Generation of influenza A viruses as live but replication-incompetent virus vaccines
The conversion of life-threatening viruses into live but avirulent vaccines represents a revolution in vaccinology. In a proof-of-principle study, we expanded the genetic code of the genome of influenza A virus via a transgenic cell line containing orthogonal translation machinery. This generated pr...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 354; no. 6316; pp. 1170 - 1173 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Association for the Advancement of Science
02.12.2016
The American Association for the Advancement of Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The conversion of life-threatening viruses into live but avirulent vaccines represents a revolution in vaccinology. In a proof-of-principle study, we expanded the genetic code of the genome of influenza A virus via a transgenic cell line containing orthogonal translation machinery. This generated premature termination codon (PTC)-harboring viruses that exerted full infect i vi ty but were replication-incompetent in conventional cells. Genome-wide optimization of the sites for incorporation of multiple PTCs resulted in highly reproductive and genetically stable progeny viruses in transgenic cells. In mouse, ferret, and guinea pig models, vaccination with PTC viruses elicited robust humoral, mucosal, and T cell-mediated immunity against antigenically distinct influenza viruses and even neutralized existing infecting strains. The methods presented here may become a general approach for generating live virus vaccines that can be adapted to almost any virus. |
---|---|
AbstractList | The conversion of life-threatening viruses into live but avirulent vaccines represents a revolution in vaccinology. In a proof-of-principle study, we expanded the genetic code of the genome of influenza A virus via a transgenic cell line containing orthogonal translation machinery. This generated premature termination codon (PTC)-harboring viruses that exerted full infectivity but were replication-incompetent in conventional cells. Genome-wide optimization of the sites for incorporation of multiple PTCs resulted in highly reproductive and genetically stable progeny viruses in transgenic cells. In mouse, ferret, and guinea pig models, vaccination with PTC viruses elicited robust humoral, mucosal, and T cell-mediated immunity against antigenically distinct influenza viruses and even neutralized existing infecting strains. The methods presented here may become a general approach for generating live virus vaccines that can be adapted to almost any virus. The conversion of life-threatening viruses into live but avirulent vaccines represents a revolution in vaccinology. In a proof-of-principle study, we expanded the genetic code of the genome of influenza A virus via a transgenic cell line containing orthogonal translation machinery. This generated premature termination codon (PTC)-harboring viruses that exerted full infectivity but were replication-incompetent in conventional cells. Genome-wide optimization of the sites for incorporation of multiple PTCs resulted in highly reproductive and genetically stable progeny viruses in transgenic cells. In mouse, ferret, and guinea pig models, vaccination with PTC viruses elicited robust humoral, mucosal, and T cell-mediated immunity against antigenically distinct influenza viruses and even neutralized existing infecting strains. The methods presented here may become a general approach for generating live virus vaccines that can be adapted to almost any virus.The conversion of life-threatening viruses into live but avirulent vaccines represents a revolution in vaccinology. In a proof-of-principle study, we expanded the genetic code of the genome of influenza A virus via a transgenic cell line containing orthogonal translation machinery. This generated premature termination codon (PTC)-harboring viruses that exerted full infectivity but were replication-incompetent in conventional cells. Genome-wide optimization of the sites for incorporation of multiple PTCs resulted in highly reproductive and genetically stable progeny viruses in transgenic cells. In mouse, ferret, and guinea pig models, vaccination with PTC viruses elicited robust humoral, mucosal, and T cell-mediated immunity against antigenically distinct influenza viruses and even neutralized existing infecting strains. The methods presented here may become a general approach for generating live virus vaccines that can be adapted to almost any virus. The conversion of life-threatening viruses into live but avirulent vaccines represents a revolution in vaccinology. In a proof-of-principle study, we expanded the genetic code of the genome of influenza A virus via a transgenic cell line containing orthogonal translation machinery. This generated premature termination codon (PTC)-harboring viruses that exerted full infect i vi ty but were replication-incompetent in conventional cells. Genome-wide optimization of the sites for incorporation of multiple PTCs resulted in highly reproductive and genetically stable progeny viruses in transgenic cells. In mouse, ferret, and guinea pig models, vaccination with PTC viruses elicited robust humoral, mucosal, and T cell-mediated immunity against antigenically distinct influenza viruses and even neutralized existing infecting strains. The methods presented here may become a general approach for generating live virus vaccines that can be adapted to almost any virus. Protecting by changing the codeLive attenuated vaccines can be very potent, but their potential to revert to their pathogenic form limits their use. In an attempt to get around this, Si et al. expanded the genetic code of influenza A viruses. They propagated viruses that were mutated to encode premature termination codons (PTCs) in a cell line engineered to be able to express these flu proteins. Despite not being able to replicate in conventional cells, PTC-containing viruses were highly immunogenic and protected mice, guinea pigs, and ferrets against influenza challenge.Science, this issue p. 1170 The conversion of life-threatening viruses into live but avirulent vaccines represents a revolution in vaccinology. In a proof-of-principle study, we expanded the genetic code of the genome of influenza A virus via a transgenic cell line containing orthogonal translation machinery. This generated premature termination codon (PTC)-harboring viruses that exerted full infectivity but were replication-incompetent in conventional cells. Genome-wide optimization of the sites for incorporation of multiple PTCs resulted in highly reproductive and genetically stable progeny viruses in transgenic cells. In mouse, ferret, and guinea pig models, vaccination with PTC viruses elicited robust humoral, mucosal, and T cell-mediated immunity against antigenically distinct influenza viruses and even neutralized existing infecting strains. The methods presented here may become a general approach for generating live virus vaccines that can be adapted to almost any virus. Genetic code expansion and orthogonal translation machinery are used to generate live, attenuated viral vaccines. Live attenuated vaccines can be very potent, but their potential to revert to their pathogenic form limits their use. In an attempt to get around this, Si et al. expanded the genetic code of influenza A viruses. They propagated viruses that were mutated to encode premature termination codons (PTCs) in a cell line engineered to be able to express these flu proteins. Despite not being able to replicate in conventional cells, PTC-containing viruses were highly immunogenic and protected mice, guinea pigs, and ferrets against influenza challenge. Science , this issue p. 1170 The conversion of life-threatening viruses into live but avirulent vaccines represents a revolution in vaccinology. In a proof-of-principle study, we expanded the genetic code of the genome of influenza A virus via a transgenic cell line containing orthogonal translation machinery. This generated premature termination codon (PTC)–harboring viruses that exerted full infectivity but were replication-incompetent in conventional cells. Genome-wide optimization of the sites for incorporation of multiple PTCs resulted in highly reproductive and genetically stable progeny viruses in transgenic cells. In mouse, ferret, and guinea pig models, vaccination with PTC viruses elicited robust humoral, mucosal, and T cell–mediated immunity against antigenically distinct influenza viruses and even neutralized existing infecting strains. The methods presented here may become a general approach for generating live virus vaccines that can be adapted to almost any virus. Live attenuated vaccines can be very potent, but their potential to revert to their pathogenic form limits their use. In an attempt to get around this, Si et al. expanded the genetic code of influenza A viruses. They propagated viruses that were mutated to encode premature termination codons (PTCs) in a cell line engineered to be able to express these flu proteins. Despite not being able to replicate in conventional cells, PTC-containing viruses were highly immunogenic and protected mice, guinea pigs, and ferrets against influenza challenge. Science, this issue p. 1170 The conversion of life-threatening viruses into live but avirulent vaccines represents a revolution in vaccinology. In a proof-of-principle study, we expanded the genetic code of the genome of influenza A virus via a transgenic cell line containing orthogonal translation machinery. This generated premature termination codon (PTC)-harboring viruses that exerted full infectivity but were replication-incompetent in conventional cells. Genome-wide optimization of the sites for incorporation of multiple PTCs resulted in highly reproductive and genetically stable progeny viruses in transgenic cells. In mouse, ferret, and guinea pig models, vaccination with PTC viruses elicited robust humoral, mucosal, and T cell-mediated immunity against antigenically distinct influenza viruses and even neutralized existing infecting strains. The methods presented here may become a general approach for generating live virus vaccines that can be adapted to almost any virus. |
Author | Tian, Zhenyu Zhou, Demin Wu, Yiming Niu, Zhenlan Zhang, Ziwei Zhang, Chuanling Xiao, Sulong Wang, Yan Xu, Huan Zhang, Lihe Si, Longlong Zhang, Bo Zhou, Xueying Fu, Ge Xia, Quig |
Author_xml | – sequence: 1 givenname: Longlong surname: Si fullname: Si, Longlong – sequence: 2 givenname: Huan surname: Xu fullname: Xu, Huan – sequence: 3 givenname: Xueying surname: Zhou fullname: Zhou, Xueying – sequence: 4 givenname: Ziwei surname: Zhang fullname: Zhang, Ziwei – sequence: 5 givenname: Zhenyu surname: Tian fullname: Tian, Zhenyu – sequence: 6 givenname: Yan surname: Wang fullname: Wang, Yan – sequence: 7 givenname: Yiming surname: Wu fullname: Wu, Yiming – sequence: 8 givenname: Bo surname: Zhang fullname: Zhang, Bo – sequence: 9 givenname: Zhenlan surname: Niu fullname: Niu, Zhenlan – sequence: 10 givenname: Chuanling surname: Zhang fullname: Zhang, Chuanling – sequence: 11 givenname: Ge surname: Fu fullname: Fu, Ge – sequence: 12 givenname: Sulong surname: Xiao fullname: Xiao, Sulong – sequence: 13 givenname: Quig surname: Xia fullname: Xia, Quig – sequence: 14 givenname: Lihe surname: Zhang fullname: Zhang, Lihe – sequence: 15 givenname: Demin surname: Zhou fullname: Zhou, Demin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27934767$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0b1PGzEYBnCroioh7dwJZKkLywV_nu0RoZZWQupC55PP957q6GIH2xcJ_vo6JDAwVEwe3t_j19Zzhk5CDIDQV0pWlLL2KjsPwcHK2r9St-YDWlBiZGMY4SdoQQhvG02UPEVnOa8JqTPDP6FTpgwXqlULdH8LAZItPgYcR-zDOM0Qniy-xjuf5gwZ24wnvwPczwUn2E7ePfPGBxc3WygQysHinXXOB8if0cfRThm-HM8l-vPj-_3Nz-bu9-2vm-u7xgllStNzoh3nTFslaGsUcNeLoe9BOGqUk32dUDsYO1LNgOheDaKtSMiBC9m2fIkuD_duU3yYIZdu47ODabIB4pw7qjUhtC7Q76CKaSaEeQ8VShtGzf4B397QdZxTqH_eK8mUJIJWdXFUc7-Bodsmv7HpsXtpoYKrA3Ap5pxgfCWUdPueu2PP3bHnmpBvEs6X51pKsn76T-78kFvnEtPrGiEUrV7wf7truCg |
CODEN | SCIEAS |
CitedBy_id | crossref_primary_10_1016_j_chom_2017_02_016 crossref_primary_10_3389_fimmu_2021_571509 crossref_primary_10_1016_j_synbio_2017_02_001 crossref_primary_10_1126_science_aan8806 crossref_primary_10_1128_JVI_00834_19 crossref_primary_10_1186_s12906_022_03509_0 crossref_primary_10_1016_j_jmb_2021_167346 crossref_primary_10_1002_wnan_1824 crossref_primary_10_1073_pnas_2219758120 crossref_primary_10_1038_s41589_024_01813_z crossref_primary_10_1128_mbio_03988_24 crossref_primary_10_1038_nbt_3759 crossref_primary_10_1093_procel_pwad051 crossref_primary_10_1093_infdis_jiy703 crossref_primary_10_1111_tbed_13491 crossref_primary_10_1002_ange_201703553 crossref_primary_10_1093_nar_gkad002 crossref_primary_10_1016_j_apsb_2024_01_010 crossref_primary_10_1089_hum_2017_212 crossref_primary_10_1080_15476286_2021_1907055 crossref_primary_10_1021_jacs_7b02273 crossref_primary_10_1002_ange_201700683 crossref_primary_10_3390_vaccines11101606 crossref_primary_10_3389_fbioe_2020_00863 crossref_primary_10_1021_acs_chemrev_3c00955 crossref_primary_10_1021_acsami_1c11561 crossref_primary_10_3390_vaccines8030424 crossref_primary_10_1002_ange_202413946 crossref_primary_10_3390_molecules24030481 crossref_primary_10_3390_v11020190 crossref_primary_10_1016_j_cej_2025_160952 crossref_primary_10_1038_s41587_022_01381_4 crossref_primary_10_1038_s41565_020_0737_y crossref_primary_10_1080_22221751_2022_2157339 crossref_primary_10_1038_s41392_022_00904_4 crossref_primary_10_3390_v14030572 crossref_primary_10_1126_sciadv_aaz7086 crossref_primary_10_1021_acs_chemrev_4c00216 crossref_primary_10_1021_acs_chemrev_4c00730 crossref_primary_10_1016_j_cbpa_2018_07_015 crossref_primary_10_1093_nar_gkz831 crossref_primary_10_1007_s11427_022_2214_2 crossref_primary_10_1016_j_biomaterials_2022_121898 crossref_primary_10_1016_j_cbpa_2018_07_018 crossref_primary_10_1016_j_tim_2023_09_002 crossref_primary_10_1038_540172c crossref_primary_10_1007_s11427_020_1737_3 crossref_primary_10_1016_j_bej_2024_109478 crossref_primary_10_1038_s41587_023_01796_7 crossref_primary_10_1016_j_csbj_2022_08_063 crossref_primary_10_1038_s41392_023_01440_5 crossref_primary_10_3389_fcimb_2018_00127 crossref_primary_10_1002_cbic_202000437 crossref_primary_10_1021_jacs_7b13452 crossref_primary_10_1111_tbed_13364 crossref_primary_10_1038_nprot_2017_090 crossref_primary_10_3390_vaccines11020391 crossref_primary_10_1002_ggn2_10038 crossref_primary_10_1016_j_synbio_2018_09_003 crossref_primary_10_3389_fmicb_2017_00827 crossref_primary_10_1016_j_chembiol_2017_04_007 crossref_primary_10_1016_j_cyto_2022_155947 crossref_primary_10_1021_acssynbio_8b00204 crossref_primary_10_1021_acsinfecdis_8b00206 crossref_primary_10_1038_s41467_024_50843_7 crossref_primary_10_1002_adtp_202200069 crossref_primary_10_1038_s42003_020_01486_z crossref_primary_10_1016_j_jmb_2021_167382 crossref_primary_10_1074_jbc_M117_805937 crossref_primary_10_3390_molecules28186745 crossref_primary_10_1073_pnas_1914408117 crossref_primary_10_1007_s11427_018_9403_y crossref_primary_10_1016_j_yexcr_2020_111936 crossref_primary_10_1038_s41467_023_42358_4 crossref_primary_10_1007_s40265_018_0958_7 crossref_primary_10_1007_s11427_022_2230_4 crossref_primary_10_1002_cbic_202000343 crossref_primary_10_1038_s41467_021_27399_x crossref_primary_10_3389_fmicb_2022_847325 crossref_primary_10_1016_j_copbio_2019_02_020 crossref_primary_10_1016_j_cbpa_2024_102537 crossref_primary_10_1002_smtd_202400230 crossref_primary_10_1021_acs_chemrev_3c00878 crossref_primary_10_1016_j_ymthe_2020_08_013 crossref_primary_10_1016_j_cbpa_2018_07_014 crossref_primary_10_1038_s41589_021_00899_z crossref_primary_10_1016_j_pscia_2023_100034 crossref_primary_10_1002_anie_201700683 crossref_primary_10_1002_anie_201703553 crossref_primary_10_1021_acssynbio_6b00373 crossref_primary_10_1021_acssynbio_3c00020 crossref_primary_10_1111_pbi_13084 crossref_primary_10_1002_cbic_201800733 crossref_primary_10_3390_vaccines8020207 crossref_primary_10_1038_nature24031 crossref_primary_10_1016_j_cjche_2022_07_019 crossref_primary_10_1080_14712598_2019_1604671 crossref_primary_10_1080_14760584_2022_2072301 crossref_primary_10_1126_science_aau0810 crossref_primary_10_1042_EBC20180042 crossref_primary_10_1007_s13205_021_03076_0 crossref_primary_10_3390_genes9110537 crossref_primary_10_1021_acs_biochem_1c00286 crossref_primary_10_1080_14760584_2023_2227699 crossref_primary_10_1016_j_jmb_2022_167565 crossref_primary_10_1021_acsinfecdis_4c00321 crossref_primary_10_1002_ctm2_1081 crossref_primary_10_1007_s11427_016_9010_y crossref_primary_10_1021_acschembio_7b00974 crossref_primary_10_1007_s12250_019_00109_0 crossref_primary_10_1016_j_addr_2020_12_011 crossref_primary_10_3390_v13061145 crossref_primary_10_1016_j_coviro_2020_06_001 crossref_primary_10_1016_j_ejpb_2022_02_006 crossref_primary_10_3389_fmolb_2020_608931 crossref_primary_10_3390_life12091326 crossref_primary_10_1021_acschembio_8b00220 crossref_primary_10_1016_j_omtn_2024_102149 crossref_primary_10_1039_C9OB00992B crossref_primary_10_3389_fphar_2019_00611 crossref_primary_10_1021_acs_chemrev_3c00938 crossref_primary_10_1021_acs_accounts_7b00376 crossref_primary_10_1021_acs_chemrev_4c00243 crossref_primary_10_1002_anie_202413946 crossref_primary_10_1002_cpz1_301 crossref_primary_10_1016_j_chempr_2021_09_014 crossref_primary_10_1126_sciadv_aau8408 crossref_primary_10_4049_jimmunol_1900050 crossref_primary_10_1111_1751_7915_14358 crossref_primary_10_1016_j_jbc_2022_101611 crossref_primary_10_1016_j_lfs_2020_118845 crossref_primary_10_3389_fmolb_2022_1031756 crossref_primary_10_1111_irv_12687 crossref_primary_10_3390_pharmaceutics16081028 crossref_primary_10_1128_mBio_02180_19 crossref_primary_10_3390_ijms20040887 crossref_primary_10_3389_fmicb_2023_1112580 |
Cites_doi | 10.1073/pnas.1116200109 10.1016/j.biomaterials.2015.11.066 10.1021/jm5014067 10.3858/emm.2010.42.2.013 10.1007/978-1-4939-0758-8_2 10.7774/cevr.2012.1.1.35 10.1007/978-1-4939-0758-8_27 10.1128/mBio.01024-15 10.1126/science.1155761 10.1038/nrd4529 10.1126/science.1084772 10.1073/pnas.96.16.9345 10.1093/nar/gkr927 10.1126/science.351.6268.16 10.1126/science.1225416 10.1038/nature14095 10.1016/j.vaccine.2012.07.059 10.1016/j.ejmech.2015.09.037 10.1016/j.virusres.2009.05.010 10.1016/j.biomaterials.2015.11.034 10.1038/srep11233 10.1074/jbc.R110.117531 10.1002/cbic.201402154 10.1093/nar/gkv202 10.1146/annurev.genet.34.1.187 10.1038/nn1932 10.1128/JVI.06586-11 10.1093/nar/gkq399 10.1126/science.aac7263 10.1038/nature08157 10.1126/science.aaa4919 10.1002/anie.201402092 10.1186/1743-422X-7-351 10.1128/JVI.01565-14 10.1128/jvi.41.2.730-734.1982 10.1038/nbt1261 10.1038/nature04378 10.1126/science.1060077 10.1038/nm1209 |
ContentType | Journal Article |
Copyright | Copyright © 2016 American Association for the Advancement of Science Copyright © 2016, American Association for the Advancement of Science. Copyright © 2016, American Association for the Advancement of Science |
Copyright_xml | – notice: Copyright © 2016 American Association for the Advancement of Science – notice: Copyright © 2016, American Association for the Advancement of Science. – notice: Copyright © 2016, American Association for the Advancement of Science |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
DOI | 10.1126/science.aah5869 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AIDS and Cancer Research Abstracts CrossRef Solid State and Superconductivity Abstracts Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 1173 |
ExternalDocumentID | 4267782641 27934767 10_1126_science_aah5869 44711124 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO AAYJJ ABBHK ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPMR ABPPZ ABQIJ ABTLG ABWJO ABXSQ ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACHIC ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADMHC ADQXQ ADUKH ADULT ADXHL AEGBM AENEX AETEA AEUPB AEXZC AFBNE AFFDN AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI AQVQM ASPBG AVWKF BKF BLC C45 C51 CS3 DB2 DCCCD DU5 EBS EJD EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPSME IPY ISE JAAYA JBMMH JCF JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ QS- RHI RXW SA0 SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YYQ YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ AAYXX ABCQX CITATION K-O CGR CUY CVF ECM EIF GX1 NPM OK1 UIG YCJ 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c479t-b308c3328a741697e3cb4dbbe4c197c5b28a1ad9af182e08b7d46e3c45d345663 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Thu Jul 10 19:18:40 EDT 2025 Thu Jul 10 17:50:32 EDT 2025 Fri Jul 11 04:05:15 EDT 2025 Fri Jul 25 10:08:38 EDT 2025 Thu Apr 03 07:06:37 EDT 2025 Thu Apr 24 22:55:39 EDT 2025 Tue Jul 01 00:37:23 EDT 2025 Thu Jul 03 22:17:23 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6316 |
Language | English |
License | http://www.sciencemag.org/about/science-licenses-journal-article-reuse Copyright © 2016, American Association for the Advancement of Science. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c479t-b308c3328a741697e3cb4dbbe4c197c5b28a1ad9af182e08b7d46e3c45d345663 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 27934767 |
PQID | 1845275041 |
PQPubID | 1256 |
PageCount | 4 |
ParticipantIDs | proquest_miscellaneous_1880013288 proquest_miscellaneous_1872824498 proquest_miscellaneous_1847892196 proquest_journals_1845275041 pubmed_primary_27934767 crossref_primary_10_1126_science_aah5869 crossref_citationtrail_10_1126_science_aah5869 jstor_primary_44711124 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20161202 2016-12-02 |
PublicationDateYYYYMMDD | 2016-12-02 |
PublicationDate_xml | – month: 12 year: 2016 text: 20161202 day: 2 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2016 |
Publisher | American Association for the Advancement of Science The American Association for the Advancement of Science |
Publisher_xml | – name: American Association for the Advancement of Science – name: The American Association for the Advancement of Science |
References | e_1_3_2_26_2 e_1_3_2_27_2 e_1_3_2_28_2 e_1_3_2_29_2 Wilson S. (e_1_3_2_31_2) 1933; 2 Hobson D. (e_1_3_2_30_2) 1968; 49 e_1_3_2_41_2 e_1_3_2_40_2 e_1_3_2_20_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_22_2 e_1_3_2_23_2 e_1_3_2_24_2 e_1_3_2_25_2 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_19_2 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 e_1_3_2_14_2 e_1_3_2_35_2 28279341 - Cell Host Microbe. 2017 Mar 8;21(3):314-315 |
References_xml | – ident: e_1_3_2_7_2 doi: 10.1073/pnas.1116200109 – ident: e_1_3_2_14_2 doi: 10.1016/j.biomaterials.2015.11.066 – ident: e_1_3_2_19_2 doi: 10.1021/jm5014067 – ident: e_1_3_2_21_2 doi: 10.3858/emm.2010.42.2.013 – volume: 49 start-page: 516 year: 1968 ident: e_1_3_2_30_2 article-title: Laboratory differences between the WS strain of influenza A virus and its neurotropic variants publication-title: Br. J. Exp. Pathol. – ident: e_1_3_2_37_2 doi: 10.1007/978-1-4939-0758-8_2 – ident: e_1_3_2_6_2 doi: 10.7774/cevr.2012.1.1.35 – ident: e_1_3_2_38_2 doi: 10.1007/978-1-4939-0758-8_27 – ident: e_1_3_2_36_2 doi: 10.1128/mBio.01024-15 – ident: e_1_3_2_22_2 doi: 10.1126/science.1155761 – ident: e_1_3_2_2_2 doi: 10.1038/nrd4529 – ident: e_1_3_2_9_2 doi: 10.1126/science.1084772 – ident: e_1_3_2_18_2 doi: 10.1073/pnas.96.16.9345 – ident: e_1_3_2_15_2 doi: 10.1093/nar/gkr927 – ident: e_1_3_2_28_2 doi: 10.1126/science.351.6268.16 – volume: 2 start-page: 66 year: 1933 ident: e_1_3_2_31_2 article-title: A virus obtained from influenza patients publication-title: Lancet – ident: e_1_3_2_26_2 doi: 10.1126/science.1225416 – ident: e_1_3_2_10_2 doi: 10.1038/nature14095 – ident: e_1_3_2_33_2 doi: 10.1016/j.vaccine.2012.07.059 – ident: e_1_3_2_35_2 doi: 10.1016/j.ejmech.2015.09.037 – ident: e_1_3_2_39_2 doi: 10.1016/j.virusres.2009.05.010 – ident: e_1_3_2_20_2 doi: 10.1016/j.biomaterials.2015.11.034 – ident: e_1_3_2_34_2 doi: 10.1038/srep11233 – ident: e_1_3_2_40_2 doi: 10.1074/jbc.R110.117531 – ident: e_1_3_2_11_2 doi: 10.1002/cbic.201402154 – ident: e_1_3_2_12_2 doi: 10.1093/nar/gkv202 – ident: e_1_3_2_16_2 doi: 10.1146/annurev.genet.34.1.187 – ident: e_1_3_2_17_2 doi: 10.1038/nn1932 – ident: e_1_3_2_32_2 doi: 10.1128/JVI.06586-11 – ident: e_1_3_2_24_2 doi: 10.1093/nar/gkq399 – ident: e_1_3_2_25_2 doi: 10.1126/science.aac7263 – ident: e_1_3_2_42_2 doi: 10.1038/nature08157 – ident: e_1_3_2_3_2 doi: 10.1126/science.aaa4919 – ident: e_1_3_2_13_2 doi: 10.1002/anie.201402092 – ident: e_1_3_2_27_2 doi: 10.1186/1743-422X-7-351 – ident: e_1_3_2_23_2 doi: 10.1128/JVI.01565-14 – ident: e_1_3_2_29_2 doi: 10.1128/jvi.41.2.730-734.1982 – ident: e_1_3_2_4_2 doi: 10.1038/nbt1261 – ident: e_1_3_2_41_2 doi: 10.1038/nature04378 – ident: e_1_3_2_8_2 doi: 10.1126/science.1060077 – ident: e_1_3_2_5_2 doi: 10.1038/nm1209 – reference: 28279341 - Cell Host Microbe. 2017 Mar 8;21(3):314-315 |
SSID | ssj0009593 |
Score | 2.567018 |
Snippet | The conversion of life-threatening viruses into live but avirulent vaccines represents a revolution in vaccinology. In a proof-of-principle study, we expanded... Genetic code expansion and orthogonal translation machinery are used to generate live, attenuated viral vaccines. Live attenuated vaccines can be very potent,... Live attenuated vaccines can be very potent, but their potential to revert to their pathogenic form limits their use. In an attempt to get around this, Si et... Protecting by changing the codeLive attenuated vaccines can be very potent, but their potential to revert to their pathogenic form limits their use. In an... |
SourceID | proquest pubmed crossref jstor |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1170 |
SubjectTerms | Aluminum Animals Biotechnology Codon, Nonsense Ferrets Genetic code Genome, Viral Genomics Guinea Pigs HEK293 Cells Humans Immunogenicity, Vaccine Influenza Influenza A virus Influenza A virus - genetics Influenza A virus - immunology Influenza A virus - physiology Influenza Vaccines - genetics Influenza Vaccines - immunology Methanosarcina barkeri - genetics Mice Models, Animal Mustela Orthomyxoviridae Protein Biosynthesis - genetics T-Lymphocytes - immunology Transgenes Transgenic Vaccination Vaccines Vaccines, Attenuated - genetics Vaccines, Attenuated - immunology Viral Plaque Assay Virus Cultivation - methods Virus Replication - genetics Viruses |
Title | Generation of influenza A viruses as live but replication-incompetent virus vaccines |
URI | https://www.jstor.org/stable/44711124 https://www.ncbi.nlm.nih.gov/pubmed/27934767 https://www.proquest.com/docview/1845275041 https://www.proquest.com/docview/1847892196 https://www.proquest.com/docview/1872824498 https://www.proquest.com/docview/1880013288 |
Volume | 354 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKJiQuiA0GhYGMxGEIpcqHE9vHDlZNaIwDqRTtEjmJwyJVCVqSoe2v5zl20gy10-ASVc5zY_n9_L5sv4fQB9_lhCQusTzBMov4iWcJl-QWzTOapYHiuYp3fDsPTpfka-RHk0k7vl3SJLP0duO9kv_hKrQBX9Ut2X_g7PCn0AC_gb_wBA7D80E81jmje5uv0PVGbgUs9uviqq1lrarIrLrz6W2jtgf6CJ2lcjJog7nRtJ-uRar22OuxtdovfLBCh52dET-HI4pzfZCgP1dguo2CDD_0Heyq_LmqjKqE1qjtFF-7BujFZdW1Ra28KdaEQ1T7ovgti3GgwunK-9ij2KVjq7KQrq3lmdzQZgSyp9NKG-QFnjOWsKpSzmbRPypWKWdCXPpMF4G5m2T7_Hu8WJ6dxeFJFD5Cuy54FyAed-fHX44Xf2drHkZnckKNblv1H7hjzugTrdt9lc5mCZ-hp8bZwHONnD00keU-eqzLj97soz3DqBofmezjH5-jcA0qXOV4ABWeYwMqLGqsQIUBVHgLqDQt7kH1Ai0XJ-HnU8uU3rBSQnljJZ7NUs9zmVAWO6fSSxOSJYkkqcNp6ifwxhEZFzn4p9JmCc1IAETEzzwwyQPvAO2UVSlfIZzy3M55wAR42oQKzkGj5tBDgCdBQMFM0ayfwTg1eelVeZRV3PmnbhCbKY_NlE_R0dDhl07Jsp30oGPJQEfAFgNCMkWHPY9is6Dr2GHE78odOFP0fngN4lbtoYlSVm1HQxkHNR_cR0NdBmYzZ_fRsG6bkwHNS42RYZAu6ExCA_r6AaN4g56s19oh2mmuWvkWzOQmeWdA_QcwBsHb |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generation+of+influenza+A+viruses+as+live+but+replication-incompetent+virus+vaccines&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Si%2C+Longlong&rft.au=Xu%2C+Huan&rft.au=Zhou%2C+Xueying&rft.au=Zhang%2C+Ziwei&rft.date=2016-12-02&rft.issn=1095-9203&rft.eissn=1095-9203&rft.volume=354&rft.issue=6316&rft.spage=1170&rft_id=info:doi/10.1126%2Fscience.aah5869&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |