyu, Wang, Yan, Wu, Yiming, Zhang, Bo, Niu, Zhenlan, Zhang, Chuanling, Fu, Ge, Xiao, Sulong, Xia, Quig, Zhang, Lihe, Zhou, Demin
Format Journal Article
LanguageEnglish
Published United States American Association for the Advancement of Science 02.12.2016
The American Association for the Advancement of Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The conversion of life-threatening viruses into live but avirulent vaccines represents a revolution in vaccinology. In a proof-of-principle study, we expanded the genetic code of the genome of influenza A virus via a transgenic cell line containing orthogonal translation machinery. This generated premature termination codon (PTC)-harboring viruses that exerted full infect i vi ty but were replication-incompetent in conventional cells. Genome-wide optimization of the sites for incorporation of multiple PTCs resulted in highly reproductive and genetically stable progeny viruses in transgenic cells. In mouse, ferret, and guinea pig models, vaccination with PTC viruses elicited robust humoral, mucosal, and T cell-mediated immunity against antigenically distinct influenza viruses and even neutralized existing infecting strains. The methods presented here may become a general approach for generating live virus vaccines that can be adapted to almost any virus.
AbstractList The conversion of life-threatening viruses into live but avirulent vaccines represents a revolution in vaccinology. In a proof-of-principle study, we expanded the genetic code of the genome of influenza A virus via a transgenic cell line containing orthogonal translation machinery. This generated premature termination codon (PTC)-harboring viruses that exerted full infectivity but were replication-incompetent in conventional cells. Genome-wide optimization of the sites for incorporation of multiple PTCs resulted in highly reproductive and genetically stable progeny viruses in transgenic cells. In mouse, ferret, and guinea pig models, vaccination with PTC viruses elicited robust humoral, mucosal, and T cell-mediated immunity against antigenically distinct influenza viruses and even neutralized existing infecting strains. The methods presented here may become a general approach for generating live virus vaccines that can be adapted to almost any virus.
The conversion of life-threatening viruses into live but avirulent vaccines represents a revolution in vaccinology. In a proof-of-principle study, we expanded the genetic code of the genome of influenza A virus via a transgenic cell line containing orthogonal translation machinery. This generated premature termination codon (PTC)-harboring viruses that exerted full infectivity but were replication-incompetent in conventional cells. Genome-wide optimization of the sites for incorporation of multiple PTCs resulted in highly reproductive and genetically stable progeny viruses in transgenic cells. In mouse, ferret, and guinea pig models, vaccination with PTC viruses elicited robust humoral, mucosal, and T cell-mediated immunity against antigenically distinct influenza viruses and even neutralized existing infecting strains. The methods presented here may become a general approach for generating live virus vaccines that can be adapted to almost any virus.The conversion of life-threatening viruses into live but avirulent vaccines represents a revolution in vaccinology. In a proof-of-principle study, we expanded the genetic code of the genome of influenza A virus via a transgenic cell line containing orthogonal translation machinery. This generated premature termination codon (PTC)-harboring viruses that exerted full infectivity but were replication-incompetent in conventional cells. Genome-wide optimization of the sites for incorporation of multiple PTCs resulted in highly reproductive and genetically stable progeny viruses in transgenic cells. In mouse, ferret, and guinea pig models, vaccination with PTC viruses elicited robust humoral, mucosal, and T cell-mediated immunity against antigenically distinct influenza viruses and even neutralized existing infecting strains. The methods presented here may become a general approach for generating live virus vaccines that can be adapted to almost any virus.
The conversion of life-threatening viruses into live but avirulent vaccines represents a revolution in vaccinology. In a proof-of-principle study, we expanded the genetic code of the genome of influenza A virus via a transgenic cell line containing orthogonal translation machinery. This generated premature termination codon (PTC)-harboring viruses that exerted full infect i vi ty but were replication-incompetent in conventional cells. Genome-wide optimization of the sites for incorporation of multiple PTCs resulted in highly reproductive and genetically stable progeny viruses in transgenic cells. In mouse, ferret, and guinea pig models, vaccination with PTC viruses elicited robust humoral, mucosal, and T cell-mediated immunity against antigenically distinct influenza viruses and even neutralized existing infecting strains. The methods presented here may become a general approach for generating live virus vaccines that can be adapted to almost any virus.
Protecting by changing the codeLive attenuated vaccines can be very potent, but their potential to revert to their pathogenic form limits their use. In an attempt to get around this, Si et al. expanded the genetic code of influenza A viruses. They propagated viruses that were mutated to encode premature termination codons (PTCs) in a cell line engineered to be able to express these flu proteins. Despite not being able to replicate in conventional cells, PTC-containing viruses were highly immunogenic and protected mice, guinea pigs, and ferrets against influenza challenge.Science, this issue p. 1170 The conversion of life-threatening viruses into live but avirulent vaccines represents a revolution in vaccinology. In a proof-of-principle study, we expanded the genetic code of the genome of influenza A virus via a transgenic cell line containing orthogonal translation machinery. This generated premature termination codon (PTC)-harboring viruses that exerted full infectivity but were replication-incompetent in conventional cells. Genome-wide optimization of the sites for incorporation of multiple PTCs resulted in highly reproductive and genetically stable progeny viruses in transgenic cells. In mouse, ferret, and guinea pig models, vaccination with PTC viruses elicited robust humoral, mucosal, and T cell-mediated immunity against antigenically distinct influenza viruses and even neutralized existing infecting strains. The methods presented here may become a general approach for generating live virus vaccines that can be adapted to almost any virus.
Genetic code expansion and orthogonal translation machinery are used to generate live, attenuated viral vaccines. Live attenuated vaccines can be very potent, but their potential to revert to their pathogenic form limits their use. In an attempt to get around this, Si et al. expanded the genetic code of influenza A viruses. They propagated viruses that were mutated to encode premature termination codons (PTCs) in a cell line engineered to be able to express these flu proteins. Despite not being able to replicate in conventional cells, PTC-containing viruses were highly immunogenic and protected mice, guinea pigs, and ferrets against influenza challenge. Science , this issue p. 1170 The conversion of life-threatening viruses into live but avirulent vaccines represents a revolution in vaccinology. In a proof-of-principle study, we expanded the genetic code of the genome of influenza A virus via a transgenic cell line containing orthogonal translation machinery. This generated premature termination codon (PTC)–harboring viruses that exerted full infectivity but were replication-incompetent in conventional cells. Genome-wide optimization of the sites for incorporation of multiple PTCs resulted in highly reproductive and genetically stable progeny viruses in transgenic cells. In mouse, ferret, and guinea pig models, vaccination with PTC viruses elicited robust humoral, mucosal, and T cell–mediated immunity against antigenically distinct influenza viruses and even neutralized existing infecting strains. The methods presented here may become a general approach for generating live virus vaccines that can be adapted to almost any virus.
Live attenuated vaccines can be very potent, but their potential to revert to their pathogenic form limits their use. In an attempt to get around this, Si et al. expanded the genetic code of influenza A viruses. They propagated viruses that were mutated to encode premature termination codons (PTCs) in a cell line engineered to be able to express these flu proteins. Despite not being able to replicate in conventional cells, PTC-containing viruses were highly immunogenic and protected mice, guinea pigs, and ferrets against influenza challenge. Science, this issue p. 1170 The conversion of life-threatening viruses into live but avirulent vaccines represents a revolution in vaccinology. In a proof-of-principle study, we expanded the genetic code of the genome of influenza A virus via a transgenic cell line containing orthogonal translation machinery. This generated premature termination codon (PTC)-harboring viruses that exerted full infectivity but were replication-incompetent in conventional cells. Genome-wide optimization of the sites for incorporation of multiple PTCs resulted in highly reproductive and genetically stable progeny viruses in transgenic cells. In mouse, ferret, and guinea pig models, vaccination with PTC viruses elicited robust humoral, mucosal, and T cell-mediated immunity against antigenically distinct influenza viruses and even neutralized existing infecting strains. The methods presented here may become a general approach for generating live virus vaccines that can be adapted to almost any virus.
Author Tian, Zhenyu
Zhou, Demin
Wu, Yiming
Niu, Zhenlan
Zhang, Ziwei
Zhang, Chuanling
Xiao, Sulong
Wang, Yan
Xu, Huan
Zhang, Lihe
Si, Longlong
Zhang, Bo
Zhou, Xueying
Fu, Ge
Xia, Quig
Author_xml – sequence: 1
  givenname: Longlong
  surname: Si
  fullname: Si, Longlong
– sequence: 2
  givenname: Huan
  surname: Xu
  fullname: Xu, Huan
– sequence: 3
  givenname: Xueying
  surname: Zhou
  fullname: Zhou, Xueying
– sequence: 4
  givenname: Ziwei
  surname: Zhang
  fullname: Zhang, Ziwei
– sequence: 5
  givenname: Zhenyu
  surname: Tian
  fullname: Tian, Zhenyu
– sequence: 6
  givenname: Yan
  surname: Wang
  fullname: Wang, Yan
– sequence: 7
  givenname: Yiming
  surname: Wu
  fullname: Wu, Yiming
– sequence: 8
  givenname: Bo
  surname: Zhang
  fullname: Zhang, Bo
– sequence: 9
  givenname: Zhenlan
  surname: Niu
  fullname: Niu, Zhenlan
– sequence: 10
  givenname: Chuanling
  surname: Zhang
  fullname: Zhang, Chuanling
– sequence: 11
  givenname: Ge
  surname: Fu
  fullname: Fu, Ge
– sequence: 12
  givenname: Sulong
  surname: Xiao
  fullname: Xiao, Sulong
– sequence: 13
  givenname: Quig
  surname: Xia
  fullname: Xia, Quig
– sequence: 14
  givenname: Lihe
  surname: Zhang
  fullname: Zhang, Lihe
– sequence: 15
  givenname: Demin
  surname: Zhou
  fullname: Zhou, Demin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27934767$$D View this record in MEDLINE/PubMed
BookMark eNqN0b1PGzEYBnCroioh7dwJZKkLywV_nu0RoZZWQupC55PP957q6GIH2xcJ_vo6JDAwVEwe3t_j19Zzhk5CDIDQV0pWlLL2KjsPwcHK2r9St-YDWlBiZGMY4SdoQQhvG02UPEVnOa8JqTPDP6FTpgwXqlULdH8LAZItPgYcR-zDOM0Qniy-xjuf5gwZ24wnvwPczwUn2E7ePfPGBxc3WygQysHinXXOB8if0cfRThm-HM8l-vPj-_3Nz-bu9-2vm-u7xgllStNzoh3nTFslaGsUcNeLoe9BOGqUk32dUDsYO1LNgOheDaKtSMiBC9m2fIkuD_duU3yYIZdu47ODabIB4pw7qjUhtC7Q76CKaSaEeQ8VShtGzf4B397QdZxTqH_eK8mUJIJWdXFUc7-Bodsmv7HpsXtpoYKrA3Ap5pxgfCWUdPueu2PP3bHnmpBvEs6X51pKsn76T-78kFvnEtPrGiEUrV7wf7truCg
CODEN SCIEAS
CitedBy_id crossref_primary_10_1016_j_chom_2017_02_016
crossref_primary_10_3389_fimmu_2021_571509
crossref_primary_10_1016_j_synbio_2017_02_001
crossref_primary_10_1126_science_aan8806
crossref_primary_10_1128_JVI_00834_19
crossref_primary_10_1186_s12906_022_03509_0
crossref_primary_10_1016_j_jmb_2021_167346
crossref_primary_10_1002_wnan_1824
crossref_primary_10_1073_pnas_2219758120
crossref_primary_10_1038_s41589_024_01813_z
crossref_primary_10_1128_mbio_03988_24
crossref_primary_10_1038_nbt_3759
crossref_primary_10_1093_procel_pwad051
crossref_primary_10_1093_infdis_jiy703
crossref_primary_10_1111_tbed_13491
crossref_primary_10_1002_ange_201703553
crossref_primary_10_1093_nar_gkad002
crossref_primary_10_1016_j_apsb_2024_01_010
crossref_primary_10_1089_hum_2017_212
crossref_primary_10_1080_15476286_2021_1907055
crossref_primary_10_1021_jacs_7b02273
crossref_primary_10_1002_ange_201700683
crossref_primary_10_3390_vaccines11101606
crossref_primary_10_3389_fbioe_2020_00863
crossref_primary_10_1021_acs_chemrev_3c00955
