An electronic quantum eraser

The quantum eraser is a device that illustrates the quantum principle of complementarity and shows how a dephased system can regain its lost quantum behavior by erasing the "which-path" information already obtained about it. Thus far, quantum erasers were constructed predominantly in optic...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 344; no. 6190; pp. 1363 - 1366
Main Authors Weisz, E., Choi, H. K., Sivan, I., Heiblum, M., Gefen, Y., Mahalu, D., Umansky, V.
Format Journal Article
LanguageEnglish
Published United States American Association for the Advancement of Science 20.06.2014
The American Association for the Advancement of Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The quantum eraser is a device that illustrates the quantum principle of complementarity and shows how a dephased system can regain its lost quantum behavior by erasing the "which-path" information already obtained about it. Thus far, quantum erasers were constructed predominantly in optical systems. Here, we present a realization of a quantum eraser in a mesoscopic electronic device. The use of interacting electrons, instead of noninteracting photons, allows control over the extracted information and a smooth variation of the degree of quantum erasure. The demonstrated system can serve as a first step toward a variety of more complex setups.
AbstractList Particles in the quantum world can also assume wavelike properties. Researchers often use photons to illustrate this particle/wave duality, but electrons interact with each other, which might make them a better choice. Weisz et al. used electrons to create a "quantum eraser" (see the Perspective by Feldman). By taking advantage of the electrons' interaction, the researchers first acquired information about the electrons' path--a process that destroys their wavelike properties. Next, they deliberately erased this information in order to recover the electrons' wave nature.; Science, this issue p. 1363; see also p. 1344 [PUBLICATION ABSTRACT] The quantum eraser is a device that illustrates the quantum principle of complementarity and shows how a dephased system can regain its lost quantum behavior by erasing the "which-path" information already obtained about it. Thus far, quantum erasers were constructed predominantly in optical systems. Here, we present a realization of a quantum eraser in a mesoscopic electronic device. The use of interacting electrons, instead of noninteracting photons, allows control over the extracted information and a smooth variation of the degree of quantum erasure. The demonstrated system can serve as a first step toward a variety of more complex setups. [PUBLICATION ABSTRACT]
Particles in the quantum world can also assume wavelike properties. Researchers often use photons to illustrate this particle/wave duality, but electrons interact with each other, which might make them a better choice. Weisz et al. used electrons to create a “quantum eraser” (see the Perspective by Feldman). By taking advantage of the electrons' interaction, the researchers first acquired information about the electrons' path—a process that destroys their wavelike properties. Next, they deliberately erased this information in order to recover the electrons' wave nature. Science , this issue p. 1363 ; see also p. 1344 A device that illustrates the principle of complementarity in quantum mechanics has been implemented with electrons. [Also see Perspective by Feldman ] The quantum eraser is a device that illustrates the quantum principle of complementarity and shows how a dephased system can regain its lost quantum behavior by erasing the “which-path” information already obtained about it. Thus far, quantum erasers were constructed predominantly in optical systems. Here, we present a realization of a quantum eraser in a mesoscopic electronic device. The use of interacting electrons, instead of noninteracting photons, allows control over the extracted information and a smooth variation of the degree of quantum erasure. The demonstrated system can serve as a first step toward a variety of more complex setups.
The quantum eraser is a device that illustrates the quantum principle of complementarity and shows how a dephased system can regain its lost quantum behavior by erasing the "which-path" information already obtained about it. Thus far, quantum erasers were constructed predominantly in optical systems. Here, we present a realization of a quantum eraser in a mesoscopic electronic device. The use of interacting electrons, instead of noninteracting photons, allows control over the extracted information and a smooth variation of the degree of quantum erasure. The demonstrated system can serve as a first step toward a variety of more complex setups.The quantum eraser is a device that illustrates the quantum principle of complementarity and shows how a dephased system can regain its lost quantum behavior by erasing the "which-path" information already obtained about it. Thus far, quantum erasers were constructed predominantly in optical systems. Here, we present a realization of a quantum eraser in a mesoscopic electronic device. The use of interacting electrons, instead of noninteracting photons, allows control over the extracted information and a smooth variation of the degree of quantum erasure. The demonstrated system can serve as a first step toward a variety of more complex setups.
The quantum eraser is a device that illustrates the quantum principle of complementarity and shows how a dephased system can regain its lost quantum behavior by erasing the "which-path" information already obtained about it. Thus far, quantum erasers were constructed predominantly in optical systems. Here, we present a realization of a quantum eraser in a mesoscopic electronic device. The use of interacting electrons, instead of noninteracting photons, allows control over the extracted information and a smooth variation of the degree of quantum erasure. The demonstrated system can serve as a first step toward a variety of more complex setups.
Creating and erasing quantum knowledge Particles in the quantum world can also assume wavelike properties. Researchers often use photons to illustrate this particle/wave duality, but electrons interact with each other, which might make them a better choice. Weisz et al. used electrons to create a “quantum eraser” (see the Perspective by Feldman). By taking advantage of the electrons' interaction, the researchers first acquired information about the electrons' path—a process that destroys their wavelike properties. Next, they deliberately erased this information in order to recover the electrons' wave nature. Science , this issue p. 1363; see also p. 1344
Creating and erasing quantum knowledgeParticles in the quantum world can also assume wavelike properties. Researchers often use photons to illustrate this particle/wave duality, but electrons interact with each other, which might make them a better choice. Weisz et al. used electrons to create a "quantum eraser" (see the Perspective by Feldman). By taking advantage of the electrons' interaction, the researchers first acquired information about the electrons' path-a process that destroys their wavelike properties. Next, they deliberately erased this information in order to recover the electrons' wave nature.Science, this issue p. 1363; see also p. 1344
Author Weisz, E.
Gefen, Y.
Sivan, I.
Mahalu, D.
Choi, H. K.
Umansky, V.
Heiblum, M.
Author_xml – sequence: 1
  givenname: E.
  surname: Weisz
  fullname: Weisz, E.
– sequence: 2
  givenname: H. K.
  surname: Choi
  fullname: Choi, H. K.
– sequence: 3
  givenname: I.
  surname: Sivan
  fullname: Sivan, I.
– sequence: 4
  givenname: M.
  surname: Heiblum
  fullname: Heiblum, M.
– sequence: 5
  givenname: Y.
  surname: Gefen
  fullname: Gefen, Y.
– sequence: 6
  givenname: D.
  surname: Mahalu
  fullname: Mahalu, D.
– sequence: 7
  givenname: V.
  surname: Umansky
  fullname: Umansky, V.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24948731$$D View this record in MEDLINE/PubMed
BookMark eNqN0UtLAzEUBeAgFW2razcqBTduxt68JsmyiC8ouNF1SDM3MGWascnMwn_vSCuIILrKIt-53ORMyCi2EQk5o3BDKSvn2dcYPd5QJrSQ5oCMKRhZGAZ8RMYAvCw0KHlMJjmvAYY7w4_IMRNGaMXpmJwv4gwb9F1qY-1n297Frt_MMLmM6YQcBtdkPN2fU_J6f_dy-1gsnx-ebhfLwgtlukJXJtAgKwZqVXIVDHgATZmWyDyY4MIqYOkr5Ve-0i4wxapgKmABnfOAfEqud3PfUrvtMXd2U2ePTeMitn22bNicaxCg_qRUSlMqCcz8g3IjFDeKD_TqB123fYrDmz-VKhVIpQd1uVf9aoOVfUv1xqV3-_WbA5A74FObc8Jgfd25rm5jl1zdWAr2szW7b83uWxty8x-5r9G_Jy52iXXu2vRtEyVEaYB_ANmBomo
CODEN SCIEAS
CitedBy_id crossref_primary_10_1088_1367_2630_18_1_013016
crossref_primary_10_1088_0953_8984_27_47_475301
crossref_primary_10_1088_1361_6641_ab3be6
crossref_primary_10_1103_PhysRevA_100_022321
crossref_primary_10_1103_PhysRevB_97_205419
crossref_primary_10_1038_ncomms8435
crossref_primary_10_1038_s41565_023_01368_5
crossref_primary_10_1126_science_1255501
crossref_primary_10_1016_j_physe_2020_114117
crossref_primary_10_1103_PhysRevB_91_115109
crossref_primary_10_1103_PhysRevB_99_245415
crossref_primary_10_1103_PhysRevB_96_205431
crossref_primary_10_1103_RevModPhys_88_015005
crossref_primary_10_1007_s40509_016_0076_8
crossref_primary_10_1103_PhysRevLett_125_020405
crossref_primary_10_1038_s41598_020_76790_z
crossref_primary_10_1016_j_cap_2023_12_004
crossref_primary_10_1103_PhysRevA_102_052224
crossref_primary_10_1103_PhysRevA_94_063849
crossref_primary_10_1103_PhysRevLett_117_146801
crossref_primary_10_1103_PhysRevB_96_125146
crossref_primary_10_1103_PhysRevB_97_125405
crossref_primary_10_3788_COL202523_032701
crossref_primary_10_3938_jkps_77_489
crossref_primary_10_1007_s40042_024_01029_3
crossref_primary_10_1016_j_physe_2019_01_016
crossref_primary_10_1088_1361_6463_ad6c5a
crossref_primary_10_1063_5_0040679
crossref_primary_10_1063_5_0135114
crossref_primary_10_1103_PhysRevB_91_115438
crossref_primary_10_1103_PhysRevA_111_012610
crossref_primary_10_1038_s41467_021_24276_5
crossref_primary_10_1103_PhysRevB_102_125402
crossref_primary_10_3390_app9112300
crossref_primary_10_1038_s41467_023_36012_2
crossref_primary_10_1103_PhysRevLett_129_120507
crossref_primary_10_1103_PhysRevB_104_085427
crossref_primary_10_1007_s11433_024_2587_y
crossref_primary_10_1103_PhysRevB_93_121412
Cites_doi 10.1515/9781400854554
10.1103/PhysRevLett.109.250401
10.1038/nature01503
10.1038/35075517
10.1103/PhysRevLett.84.1
10.1103/PhysRevA.49.61
10.1038/375367b0
10.1038/351111a0
10.1103/PhysRevLett.77.2154
10.1103/PhysRevLett.96.016804
10.1103/PhysRevD.19.473
10.1103/PhysRevLett.84.5820
10.1126/science.1226755
10.1103/PhysRevA.45.7729
10.1038/25653
10.1103/PhysRevLett.108.256805
10.1103/PhysRevA.51.54
10.1103/PhysRevA.25.2208
10.1103/PhysRevA.41.3436
10.1103/PhysRevB.87.155308
10.1073/pnas.1213201110
10.1103/PhysRevB.85.045320
10.1038/36057
10.1063/1.3047826
10.1038/375368a0
10.1038/121580a0
10.1103/PhysRevB.75.125326
10.1103/PhysRevLett.98.036803
10.1038/nphys854
10.1103/PhysRev.115.485
10.1038/nature05955
10.1103/PhysRevLett.101.226802
10.1140/epjd/e2012-30469-5
10.1103/PhysRevB.87.165302
10.1103/PhysRevLett.75.3034
10.1126/science.1226719
10.1103/PhysRevB.87.165417
ContentType Journal Article
Copyright Copyright © 2014 American Association for the Advancement of Science
Copyright © 2014, American Association for the Advancement of Science.
Copyright © 2014, American Association for the Advancement of Science
Copyright_xml – notice: Copyright © 2014 American Association for the Advancement of Science
– notice: Copyright © 2014, American Association for the Advancement of Science.
– notice: Copyright © 2014, American Association for the Advancement of Science
DBID AAYXX
CITATION
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1126/science.1248459
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Materials Research Database
CrossRef
MEDLINE - Academic
PubMed
AGRICOLA

Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 1366
ExternalDocumentID 3340613141
24948731
10_1126_science_1248459
24744690
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
.HR
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
4.4
4R4
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAJYS
AAMNW
AANCE
AAWTO
AAYJJ
ABBHK
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPMR
ABPPZ
ABQIJ
ABTLG
ABWJO
ABXSQ
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACHIC
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADMHC
ADQXQ
ADUKH
ADULT
ADXHL
AEGBM
AENEX
AETEA
AEUPB
AEXZC
AFBNE
AFCHL
AFFDN
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AQVQM
ASPBG
AVWKF
BKF
BLC
C45
C51
CS3
DB2
DCCCD
DU5
EBS
EJD
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPSME
IPY
ISE
J9C
JAAYA
JBMMH
JCF
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
QJJ
RHI
RXW
SA0
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YYQ
YZZ
ZCA
ZE2
~02
~KM
~ZZ
AAYXX
ABCQX
CITATION
K-O
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c479t-8d9f1f5d207b637f90c0081285e2c09fafbfe6cd7cbcd8af272df9d02feaac0e3
ISSN 0036-8075
1095-9203
IngestDate Fri Jul 11 00:10:28 EDT 2025
Fri Jul 11 10:19:16 EDT 2025
Tue Aug 05 10:05:34 EDT 2025
Fri Jul 25 11:01:08 EDT 2025
Mon Jul 21 05:27:23 EDT 2025
Tue Jul 01 04:10:15 EDT 2025
Thu Apr 24 23:09:17 EDT 2025
Thu Jul 03 22:43:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6190
Language English
License Copyright © 2014, American Association for the Advancement of Science.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c479t-8d9f1f5d207b637f90c0081285e2c09fafbfe6cd7cbcd8af272df9d02feaac0e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 24948731
PQID 1537670578
PQPubID 1256
PageCount 4
ParticipantIDs proquest_miscellaneous_2000380407
proquest_miscellaneous_1559675029
proquest_miscellaneous_1539473973
proquest_journals_1537670578
pubmed_primary_24948731
crossref_citationtrail_10_1126_science_1248459
crossref_primary_10_1126_science_1248459
jstor_primary_24744690
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-06-20
PublicationDateYYYYMMDD 2014-06-20
PublicationDate_xml – month: 06
  year: 2014
  text: 2014-06-20
  day: 20
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2014
Publisher American Association for the Advancement of Science
The American Association for the Advancement of Science
Publisher_xml – name: American Association for the Advancement of Science
– name: The American Association for the Advancement of Science
References e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_20_2
e_1_3_2_21_2
e_1_3_2_22_2
e_1_3_2_23_2
e_1_3_2_24_2
e_1_3_2_25_2
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
24948723 - Science. 2014 Jun 20;344(6190):1344-5
References_xml – ident: e_1_3_2_32_2
  doi: 10.1515/9781400854554
– ident: e_1_3_2_37_2
  doi: 10.1103/PhysRevLett.109.250401
– ident: e_1_3_2_18_2
  doi: 10.1038/nature01503
– ident: e_1_3_2_9_2
  doi: 10.1038/35075517
– ident: e_1_3_2_14_2
  doi: 10.1103/PhysRevLett.84.1
– ident: e_1_3_2_13_2
  doi: 10.1103/PhysRevA.49.61
– ident: e_1_3_2_5_2
  doi: 10.1038/375367b0
– ident: e_1_3_2_4_2
  doi: 10.1038/351111a0
– ident: e_1_3_2_30_2
  doi: 10.1103/PhysRevLett.77.2154
– ident: e_1_3_2_38_2
  doi: 10.1103/PhysRevLett.96.016804
– ident: e_1_3_2_28_2
  doi: 10.1103/PhysRevD.19.473
– ident: e_1_3_2_23_2
  doi: 10.1103/PhysRevLett.84.5820
– ident: e_1_3_2_17_2
  doi: 10.1126/science.1226755
– ident: e_1_3_2_11_2
  doi: 10.1103/PhysRevA.45.7729
– ident: e_1_3_2_8_2
  doi: 10.1038/25653
– ident: e_1_3_2_26_2
  doi: 10.1103/PhysRevLett.108.256805
– ident: e_1_3_2_29_2
  doi: 10.1103/PhysRevA.51.54
– ident: e_1_3_2_10_2
  doi: 10.1103/PhysRevA.25.2208
– ident: e_1_3_2_27_2
  doi: 10.1103/PhysRevA.41.3436
– ident: e_1_3_2_33_2
  doi: 10.1103/PhysRevB.87.155308
– ident: e_1_3_2_15_2
  doi: 10.1073/pnas.1213201110
– ident: e_1_3_2_20_2
  doi: 10.1103/PhysRevB.85.045320
– ident: e_1_3_2_22_2
  doi: 10.1038/36057
– ident: e_1_3_2_3_2
  doi: 10.1063/1.3047826
– ident: e_1_3_2_6_2
  doi: 10.1038/375368a0
– ident: e_1_3_2_2_2
  doi: 10.1038/121580a0
– ident: e_1_3_2_19_2
  doi: 10.1103/PhysRevB.75.125326
– ident: e_1_3_2_24_2
  doi: 10.1103/PhysRevLett.98.036803
– ident: e_1_3_2_7_2
  doi: 10.1038/nphys854
– ident: e_1_3_2_25_2
  doi: 10.1103/PhysRev.115.485
– ident: e_1_3_2_31_2
  doi: 10.1038/nature05955
– ident: e_1_3_2_35_2
  doi: 10.1103/PhysRevLett.101.226802
– ident: e_1_3_2_21_2
  doi: 10.1140/epjd/e2012-30469-5
– ident: e_1_3_2_36_2
  doi: 10.1103/PhysRevB.87.165302
– ident: e_1_3_2_12_2
  doi: 10.1103/PhysRevLett.75.3034
– ident: e_1_3_2_16_2
  doi: 10.1126/science.1226719
– ident: e_1_3_2_34_2
  doi: 10.1103/PhysRevB.87.165417
– reference: 24948723 - Science. 2014 Jun 20;344(6190):1344-5
SSID ssj0009593
Score 2.3715084
Snippet The quantum eraser is a device that illustrates the quantum principle of complementarity and shows how a dephased system can regain its lost quantum behavior...
Particles in the quantum world can also assume wavelike properties. Researchers often use photons to illustrate this particle/wave duality, but electrons...
Creating and erasing quantum knowledgeParticles in the quantum world can also assume wavelike properties. Researchers often use photons to illustrate this...
Creating and erasing quantum knowledge Particles in the quantum world can also assume wavelike properties. Researchers often use photons to illustrate this...
SourceID proquest
pubmed
crossref
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1363
SubjectTerms Autocorrelation
Electric current
Electronic Equipment
Electronics
Electrons
Erasers
Magnetic fields
Microscopes
Microscopy
Particle physics
Photons
Quantum complementarity
Quantum mechanics
Quantum physics
researchers
Solid state devices
Title An electronic quantum eraser
URI https://www.jstor.org/stable/24744690
https://www.ncbi.nlm.nih.gov/pubmed/24948731
https://www.proquest.com/docview/1537670578
https://www.proquest.com/docview/1539473973
https://www.proquest.com/docview/1559675029
https://www.proquest.com/docview/2000380407
Volume 344
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELagExIviA0GgYKCRKWhKpXjOE38mEKrCo3x0oq-RY5zlipBOtb2gf16LrGTeUDR4MWqnHNb3Z2du_Pdd4S8jTjwFOoeYRCXAUcDNkhBigAiHvMQChpDk21xMZ4v-cdVvGpb3Nvqkl0xUtd_rCv5H6niHMq1rpL9B8l2X4oT-BnliyNKGMc7yTirhk4bm-975NL-2xCupO2v3Fqd7QZGa7K7oXHk0qUaZiYhoM0PsMucYMEXWG-vf6lf2Ji-1068dD2YhoOJGExmJrraKckc1oVtrPzJDTeEvE6LYtQ9Qi2CsXuERgbD0eoK-mR0eFkn0EUBDu75WM8579r26e_nuNN5EkZog6TcAoffQsy--JzPlufn-WK6WtwnRwxdBdYjR9nkw2R2EHrZAjw5pVPtD9yyTUx66mHHozFAFo_JI-s5-JlRg2NyD6oT8sD0Ev1xQo6ttLb-mYUSf_eE9LPKv9EQ32qIbzTkKVnOpov388D2wwgUT8QuSEuhQx2XjCbFOEq0oKq26FgaA1NUaKkLDWNVJqpQZSo1S1ipRUmZBikVheiU9KpNBc-JLzgariW6o6XUXHEllUzTWPO4ASyi4JFRy4lcWbD4umfJ17xxGtk4t6zLLes8ctYtuDQ4KYdJTxvWdnSMJ7yO0nik3_I6t7tsm4cN3hB6FalH3nSP8QysL7ZkBZt9QyN4gpZ19DeaWKBzTJk4TMOai3J8rSUeeWZk7fxJgb59FL64w-qX5OHN1umT3u5qD6_Qdt0Vr61y_gQLaZOG
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+electronic+quantum+eraser&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Weisz%2C+E&rft.au=Choi%2C+H+K&rft.au=Si%E1%B9%BFan%2C+A&rft.au=Heiblum%2C+M&rft.date=2014-06-20&rft.issn=0036-8075&rft.volume=344&rft.issue=6190+p.1363-1366&rft.spage=1363&rft.epage=1366&rft_id=info:doi/10.1126%2Fscience.1248459&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon