Rapid Evolution of Phenotypic Plasticity and Shifting Thresholds of Genetic Assimilation in the Nematode Caenorhabditis remanei

Abstract Many organisms can acclimate to new environments through phenotypic plasticity, a complex trait that can be heritable, subject to selection, and evolve. However, the rate and genetic basis of plasticity evolution remain largely unknown. We experimentally evolved outbred populations of the n...

Full description

Saved in:
Bibliographic Details
Published inG3 : genes - genomes - genetics Vol. 4; no. 6; pp. 1103 - 1112
Main Authors Sikkink, Kristin L, Reynolds, Rose M, Ituarte, Catherine M, Cresko, William A, Phillips, Patrick C
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.06.2014
Genetics Society of America
Subjects
Online AccessGet full text
ISSN2160-1836
2160-1836
DOI10.1534/g3.114.010553

Cover

Abstract Abstract Many organisms can acclimate to new environments through phenotypic plasticity, a complex trait that can be heritable, subject to selection, and evolve. However, the rate and genetic basis of plasticity evolution remain largely unknown. We experimentally evolved outbred populations of the nematode Caenorhabditis remanei under an acute heat shock during early larval development. When raised in a nonstressful environment, ancestral populations were highly sensitive to a 36.8° heat shock and exhibited high mortality. However, initial exposure to a nonlethal high temperature environment resulted in significantly reduced mortality during heat shock (hormesis). Lines selected for heat shock resistance rapidly evolved the capacity to withstand heat shock in the native environment without any initial exposure to high temperatures, and early exposure to high temperatures did not lead to further increases in heat resistance. This loss of plasticity would appear to have resulted from the genetic assimilation of the heat induction response in the noninducing environment. However, analyses of transcriptional variation via RNA-sequencing from the selected populations revealed no global changes in gene regulation correlated with the observed changes in heat stress resistance. Instead, assays of the phenotypic response across a broader range of temperatures revealed that the induced plasticity was not fixed across environments, but rather the threshold for the response was shifted to higher temperatures over evolutionary time. These results demonstrate that apparent genetic assimilation can result from shifting thresholds of induction across environments and that analysis of the broader environmental context is critically important for understanding the evolution of phenotypic plasticity.
AbstractList Many organisms can acclimate to new environments through phenotypic plasticity, a complex trait that can be heritable, subject to selection, and evolve. However, the rate and genetic basis of plasticity evolution remain largely unknown. We experimentally evolved outbred populations of the nematode Caenorhabditis remanei under an acute heat shock during early larval development. When raised in a nonstressful environment, ancestral populations were highly sensitive to a 36.8° heat shock and exhibited high mortality. However, initial exposure to a nonlethal high temperature environment resulted in significantly reduced mortality during heat shock (hormesis). Lines selected for heat shock resistance rapidly evolved the capacity to withstand heat shock in the native environment without any initial exposure to high temperatures, and early exposure to high temperatures did not lead to further increases in heat resistance. This loss of plasticity would appear to have resulted from the genetic assimilation of the heat induction response in the noninducing environment. However, analyses of transcriptional variation via RNA-sequencing from the selected populations revealed no global changes in gene regulation correlated with the observed changes in heat stress resistance. Instead, assays of the phenotypic response across a broader range of temperatures revealed that the induced plasticity was not fixed across environments, but rather the threshold for the response was shifted to higher temperatures over evolutionary time. These results demonstrate that apparent genetic assimilation can result from shifting thresholds of induction across environments and that analysis of the broader environmental context is critically important for understanding the evolution of phenotypic plasticity.
Many organisms can acclimate to new environments through phenotypic plasticity, a complex trait that can be heritable, subject to selection, and evolve. However, the rate and genetic basis of plasticity evolution remain largely unknown. We experimentally evolved outbred populations of the nematode Caenorhabditis remanei under an acute heat shock during early larval development. When raised in a nonstressful environment, ancestral populations were highly sensitive to a 36.8° heat shock and exhibited high mortality. However, initial exposure to a nonlethal high temperature environment resulted in significantly reduced mortality during heat shock (hormesis). Lines selected for heat shock resistance rapidly evolved the capacity to withstand heat shock in the native environment without any initial exposure to high temperatures, and early exposure to high temperatures did not lead to further increases in heat resistance. This loss of plasticity would appear to have resulted from the genetic assimilation of the heat induction response in the noninducing environment. However, analyses of transcriptional variation via RNA-sequencing from the selected populations revealed no global changes in gene regulation correlated with the observed changes in heat stress resistance. Instead, assays of the phenotypic response across a broader range of temperatures revealed that the induced plasticity was not fixed across environments, but rather the threshold for the response was shifted to higher temperatures over evolutionary time. These results demonstrate that apparent genetic assimilation can result from shifting thresholds of induction across environments and that analysis of the broader environmental context is critically important for understanding the evolution of phenotypic plasticity.Many organisms can acclimate to new environments through phenotypic plasticity, a complex trait that can be heritable, subject to selection, and evolve. However, the rate and genetic basis of plasticity evolution remain largely unknown. We experimentally evolved outbred populations of the nematode Caenorhabditis remanei under an acute heat shock during early larval development. When raised in a nonstressful environment, ancestral populations were highly sensitive to a 36.8° heat shock and exhibited high mortality. However, initial exposure to a nonlethal high temperature environment resulted in significantly reduced mortality during heat shock (hormesis). Lines selected for heat shock resistance rapidly evolved the capacity to withstand heat shock in the native environment without any initial exposure to high temperatures, and early exposure to high temperatures did not lead to further increases in heat resistance. This loss of plasticity would appear to have resulted from the genetic assimilation of the heat induction response in the noninducing environment. However, analyses of transcriptional variation via RNA-sequencing from the selected populations revealed no global changes in gene regulation correlated with the observed changes in heat stress resistance. Instead, assays of the phenotypic response across a broader range of temperatures revealed that the induced plasticity was not fixed across environments, but rather the threshold for the response was shifted to higher temperatures over evolutionary time. These results demonstrate that apparent genetic assimilation can result from shifting thresholds of induction across environments and that analysis of the broader environmental context is critically important for understanding the evolution of phenotypic plasticity.
Many organisms can acclimate to new environments through phenotypic plasticity, a complex trait that can be heritable, subject to selection, and evolve. However, the rate and genetic basis of plasticity evolution remain largely unknown. We experimentally evolved outbred populations of the nematode Caenorhabditis remanei under an acute heat shock during early larval development. When raised in a nonstressful environment, ancestral populations were highly sensitive to a 36.8° heat shock and exhibited high mortality. However, initial exposure to a nonlethal high temperature environment resulted in significantly reduced mortality during heat shock (hormesis). Lines selected for heat shock resistance rapidly evolved the capacity to withstand heat shock in the native environment without any initial exposure to high temperatures, and early exposure to high temperatures did not lead to further increases in heat resistance. This loss of plasticity would appear to have resulted from the genetic assimilation of the heat induction response in the noninducing environment. However, analyses of transcriptional variation via RNA-sequencing from the selected populations revealed no global changes in gene regulation correlated with the observed changes in heat stress resistance. Instead, assays of the phenotypic response across a broader range of temperatures revealed that the induced plasticity was not fixed across environments, but rather the threshold for the response was shifted to higher temperatures over evolutionary time. These results demonstrate that apparent genetic assimilation can result from shifting thresholds of induction across environments and that analysis of the broader environmental context is critically important for understanding the evolution of phenotypic plasticity.
Abstract Many organisms can acclimate to new environments through phenotypic plasticity, a complex trait that can be heritable, subject to selection, and evolve. However, the rate and genetic basis of plasticity evolution remain largely unknown. We experimentally evolved outbred populations of the nematode Caenorhabditis remanei under an acute heat shock during early larval development. When raised in a nonstressful environment, ancestral populations were highly sensitive to a 36.8° heat shock and exhibited high mortality. However, initial exposure to a nonlethal high temperature environment resulted in significantly reduced mortality during heat shock (hormesis). Lines selected for heat shock resistance rapidly evolved the capacity to withstand heat shock in the native environment without any initial exposure to high temperatures, and early exposure to high temperatures did not lead to further increases in heat resistance. This loss of plasticity would appear to have resulted from the genetic assimilation of the heat induction response in the noninducing environment. However, analyses of transcriptional variation via RNA-sequencing from the selected populations revealed no global changes in gene regulation correlated with the observed changes in heat stress resistance. Instead, assays of the phenotypic response across a broader range of temperatures revealed that the induced plasticity was not fixed across environments, but rather the threshold for the response was shifted to higher temperatures over evolutionary time. These results demonstrate that apparent genetic assimilation can result from shifting thresholds of induction across environments and that analysis of the broader environmental context is critically important for understanding the evolution of phenotypic plasticity.
Author Reynolds, Rose M
Sikkink, Kristin L
Phillips, Patrick C
Ituarte, Catherine M
Cresko, William A
Author_xml – sequence: 1
  givenname: Kristin L
  surname: Sikkink
  fullname: Sikkink, Kristin L
  organization: Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403-5289
– sequence: 2
  givenname: Rose M
  surname: Reynolds
  fullname: Reynolds, Rose M
  organization: Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403-5289
– sequence: 3
  givenname: Catherine M
  surname: Ituarte
  fullname: Ituarte, Catherine M
  organization: Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403-5289
– sequence: 4
  givenname: William A
  surname: Cresko
  fullname: Cresko, William A
  email: wcresko@uoregon.edu
  organization: Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403-5289
– sequence: 5
  givenname: Patrick C
  surname: Phillips
  fullname: Phillips, Patrick C
  email: pphil@uoregon.edu
  organization: Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403-5289
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24727288$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1rFTEUhoO02Fq7dCsBN27mdvI9sxHKpVahaNG6DplJcidlJhmTTOGu_OumvbdSC2I2-TjPefOenLwCBz54A8AbVK8QI_RsQ1YI0VWNasbIC3CMEa8r1BB-8GR9BE5Tuq3LYIxzyl-CI0wFFrhpjsGvb2p2Gl7chXHJLngYLLwejA95O7seXo8qZde7vIXKa_h9cDY7v4E3QzRpCKNO9wmXxptCwfOU3ORG9SDkPMyDgV_MpHLQBq5VUY2D6rTLLsFYzr1xr8GhVWMyp_v5BPz4eHGz_lRdfb38vD6_qnoq2lw1FmGuTddpYVvd4brDwlJrONe2FYranmPFFbFMl2jfiwaVrRA9Q4iTpiEn4MNOd166yeje-BzVKOfoJhW3Mign_454N8hNuJO05gwzUgTe7wVi-LmYlOXkUm_GsVQRliRLPwRrmaCsoO-eobdhib6UJwniraDFDy7U26eO_lh57E0ByA7oY0gpGitLHx7ethh0o0T1_aVUbogsn0DuPkHJqp5lPQr_i9_XFZb5P-hvzG7BQQ
CitedBy_id crossref_primary_10_1093_molbev_msae148
crossref_primary_10_3389_fgene_2019_00720
crossref_primary_10_1534_genetics_116_192310
crossref_primary_10_1111_eva_12182
crossref_primary_10_1016_j_tree_2016_03_012
crossref_primary_10_1038_s41467_022_28742_6
crossref_primary_10_1371_journal_pgen_1004883
crossref_primary_10_1038_s41598_023_46551_9
crossref_primary_10_1371_journal_pone_0145925
crossref_primary_10_1038_s42003_022_03912_w
crossref_primary_10_1111_nyas_15090
crossref_primary_10_1002_ece3_3429
crossref_primary_10_1007_s42161_020_00673_5
crossref_primary_10_1038_s41559_020_1202_x
crossref_primary_10_1093_molbev_msv120
crossref_primary_10_1098_rsbl_2016_0509
crossref_primary_10_1038_s41598_017_07455_7
crossref_primary_10_1016_j_anbehav_2018_01_004
crossref_primary_10_1098_rstb_2018_0176
crossref_primary_10_1139_gen_2015_0012
crossref_primary_10_1111_mec_13880
crossref_primary_10_1038_s41467_021_23558_2
crossref_primary_10_1534_genetics_115_186288
crossref_primary_10_1186_s12864_016_2466_z
crossref_primary_10_1016_j_tree_2020_05_006
crossref_primary_10_1111_mec_15820
crossref_primary_10_3390_cimb46010012
crossref_primary_10_1111_evo_14570
crossref_primary_10_1371_journal_pgen_1005323
crossref_primary_10_1093_g3journal_jkab045
crossref_primary_10_1111_1365_2435_12725
crossref_primary_10_1016_j_ygeno_2014_09_014
crossref_primary_10_1098_rspb_2021_0765
crossref_primary_10_1093_beheco_arx127
crossref_primary_10_1038_s41598_019_56100_y
crossref_primary_10_1073_pnas_1703658114
crossref_primary_10_1080_21624054_2015_1021109
crossref_primary_10_1098_rsbl_2021_0071
crossref_primary_10_1111_ede_12310
crossref_primary_10_1111_ede_12391
crossref_primary_10_1093_evolut_qpae115
crossref_primary_10_1186_s12862_016_0604_5
crossref_primary_10_1016_j_semcdb_2018_05_014
crossref_primary_10_1111_ede_12309
crossref_primary_10_1111_mec_15607
crossref_primary_10_1111_jeb_13133
crossref_primary_10_1098_rspb_2023_2700
crossref_primary_10_1534_genetics_119_303018
crossref_primary_10_1098_rspb_2018_2754
crossref_primary_10_1007_s00265_018_2475_9
crossref_primary_10_1111_evo_12651
crossref_primary_10_3390_jdb9040041
crossref_primary_10_1371_journal_pbio_1002388
crossref_primary_10_1111_1365_2435_14568
Cites_doi 10.1146/annurev-physiol-030212-183712
10.1111/j.1558-5646.1984.tb00360.x
10.1111/j.0014-3820.2002.tb00193.x
10.1093/molbev/msh041
10.1111/mec.12354
10.1534/genetics.106.061879
10.1111/j.1558-5646.1985.tb00391.x
10.1080/713611043
10.1016/S0065-2660(08)60048-6
10.1007/978-1-4471-3464-0_3
10.1186/gb-2010-11-10-r106
10.1038/nprot.2013.099
10.1093/bioinformatics/btq057
10.1016/j.cmet.2008.01.001
10.1379/1466-1268(1999)004<0243:ACOHEA>2.3.CO;2
10.1126/science.1118888
10.1111/j.1558-5646.1991.tb04343.x
10.1126/science.279.5354.1201
10.1126/science.1157174
10.1111/j.1420-9101.2012.02463.x
10.1073/pnas.0606329104
10.1093/oso/9780195122343.001.0001
10.1534/genetics.107.082651
10.1038/nature08496
10.1093/bioinformatics/btq675
10.1111/j.1420-9101.2008.01666.x
10.1038/hdy.1996.36
10.1242/jeb.075598
10.2307/2390290
10.1046/j.1365-294X.2003.01805.x
10.1111/j.1558-5646.1991.tb02671.x
10.1073/pnas.0712210105
10.1073/pnas.92.8.3507
10.1186/1471-2148-11-157
10.1126/science.1118370
10.1038/24550
10.1111/j.1474-9726.2012.00811.x
10.1371/journal.pone.0058212
10.1111/j.2517-6161.1995.tb02031.x
10.1111/j.1558-5646.1953.tb00070.x
10.1038/150563a0
10.1146/annurev.ge.22.120188.003215
10.1093/icb/45.3.475
10.1111/j.1558-5646.1992.tb02047.x
10.1038/75556
10.1038/431261a
10.1016/0305-0491(90)90206-9
10.1073/pnas.0910934107
10.1086/276408
10.1093/genetics/77.1.71
10.1534/genetics.113.150847
10.1086/285289
10.1126/science.4.99.733
10.1111/j.1558-5646.1956.tb02824.x
10.1111/j.1749-6632.2010.05704.x
10.1186/gb-2010-11-3-r25
10.1091/mbc.3.2.221
10.1016/j.exger.2012.05.005
10.1126/science.1195487
10.1086/285860
10.1073/pnas.92.16.7540
10.1093/bioinformatics/bti610
10.1093/genetics/161.1.99
10.1126/science.1240276
10.1016/j.bbagen.2009.01.004
10.1016/j.tree.2010.05.006
10.1186/1471-2164-10-221
10.1101/gad.12.24.3788
10.1046/j.1420-9101.1993.6010049.x
ContentType Journal Article
Copyright 2014 Sikkink et al. 2014
Copyright © 2014 Sikkink et al.
2014 Sikkink et al..
Copyright © 2014 Sikkink 2014
Copyright_xml – notice: 2014 Sikkink et al. 2014
– notice: Copyright © 2014 Sikkink et al.
– notice: 2014 Sikkink et al..
– notice: Copyright © 2014 Sikkink 2014
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1534/g3.114.010553
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X7
  name: Health & Medical Collection
  url: https://search.proquest.com/healthcomplete
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2160-1836
EndPage 1112
ExternalDocumentID PMC4065253
24727288
10_1534_g3_114_010553
10.1534/g3.114.010553
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: AG022500
– fundername: NIGMS NIH HHS
  grantid: GM096008
– fundername: NIA NIH HHS
  grantid: P01 AG022500
– fundername: NIA NIH HHS
  grantid: AG032900
– fundername: NCRR NIH HHS
  grantid: R24 RR032670
– fundername: NIA NIH HHS
  grantid: F32 AG032900
– fundername: NIGMS NIH HHS
  grantid: R01 GM096008
– fundername: NCRR NIH HHS
  grantid: RR032670
GroupedDBID 0R~
53G
5VS
6~0
6~1
AAPXW
AAVAP
ABDBF
ABEJV
ABPTD
ABXVV
ACGFO
ACUHS
ADBBV
ADRAZ
AFULF
AIPOO
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BTFSW
DIK
EBS
EE-
EJD
FRP
GROUPED_DOAJ
GX1
H13
HYE
IAO
IHR
INH
INIJC
IPNFZ
ITC
KQ8
KSI
M48
M~E
OK1
R0Z
RHF
RHI
RIG
RNS
ROX
RPM
TGS
TOX
W8F
AAYXX
ABGNP
AMNDL
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
K9.
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c479t-8f126debbd7f9db20b27f4fe66df97a4fc62a6a3f5ddb2cc781a6a77c51163883
IEDL.DBID M48
ISSN 2160-1836
IngestDate Thu Aug 21 18:03:52 EDT 2025
Fri Sep 05 12:40:28 EDT 2025
Mon Jun 30 12:29:25 EDT 2025
Thu Apr 03 07:00:23 EDT 2025
Tue Jul 01 03:31:16 EDT 2025
Thu Apr 24 23:01:28 EDT 2025
Mon Dec 16 07:45:55 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords heat stress
experimental evolution
natural selection
genetic assimilation
hormesis
heat shock proteins
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
Copyright © 2014 Sikkink et al.
This is an open-access article distributed under the terms of the Creative Commons Attribution Unported License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c479t-8f126debbd7f9db20b27f4fe66df97a4fc62a6a3f5ddb2cc781a6a77c51163883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
RNA-seq data are deposited in the NCBI Gene Expression Omnibus (GEO) database as part of series GSE56510 with accession numbers GSM1362987–1363022.
Supporting information is available online at http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.114.010553/-/DC1
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1534/g3.114.010553
PMID 24727288
PQID 3169748832
PQPubID 7098412
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4065253
proquest_miscellaneous_1537595745
proquest_journals_3169748832
pubmed_primary_24727288
crossref_citationtrail_10_1534_g3_114_010553
crossref_primary_10_1534_g3_114_010553
oup_primary_10_1534_g3_114_010553
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-06-01
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: 2014-06-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle G3 : genes - genomes - genetics
PublicationTitleAlternate G3 (Bethesda)
PublicationYear 2014
Publisher Oxford University Press
Genetics Society of America
Publisher_xml – sequence: 0
  name: Oxford University Press
– name: Oxford University Press
– name: Genetics Society of America
References Via (2021042011341037300_bib66) 1984; 38
Morimoto (2021042011341037300_bib48) 1998; 12
Heschl (2021042011341037300_bib31) 1990; 96
Smoot (2021042011341037300_bib62) 2011; 27
Reynolds (2021042011341037300_bib54) 2013; 8
Warkentin (2021042011341037300_bib72) 1995; 92
Parejko (2021042011341037300_bib51) 1991; 45
Matesanz (2021042011341037300_bib44) 2010; 1206
Sangster (2021042011341037300_bib60) 2008; 105
Wu (2021042011341037300_bib75) 2010; 26
Winer (2021042011341037300_bib74) 1991
Kümmerli (2021042011341037300_bib39) 2009; 22
Gems (2021042011341037300_bib27) 2013; 75
Rodriguez (2021042011341037300_bib56) 2012; 47
Calabria (2021042011341037300_bib15) 2012; 25
Rohner (2021042011341037300_bib57) 2013; 342
Graustein (2021042011341037300_bib29) 2002; 161
Huey (2021042011341037300_bib33) 1991; 45
Jarosz (2021042011341037300_bib34) 2010; 330
Lithgow (2021042011341037300_bib43) 1995; 92
Nikolaidis (2021042011341037300_bib50) 2003; 21
Bloom (2021042011341037300_bib10) 2009; 10
Cowen (2021042011341037300_bib22) 2005; 309
Anders (2021042011341037300_bib2) 2010; 11
Gavrilets (2021042011341037300_bib25) 1993; 6
Callahan (2021042011341037300_bib16) 2005; 45
Benjamini (2021042011341037300_bib8) 1995; 57
Catchen (2021042011341037300_bib18) 2013; 22
Le Bourg (2021042011341037300_bib40) 2009; 1790
Bettencourt (2021042011341037300_bib9) 2002; 56
Bradshaw (2021042011341037300_bib11) 1965; 13
Stringham (2021042011341037300_bib63) 1992; 3
Rutherford (2021042011341037300_bib59) 1998; 396
Conesa (2021042011341037300_bib21) 2005; 21
Dudley (2021042011341037300_bib24) 1996; 147
2021042011341037300_bib53
Volovik (2021042011341037300_bib68) 2012; 11
Cheviron (2021042011341037300_bib20) 2013; 216
Waddington (2021042011341037300_bib71) 1956; 10
Harder (2021042011341037300_bib30) 2005; 272
Gomulkiewicz (2021042011341037300_bib28) 1992; 46
Robinson (2021042011341037300_bib55) 2010; 11
Huber (2021042011341037300_bib32) 1996; 10
Suzuki (2021042011341037300_bib64) 2006; 311
Rose (2021042011341037300_bib58) 1990
Charmantier (2021042011341037300_bib19) 2008; 320
2021042011341037300_bib61
Brenner (2021042011341037300_bib12) 1974; 77
Pfennig (2021042011341037300_bib52) 2010; 25
Waddington (2021042011341037300_bib69) 1942; 150
Via (2021042011341037300_bib67) 1985; 39
Baldwin (2021042011341037300_bib6) 1896; 30
Butler (2021042011341037300_bib13) 2010; 107
Cutter (2021042011341037300_bib23) 2006; 174
Lenski (2021042011341037300_bib41) 1991; 138
Catchen (2021042011341037300_bib17) 2011
Agrawal (2021042011341037300_bib1) 1998; 279
Lindquist (2021042011341037300_bib42) 1988; 22
Morgan (2021042011341037300_bib47) 1896; 4
The Gene Ontology Consortium (2021042011341037300_bib65) 2000; 25
Jovelin (2021042011341037300_bib35) 2003; 12
Anderson (2021042011341037300_bib4) 2011; 11
West-Eberhard (2021042011341037300_bib73) 2003
Baugh (2021042011341037300_bib7) 2013; 194
Gems (2021042011341037300_bib26) 2008; 7
Matsumura (2021042011341037300_bib45) 1996; 76
Aubret (2021042011341037300_bib5) 2004; 431
Moczek (2021042011341037300_bib46) 2011; 278
Jovelin (2021042011341037300_bib36) 2009; 181
Waddington (2021042011341037300_bib70) 1953; 7
Justice (2021042011341037300_bib37) 2006; 103
Krebs (2021042011341037300_bib38) 1999; 4
Anders (2021042011341037300_bib3) 2013; 8
Calabrese (2021042011341037300_bib14) 2003; 33
Morran (2021042011341037300_bib49) 2009; 462
References_xml – volume: 278
  start-page: 2705
  year: 2011
  ident: 2021042011341037300_bib46
  article-title: The role of developmental plasticity in evolutionary innovation.
  publication-title: Proc. Biol. Sci.
– volume: 75
  start-page: 621
  year: 2013
  ident: 2021042011341037300_bib27
  article-title: Genetics of longevity in model organisms: debates and paradigm shifts.
  publication-title: Annu. Rev. Physiol.
  doi: 10.1146/annurev-physiol-030212-183712
– volume: 38
  start-page: 881
  year: 1984
  ident: 2021042011341037300_bib66
  article-title: The quantitative genetics of polyphagy in an insect herbivore. I. Genotype-environment interaction in larval performance on different host plant species.
  publication-title: Evolution
  doi: 10.1111/j.1558-5646.1984.tb00360.x
– volume: 56
  start-page: 1796
  year: 2002
  ident: 2021042011341037300_bib9
  article-title: Response to natural and laboratory selection at the Drosophila hsp70 genes.
  publication-title: Evolution
  doi: 10.1111/j.0014-3820.2002.tb00193.x
– volume: 21
  start-page: 498
  year: 2003
  ident: 2021042011341037300_bib50
  article-title: Concerted and nonconcerted evolution of the Hsp70 gene superfamily in two sibling species of nematodes.
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msh041
– volume: 22
  start-page: 3124
  year: 2013
  ident: 2021042011341037300_bib18
  article-title: Stacks: an analysis tool set for population genomics.
  publication-title: Mol. Ecol.
  doi: 10.1111/mec.12354
– volume: 174
  start-page: 901
  year: 2006
  ident: 2021042011341037300_bib23
  article-title: High nucleotide polymorphism and rapid decay of linkage disequilibrium in wild populations of Caenorhabditis remanei.
  publication-title: Genetics
  doi: 10.1534/genetics.106.061879
– volume: 39
  start-page: 505
  year: 1985
  ident: 2021042011341037300_bib67
  article-title: Genotype-environment interaction and the evolution of phenotypic plasticity.
  publication-title: Evolution
  doi: 10.1111/j.1558-5646.1985.tb00391.x
– volume: 33
  start-page: 407
  year: 2003
  ident: 2021042011341037300_bib14
  article-title: Ethanol and hormesis.
  publication-title: Crit. Rev. Toxicol.
  doi: 10.1080/713611043
– volume: 13
  start-page: 115
  year: 1965
  ident: 2021042011341037300_bib11
  article-title: Evolutionary significance of phenotypic plasticity in plants.
  publication-title: Adv. Genet.
  doi: 10.1016/S0065-2660(08)60048-6
– start-page: 29
  volume-title: Insect Life Cycles: Genetics, Evolution and Co-ordination
  year: 1990
  ident: 2021042011341037300_bib58
  article-title: The use of selection to probe patterns of pleiotropy in fitness characters
  doi: 10.1007/978-1-4471-3464-0_3
– volume: 11
  start-page: R106
  year: 2010
  ident: 2021042011341037300_bib2
  article-title: Differential expression analysis for sequence count data.
  publication-title: Genome Biol.
  doi: 10.1186/gb-2010-11-10-r106
– volume: 8
  start-page: 1765
  year: 2013
  ident: 2021042011341037300_bib3
  article-title: Count-based differential expression analysis of RNA sequencing data using R and Bioconductor.
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2013.099
– volume: 272
  start-page: 2651
  year: 2005
  ident: 2021042011341037300_bib30
  article-title: Adaptive plasticity of floral display size in animal-pollinated plants.
  publication-title: Proc. Biol. Sci.
– volume: 26
  start-page: 873
  year: 2010
  ident: 2021042011341037300_bib75
  article-title: Fast and SNP-tolerant detection of complex variants and splicing in short reads.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq057
– volume: 7
  start-page: 200
  year: 2008
  ident: 2021042011341037300_bib26
  article-title: Stress-response hormesis and aging: “that which does not kill us makes us stronger”.
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2008.01.001
– volume: 4
  start-page: 243
  year: 1999
  ident: 2021042011341037300_bib38
  article-title: A comparison of Hsp70 expression and thermotolerance in adults and larvae of three Drosophila species.
  publication-title: Cell Stress Chaperones
  doi: 10.1379/1466-1268(1999)004<0243:ACOHEA>2.3.CO;2
– year: 2011
  ident: 2021042011341037300_bib17
– volume: 311
  start-page: 650
  year: 2006
  ident: 2021042011341037300_bib64
  article-title: Evolution of a polyphenism by genetic accommodation.
  publication-title: Science
  doi: 10.1126/science.1118888
– volume: 45
  start-page: 751
  year: 1991
  ident: 2021042011341037300_bib33
  article-title: Thermal sensitivity of Drosophila melanogaster responds rapidly to laboratory natural selection.
  publication-title: Evolution
  doi: 10.1111/j.1558-5646.1991.tb04343.x
– volume-title: Statistical Principles in Experimental Design
  year: 1991
  ident: 2021042011341037300_bib74
– volume: 279
  start-page: 1201
  year: 1998
  ident: 2021042011341037300_bib1
  article-title: Induced responses to herbivory and increased plant performance.
  publication-title: Science
  doi: 10.1126/science.279.5354.1201
– volume: 320
  start-page: 800
  year: 2008
  ident: 2021042011341037300_bib19
  article-title: Adaptive phenotypic plasticity in response to climate change in a wild bird population.
  publication-title: Science
  doi: 10.1126/science.1157174
– volume: 25
  start-page: 691
  year: 2012
  ident: 2021042011341037300_bib15
  article-title: Hsp70 protein levels and thermotolerance in Drosophila subobscura: a reassessment of the thermal co-adaptation hypothesis.
  publication-title: J. Evol. Biol.
  doi: 10.1111/j.1420-9101.2012.02463.x
– volume: 103
  start-page: 19884
  year: 2006
  ident: 2021042011341037300_bib37
  article-title: Filamentation by Escherichia coli subverts innate defenses during urinary tract infection.
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0606329104
– volume-title: Developmental Plasticity and Evolution
  year: 2003
  ident: 2021042011341037300_bib73
  doi: 10.1093/oso/9780195122343.001.0001
– volume: 181
  start-page: 1387
  year: 2009
  ident: 2021042011341037300_bib36
  article-title: High nucleotide divergence in developmental regulatory genes contrasts with the structural elements of olfactory pathways in Caenorhabditis.
  publication-title: Genetics
  doi: 10.1534/genetics.107.082651
– volume: 462
  start-page: 350
  year: 2009
  ident: 2021042011341037300_bib49
  article-title: Mutation load and rapid adaptation favour outcrossing over self-fertilization.
  publication-title: Nature
  doi: 10.1038/nature08496
– volume: 27
  start-page: 431
  year: 2011
  ident: 2021042011341037300_bib62
  article-title: Cytoscape 2.8: new features for data integration and network visualization.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq675
– volume: 22
  start-page: 589
  year: 2009
  ident: 2021042011341037300_bib39
  article-title: Phenotypic plasticity of a cooperative behaviour in bacteria.
  publication-title: J. Evol. Biol.
  doi: 10.1111/j.1420-9101.2008.01666.x
– volume: 76
  start-page: 229
  year: 1996
  ident: 2021042011341037300_bib45
  article-title: Genetic analysis of a threshold trait: density-dependent wing dimorphism in Sogatella furcifera (Horváth)(Hemiptera: Delphacidae), the whitebacked planthopper.
  publication-title: Heredity
  doi: 10.1038/hdy.1996.36
– volume: 216
  start-page: 1160
  year: 2013
  ident: 2021042011341037300_bib20
  article-title: Contributions of phenotypic plasticity to differences in thermogenic performance between highland and lowland deer mice.
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.075598
– volume: 10
  start-page: 401
  year: 1996
  ident: 2021042011341037300_bib32
  article-title: Plasticity of internodes and petioles in postrate and erect Potentilla species.
  publication-title: Funct. Ecol.
  doi: 10.2307/2390290
– volume: 12
  start-page: 1325
  year: 2003
  ident: 2021042011341037300_bib35
  article-title: Molecular evolution and quantitative variation for chemosensory behaviour in the nematode genus Caenorhabditis.
  publication-title: Mol. Ecol.
  doi: 10.1046/j.1365-294X.2003.01805.x
– ident: 2021042011341037300_bib61
– volume: 45
  start-page: 1665
  year: 1991
  ident: 2021042011341037300_bib51
  article-title: The evolutionary ecology of an antipredator reaction norm: Daphnia pulex and Chaoborus americanus.
  publication-title: Evolution
  doi: 10.1111/j.1558-5646.1991.tb02671.x
– volume: 105
  start-page: 2969
  year: 2008
  ident: 2021042011341037300_bib60
  article-title: HSP90-buffered genetic variation is common in Arabidopsis thaliana.
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0712210105
– volume: 92
  start-page: 3507
  year: 1995
  ident: 2021042011341037300_bib72
  article-title: Adaptive plasticity in hatching age: a response to predation risk trade-offs.
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.92.8.3507
– volume: 11
  start-page: 157
  year: 2011
  ident: 2021042011341037300_bib4
  article-title: Does thermoregulatory behavior maximize reproductive fitness of natural isolates of Caenorhabditis elegans?
  publication-title: BMC Evol. Biol.
  doi: 10.1186/1471-2148-11-157
– volume: 309
  start-page: 2185
  year: 2005
  ident: 2021042011341037300_bib22
  article-title: Hsp90 potentiates the rapid evolution of new traits: Drug resistance in diverse fungi.
  publication-title: Science
  doi: 10.1126/science.1118370
– volume: 396
  start-page: 336
  year: 1998
  ident: 2021042011341037300_bib59
  article-title: Hsp90 as a capacitor for morphological evolution.
  publication-title: Nature
  doi: 10.1038/24550
– volume: 11
  start-page: 491
  year: 2012
  ident: 2021042011341037300_bib68
  article-title: Temporal requirements of heat shock factor-1 for longevity assurance.
  publication-title: Aging Cell
  doi: 10.1111/j.1474-9726.2012.00811.x
– volume: 8
  start-page: e58212
  year: 2013
  ident: 2021042011341037300_bib54
  article-title: Natural variation for lifespan and stress response in the nematode Caenorhabditis remanei.
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0058212
– volume: 57
  start-page: 289
  year: 1995
  ident: 2021042011341037300_bib8
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing.
  publication-title: J. R. Stat. Soc., B
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– volume: 7
  start-page: 118
  year: 1953
  ident: 2021042011341037300_bib70
  article-title: Genetic assimilation of an acquired character.
  publication-title: Evolution
  doi: 10.1111/j.1558-5646.1953.tb00070.x
– volume: 150
  start-page: 563
  year: 1942
  ident: 2021042011341037300_bib69
  article-title: Canalization of development and the inheritance of acquired characters.
  publication-title: Nature
  doi: 10.1038/150563a0
– volume: 22
  start-page: 631
  year: 1988
  ident: 2021042011341037300_bib42
  article-title: The heat-shock proteins.
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev.ge.22.120188.003215
– volume: 45
  start-page: 475
  year: 2005
  ident: 2021042011341037300_bib16
  article-title: Using artificial selection to understand plastic plant phenotypes.
  publication-title: Integr. Comp. Biol.
  doi: 10.1093/icb/45.3.475
– volume: 46
  start-page: 390
  year: 1992
  ident: 2021042011341037300_bib28
  article-title: Quantitative genetics and the evolution of reaction norms.
  publication-title: Evolution
  doi: 10.1111/j.1558-5646.1992.tb02047.x
– volume: 25
  start-page: 25
  year: 2000
  ident: 2021042011341037300_bib65
  article-title: Gene Ontology: Tool for the unification of biology.
  publication-title: Nat. Genet.
  doi: 10.1038/75556
– volume: 431
  start-page: 261
  year: 2004
  ident: 2021042011341037300_bib5
  article-title: Adaptive developmental plasticity in snakes.
  publication-title: Nature
  doi: 10.1038/431261a
– volume: 96
  start-page: 633
  year: 1990
  ident: 2021042011341037300_bib31
  article-title: The HSP70 multigene family of Caenorhabditis elegans.
  publication-title: Comp. Biochem. Physiol. B
  doi: 10.1016/0305-0491(90)90206-9
– volume: 107
  start-page: 3776
  year: 2010
  ident: 2021042011341037300_bib13
  article-title: Cell density and mobility protect swarming bacteria against antibiotics.
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0910934107
– volume: 30
  start-page: 441
  year: 1896
  ident: 2021042011341037300_bib6
  article-title: A new factor in evolution.
  publication-title: Am. Nat.
  doi: 10.1086/276408
– volume: 77
  start-page: 71
  year: 1974
  ident: 2021042011341037300_bib12
  article-title: The genetics of Caenorhabditis elegans.
  publication-title: Genetics
  doi: 10.1093/genetics/77.1.71
– volume: 194
  start-page: 539
  year: 2013
  ident: 2021042011341037300_bib7
  article-title: To grow or not to grow: Nutritional control of development during Caenorhabditis elegans L1 arrest.
  publication-title: Genetics
  doi: 10.1534/genetics.113.150847
– volume: 138
  start-page: 1315
  year: 1991
  ident: 2021042011341037300_bib41
  article-title: Long-term experimental evolution in Escherichia coli. I. Adaptation and divergence during 2,000 generations.
  publication-title: Am. Nat.
  doi: 10.1086/285289
– volume: 4
  start-page: 733
  year: 1896
  ident: 2021042011341037300_bib47
  article-title: On modification and variation.
  publication-title: Science
  doi: 10.1126/science.4.99.733
– volume: 10
  start-page: 1
  year: 1956
  ident: 2021042011341037300_bib71
  article-title: Genetic assimilation of the bithorax phenotype.
  publication-title: Evolution
  doi: 10.1111/j.1558-5646.1956.tb02824.x
– volume: 1206
  start-page: 35
  year: 2010
  ident: 2021042011341037300_bib44
  article-title: Global change and the evolution of phenotypic plasticity in plants.
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1111/j.1749-6632.2010.05704.x
– volume: 11
  start-page: R25
  year: 2010
  ident: 2021042011341037300_bib55
  article-title: A scaling normalization method for differential expression analysis of RNA-seq data.
  publication-title: Genome Biol.
  doi: 10.1186/gb-2010-11-3-r25
– volume: 3
  start-page: 221
  year: 1992
  ident: 2021042011341037300_bib63
  article-title: Temporal and spatial expression patterns of the small heat shock (hsp16) genes in transgenic Caenorhabditis elegans.
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.3.2.221
– volume: 47
  start-page: 581
  year: 2012
  ident: 2021042011341037300_bib56
  article-title: Genetic variation for stress-response hormesis in C. elegans lifespan.
  publication-title: Exp. Gerontol.
  doi: 10.1016/j.exger.2012.05.005
– volume: 330
  start-page: 1820
  year: 2010
  ident: 2021042011341037300_bib34
  article-title: Hsp90 and environmental stress transform the adaptive value of natural genetic variation.
  publication-title: Science
  doi: 10.1126/science.1195487
– volume: 147
  start-page: 445
  year: 1996
  ident: 2021042011341037300_bib24
  article-title: Testing the adaptive plasticity hypothesis: density-dependent selection on manipulated stem length in Impatiens capensis.
  publication-title: Am. Nat.
  doi: 10.1086/285860
– volume: 92
  start-page: 7540
  year: 1995
  ident: 2021042011341037300_bib43
  article-title: Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal stress.
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.92.16.7540
– ident: 2021042011341037300_bib53
– volume: 21
  start-page: 3674
  year: 2005
  ident: 2021042011341037300_bib21
  article-title: Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti610
– volume: 161
  start-page: 99
  year: 2002
  ident: 2021042011341037300_bib29
  article-title: Levels of DNA polymorphism vary with mating system in the nematode genus Caenorhabditis.
  publication-title: Genetics
  doi: 10.1093/genetics/161.1.99
– volume: 342
  start-page: 1372
  year: 2013
  ident: 2021042011341037300_bib57
  article-title: Cryptic variation in morphological evolution: HSP90 as a capacitor for loss of eyes in cavefish.
  publication-title: Science
  doi: 10.1126/science.1240276
– volume: 1790
  start-page: 1030
  year: 2009
  ident: 2021042011341037300_bib40
  article-title: Hormesis, aging and longevity.
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagen.2009.01.004
– volume: 25
  start-page: 459
  year: 2010
  ident: 2021042011341037300_bib52
  article-title: Phenotypic plasticity’s impacts on diversification and speciation.
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/j.tree.2010.05.006
– volume: 10
  start-page: 221
  year: 2009
  ident: 2021042011341037300_bib10
  article-title: Measuring differential gene expression by short read sequencing: Quantitative comparison to 2-channel gene expression microarrays.
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-10-221
– volume: 12
  start-page: 3788
  year: 1998
  ident: 2021042011341037300_bib48
  article-title: Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators.
  publication-title: Genes Dev.
  doi: 10.1101/gad.12.24.3788
– volume: 6
  start-page: 49
  year: 1993
  ident: 2021042011341037300_bib25
  article-title: The genetics of phenotypic plasticity. VI. Theoretical predictions for directional selection.
  publication-title: J. Evol. Biol.
  doi: 10.1046/j.1420-9101.1993.6010049.x
SSID ssj0000556646
Score 2.2620652
Snippet Abstract Many organisms can acclimate to new environments through phenotypic plasticity, a complex trait that can be heritable, subject to selection, and...
Many organisms can acclimate to new environments through phenotypic plasticity, a complex trait that can be heritable, subject to selection, and evolve....
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1103
SubjectTerms Adaptation, Biological - genetics
Animals
Biological Evolution
Caenorhabditis - genetics
Environment
Gene Expression Profiling
Gene Expression Regulation
Gene-Environment Interaction
Heat resistance
Heat-Shock Response
Investigations
Phenotype
Selection, Genetic
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9RAEF-0Ivgi9ftslRXEJ2Mvm_26pyKlpQiWoi3cW9jPXkCT85IK9-S_3plkL_YE9SWQ7GQTdmZ3f7sz-xtC3irGI_Me1ia543CxPDPOy0wHo6y0YFQ9ffHnM3l6yT_NxTxtuLUprHIzJvYDtW8c7pEfFLkE6KvBAA-XPzLMGoXe1ZRC4y6511OXgT2ruRr3WJAoRnKZqDVFwQ-uCiTH_dCnhSy2pqKt4223UOafwZK3Zp-TXfIwwUb6cdDzI3In1I_J_SGR5PoJ-fXFLCtPj38mQ6JNpOeLUDfdelk5eg4QGaOnuzU1tadfF1XEaGd6AYps0f_U4gvIQA1SFDRWfa-GGDla1RQgIj1DatfGB3pkoNbVwliPZEh0Bc_rUD0llyfHF0enWUqtkDmuZl2mY86kD9Z6FWfesqllKvIYpPRxpgyPTjIjTRGFh1LnlM7hVikH-Ax6rC6ekZ26qcMLQnWUQuXeMDd13BmrVQwa1uvT6IwSXE7I-00rly7xjmP6i28lrj9AKeVVgWejy0EpE_JuFF8OhBt_E3wDKvufzP5GoWXqm23525KgirEYehW6SqDNmusWq1JiJhQXE_J80P_4JcbRea31hKgtyxgFkLF7u6SuFj1zN6AnwUTx8t-_tUceACzjQ0DaPtnpVtfhFUCfzr7u7fsGqtYFDA
  priority: 102
  providerName: ProQuest
Title Rapid Evolution of Phenotypic Plasticity and Shifting Thresholds of Genetic Assimilation in the Nematode Caenorhabditis remanei
URI https://www.ncbi.nlm.nih.gov/pubmed/24727288
https://www.proquest.com/docview/3169748832
https://www.proquest.com/docview/1537595745
https://pubmed.ncbi.nlm.nih.gov/PMC4065253
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED_WlsFeyrrPdG3QYOxp7mJZH87DGFtJVwYNoWsgb0afjaGz08Qty9P-9Z1sJ2v2wfYisHWSbd0J_c46_Q7glaTMU2vRN4kNw0KzSBkrotQpqYVGo6rpi8-G4nTMPk_45CelUDuAiz-6diGf1Hh-dfTtevkeJ_y7OntPwt5eJoHx9qjO9ZhswQ4uSiL4YWct0m9ovhG3MNGybP7WamNV2jjpdgdw_ho3eWchOnkIuy2CJB8ale_BPVc8gvtNTsnlY_h-rma5JYPb1qZI6clo6oqyWs5yQ0aIlkMgdbUkqrDkyzT3IfCZXKBOF2ErahEaBDJqlCKovPxr3oTLkbwgiBbJMLC8ltaRY4W9zqdK28CLROZ4v3D5ExifDC6OT6M2y0JkmOxXUepjKqzT2krft5r2NJWeeSeE9X2pmDeCKqESzy3WGiPTGC-lNAjVcPKmyVPYLsrCPQeSesFlbBU1PcOM0qn0LkXXveeNkpyJDrxZjXJmWgrykAnjKguuCColu0zCMemsUUoHXq_FZw33xt8EX6LK_iVzsFJotrKyLIkF-lP4DRS7WFfjBAu7Jjhm5c0idCV5n0vGO_Cs0f_6SZSFfew07YDcsIy1QCDv3qwp8mlN4o1AilOe7P_Hq7-ABwjTWBOgdgDb1fzGHSIUqnQXtuREdmHn42A4Ou_WPxSw_DSJu7X5_wCdxwvm
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJwQviDuFAUYCnsi2OI7tPiAEo1PHtqoanbS34PiyRtqS0magPvGP-I2c01xYkYCnvVRKfXIS-XxxPsfH3yHkpWTcM2thbhIaDj8pD7SxIlBOy1SkAKqlfPHhUAyO-aeT-GSN_Gz2wmBaZTMmLgdqWxj8Rr4VhQKorwIAvpt-DbBqFK6uNiU0Kljsu8V3mLLN3-59hPi-Ymy3P94ZBHVVgcBw2SsD5UMmrEtTK33Ppmw7ZdJz74Swvic190YwLXTkYwutxkgVwqGUBqgJgFVF4PcaWee4o7VD1j_0h6Oj9qsOStMILmoxzzjiW6cRyvFuLgtRRisvv5UNdZd47Z_pmZfed7u3ya2aqNL3FbLukDWX3yXXq9KVi3vkx5GeZpb2v9XQpYWno4nLi3IxzQwdASnHfO1yQXVu6edJ5jG_mo4BOnNc8ZrjCah5DVYUMJKdZ1VWHs1yCqSUDlFMtrCO7mjwOpvo1KL8Ep3B_7nL7pPjK-n2B6STF7l7RKjyIpah1cxsG250qqR3yoFLb7SMueiSN00vJ6ZWOseCG2cJznggKMlphLuxkyooXfK6NZ9WEh9_M3wBIfufzUYT0KQeDebJb-yCi7YZnmNcnIE-Ky7m6EoCoiSPu-RhFf_2SozjcrlSXSJXkNEaoEb4akueTZZa4cDXYhZHj_99W8_JjcH48CA52BvuPyE3gRTyKh1ug3TK2YV7CsSrTJ_VaKfky1U_YL8A0bVFLQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rapid+Evolution+of+Phenotypic+Plasticity+and+Shifting+Thresholds+of+Genetic+Assimilation+in+the+Nematode+Caenorhabditis+remanei&rft.jtitle=G3+%3A+genes+-+genomes+-+genetics&rft.au=Sikkink%2C+Kristin+L&rft.au=Reynolds%2C+Rose+M&rft.au=Ituarte%2C+Catherine+M&rft.au=Cresko%2C+William+A&rft.date=2014-06-01&rft.pub=Oxford+University+Press&rft.eissn=2160-1836&rft.volume=4&rft.issue=6&rft.spage=1103&rft.epage=1112&rft_id=info:doi/10.1534%2Fg3.114.010553&rft.externalDocID=10.1534%2Fg3.114.010553
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-1836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-1836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-1836&client=summon