crossref_primary_10_1021_acsami_1c11561
crossref_primary_10_3390_vaccines8030424
crossref_primary_10_1002_ange_202413946
crossref_primary_10_3390_molecules24030481
crossref_primary_10_3390_v11020190
crossref_primary_10_1016_j_cej_2025_160952
crossref_primary_10_1038_s41587_022_01381_4
crossref_primary_10_1038_s41565_020_0737_y
crossref_primary_10_1080_22221751_2022_2157339
crossref_primary_10_1038_s41392_022_00904_4
crossref_primary_10_3390_v14030572
crossref_primary_10_1126_sciadv_aaz7086
crossref_primary_10_1021_acs_chemrev_4c00216
crossref_primary_10_1021_acs_chemrev_4c00730
crossref_primary_10_1016_j_cbpa_2018_07_015
crossref_primary_10_1093_nar_gkz831
crossref_primary_10_1007_s11427_022_2214_2
crossref_primary_10_1016_j_biomaterials_2022_121898
crossref_primary_10_1016_j_cbpa_2018_07_018
crossref_primary_10_1016_j_tim_2023_09_002
crossref_primary_10_1038_540172c
crossref_primary_10_1007_s11427_020_1737_3
crossref_primary_10_1016_j_bej_2024_109478
crossref_primary_10_1038_s41587_023_01796_7
crossref_primary_10_1016_j_csbj_2022_08_063
crossref_primary_10_1038_s41392_023_01440_5
crossref_primary_10_3389_fcimb_2018_00127
crossref_primary_10_1002_cbic_202000437
crossref_primary_10_1021_jacs_7b13452
crossref_primary_10_1111_tbed_13364
crossref_primary_10_1038_nprot_2017_090
crossref_primary_10_3390_vaccines11020391
crossref_primary_10_1002_ggn2_10038
crossref_primary_10_1016_j_synbio_2018_09_003
crossref_primary_10_3389_fmicb_2017_00827
crossref_primary_10_1016_j_chembiol_2017_04_007
crossref_primary_10_1016_j_cyto_2022_155947
crossref_primary_10_1021_acssynbio_8b00204
crossref_primary_10_1021_acsinfecdis_8b00206
crossref_primary_10_1038_s41467_024_50843_7
crossref_primary_10_1002_adtp_202200069
crossref_primary_10_1038_s42003_020_01486_z
crossref_primary_10_1016_j_jmb_2021_167382
crossref_primary_10_1074_jbc_M117_805937
crossref_primary_10_3390_molecules28186745
crossref_primary_10_1073_pnas_1914408117
crossref_primary_10_1007_s11427_018_9403_y
crossref_primary_10_1016_j_yexcr_2020_111936
crossref_primary_10_1038_s41467_023_42358_4
crossref_primary_10_1007_s40265_018_0958_7
crossref_primary_10_1007_s11427_022_2230_4
crossref_primary_10_1002_cbic_202000343
crossref_primary_10_1038_s41467_021_27399_x
crossref_primary_10_3389_fmicb_2022_847325
crossref_primary_10_1016_j_copbio_2019_02_020
crossref_primary_10_1016_j_cbpa_2024_102537
crossref_primary_10_1002_smtd_202400230
crossref_primary_10_1021_acs_chemrev_3c00878
crossref_primary_10_1016_j_ymthe_2020_08_013
crossref_primary_10_1016_j_cbpa_2018_07_014
crossref_primary_10_1038_s41589_021_00899_z
crossref_primary_10_1016_j_pscia_2023_100034
crossref_primary_10_1002_anie_201700683
crossref_primary_10_1002_anie_201703553
crossref_primary_10_1021_acssynbio_6b00373
crossref_primary_10_1021_acssynbio_3c00020
crossref_primary_10_1111_pbi_13084
crossref_primary_10_1002_cbic_201800733
crossref_primary_10_3390_vaccines8020207
crossref_primary_10_1038_nature24031
crossref_primary_10_1016_j_cjche_2022_07_019
crossref_primary_10_1080_14712598_2019_1604671
crossref_primary_10_1080_14760584_2022_2072301
crossref_primary_10_1126_science_aau0810
crossref_primary_10_1042_EBC20180042
crossref_primary_10_1007_s13205_021_03076_0
crossref_primary_10_3390_genes9110537
crossref_primary_10_1021_acs_biochem_1c00286
crossref_primary_10_1080_14760584_2023_2227699
crossref_primary_10_1016_j_jmb_2022_167565
crossref_primary_10_1021_acsinfecdis_4c00321
crossref_primary_10_1002_ctm2_1081
crossref_primary_10_1007_s11427_016_9010_y
crossref_primary_10_1021_acschembio_7b00974
crossref_primary_10_1007_s12250_019_00109_0
crossref_primary_10_1016_j_addr_2020_12_011
crossref_primary_10_3390_v13061145
crossref_primary_10_1016_j_coviro_2020_06_001
crossref_primary_10_1016_j_ejpb_2022_02_006
crossref_primary_10_3389_fmolb_2020_608931
crossref_primary_10_3390_life12091326
crossref_primary_10_1021_acschembio_8b00220
crossref_primary_10_1016_j_omtn_2024_102149
crossref_primary_10_1039_C9OB00992B
crossref_primary_10_3389_fphar_2019_00611
crossref_primary_10_1021_acs_chemrev_3c00938
crossref_primary_10_1021_acs_accounts_7b00376
crossref_primary_10_1021_acs_chemrev_4c00243
crossref_primary_10_1002_anie_202413946
crossref_primary_10_1002_cpz1_301
crossref_primary_10_1016_j_chempr_2021_09_014
crossref_primary_10_1126_sciadv_aau8408
crossref_primary_10_4049_jimmunol_1900050
crossref_primary_10_1111_1751_7915_14358
crossref_primary_10_1016_j_jbc_2022_101611
crossref_primary_10_1016_j_lfs_2020_118845
crossref_primary_10_3389_fmolb_2022_1031756
crossref_primary_10_1111_irv_12687
crossref_primary_10_3390_pharmaceutics16081028
crossref_primary_10_1128_mBio_02180_19
crossref_primary_10_3390_ijms20040887
crossref_primary_10_3389_fmicb_2023_1112580
Cites_doi 10.1073/pnas.1116200109
10.1016/j.biomaterials.2015.11.066
10.1021/jm5014067
10.3858/emm.2010.42.2.013
10.1007/978-1-4939-0758-8_2
10.7774/cevr.2012.1.1.35
10.1007/978-1-4939-0758-8_27
10.1128/mBio.01024-15
10.1126/science.1155761
10.1038/nrd4529
10.1126/science.1084772
10.1073/pnas.96.16.9345
10.1093/nar/gkr927
10.1126/science.351.6268.16
10.1126/science.1225416
10.1038/nature14095
10.1016/j.vaccine.2012.07.059
10.1016/j.ejmech.2015.09.037
10.1016/j.virusres.2009.05.010
10.1016/j.biomaterials.2015.11.034
10.1038/srep11233
10.1074/jbc.R110.117531
10.1002/cbic.201402154
10.1093/nar/gkv202
10.1146/annurev.genet.34.1.187
10.1038/nn1932
10.1128/JVI.06586-11
10.1093/nar/gkq399
10.1126/science.aac7263
10.1038/nature08157
10.1126/science.aaa4919
10.1002/anie.201402092
10.1186/1743-422X-7-351
10.1128/JVI.01565-14
10.1128/jvi.41.2.730-734.1982
10.1038/nbt1261
10.1038/nature04378
10.1126/science.1060077
10.1038/nm1209
ContentType Journal Article
Copyright Copyright © 2016 American Association for the Advancement of Science
Copyright © 2016, American Association for the Advancement of Science.
Copyright © 2016, American Association for the Advancement of Science
Copyright_xml – notice: Copyright © 2016 American Association for the Advancement of Science
– notice: Copyright © 2016, American Association for the Advancement of Science.
– notice: Copyright © 2016, American Association for the Advancement of Science
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
DOI 10.1126/science.aah5869
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

AIDS and Cancer Research Abstracts
CrossRef
Solid State and Superconductivity Abstracts
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 1173
ExternalDocumentID 4267782641
27934767
10_1126_science_aah5869
44711124
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
AAYJJ
ABBHK
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPMR
ABPPZ
ABQIJ
ABTLG
ABWJO
ABXSQ
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACHIC
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADMHC
ADQXQ
ADUKH
ADULT
ADXHL
AEGBM
AENEX
AETEA
AEUPB
AEXZC
AFBNE
AFFDN
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AQVQM
ASPBG
AVWKF
BKF
BLC
C45
C51
CS3
DB2
DCCCD
DU5
EBS
EJD
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPSME
IPY
ISE
JAAYA
JBMMH
JCF
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
QS-
RHI
RXW
SA0
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YYQ
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
AAYXX
ABCQX
CITATION
K-O
CGR
CUY
CVF
ECM
EIF
GX1
NPM
OK1
UIG
YCJ
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c479t-b308c3328a741697e3cb4dbbe4c197c5b28a1ad9af182e08b7d46e3c45d345663
ISSN 0036-8075
1095-9203
IngestDate Thu Jul 10 19:18:40 EDT 2025
Thu Jul 10 17:50:32 EDT 2025
Fri Jul 11 04:05:15 EDT 2025
Fri Jul 25 10:08:38 EDT 2025
Thu Apr 03 07:06:37 EDT 2025
Thu Apr 24 22:55:39 EDT 2025
Tue Jul 01 00:37:23 EDT 2025
Thu Jul 03 22:17:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6316
Language English
License http://www.sciencemag.org/about/science-licenses-journal-article-reuse
Copyright © 2016, American Association for the Advancement of Science.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c479t-b308c3328a741697e3cb4dbbe4c197c5b28a1ad9af182e08b7d46e3c45d345663
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 27934767
PQID 1845275041
PQPubID 1256
PageCount 4
ParticipantIDs proquest_miscellaneous_1880013288
proquest_miscellaneous_1872824498
proquest_miscellaneous_1847892196
proquest_journals_1845275041
pubmed_primary_27934767
crossref_primary_10_1126_science_aah5869
crossref_citationtrail_10_1126_science_aah5869
jstor_primary_44711124
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20161202
2016-12-02
PublicationDateYYYYMMDD 2016-12-02
PublicationDate_xml – month: 12
  year: 2016
  text: 20161202
  day: 2
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2016
Publisher American Association for the Advancement of Science
The American Association for the Advancement of Science
Publisher_xml – name: American Association for the Advancement of Science
– name: The American Association for the Advancement of Science
References e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_29_2
Wilson S. (e_1_3_2_31_2) 1933; 2
Hobson D. (e_1_3_2_30_2) 1968; 49
e_1_3_2_41_2
e_1_3_2_40_2
e_1_3_2_20_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_22_2
e_1_3_2_23_2
e_1_3_2_24_2
e_1_3_2_25_2
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_19_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
28279341 - Cell Host Microbe. 2017 Mar 8;21(3):314-315
References_xml – ident: e_1_3_2_7_2
  doi: 10.1073/pnas.1116200109
– ident: e_1_3_2_14_2
  doi: 10.1016/j.biomaterials.2015.11.066
– ident: e_1_3_2_19_2
  doi: 10.1021/jm5014067
– ident: e_1_3_2_21_2
  doi: 10.3858/emm.2010.42.2.013
– volume: 49
  start-page: 516
  year: 1968
  ident: e_1_3_2_30_2
  article-title: Laboratory differences between the WS strain of influenza A virus and its neurotropic variants
  publication-title: Br. J. Exp. Pathol.
– ident: e_1_3_2_37_2
  doi: 10.1007/978-1-4939-0758-8_2
– ident: e_1_3_2_6_2
  doi: 10.7774/cevr.2012.1.1.35
– ident: e_1_3_2_38_2
  doi: 10.1007/978-1-4939-0758-8_27
– ident: e_1_3_2_36_2
  doi: 10.1128/mBio.01024-15
– ident: e_1_3_2_22_2
  doi: 10.1126/science.1155761
– ident: e_1_3_2_2_2
  doi: 10.1038/nrd4529
– ident: e_1_3_2_9_2
  doi: 10.1126/science.1084772
– ident: e_1_3_2_18_2
  doi: 10.1073/pnas.96.16.9345
– ident: e_1_3_2_15_2
  doi: 10.1093/nar/gkr927
– ident: e_1_3_2_28_2
  doi: 10.1126/science.351.6268.16
– volume: 2
  start-page: 66
  year: 1933
  ident: e_1_3_2_31_2
  article-title: A virus obtained from influenza patients
  publication-title: Lancet
– ident: e_1_3_2_26_2
  doi: 10.1126/science.1225416
– ident: e_1_3_2_10_2
  doi: 10.1038/nature14095
– ident: e_1_3_2_33_2
  doi: 10.1016/j.vaccine.2012.07.059
– ident: e_1_3_2_35_2
  doi: 10.1016/j.ejmech.2015.09.037
– ident: e_1_3_2_39_2
  doi: 10.1016/j.virusres.2009.05.010
– ident: e_1_3_2_20_2
  doi: 10.1016/j.biomaterials.2015.11.034
– ident: e_1_3_2_34_2
  doi: 10.1038/srep11233
– ident: e_1_3_2_40_2
  doi: 10.1074/jbc.R110.117531
– ident: e_1_3_2_11_2
  doi: 10.1002/cbic.201402154
– ident: e_1_3_2_12_2
  doi: 10.1093/nar/gkv202
– ident: e_1_3_2_16_2
  doi: 10.1146/annurev.genet.34.1.187
– ident: e_1_3_2_17_2
  doi: 10.1038/nn1932
– ident: e_1_3_2_32_2
  doi: 10.1128/JVI.06586-11
– ident: e_1_3_2_24_2
  doi: 10.1093/nar/gkq399
– ident: e_1_3_2_25_2
  doi: 10.1126/science.aac7263
– ident: e_1_3_2_42_2
  doi: 10.1038/nature08157
– ident: e_1_3_2_3_2
  doi: 10.1126/science.aaa4919
– ident: e_1_3_2_13_2
  doi: 10.1002/anie.201402092
– ident: e_1_3_2_27_2
  doi: 10.1186/1743-422X-7-351
– ident: e_1_3_2_23_2
  doi: 10.1128/JVI.01565-14
– ident: e_1_3_2_29_2
  doi: 10.1128/jvi.41.2.730-734.1982
– ident: e_1_3_2_4_2
  doi: 10.1038/nbt1261
– ident: e_1_3_2_41_2
  doi: 10.1038/nature04378
– ident: e_1_3_2_8_2
  doi: 10.1126/science.1060077
– ident: e_1_3_2_5_2
  doi: 10.1038/nm1209
– reference: 28279341 - Cell Host Microbe. 2017 Mar 8;21(3):314-315
SSID ssj0009593
Score 2.567018
Snippet The conversion of life-threatening viruses into live but avirulent vaccines represents a revolution in vaccinology. In a proof-of-principle study, we expanded...
Genetic code expansion and orthogonal translation machinery are used to generate live, attenuated viral vaccines. Live attenuated vaccines can be very potent,...
Live attenuated vaccines can be very potent, but their potential to revert to their pathogenic form limits their use. In an attempt to get around this, Si et...
Protecting by changing the codeLive attenuated vaccines can be very potent, but their potential to revert to their pathogenic form limits their use. In an...
SourceID proquest
pubmed
crossref
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1170
SubjectTerms Aluminum
Animals
Biotechnology
Codon, Nonsense
Ferrets
Genetic code
Genome, Viral
Genomics
Guinea Pigs
HEK293 Cells
Humans
Immunogenicity, Vaccine
Influenza
Influenza A virus
Influenza A virus - genetics
Influenza A virus - immunology
Influenza A virus - physiology
Influenza Vaccines - genetics
Influenza Vaccines - immunology
Methanosarcina barkeri - genetics
Mice
Models, Animal
Mustela
Orthomyxoviridae
Protein Biosynthesis - genetics
T-Lymphocytes - immunology
Transgenes
Transgenic
Vaccination
Vaccines
Vaccines, Attenuated - genetics
Vaccines, Attenuated - immunology
Viral Plaque Assay
Virus Cultivation - methods
Virus Replication - genetics
Viruses
Title Generation of influenza A viruses as live but replication-incompetent virus vaccines
URI https://www.jstor.org/stable/44711124
https://www.ncbi.nlm.nih.gov/pubmed/27934767
https://www.proquest.com/docview/1845275041
https://www.proquest.com/docview/1847892196
https://www.proquest.com/docview/1872824498
https://www.proquest.com/docview/1880013288
Volume 354
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKJiQuiA0GhYGMxGEIpcqHE9vHDlZNaIwDqRTtEjmJwyJVCVqSoe2v5zl20gy10-ASVc5zY_n9_L5sv4fQB9_lhCQusTzBMov4iWcJl-QWzTOapYHiuYp3fDsPTpfka-RHk0k7vl3SJLP0duO9kv_hKrQBX9Ut2X_g7PCn0AC_gb_wBA7D80E81jmje5uv0PVGbgUs9uviqq1lrarIrLrz6W2jtgf6CJ2lcjJog7nRtJ-uRar22OuxtdovfLBCh52dET-HI4pzfZCgP1dguo2CDD_0Heyq_LmqjKqE1qjtFF-7BujFZdW1Ra28KdaEQ1T7ovgti3GgwunK-9ij2KVjq7KQrq3lmdzQZgSyp9NKG-QFnjOWsKpSzmbRPypWKWdCXPpMF4G5m2T7_Hu8WJ6dxeFJFD5Cuy54FyAed-fHX44Xf2drHkZnckKNblv1H7hjzugTrdt9lc5mCZ-hp8bZwHONnD00keU-eqzLj97soz3DqBofmezjH5-jcA0qXOV4ABWeYwMqLGqsQIUBVHgLqDQt7kH1Ai0XJ-HnU8uU3rBSQnljJZ7NUs9zmVAWO6fSSxOSJYkkqcNp6ifwxhEZFzn4p9JmCc1IAETEzzwwyQPvAO2UVSlfIZzy3M55wAR42oQKzkGj5tBDgCdBQMFM0ayfwTg1eelVeZRV3PmnbhCbKY_NlE_R0dDhl07Jsp30oGPJQEfAFgNCMkWHPY9is6Dr2GHE78odOFP0fngN4lbtoYlSVm1HQxkHNR_cR0NdBmYzZ_fRsG6bkwHNS42RYZAu6ExCA_r6AaN4g56s19oh2mmuWvkWzOQmeWdA_QcwBsHb
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generation+of+influenza+A+viruses+as+live+but+replication-incompetent+virus+vaccines&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Si%2C+Longlong&rft.au=Xu%2C+Huan&rft.au=Zhou%2C+Xueying&rft.au=Zhang%2C+Ziwei&rft.date=2016-12-02&rft.issn=1095-9203&rft.eissn=1095-9203&rft.volume=354&rft.issue=6316&rft.spage=1170&rft_id=info:doi/10.1126%2Fscience.aah5869&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon