Regulation of the Macrophage Vacuolar ATPase and Phagosome-Lysosome Fusion by Histoplasma capsulatum
Histoplasma capsulatum (Hc) maintains a phagosomal pH of about 6.5. This strategy allows Hc to obtain iron from transferrin, and minimize the activity of macrophage (Mo) lysosomal hydrolases. To determine the mechanism of pH regulation, we evaluated the function of the vacuolar ATPase (V-ATPase) in...
Saved in:
Published in | The Journal of immunology (1950) Vol. 162; no. 10; pp. 6148 - 6154 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Am Assoc Immnol
15.05.1999
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Histoplasma capsulatum (Hc) maintains a phagosomal pH of about 6.5. This strategy allows Hc to obtain iron from transferrin, and minimize the activity of macrophage (Mo) lysosomal hydrolases. To determine the mechanism of pH regulation, we evaluated the function of the vacuolar ATPase (V-ATPase) in RAW264.7 Mo infected with Hc yeast or the nonpathogenic yeast Saccharomyces cerevisae (Sc). Incubation of Hc-infected Mo with bafilomycin, an inhibitor of the V-ATPase, did not affect the intracellular growth of Hc, nor did it affect the intraphagosomal pH. In contrast, upon addition of bafilomycin, phagosomes containing Sc rapidly changed their pH from 5 to 7. Hc-containing phagosomes had 5-fold less V-ATPase than Sc-containing phagosomes as quantified by immunoelectron microscopy. Furthermore, Hc-containing phagosomes inhibited phagolysosomal fusion as quantified by the presence of acid phosphatase, accumulation of LAMP2, and fusion with rhodamine B-isothiocyanate-labeled dextran-loaded lysosomes. Finally, in Hc-containing phagosomes, uptake of ferritin was equivalent to phagosomes containing Sc, indicating that Hc-containing phagosomes have full access to the early "bulk flow" endocytic pathway. Thus, Hc yeasts inhibit phagolysosomal fusion, inhibit accumulation of the V-ATPase in the phagosome, and actively acidify the phagosomal pH to 6.5 as part of their strategy to survive in Mo phagosomes. |
---|---|
AbstractList | Histoplasma capsulatum (Hc) maintains a phagosomal pH of about 6.5. This strategy allows Hc to obtain iron from transferrin, and minimize the activity of macrophage (Moe) lysosomal hydrolases. To determine the mechanism of pH regulation, we evaluated the function of the vacuolar ATPase (V-ATPase) in RAW264.7 Moe infected with Hc yeast or the nonpathogenic yeast Saccharomyces cerevisiae (Sc). Incubation of Hc-infected Moe with bafilomycin, an inhibitor of the V-ATPase, did not affect the intracellular growth of Hc, nor did it affect the intraphagosomal pH. In contrast, upon addition of bafilomycin, phagosomes containing Sc rapidly changed their pH from 5 to 7. Hc-containing phagosomes had 5-fold less V-ATPase than Sc-containing phagosomes as quantified by immunoelectron microscopy. Furthermore, Hc-containing phagosomes inhibited phagolysosomal fusion as quantified by the presence of acid phosphatase, accumulation of LAMP2, and fusion with rhodamine B-isothiocyanate-labeled dextran-loaded lysosomes. Finally, in Hc-containing phagosomes, uptake of ferritin was equivalent to phagosomes containing Sc, indicating that Hc-containing phagosomes have full access to the early "bulk flow" endocytic pathway. Thus, Hc yeasts inhibit phagolysosomal fusion, inhibit accumulation of the V-ATPase in the phagosome, and actively acidify the phagosomal pH to 6.5 as part of their strategy to survive in Moe phagosomes. Histoplasma capsulatum (Hc) maintains a phagosomal pH of about 6.5. This strategy allows Hc to obtain iron from transferrin, and minimize the activity of macrophage (Mo) lysosomal hydrolases. To determine the mechanism of pH regulation, we evaluated the function of the vacuolar ATPase (V-ATPase) in RAW264.7 Mo infected with Hc yeast or the nonpathogenic yeast Saccharomyces cerevisae (Sc). Incubation of Hc-infected Mo with bafilomycin, an inhibitor of the V-ATPase, did not affect the intracellular growth of Hc, nor did it affect the intraphagosomal pH. In contrast, upon addition of bafilomycin, phagosomes containing Sc rapidly changed their pH from 5 to 7. Hc-containing phagosomes had 5-fold less V-ATPase than Sc-containing phagosomes as quantified by immunoelectron microscopy. Furthermore, Hc-containing phagosomes inhibited phagolysosomal fusion as quantified by the presence of acid phosphatase, accumulation of LAMP2, and fusion with rhodamine B-isothiocyanate-labeled dextran-loaded lysosomes. Finally, in Hc-containing phagosomes, uptake of ferritin was equivalent to phagosomes containing Sc, indicating that Hc-containing phagosomes have full access to the early "bulk flow" endocytic pathway. Thus, Hc yeasts inhibit phagolysosomal fusion, inhibit accumulation of the V-ATPase in the phagosome, and actively acidify the phagosomal pH to 6.5 as part of their strategy to survive in Mo phagosomes. Histoplasma capsulatum (Hc) maintains a phagosomal pH of about 6.5. This strategy allows Hc to obtain iron from transferrin, and minimize the activity of macrophage (Mø) lysosomal hydrolases. To determine the mechanism of pH regulation, we evaluated the function of the vacuolar ATPase (V-ATPase) in RAW264.7 Mø infected with Hc yeast or the nonpathogenic yeast Saccharomyces cerevisae (Sc). Incubation of Hc-infected Mø with bafilomycin, an inhibitor of the V-ATPase, did not affect the intracellular growth of Hc, nor did it affect the intraphagosomal pH. In contrast, upon addition of bafilomycin, phagosomes containing Sc rapidly changed their pH from 5 to 7. Hc-containing phagosomes had 5-fold less V-ATPase than Sc-containing phagosomes as quantified by immunoelectron microscopy. Furthermore, Hc-containing phagosomes inhibited phagolysosomal fusion as quantified by the presence of acid phosphatase, accumulation of LAMP2, and fusion with rhodamine B-isothiocyanate-labeled dextran-loaded lysosomes. Finally, in Hc-containing phagosomes, uptake of ferritin was equivalent to phagosomes containing Sc, indicating that Hc-containing phagosomes have full access to the early “bulk flow” endocytic pathway. Thus, Hc yeasts inhibit phagolysosomal fusion, inhibit accumulation of the V-ATPase in the phagosome, and actively acidify the phagosomal pH to 6.5 as part of their strategy to survive in Mø phagosomes. |
Author | Howell, Michael L Morris, Randal E Strasser, Jane E Dean, Gary E Ciraolo, Georgianne M Newman, Simon L |
Author_xml | – sequence: 1 fullname: Strasser, Jane E – sequence: 2 fullname: Newman, Simon L – sequence: 3 fullname: Ciraolo, Georgianne M – sequence: 4 fullname: Morris, Randal E – sequence: 5 fullname: Howell, Michael L – sequence: 6 fullname: Dean, Gary E |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/10229858$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtLxDAUhYMoOj7-gUhW4qZjkqZJsxTxBSOKqNuQprczlbSpTcsw_97UUXDnKuHe7xwu5xyi3da3gNApJXNOuLr8qJtmbL2bU8HmcSgoz3fQjGYZSYQgYhfNCGEsoVLIA3QYwgchRBDG99EBjQuVZ_kMlS-wHJ0Zat9iX-FhBfjR2N53K7ME_G7s6J3p8dXrswmATVvi57jxwTeQLDbh-4NvxzDpiw2-r8PgO2dCY7A1XZisx-YY7VXGBTj5eY_Q2-3N6_V9sni6e7i-WiSWSzUkquSUCZ4CU5RwZgsmBcRTCRSlTQ2znGWqKjkrpcwFSbNcFlZVlglS2UJCeoTOt75d7z9HCINu6mDBOdOCH4MWSqYxHvovSCUTVPEJ5FswRhJCD5Xu-rox_UZToqca9G8NOtYwDacaouzsx38sGij_iLa5R-BiC6zq5Wpd96BjYs5FnOr1ev3X6wtTOJXV |
CitedBy_id | crossref_primary_10_1038_s41598_018_25665_5 crossref_primary_10_1016_j_cyto_2011_07_430 crossref_primary_10_1128_iai_00434_22 crossref_primary_10_1002_pmic_200900642 crossref_primary_10_1128_IAI_73_10_6803_6811_2005 crossref_primary_10_4049_jimmunol_0903168 crossref_primary_10_1046_j_0933_7407_2003_00916_x crossref_primary_10_3389_fmicb_2015_01526 crossref_primary_10_1111_febs_13389 crossref_primary_10_1128_IAI_69_6_3995_4006_2001 crossref_primary_10_1146_annurev_micro_59_030804_121055 crossref_primary_10_1080_21505594_2019_1663596 crossref_primary_10_1016_S0969_9961_03_00102_5 crossref_primary_10_1128_CMR_17_4_804_839_2004 crossref_primary_10_1080_mmy_38_6_399_406 crossref_primary_10_3389_fcimb_2016_00142 crossref_primary_10_1371_journal_ppat_1010417 crossref_primary_10_1046_j_1462_5822_1999_00024_x crossref_primary_10_1371_journal_pone_0220867 crossref_primary_10_1128_mBio_02712_19 crossref_primary_10_1016_j_smim_2023_101738 crossref_primary_10_1016_j_molimm_2005_07_035 crossref_primary_10_3389_fmicb_2016_01034 crossref_primary_10_1016_j_dci_2010_06_006 crossref_primary_10_1111_j_1574_695X_2007_00238_x crossref_primary_10_1111_mmi_15149 crossref_primary_10_1111_cmi_12976 crossref_primary_10_1016_j_ijmm_2017_08_007 crossref_primary_10_1371_journal_pntd_0002595 crossref_primary_10_3389_fimmu_2023_1227467 crossref_primary_10_1016_j_ijbiomac_2018_01_030 crossref_primary_10_1007_s00018_015_1858_6 crossref_primary_10_1128_EC_00039_10 crossref_primary_10_1016_S0966_842X_01_02035_2 crossref_primary_10_1111_j_1600_0854_2006_00531_x crossref_primary_10_1078_1438_4221_00218 crossref_primary_10_1016_j_fgb_2012_07_001 crossref_primary_10_1074_jbc_M116_762104 crossref_primary_10_1042_BST20130014 crossref_primary_10_4161_viru_28509 crossref_primary_10_1128_IAI_00044_11 crossref_primary_10_1242_dmm_050393 crossref_primary_10_1111_cmi_13016 crossref_primary_10_1006_fgbi_2001_1311 crossref_primary_10_1016_S1369_5274_03_00080_8 crossref_primary_10_1128_IAI_00833_12 crossref_primary_10_3389_fimmu_2019_02636 crossref_primary_10_1016_j_ijantimicag_2007_05_015 crossref_primary_10_1099_jmm_0_051243_0 crossref_primary_10_1172_JCI19361 crossref_primary_10_4049_jimmunol_1003730 crossref_primary_10_1016_j_molimm_2023_08_013 crossref_primary_10_1016_j_micinf_2003_09_011 crossref_primary_10_1093_femsre_fuv035 crossref_primary_10_1128_EC_00036_08 crossref_primary_10_4236_pp_2020_1110022 crossref_primary_10_1016_S1369_5274_00_00104_1 crossref_primary_10_1111_j_1462_5822_2008_01274_x crossref_primary_10_1128_IAI_69_12_7671_7678_2001 crossref_primary_10_1111_cmi_12958 crossref_primary_10_1016_S1369_5274_00_00102_8 crossref_primary_10_4049_jimmunol_176_3_1806 crossref_primary_10_3389_fimmu_2018_02761 crossref_primary_10_1038_s41467_018_05820_2 crossref_primary_10_1111_j_1462_5822_2006_00766_x crossref_primary_10_1128_mSphere_00437_18 crossref_primary_10_1371_journal_pone_0096015 crossref_primary_10_3389_fimmu_2017_01368 crossref_primary_10_1111_cmi_12394 crossref_primary_10_2217_17460913_3_6_661 |
Cites_doi | 10.1128/iai.57.9.2903-2905.1989 10.1128/iai.55.1.29-34.1987 10.1093/ajcp/93.3.367 10.1172/JCI117119 10.1083/jcb.129.5.1229 10.1172/JCI114416 10.1126/science.8303277 10.7326/0003-4819-76-4-557 10.1016/0002-9343(78)90183-3 10.7326/0003-4819-96-2-159 10.1074/jbc.272.47.29810 10.4049/jimmunol.149.2.574 10.1128/iai.55.4.1014-1016.1987 10.1128/iai.60.11.4593-4597.1992 10.1128/iai.57.2.513-519.1989 10.1093/infdis/161.1.143 10.4049/jimmunol.156.12.4764 10.1016/0076-6879(90)84296-S 10.1038/286079a0 10.1128/iai.62.4.1478-1479.1994 10.1128/iai.61.9.3775-3784.1993 10.4049/jimmunol.158.4.1779 10.1091/mbc.7.1.129 10.1128/iai.64.1.319-325.1996 10.1172/JCI116077 10.1084/jem.177.6.1605 10.1128/iai.62.5.1940-1945.1994 10.1002/jlb.55.6.729 10.1083/jcb.124.5.677 10.1002/jlb.43.6.483 10.1128/iai.62.2.680-684.1994 10.1084/jem.165.1.195 10.1002/j.1460-2075.1996.tb01088.x 10.4049/jimmunol.138.2.582 10.4049/jimmunol.153.6.2568 10.1016/0002-9343(70)90014-8 10.1080/02681218880000211 10.1016/0002-9343(78)90445-X 10.1016/S0021-9258(17)45332-4 10.1016/S0021-9258(18)54263-0 10.1001/archinte.1983.00350040093012 10.1093/infdis/158.3.623 10.1084/jem.181.1.257 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7T5 H94 M7N 7X8 |
DOI | 10.4049/jimmunol.162.10.6148 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Immunology Abstracts AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef AIDS and Cancer Research Abstracts Immunology Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) MEDLINE - Academic |
DatabaseTitleList | AIDS and Cancer Research Abstracts MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1550-6606 |
EndPage | 6154 |
ExternalDocumentID | 10_4049_jimmunol_162_10_6148 10229858 www162_10_6148 |
Genre | Research Support, U.S. Gov't, P.H.S Journal Article |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: AI28392 – fundername: NIGMS NIH HHS grantid: GM39555 – fundername: NIAID NIH HHS grantid: AI37639 |
GroupedDBID | - 08R 2WC 34G 39C 3O- 53G 55 5GY 5RE 5VS 79B 85S 8RP AALRV AARDX ABEFU ABFLS ABOCM ABPPZ ABPTK ACGFS ACIWK ACNCT ACPRK ADACO ADBBV ADKFC AENEX AETEA AFFNX AFRAH AJYGW ALMA_UNASSIGNED_HOLDINGS BAWUL D0L DIK DU5 E3Z EBS EJD F5P FH7 FRP G8K GJ GX1 IH2 J5H K-O K78 KQ8 L7B MVM MYA NEJ O0- OK1 P0W P2P PQEST PQQKQ R.V RHF RHI RZQ SJN TWZ VH1 WH7 WOQ X X7M XFK XJT YCJ ZA5 ZE2 ZGI ZXP --- -~X .55 .GJ 18M ABCQX ABJNI ACGFO ADNWM AFHIN AFOSN AHWXS AI. AIZAD BTFSW CGR CUY CVF ECM EIF NPM TR2 W8F XSW XTH YHG 5WD AAYXX ABDPE CITATION OCZFY 7T5 H94 M7N 7X8 |
ID | FETCH-LOGICAL-c479t-9d412643e291042cb276e1020ebdc3a2c4259fd42d778603587bc9fc260fcb7e3 |
ISSN | 0022-1767 |
IngestDate | Wed Dec 04 07:45:08 EST 2024 Wed Dec 04 04:24:03 EST 2024 Fri Dec 06 06:12:02 EST 2024 Sat Sep 28 07:33:49 EDT 2024 Tue Nov 10 19:29:50 EST 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c479t-9d412643e291042cb276e1020ebdc3a2c4259fd42d778603587bc9fc260fcb7e3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | https://journals.aai.org/jimmunol/article-pdf/162/10/6148/1099173/6148.pdf |
PMID | 10229858 |
PQID | 17261941 |
PQPubID | 23462 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_69735501 proquest_miscellaneous_17261941 crossref_primary_10_4049_jimmunol_162_10_6148 pubmed_primary_10229858 highwire_smallpub1_www162_10_6148 |
ProviderPackageCode | RHF RHI |
PublicationCentury | 1900 |
PublicationDate | 19990515 1999-May-15 1999-05-15 |
PublicationDateYYYYMMDD | 1999-05-15 |
PublicationDate_xml | – month: 05 year: 1999 text: 19990515 day: 15 |
PublicationDecade | 1990 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of immunology (1950) |
PublicationTitleAlternate | J Immunol |
PublicationYear | 1999 |
Publisher | Am Assoc Immnol |
Publisher_xml | – name: Am Assoc Immnol |
References | 2023010117041682600_R11 2023010117041682600_R10 2023010117041682600_R5 2023010117041682600_R46 2023010117041682600_R6 2023010117041682600_R45 2023010117041682600_R3 2023010117041682600_R48 2023010117041682600_R4 2023010117041682600_R47 2023010117041682600_R1 2023010117041682600_R2 2023010117041682600_R49 2023010117041682600_R9 2023010117041682600_R7 2023010117041682600_R8 2023010117041682600_R20 2023010117041682600_R22 2023010117041682600_R21 2023010117041682600_R13 2023010117041682600_R12 2023010117041682600_R15 2023010117041682600_R14 2023010117041682600_R17 2023010117041682600_R16 2023010117041682600_R19 2023010117041682600_R18 2023010117041682600_R31 2023010117041682600_R30 2023010117041682600_R33 2023010117041682600_R32 2023010117041682600_R24 2023010117041682600_R23 2023010117041682600_R26 2023010117041682600_R25 2023010117041682600_R28 2023010117041682600_R27 2023010117041682600_R29 2023010117041682600_R40 2023010117041682600_R42 2023010117041682600_R41 2023010117041682600_R44 2023010117041682600_R43 2023010117041682600_R35 2023010117041682600_R34 2023010117041682600_R37 2023010117041682600_R36 2023010117041682600_R39 2023010117041682600_R38 |
References_xml | – ident: 2023010117041682600_R36 doi: 10.1128/iai.57.9.2903-2905.1989 – ident: 2023010117041682600_R38 doi: 10.1128/iai.55.1.29-34.1987 – ident: 2023010117041682600_R8 doi: 10.1093/ajcp/93.3.367 – ident: 2023010117041682600_R17 doi: 10.1172/JCI117119 – ident: 2023010117041682600_R23 doi: 10.1083/jcb.129.5.1229 – ident: 2023010117041682600_R22 doi: 10.1172/JCI114416 – ident: 2023010117041682600_R41 doi: 10.1126/science.8303277 – ident: 2023010117041682600_R2 doi: 10.7326/0003-4819-76-4-557 – ident: 2023010117041682600_R26 – ident: 2023010117041682600_R3 doi: 10.1016/0002-9343(78)90183-3 – ident: 2023010117041682600_R5 doi: 10.7326/0003-4819-96-2-159 – ident: 2023010117041682600_R49 doi: 10.1074/jbc.272.47.29810 – ident: 2023010117041682600_R10 – ident: 2023010117041682600_R12 doi: 10.4049/jimmunol.149.2.574 – ident: 2023010117041682600_R32 doi: 10.1128/iai.55.4.1014-1016.1987 – ident: 2023010117041682600_R35 doi: 10.1128/iai.60.11.4593-4597.1992 – ident: 2023010117041682600_R39 doi: 10.1128/iai.57.2.513-519.1989 – ident: 2023010117041682600_R34 doi: 10.1093/infdis/161.1.143 – ident: 2023010117041682600_R43 doi: 10.4049/jimmunol.156.12.4764 – ident: 2023010117041682600_R24 doi: 10.1016/0076-6879(90)84296-S – ident: 2023010117041682600_R27 doi: 10.1038/286079a0 – ident: 2023010117041682600_R31 doi: 10.1128/iai.62.4.1478-1479.1994 – ident: 2023010117041682600_R46 doi: 10.1128/iai.61.9.3775-3784.1993 – ident: 2023010117041682600_R16 doi: 10.4049/jimmunol.158.4.1779 – ident: 2023010117041682600_R25 doi: 10.1091/mbc.7.1.129 – ident: 2023010117041682600_R11 – ident: 2023010117041682600_R42 doi: 10.1128/iai.64.1.319-325.1996 – ident: 2023010117041682600_R18 doi: 10.1172/JCI116077 – ident: 2023010117041682600_R13 doi: 10.1084/jem.177.6.1605 – ident: 2023010117041682600_R33 doi: 10.1128/iai.62.5.1940-1945.1994 – ident: 2023010117041682600_R15 – ident: 2023010117041682600_R28 doi: 10.1002/jlb.55.6.729 – ident: 2023010117041682600_R29 doi: 10.1083/jcb.124.5.677 – ident: 2023010117041682600_R14 doi: 10.1002/jlb.43.6.483 – ident: 2023010117041682600_R30 doi: 10.1128/iai.62.2.680-684.1994 – ident: 2023010117041682600_R37 doi: 10.1084/jem.165.1.195 – ident: 2023010117041682600_R9 – ident: 2023010117041682600_R44 doi: 10.1002/j.1460-2075.1996.tb01088.x – ident: 2023010117041682600_R40 doi: 10.4049/jimmunol.138.2.582 – ident: 2023010117041682600_R45 doi: 10.4049/jimmunol.153.6.2568 – ident: 2023010117041682600_R1 doi: 10.1016/0002-9343(70)90014-8 – ident: 2023010117041682600_R21 doi: 10.1080/02681218880000211 – ident: 2023010117041682600_R48 – ident: 2023010117041682600_R4 doi: 10.1016/0002-9343(78)90445-X – ident: 2023010117041682600_R19 doi: 10.1016/S0021-9258(17)45332-4 – ident: 2023010117041682600_R20 doi: 10.1016/S0021-9258(18)54263-0 – ident: 2023010117041682600_R6 doi: 10.1001/archinte.1983.00350040093012 – ident: 2023010117041682600_R7 doi: 10.1093/infdis/158.3.623 – ident: 2023010117041682600_R47 doi: 10.1084/jem.181.1.257 |
SSID | ssj0006024 |
Score | 1.9670004 |
Snippet | Histoplasma capsulatum (Hc) maintains a phagosomal pH of about 6.5. This strategy allows Hc to obtain iron from transferrin, and minimize the activity of... |
SourceID | proquest crossref pubmed highwire |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 6148 |
SubjectTerms | Animals Histoplasma - immunology Histoplasma capsulatum Lysosomes - enzymology Lysosomes - microbiology Macrophages - immunology Macrophages - microbiology Membrane Fusion Mice Mice, Inbred BALB C Organelles - enzymology Organelles - microbiology Phagosomes - enzymology Phagosomes - microbiology Proton-Translocating ATPases - biosynthesis Vacuolar Proton-Translocating ATPases |
Title | Regulation of the Macrophage Vacuolar ATPase and Phagosome-Lysosome Fusion by Histoplasma capsulatum |
URI | http://www.jimmunol.org/cgi/content/abstract/162/10/6148 https://www.ncbi.nlm.nih.gov/pubmed/10229858 https://search.proquest.com/docview/17261941 https://search.proquest.com/docview/69735501 |
Volume | 162 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwELWWIlBfEJRLy9VI8LTKkjjZXB6r0qpAg1C1RX2LYscRRdtNtRetln_j3zgT57awRZSXKLKTkeM5sc_YnhnG3gjthL4XuJaT5pTCDBxOSqEtqcI0lxHm-DJnZPzZPz7zPp4Pz3u9n51TS4u5HKgfG_1K_kerKINeyUv2BppthKIA99AvrtAwrv-k41OTSL7ifEQh45RScn2jgzhfU7Ugu7W_P_qCqcq4BaCmmBWX2jpZzcqb_tGC1suIhZYRQ67Api_TvkphPUN0Fajhe4upDoO9IN8SE8PpbblTZnfWFSjsLW31m6O4oLKHg3bheVmvuwIpk_5JU3NwMU0LsxlULtYDu3gzburjYjo1QRFOaQVkXAvNKj--iHbcjeNmx43ACUwujoGuRt8hbFnf9teGZ190cWh3RlsKYtqZuUHOvE2zggcriGaFqlcGkDhAcft2Nwj3b5Njc2QRxhLJSWopCaQkKCQpt9htisNIqRvef_jUEAHfFl4drJ6-1HhukpR3m9qyzozqaNXXWz4lAxrdZ_cqxfN9g8MHrKcnO-yOSWa62mF34-qYxkOWtcDkRc4BTN4Ck9fA5AaYHJrkfwKTG2ByueIdYPIWmI_Y2dHh6ODYqtJ5WMoLorkVZZ4D-u1qAYrqCSVF4GvwW1vLTLmpUJg-ojzzREYxDW13GAZSRbmCxZ0rGWj3MduaFBO9y3gmUjvI7TJSlCeViELtgryDnWZCBTrdY1bdlcmVidqS_E2Be-x13d8JvmU8Rj87yXK5XHvmVa2IBEMw7avh5ykWswQ2AK0FOtc_4UcBeL2NJ54YDXZaJdD6Yfj0hi1-xrbbv-o525pPF_oF6PFcvixB-Av5BboC |
link.rule.ids | 314,780,784,27924,27925 |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulation+of+the+Macrophage+Vacuolar+ATPase+and+Phagosome-Lysosome+Fusion+by+Histoplasma+capsulatum&rft.jtitle=The+Journal+of+immunology+%281950%29&rft.au=Strasser%2C+Jane+E.&rft.au=Newman%2C+Simon+L.&rft.au=Ciraolo%2C+Georgianne+M.&rft.au=Morris%2C+Randal+E.&rft.date=1999-05-15&rft.issn=0022-1767&rft.eissn=1550-6606&rft.volume=162&rft.issue=10&rft.spage=6148&rft.epage=6154&rft_id=info:doi/10.4049%2Fjimmunol.162.10.6148&rft.externalDBID=n%2Fa&rft.externalDocID=10_4049_jimmunol_162_10_6148 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1767&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1767&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1767&client=summon |