Regulation of the Macrophage Vacuolar ATPase and Phagosome-Lysosome Fusion by Histoplasma capsulatum

Histoplasma capsulatum (Hc) maintains a phagosomal pH of about 6.5. This strategy allows Hc to obtain iron from transferrin, and minimize the activity of macrophage (Mo) lysosomal hydrolases. To determine the mechanism of pH regulation, we evaluated the function of the vacuolar ATPase (V-ATPase) in...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of immunology (1950) Vol. 162; no. 10; pp. 6148 - 6154
Main Authors Strasser, Jane E, Newman, Simon L, Ciraolo, Georgianne M, Morris, Randal E, Howell, Michael L, Dean, Gary E
Format Journal Article
LanguageEnglish
Published United States Am Assoc Immnol 15.05.1999
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Histoplasma capsulatum (Hc) maintains a phagosomal pH of about 6.5. This strategy allows Hc to obtain iron from transferrin, and minimize the activity of macrophage (Mo) lysosomal hydrolases. To determine the mechanism of pH regulation, we evaluated the function of the vacuolar ATPase (V-ATPase) in RAW264.7 Mo infected with Hc yeast or the nonpathogenic yeast Saccharomyces cerevisae (Sc). Incubation of Hc-infected Mo with bafilomycin, an inhibitor of the V-ATPase, did not affect the intracellular growth of Hc, nor did it affect the intraphagosomal pH. In contrast, upon addition of bafilomycin, phagosomes containing Sc rapidly changed their pH from 5 to 7. Hc-containing phagosomes had 5-fold less V-ATPase than Sc-containing phagosomes as quantified by immunoelectron microscopy. Furthermore, Hc-containing phagosomes inhibited phagolysosomal fusion as quantified by the presence of acid phosphatase, accumulation of LAMP2, and fusion with rhodamine B-isothiocyanate-labeled dextran-loaded lysosomes. Finally, in Hc-containing phagosomes, uptake of ferritin was equivalent to phagosomes containing Sc, indicating that Hc-containing phagosomes have full access to the early "bulk flow" endocytic pathway. Thus, Hc yeasts inhibit phagolysosomal fusion, inhibit accumulation of the V-ATPase in the phagosome, and actively acidify the phagosomal pH to 6.5 as part of their strategy to survive in Mo phagosomes.
AbstractList Histoplasma capsulatum (Hc) maintains a phagosomal pH of about 6.5. This strategy allows Hc to obtain iron from transferrin, and minimize the activity of macrophage (Moe) lysosomal hydrolases. To determine the mechanism of pH regulation, we evaluated the function of the vacuolar ATPase (V-ATPase) in RAW264.7 Moe infected with Hc yeast or the nonpathogenic yeast Saccharomyces cerevisiae (Sc). Incubation of Hc-infected Moe with bafilomycin, an inhibitor of the V-ATPase, did not affect the intracellular growth of Hc, nor did it affect the intraphagosomal pH. In contrast, upon addition of bafilomycin, phagosomes containing Sc rapidly changed their pH from 5 to 7. Hc-containing phagosomes had 5-fold less V-ATPase than Sc-containing phagosomes as quantified by immunoelectron microscopy. Furthermore, Hc-containing phagosomes inhibited phagolysosomal fusion as quantified by the presence of acid phosphatase, accumulation of LAMP2, and fusion with rhodamine B-isothiocyanate-labeled dextran-loaded lysosomes. Finally, in Hc-containing phagosomes, uptake of ferritin was equivalent to phagosomes containing Sc, indicating that Hc-containing phagosomes have full access to the early "bulk flow" endocytic pathway. Thus, Hc yeasts inhibit phagolysosomal fusion, inhibit accumulation of the V-ATPase in the phagosome, and actively acidify the phagosomal pH to 6.5 as part of their strategy to survive in Moe phagosomes.
Histoplasma capsulatum (Hc) maintains a phagosomal pH of about 6.5. This strategy allows Hc to obtain iron from transferrin, and minimize the activity of macrophage (Mo) lysosomal hydrolases. To determine the mechanism of pH regulation, we evaluated the function of the vacuolar ATPase (V-ATPase) in RAW264.7 Mo infected with Hc yeast or the nonpathogenic yeast Saccharomyces cerevisae (Sc). Incubation of Hc-infected Mo with bafilomycin, an inhibitor of the V-ATPase, did not affect the intracellular growth of Hc, nor did it affect the intraphagosomal pH. In contrast, upon addition of bafilomycin, phagosomes containing Sc rapidly changed their pH from 5 to 7. Hc-containing phagosomes had 5-fold less V-ATPase than Sc-containing phagosomes as quantified by immunoelectron microscopy. Furthermore, Hc-containing phagosomes inhibited phagolysosomal fusion as quantified by the presence of acid phosphatase, accumulation of LAMP2, and fusion with rhodamine B-isothiocyanate-labeled dextran-loaded lysosomes. Finally, in Hc-containing phagosomes, uptake of ferritin was equivalent to phagosomes containing Sc, indicating that Hc-containing phagosomes have full access to the early "bulk flow" endocytic pathway. Thus, Hc yeasts inhibit phagolysosomal fusion, inhibit accumulation of the V-ATPase in the phagosome, and actively acidify the phagosomal pH to 6.5 as part of their strategy to survive in Mo phagosomes.
Histoplasma capsulatum (Hc) maintains a phagosomal pH of about 6.5. This strategy allows Hc to obtain iron from transferrin, and minimize the activity of macrophage (Mø) lysosomal hydrolases. To determine the mechanism of pH regulation, we evaluated the function of the vacuolar ATPase (V-ATPase) in RAW264.7 Mø infected with Hc yeast or the nonpathogenic yeast Saccharomyces cerevisae (Sc). Incubation of Hc-infected Mø with bafilomycin, an inhibitor of the V-ATPase, did not affect the intracellular growth of Hc, nor did it affect the intraphagosomal pH. In contrast, upon addition of bafilomycin, phagosomes containing Sc rapidly changed their pH from 5 to 7. Hc-containing phagosomes had 5-fold less V-ATPase than Sc-containing phagosomes as quantified by immunoelectron microscopy. Furthermore, Hc-containing phagosomes inhibited phagolysosomal fusion as quantified by the presence of acid phosphatase, accumulation of LAMP2, and fusion with rhodamine B-isothiocyanate-labeled dextran-loaded lysosomes. Finally, in Hc-containing phagosomes, uptake of ferritin was equivalent to phagosomes containing Sc, indicating that Hc-containing phagosomes have full access to the early “bulk flow” endocytic pathway. Thus, Hc yeasts inhibit phagolysosomal fusion, inhibit accumulation of the V-ATPase in the phagosome, and actively acidify the phagosomal pH to 6.5 as part of their strategy to survive in Mø phagosomes.
Author Howell, Michael L
Morris, Randal E
Strasser, Jane E
Dean, Gary E
Ciraolo, Georgianne M
Newman, Simon L
Author_xml – sequence: 1
  fullname: Strasser, Jane E
– sequence: 2
  fullname: Newman, Simon L
– sequence: 3
  fullname: Ciraolo, Georgianne M
– sequence: 4
  fullname: Morris, Randal E
– sequence: 5
  fullname: Howell, Michael L
– sequence: 6
  fullname: Dean, Gary E
BackLink https://www.ncbi.nlm.nih.gov/pubmed/10229858$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtLxDAUhYMoOj7-gUhW4qZjkqZJsxTxBSOKqNuQprczlbSpTcsw_97UUXDnKuHe7xwu5xyi3da3gNApJXNOuLr8qJtmbL2bU8HmcSgoz3fQjGYZSYQgYhfNCGEsoVLIA3QYwgchRBDG99EBjQuVZ_kMlS-wHJ0Zat9iX-FhBfjR2N53K7ME_G7s6J3p8dXrswmATVvi57jxwTeQLDbh-4NvxzDpiw2-r8PgO2dCY7A1XZisx-YY7VXGBTj5eY_Q2-3N6_V9sni6e7i-WiSWSzUkquSUCZ4CU5RwZgsmBcRTCRSlTQ2znGWqKjkrpcwFSbNcFlZVlglS2UJCeoTOt75d7z9HCINu6mDBOdOCH4MWSqYxHvovSCUTVPEJ5FswRhJCD5Xu-rox_UZToqca9G8NOtYwDacaouzsx38sGij_iLa5R-BiC6zq5Wpd96BjYs5FnOr1ev3X6wtTOJXV
CitedBy_id crossref_primary_10_1038_s41598_018_25665_5
crossref_primary_10_1016_j_cyto_2011_07_430
crossref_primary_10_1128_iai_00434_22
crossref_primary_10_1002_pmic_200900642
crossref_primary_10_1128_IAI_73_10_6803_6811_2005
crossref_primary_10_4049_jimmunol_0903168
crossref_primary_10_1046_j_0933_7407_2003_00916_x
crossref_primary_10_3389_fmicb_2015_01526
crossref_primary_10_1111_febs_13389
crossref_primary_10_1128_IAI_69_6_3995_4006_2001
crossref_primary_10_1146_annurev_micro_59_030804_121055
crossref_primary_10_1080_21505594_2019_1663596
crossref_primary_10_1016_S0969_9961_03_00102_5
crossref_primary_10_1128_CMR_17_4_804_839_2004
crossref_primary_10_1080_mmy_38_6_399_406
crossref_primary_10_3389_fcimb_2016_00142
crossref_primary_10_1371_journal_ppat_1010417
crossref_primary_10_1046_j_1462_5822_1999_00024_x
crossref_primary_10_1371_journal_pone_0220867
crossref_primary_10_1128_mBio_02712_19
crossref_primary_10_1016_j_smim_2023_101738
crossref_primary_10_1016_j_molimm_2005_07_035
crossref_primary_10_3389_fmicb_2016_01034
crossref_primary_10_1016_j_dci_2010_06_006
crossref_primary_10_1111_j_1574_695X_2007_00238_x
crossref_primary_10_1111_mmi_15149
crossref_primary_10_1111_cmi_12976
crossref_primary_10_1016_j_ijmm_2017_08_007
crossref_primary_10_1371_journal_pntd_0002595
crossref_primary_10_3389_fimmu_2023_1227467
crossref_primary_10_1016_j_ijbiomac_2018_01_030
crossref_primary_10_1007_s00018_015_1858_6
crossref_primary_10_1128_EC_00039_10
crossref_primary_10_1016_S0966_842X_01_02035_2
crossref_primary_10_1111_j_1600_0854_2006_00531_x
crossref_primary_10_1078_1438_4221_00218
crossref_primary_10_1016_j_fgb_2012_07_001
crossref_primary_10_1074_jbc_M116_762104
crossref_primary_10_1042_BST20130014
crossref_primary_10_4161_viru_28509
crossref_primary_10_1128_IAI_00044_11
crossref_primary_10_1242_dmm_050393
crossref_primary_10_1111_cmi_13016
crossref_primary_10_1006_fgbi_2001_1311
crossref_primary_10_1016_S1369_5274_03_00080_8
crossref_primary_10_1128_IAI_00833_12
crossref_primary_10_3389_fimmu_2019_02636
crossref_primary_10_1016_j_ijantimicag_2007_05_015
crossref_primary_10_1099_jmm_0_051243_0
crossref_primary_10_1172_JCI19361
crossref_primary_10_4049_jimmunol_1003730
crossref_primary_10_1016_j_molimm_2023_08_013
crossref_primary_10_1016_j_micinf_2003_09_011
crossref_primary_10_1093_femsre_fuv035
crossref_primary_10_1128_EC_00036_08
crossref_primary_10_4236_pp_2020_1110022
crossref_primary_10_1016_S1369_5274_00_00104_1
crossref_primary_10_1111_j_1462_5822_2008_01274_x
crossref_primary_10_1128_IAI_69_12_7671_7678_2001
crossref_primary_10_1111_cmi_12958
crossref_primary_10_1016_S1369_5274_00_00102_8
crossref_primary_10_4049_jimmunol_176_3_1806
crossref_primary_10_3389_fimmu_2018_02761
crossref_primary_10_1038_s41467_018_05820_2
crossref_primary_10_1111_j_1462_5822_2006_00766_x
crossref_primary_10_1128_mSphere_00437_18
crossref_primary_10_1371_journal_pone_0096015
crossref_primary_10_3389_fimmu_2017_01368
crossref_primary_10_1111_cmi_12394
crossref_primary_10_2217_17460913_3_6_661
Cites_doi 10.1128/iai.57.9.2903-2905.1989
10.1128/iai.55.1.29-34.1987
10.1093/ajcp/93.3.367
10.1172/JCI117119
10.1083/jcb.129.5.1229
10.1172/JCI114416
10.1126/science.8303277
10.7326/0003-4819-76-4-557
10.1016/0002-9343(78)90183-3
10.7326/0003-4819-96-2-159
10.1074/jbc.272.47.29810
10.4049/jimmunol.149.2.574
10.1128/iai.55.4.1014-1016.1987
10.1128/iai.60.11.4593-4597.1992
10.1128/iai.57.2.513-519.1989
10.1093/infdis/161.1.143
10.4049/jimmunol.156.12.4764
10.1016/0076-6879(90)84296-S
10.1038/286079a0
10.1128/iai.62.4.1478-1479.1994
10.1128/iai.61.9.3775-3784.1993
10.4049/jimmunol.158.4.1779
10.1091/mbc.7.1.129
10.1128/iai.64.1.319-325.1996
10.1172/JCI116077
10.1084/jem.177.6.1605
10.1128/iai.62.5.1940-1945.1994
10.1002/jlb.55.6.729
10.1083/jcb.124.5.677
10.1002/jlb.43.6.483
10.1128/iai.62.2.680-684.1994
10.1084/jem.165.1.195
10.1002/j.1460-2075.1996.tb01088.x
10.4049/jimmunol.138.2.582
10.4049/jimmunol.153.6.2568
10.1016/0002-9343(70)90014-8
10.1080/02681218880000211
10.1016/0002-9343(78)90445-X
10.1016/S0021-9258(17)45332-4
10.1016/S0021-9258(18)54263-0
10.1001/archinte.1983.00350040093012
10.1093/infdis/158.3.623
10.1084/jem.181.1.257
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7T5
H94
M7N
7X8
DOI 10.4049/jimmunol.162.10.6148
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Immunology Abstracts
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
AIDS and Cancer Research Abstracts
Immunology Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
MEDLINE - Academic
DatabaseTitleList AIDS and Cancer Research Abstracts
MEDLINE - Academic
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1550-6606
EndPage 6154
ExternalDocumentID 10_4049_jimmunol_162_10_6148
10229858
www162_10_6148
Genre Research Support, U.S. Gov't, P.H.S
Journal Article
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: AI28392
– fundername: NIGMS NIH HHS
  grantid: GM39555
– fundername: NIAID NIH HHS
  grantid: AI37639
GroupedDBID -
08R
2WC
34G
39C
3O-
53G
55
5GY
5RE
5VS
79B
85S
8RP
AALRV
AARDX
ABEFU
ABFLS
ABOCM
ABPPZ
ABPTK
ACGFS
ACIWK
ACNCT
ACPRK
ADACO
ADBBV
ADKFC
AENEX
AETEA
AFFNX
AFRAH
AJYGW
ALMA_UNASSIGNED_HOLDINGS
BAWUL
D0L
DIK
DU5
E3Z
EBS
EJD
F5P
FH7
FRP
G8K
GJ
GX1
IH2
J5H
K-O
K78
KQ8
L7B
MVM
MYA
NEJ
O0-
OK1
P0W
P2P
PQEST
PQQKQ
R.V
RHF
RHI
RZQ
SJN
TWZ
VH1
WH7
WOQ
X
X7M
XFK
XJT
YCJ
ZA5
ZE2
ZGI
ZXP
---
-~X
.55
.GJ
18M
ABCQX
ABJNI
ACGFO
ADNWM
AFHIN
AFOSN
AHWXS
AI.
AIZAD
BTFSW
CGR
CUY
CVF
ECM
EIF
NPM
TR2
W8F
XSW
XTH
YHG
5WD
AAYXX
ABDPE
CITATION
OCZFY
7T5
H94
M7N
7X8
ID FETCH-LOGICAL-c479t-9d412643e291042cb276e1020ebdc3a2c4259fd42d778603587bc9fc260fcb7e3
ISSN 0022-1767
IngestDate Wed Dec 04 07:45:08 EST 2024
Wed Dec 04 04:24:03 EST 2024
Fri Dec 06 06:12:02 EST 2024
Sat Sep 28 07:33:49 EDT 2024
Tue Nov 10 19:29:50 EST 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c479t-9d412643e291042cb276e1020ebdc3a2c4259fd42d778603587bc9fc260fcb7e3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://journals.aai.org/jimmunol/article-pdf/162/10/6148/1099173/6148.pdf
PMID 10229858
PQID 17261941
PQPubID 23462
PageCount 7
ParticipantIDs proquest_miscellaneous_69735501
proquest_miscellaneous_17261941
crossref_primary_10_4049_jimmunol_162_10_6148
pubmed_primary_10229858
highwire_smallpub1_www162_10_6148
ProviderPackageCode RHF
RHI
PublicationCentury 1900
PublicationDate 19990515
1999-May-15
1999-05-15
PublicationDateYYYYMMDD 1999-05-15
PublicationDate_xml – month: 05
  year: 1999
  text: 19990515
  day: 15
PublicationDecade 1990
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of immunology (1950)
PublicationTitleAlternate J Immunol
PublicationYear 1999
Publisher Am Assoc Immnol
Publisher_xml – name: Am Assoc Immnol
References 2023010117041682600_R11
2023010117041682600_R10
2023010117041682600_R5
2023010117041682600_R46
2023010117041682600_R6
2023010117041682600_R45
2023010117041682600_R3
2023010117041682600_R48
2023010117041682600_R4
2023010117041682600_R47
2023010117041682600_R1
2023010117041682600_R2
2023010117041682600_R49
2023010117041682600_R9
2023010117041682600_R7
2023010117041682600_R8
2023010117041682600_R20
2023010117041682600_R22
2023010117041682600_R21
2023010117041682600_R13
2023010117041682600_R12
2023010117041682600_R15
2023010117041682600_R14
2023010117041682600_R17
2023010117041682600_R16
2023010117041682600_R19
2023010117041682600_R18
2023010117041682600_R31
2023010117041682600_R30
2023010117041682600_R33
2023010117041682600_R32
2023010117041682600_R24
2023010117041682600_R23
2023010117041682600_R26
2023010117041682600_R25
2023010117041682600_R28
2023010117041682600_R27
2023010117041682600_R29
2023010117041682600_R40
2023010117041682600_R42
2023010117041682600_R41
2023010117041682600_R44
2023010117041682600_R43
2023010117041682600_R35
2023010117041682600_R34
2023010117041682600_R37
2023010117041682600_R36
2023010117041682600_R39
2023010117041682600_R38
References_xml – ident: 2023010117041682600_R36
  doi: 10.1128/iai.57.9.2903-2905.1989
– ident: 2023010117041682600_R38
  doi: 10.1128/iai.55.1.29-34.1987
– ident: 2023010117041682600_R8
  doi: 10.1093/ajcp/93.3.367
– ident: 2023010117041682600_R17
  doi: 10.1172/JCI117119
– ident: 2023010117041682600_R23
  doi: 10.1083/jcb.129.5.1229
– ident: 2023010117041682600_R22
  doi: 10.1172/JCI114416
– ident: 2023010117041682600_R41
  doi: 10.1126/science.8303277
– ident: 2023010117041682600_R2
  doi: 10.7326/0003-4819-76-4-557
– ident: 2023010117041682600_R26
– ident: 2023010117041682600_R3
  doi: 10.1016/0002-9343(78)90183-3
– ident: 2023010117041682600_R5
  doi: 10.7326/0003-4819-96-2-159
– ident: 2023010117041682600_R49
  doi: 10.1074/jbc.272.47.29810
– ident: 2023010117041682600_R10
– ident: 2023010117041682600_R12
  doi: 10.4049/jimmunol.149.2.574
– ident: 2023010117041682600_R32
  doi: 10.1128/iai.55.4.1014-1016.1987
– ident: 2023010117041682600_R35
  doi: 10.1128/iai.60.11.4593-4597.1992
– ident: 2023010117041682600_R39
  doi: 10.1128/iai.57.2.513-519.1989
– ident: 2023010117041682600_R34
  doi: 10.1093/infdis/161.1.143
– ident: 2023010117041682600_R43
  doi: 10.4049/jimmunol.156.12.4764
– ident: 2023010117041682600_R24
  doi: 10.1016/0076-6879(90)84296-S
– ident: 2023010117041682600_R27
  doi: 10.1038/286079a0
– ident: 2023010117041682600_R31
  doi: 10.1128/iai.62.4.1478-1479.1994
– ident: 2023010117041682600_R46
  doi: 10.1128/iai.61.9.3775-3784.1993
– ident: 2023010117041682600_R16
  doi: 10.4049/jimmunol.158.4.1779
– ident: 2023010117041682600_R25
  doi: 10.1091/mbc.7.1.129
– ident: 2023010117041682600_R11
– ident: 2023010117041682600_R42
  doi: 10.1128/iai.64.1.319-325.1996
– ident: 2023010117041682600_R18
  doi: 10.1172/JCI116077
– ident: 2023010117041682600_R13
  doi: 10.1084/jem.177.6.1605
– ident: 2023010117041682600_R33
  doi: 10.1128/iai.62.5.1940-1945.1994
– ident: 2023010117041682600_R15
– ident: 2023010117041682600_R28
  doi: 10.1002/jlb.55.6.729
– ident: 2023010117041682600_R29
  doi: 10.1083/jcb.124.5.677
– ident: 2023010117041682600_R14
  doi: 10.1002/jlb.43.6.483
– ident: 2023010117041682600_R30
  doi: 10.1128/iai.62.2.680-684.1994
– ident: 2023010117041682600_R37
  doi: 10.1084/jem.165.1.195
– ident: 2023010117041682600_R9
– ident: 2023010117041682600_R44
  doi: 10.1002/j.1460-2075.1996.tb01088.x
– ident: 2023010117041682600_R40
  doi: 10.4049/jimmunol.138.2.582
– ident: 2023010117041682600_R45
  doi: 10.4049/jimmunol.153.6.2568
– ident: 2023010117041682600_R1
  doi: 10.1016/0002-9343(70)90014-8
– ident: 2023010117041682600_R21
  doi: 10.1080/02681218880000211
– ident: 2023010117041682600_R48
– ident: 2023010117041682600_R4
  doi: 10.1016/0002-9343(78)90445-X
– ident: 2023010117041682600_R19
  doi: 10.1016/S0021-9258(17)45332-4
– ident: 2023010117041682600_R20
  doi: 10.1016/S0021-9258(18)54263-0
– ident: 2023010117041682600_R6
  doi: 10.1001/archinte.1983.00350040093012
– ident: 2023010117041682600_R7
  doi: 10.1093/infdis/158.3.623
– ident: 2023010117041682600_R47
  doi: 10.1084/jem.181.1.257
SSID ssj0006024
Score 1.9670004
Snippet Histoplasma capsulatum (Hc) maintains a phagosomal pH of about 6.5. This strategy allows Hc to obtain iron from transferrin, and minimize the activity of...
SourceID proquest
crossref
pubmed
highwire
SourceType Aggregation Database
Index Database
Publisher
StartPage 6148
SubjectTerms Animals
Histoplasma - immunology
Histoplasma capsulatum
Lysosomes - enzymology
Lysosomes - microbiology
Macrophages - immunology
Macrophages - microbiology
Membrane Fusion
Mice
Mice, Inbred BALB C
Organelles - enzymology
Organelles - microbiology
Phagosomes - enzymology
Phagosomes - microbiology
Proton-Translocating ATPases - biosynthesis
Vacuolar Proton-Translocating ATPases
Title Regulation of the Macrophage Vacuolar ATPase and Phagosome-Lysosome Fusion by Histoplasma capsulatum
URI http://www.jimmunol.org/cgi/content/abstract/162/10/6148
https://www.ncbi.nlm.nih.gov/pubmed/10229858
https://search.proquest.com/docview/17261941
https://search.proquest.com/docview/69735501
Volume 162
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwELWWIlBfEJRLy9VI8LTKkjjZXB6r0qpAg1C1RX2LYscRRdtNtRetln_j3zgT57awRZSXKLKTkeM5sc_YnhnG3gjthL4XuJaT5pTCDBxOSqEtqcI0lxHm-DJnZPzZPz7zPp4Pz3u9n51TS4u5HKgfG_1K_kerKINeyUv2BppthKIA99AvrtAwrv-k41OTSL7ifEQh45RScn2jgzhfU7Ugu7W_P_qCqcq4BaCmmBWX2jpZzcqb_tGC1suIhZYRQ67Api_TvkphPUN0Fajhe4upDoO9IN8SE8PpbblTZnfWFSjsLW31m6O4oLKHg3bheVmvuwIpk_5JU3NwMU0LsxlULtYDu3gzburjYjo1QRFOaQVkXAvNKj--iHbcjeNmx43ACUwujoGuRt8hbFnf9teGZ190cWh3RlsKYtqZuUHOvE2zggcriGaFqlcGkDhAcft2Nwj3b5Njc2QRxhLJSWopCaQkKCQpt9htisNIqRvef_jUEAHfFl4drJ6-1HhukpR3m9qyzozqaNXXWz4lAxrdZ_cqxfN9g8MHrKcnO-yOSWa62mF34-qYxkOWtcDkRc4BTN4Ck9fA5AaYHJrkfwKTG2ByueIdYPIWmI_Y2dHh6ODYqtJ5WMoLorkVZZ4D-u1qAYrqCSVF4GvwW1vLTLmpUJg-ojzzREYxDW13GAZSRbmCxZ0rGWj3MduaFBO9y3gmUjvI7TJSlCeViELtgryDnWZCBTrdY1bdlcmVidqS_E2Be-x13d8JvmU8Rj87yXK5XHvmVa2IBEMw7avh5ykWswQ2AK0FOtc_4UcBeL2NJ54YDXZaJdD6Yfj0hi1-xrbbv-o525pPF_oF6PFcvixB-Av5BboC
link.rule.ids 314,780,784,27924,27925
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulation+of+the+Macrophage+Vacuolar+ATPase+and+Phagosome-Lysosome+Fusion+by+Histoplasma+capsulatum&rft.jtitle=The+Journal+of+immunology+%281950%29&rft.au=Strasser%2C+Jane+E.&rft.au=Newman%2C+Simon+L.&rft.au=Ciraolo%2C+Georgianne+M.&rft.au=Morris%2C+Randal+E.&rft.date=1999-05-15&rft.issn=0022-1767&rft.eissn=1550-6606&rft.volume=162&rft.issue=10&rft.spage=6148&rft.epage=6154&rft_id=info:doi/10.4049%2Fjimmunol.162.10.6148&rft.externalDBID=n%2Fa&rft.externalDocID=10_4049_jimmunol_162_10_6148
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1767&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1767&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1767&client=summon