3D Reconstruction of Human Laryngeal Dynamics Based on Endoscopic High-Speed Recordings

Standard laryngoscopic imaging techniques provide only limited two-dimensional insights into the vocal fold vibrations not taking the vertical component into account. However, previous experiments have shown a significant vertical component in the vibration of the vocal folds. We present a 3D recons...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 35; no. 7; pp. 1615 - 1624
Main Authors Semmler, Marion, Kniesburges, Stefan, Birk, Veronika, Ziethe, Anke, Patel, Rita, Dollinger, Michael
Format Journal Article
LanguageEnglish
Published United States IEEE 01.07.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0278-0062
1558-254X
1558-254X
DOI10.1109/TMI.2016.2521419

Cover

Loading…
Abstract Standard laryngoscopic imaging techniques provide only limited two-dimensional insights into the vocal fold vibrations not taking the vertical component into account. However, previous experiments have shown a significant vertical component in the vibration of the vocal folds. We present a 3D reconstruction of the entire superior vocal fold surface from 2D high-speed videoendoscopy via stereo triangulation. In a typical camera-laser set-up the structured laser light pattern is projected on the vocal folds and captured at 4000 fps. The measuring device is suitable for in vivo application since the external dimensions of the miniaturized set-up barely exceed the size of a standard rigid laryngoscope. We provide a conservative estimate on the resulting resolution based on the hardware components and point out the possibilities and limitations of the miniaturized camera-laser set-up. In addition to the 3D vocal fold surface, we extended previous approaches with a G2-continuous model of the vocal fold edge. The clinical applicability was successfully established by the reconstruction of visual data acquired from 2D in vivo high-speed recordings of a female and a male subject. We present extracted dynamic parameters like maximum amplitude and velocity in the vertical direction. The additional vertical component reveals deeper insights into the vibratory dynamics of the vocal folds by means of a non-invasive method. The successful miniaturization allows for in vivo application giving access to the most realistic model available and hence enables a comprehensive understanding of the human phonation process.
AbstractList Standard laryngoscopic imaging techniques provide only limited two-dimensional insights into the vocal fold vibrations not taking the vertical component into account. However, previous experiments have shown a significant vertical component in the vibration of the vocal folds. We present a 3D reconstruction of the entire superior vocal fold surface from 2D high-speed videoendoscopy via stereo triangulation. In a typical camera-laser set-up the structured laser light pattern is projected on the vocal folds and captured at 4000 fps. The measuring device is suitable for in vivo application since the external dimensions of the miniaturized set-up barely exceed the size of a standard rigid laryngoscope. We provide a conservative estimate on the resulting resolution based on the hardware components and point out the possibilities and limitations of the miniaturized camera-laser set-up. In addition to the 3D vocal fold surface, we extended previous approaches with a G2-continuous model of the vocal fold edge. The clinical applicability was successfully established by the reconstruction of visual data acquired from 2D in vivo high-speed recordings of a female and a male subject. We present extracted dynamic parameters like maximum amplitude and velocity in the vertical direction. The additional vertical component reveals deeper insights into the vibratory dynamics of the vocal folds by means of a non-invasive method. The successful miniaturization allows for in vivo application giving access to the most realistic model available and hence enables a comprehensive understanding of the human phonation process.
Standard laryngoscopic imaging techniques provide only limited two-dimensional insights into the vocal fold vibrations not taking the vertical component into account. However, previous experiments have shown a significant vertical component in the vibration of the vocal folds. We present a 3D reconstruction of the entire superior vocal fold surface from 2D high-speed videoendoscopy via stereo triangulation. In a typical camera-laser set-up the structured laser light pattern is projected on the vocal folds and captured at 4000 fps. The measuring device is suitable for in vivo application since the external dimensions of the miniaturized set-up barely exceed the size of a standard rigid laryngoscope. We provide a conservative estimate on the resulting resolution based on the hardware components and point out the possibilities and limitations of the miniaturized camera-laser set-up. In addition to the 3D vocal fold surface, we extended previous approaches with a G2-continuous model of the vocal fold edge. The clinical applicability was successfully established by the reconstruction of visual data acquired from 2D in vivo high-speed recordings of a female and a male subject. We present extracted dynamic parameters like maximum amplitude and velocity in the vertical direction. The additional vertical component reveals deeper insights into the vibratory dynamics of the vocal folds by means of a non-invasive method. The successful miniaturization allows for in vivo application giving access to the most realistic model available and hence enables a comprehensive understanding of the human phonation process.Standard laryngoscopic imaging techniques provide only limited two-dimensional insights into the vocal fold vibrations not taking the vertical component into account. However, previous experiments have shown a significant vertical component in the vibration of the vocal folds. We present a 3D reconstruction of the entire superior vocal fold surface from 2D high-speed videoendoscopy via stereo triangulation. In a typical camera-laser set-up the structured laser light pattern is projected on the vocal folds and captured at 4000 fps. The measuring device is suitable for in vivo application since the external dimensions of the miniaturized set-up barely exceed the size of a standard rigid laryngoscope. We provide a conservative estimate on the resulting resolution based on the hardware components and point out the possibilities and limitations of the miniaturized camera-laser set-up. In addition to the 3D vocal fold surface, we extended previous approaches with a G2-continuous model of the vocal fold edge. The clinical applicability was successfully established by the reconstruction of visual data acquired from 2D in vivo high-speed recordings of a female and a male subject. We present extracted dynamic parameters like maximum amplitude and velocity in the vertical direction. The additional vertical component reveals deeper insights into the vibratory dynamics of the vocal folds by means of a non-invasive method. The successful miniaturization allows for in vivo application giving access to the most realistic model available and hence enables a comprehensive understanding of the human phonation process.
Author Dollinger, Michael
Semmler, Marion
Ziethe, Anke
Patel, Rita
Kniesburges, Stefan
Birk, Veronika
Author_xml – sequence: 1
  givenname: Marion
  surname: Semmler
  fullname: Semmler, Marion
  email: marion.semmler@uk-erlangen.de
  organization: Dept. of Phoniatrics & Pediatric Audiology, Univ. Hosp. Erlangen, Erlangen, Germany
– sequence: 2
  givenname: Stefan
  surname: Kniesburges
  fullname: Kniesburges, Stefan
  email: stefan.kniesburges@uk-erlangen.de
  organization: Dept. of Phoniatrics & Pediatric Audiology, Univ. Hosp. Erlangen, Erlangen, Germany
– sequence: 3
  givenname: Veronika
  surname: Birk
  fullname: Birk, Veronika
  email: veronika.birk@uk-erlangen.de
  organization: Dept. of Phoniatrics & Pediatric Audiology, Univ. Hosp. Erlangen, Erlangen, Germany
– sequence: 4
  givenname: Anke
  surname: Ziethe
  fullname: Ziethe, Anke
  email: anke.ziethe@uk-erlangen.de
  organization: Dept. of Phoniatrics & Pediatric Audiology, Univ. Hosp. Erlangen, Erlangen, Germany
– sequence: 5
  givenname: Rita
  surname: Patel
  fullname: Patel, Rita
  email: patelrir@indiana.edu
  organization: Dept. of Speech & Hearing Sci., Indiana Univ., Bloomington, IN, USA
– sequence: 6
  givenname: Michael
  surname: Dollinger
  fullname: Dollinger, Michael
  email: michael.doellinger@uk-erlangen.de
  organization: Dept. of Phoniatrics & Pediatric Audiology, Univ. Hosp. Erlangen, Erlangen, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26829782$$D View this record in MEDLINE/PubMed
BookMark eNqNkUFP3DAQRi1EBQvljoSEInHpJduxHTv2ERbaRdqqUksFt8hxnMUosRc7OfDv62gXDhwQpznM-2Y0847QvvPOIHSKYY4xyO93v27nBDCfE0ZwgeUemmHGRE5Y8bCPZkBKkQNwcoiOYnwCwAUDeYAOCRdEloLM0D29zv4Y7V0cwqgH613m22w59splKxVe3NqoLrt-caq3OmZXKpomS9CNa3zUfmN1trTrx_zvxqTGNCk01q3jV_SlVV00J7t6jP79uLlbLPPV75-3i8tVrotSDrnSsm0kgbrlDa41p7qusTJMccOJorJuS81bwaloKUxNwngDmFGJWSGA0WP0bTt3E_zzaOJQ9TZq03XKGT_GCgvCGOVcwidQEFzQkvHPoLhIPweS0It36JMfg0s3TxSwQtICJ-p8R411b5pqE2yfvlu9ikgAbAEdfIzBtG8IhmpyXSXX1eS62rlOEf4uou2gJoVDULb7KHi2DVpjzNuekkogvKT_AdRssxQ
CODEN ITMID4
CitedBy_id crossref_primary_10_3390_app11020822
crossref_primary_10_1002_lio2_70024
crossref_primary_10_1250_ast_38_264
crossref_primary_10_3390_app10051556
crossref_primary_10_3390_bioengineering11100977
crossref_primary_10_1109_TBME_2024_3451652
crossref_primary_10_1007_s11517_019_01965_4
crossref_primary_10_1016_j_neucom_2021_08_142
crossref_primary_10_3390_app7060600
crossref_primary_10_3390_bioengineering10101130
crossref_primary_10_1016_j_bspc_2020_102154
crossref_primary_10_1038_s41598_020_66405_y
crossref_primary_10_1146_annurev_bioeng_062117_120917
crossref_primary_10_1002_lary_31029
crossref_primary_10_1109_TBME_2020_2968488
crossref_primary_10_1016_j_jvoice_2019_07_011
crossref_primary_10_1364_BOE_10_004450
crossref_primary_10_1016_j_ijporl_2019_06_031
crossref_primary_10_1044_2023_JSLHR_23_00027
crossref_primary_10_1044_2024_JSLHR_24_00251
crossref_primary_10_1016_j_optcom_2025_131580
crossref_primary_10_1371_journal_pone_0246136
crossref_primary_10_1016_j_jvoice_2016_06_015
crossref_primary_10_3390_opt6010010
crossref_primary_10_1109_TMI_2024_3388559
crossref_primary_10_1121_10_0000742
crossref_primary_10_1007_s10237_017_0992_5
crossref_primary_10_1002_lary_31394
crossref_primary_10_1121_1_4996105
crossref_primary_10_1016_j_jvoice_2018_04_011
crossref_primary_10_1109_ACCESS_2021_3103049
crossref_primary_10_3390_app12199791
crossref_primary_10_1002_lary_27165
crossref_primary_10_1016_j_jvoice_2019_04_015
crossref_primary_10_1038_s42003_023_04914_y
crossref_primary_10_3390_app9112384
crossref_primary_10_1016_j_ijleo_2018_04_057
crossref_primary_10_1038_s41598_023_36022_6
crossref_primary_10_1371_journal_pone_0187486
Cites_doi 10.1080/14015430410024353
10.1002/lary.20938
10.1159/000085188
10.1097/HP.0b013e3182983fd4
10.1109/TMI.2010.2055578
10.1016/j.media.2007.12.007
10.1016/j.jvoice.2005.08.003
10.1117/12.55947
10.3109/14015439.2012.731083
10.1097/00005537-200002010-00010
10.1117/12.932843
10.1016/j.jvoice.2013.03.004
10.1016/j.jvoice.2013.12.010
10.1044/1092-4388(2004/023)
10.1088/0031-9155/53/10/015
10.1121/1.4900572
10.1002/lary.22325
10.1016/j.jbiomech.2004.11.026
10.1109/TMI.2012.2215921
10.1016/j.bspc.2014.11.007
10.1121/1.4773200
10.1007/s00405-003-0606-y
10.1121/1.3676622
10.1109/TMI.2015.2445921
10.1044/2014_JSLHR-S-12-0076
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TMI.2016.2521419
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Engineering Research Database
Materials Research Database
MEDLINE
Technology Research Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 1624
ExternalDocumentID 4104791371
26829782
10_1109_TMI_2016_2521419
7390267
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Deutsche Krebshilfe
  grantid: 111332
  funderid: 10.13039/501100005972
– fundername: Deutsche Forschungsgemeinschaft
  grantid: DO1247/6-1
  funderid: 10.13039/501100001659
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
PKN
Z5M
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c479t-ac9fd920bf6d1bc63cbb1ae5a6e62a39bf7c6f8638f303cbb256d015391548053
IEDL.DBID RIE
ISSN 0278-0062
1558-254X
IngestDate Fri Sep 05 08:05:27 EDT 2025
Fri Sep 05 10:33:25 EDT 2025
Fri Sep 05 04:12:50 EDT 2025
Mon Jun 30 04:18:10 EDT 2025
Wed Feb 19 02:42:22 EST 2025
Tue Jul 01 03:15:57 EDT 2025
Thu Apr 24 22:57:04 EDT 2025
Tue Aug 26 16:42:53 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c479t-ac9fd920bf6d1bc63cbb1ae5a6e62a39bf7c6f8638f303cbb256d015391548053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 26829782
PQID 1800549341
PQPubID 85460
PageCount 10
ParticipantIDs proquest_miscellaneous_1825536690
crossref_primary_10_1109_TMI_2016_2521419
proquest_miscellaneous_1808683756
pubmed_primary_26829782
proquest_journals_1800549341
proquest_miscellaneous_1801425202
ieee_primary_7390267
crossref_citationtrail_10_1109_TMI_2016_2521419
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-July
2016-7-00
2016-07-00
20160701
PublicationDateYYYYMMDD 2016-07-01
PublicationDate_xml – month: 07
  year: 2016
  text: 2016-July
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
boessenecker (ref24) 2007; 93
ref11
ref10
ref2
ref1
ref16
ref19
stevens (ref3) 1998
ref23
ref26
ref25
ref22
ref21
schwarz (ref20) 1873; 43
ref28
ref27
ref29
(ref17) 2013; 105
ref8
farin (ref18) 2002
ref7
ref9
ref4
ref6
ref5
References_xml – ident: ref10
  doi: 10.1080/14015430410024353
– year: 2002
  ident: ref18
  publication-title: Curves and Surfaces for CAGD A Practical Guide
– ident: ref28
  doi: 10.1002/lary.20938
– ident: ref23
  doi: 10.1159/000085188
– volume: 105
  start-page: 271
  year: 2013
  ident: ref17
  article-title: ICNIRP guidelines on limits of exposure to laser radiation of wavelengths between 180 nm and 1,000 um
  publication-title: Health Phys
  doi: 10.1097/HP.0b013e3182983fd4
– ident: ref15
  doi: 10.1109/TMI.2010.2055578
– ident: ref13
  doi: 10.1016/j.media.2007.12.007
– ident: ref19
  doi: 10.1016/j.jvoice.2005.08.003
– volume: 43
  start-page: 38
  year: 1873
  ident: ref20
  article-title: Communication
  publication-title: Archive des Sciences Physiques et Naturelles
– ident: ref26
  doi: 10.1117/12.55947
– ident: ref21
  doi: 10.3109/14015439.2012.731083
– ident: ref1
  doi: 10.1097/00005537-200002010-00010
– ident: ref25
  doi: 10.1117/12.932843
– ident: ref14
  doi: 10.1016/j.jvoice.2013.03.004
– ident: ref5
  doi: 10.1016/j.jvoice.2013.12.010
– ident: ref2
  doi: 10.1044/1092-4388(2004/023)
– ident: ref12
  doi: 10.1088/0031-9155/53/10/015
– ident: ref9
  doi: 10.1121/1.4900572
– ident: ref11
  doi: 10.1002/lary.22325
– ident: ref8
  doi: 10.1016/j.jbiomech.2004.11.026
– ident: ref27
  doi: 10.1109/TMI.2012.2215921
– ident: ref29
  doi: 10.1016/j.bspc.2014.11.007
– ident: ref7
  doi: 10.1121/1.4773200
– volume: 93
  start-page: 815
  year: 2007
  ident: ref24
  article-title: Mucosal wave properties of a human vocal fold
  publication-title: Acustica United Acta Acustica
– ident: ref4
  doi: 10.1007/s00405-003-0606-y
– year: 1998
  ident: ref3
  publication-title: Acoustic Phonetics
– ident: ref22
  doi: 10.1121/1.3676622
– ident: ref16
  doi: 10.1109/TMI.2015.2445921
– ident: ref6
  doi: 10.1044/2014_JSLHR-S-12-0076
SSID ssj0014509
Score 2.4032493
Snippet Standard laryngoscopic imaging techniques provide only limited two-dimensional insights into the vocal fold vibrations not taking the vertical component into...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1615
SubjectTerms Cameras
Dynamics
Endoscopes
Endoscopy
Female
High speed
Humans
Image reconstruction
Imaging, Three-Dimensional
In vivo
Laryngoscopy
Larynx
Lasers
Male
Medical instruments
optical imaging
Phonation
Reconstruction
Recording
Sound
Surface reconstruction
Three dimensional
Three-dimensional displays
Two dimensional
Velocity
Vibration
Vocal Cords
Title 3D Reconstruction of Human Laryngeal Dynamics Based on Endoscopic High-Speed Recordings
URI https://ieeexplore.ieee.org/document/7390267
https://www.ncbi.nlm.nih.gov/pubmed/26829782
https://www.proquest.com/docview/1800549341
https://www.proquest.com/docview/1801425202
https://www.proquest.com/docview/1808683756
https://www.proquest.com/docview/1825536690
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9UwDLe2HRAcNtiAdQwUJC5I9L02bdPkCGzTQDwubGK3Kl-d0KZ2Yu8d4K_HTtryIXjiVilulNRxbcf2zwAvVKlRr_gq9ZVzaWnwSVpt06zVVa2lLoQNaJ8fxel5-f6iutiAV1MtjPc-JJ_5GT2GWL7r7YquyuY1Ouhc1JuwiY5brNWaIgZlFdM5OCHGZoKPIclMzc8W7yiHS8w46qoyJ6BQLqikVPLftFFor_JvSzNonJMdWIxrjYkmV7PV0szs9z9gHP93M_dhezA92et4Vh7Ahu924d4vgIS7cGcxhNr34HNxxMg3_Ykwy_qWhTt_9kF__dZdoonJjmJD-1v2BrWhY0h03LmeSl2-WEY5JOmnG9SPLHq5dCv_EM5Pjs_enqZDF4bUlrVaptqq1imemVa43FhRWGNy7SstvOC6UKatrWglynGL6hAH0YhyaGQQ8nwpUcYfwVbXd34fGC8rnKE1ubeO4sjK5BKd8xoncMJImcB85EZjB4hy6pRx3QRXJVMNsrIhVjYDKxN4Ob1xE-E51tDuERcmuoEBCRyODG8G-b1tckm2rEIVn8DzaRglj8IpuvP9KtDk-MfjGV9LI4Us6kqso0G3rsCvkSXwOB64aY3jOT34-9qfwF3aYUwfPoQtPBD-KRpJS_MsSMcPKb0KBA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIvE48GhLCRQwEhcksps4jmMfgbbawm4vbEVvkV9BCJRU7e4Bfj1jOwkPwYpbJE8sO-PJN-MZfwZ4IZlCXHFl6kprU6bxSRhl0qxRZaWEKrgJbJ-nfHbG3p2X51vwajwL45wLxWdu4h9DLt92Zu23yqYVBuiUV9fgOuI-k_G01pgzYGUs6KCeMzbjdEhKZnK6XJz4Ki4-oYhWLPdUoZT7Q6WC_oZH4YKVf_uaAXOO78JiGG0sNfkyWa_0xHz_g8jxf6dzD-70zid5HVfLfdhy7Q7c_oWScAduLPpk-y58LA6Jj05_csySriFh15_M1eW39hM6meQwXml_Rd4gHlqCQket7fxhl8-G-CqS9MMFIiSJca7fl9-Ds-Oj5dtZ2t_DkBpWyVWqjGyspJluuM214YXROleuVNxxqgqpm8rwRqAlNwiI2IhulEU3w3PPM4FW_gC22651D4FQVmIPjc6dsT6TLHUuMDyvsAPLtRAJTAdt1KYnKfd3ZXytQ7CSyRpVWXtV1r0qE3g5vnERCTo2yO56LYxyvQISOBgUXvcWfFXnwnuzEkE-gedjM9qeT6io1nXrIJPjP49mdKOM4KKoSr5JBgO7Ar9GlsB-XHDjGId1-ujvY38GN2fLxbyen5y-fwy3_GxjMfEBbOPicE_QZVrpp8FSfgBC3w1U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+Reconstruction+of+Human+Laryngeal+Dynamics+Based+on+Endoscopic+High-Speed+Recordings&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Semmler%2C+Marion&rft.au=Kniesburges%2C+Stefan&rft.au=Birk%2C+Veronika&rft.au=Ziethe%2C+Anke&rft.date=2016-07-01&rft.issn=0278-0062&rft.eissn=1558-254X&rft.volume=35&rft.issue=7&rft.spage=1615&rft.epage=1624&rft_id=info:doi/10.1109%2FTMI.2016.2521419&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon