Minimum bactericidal concentration of ciprofloxacin to Pseudomonas aeruginosa determined rapidly based on pyocyanin secretion

[Display omitted] •Pyocyanin as a marker for determining bactericidal deactivation of P. aeruginosa.•Nanoporous gold for electrochemical detection of pyocyanin in biological matrices.•Rapidly determines ciprofloxacin level for bactericidal deactivation of P. aeruginosa.•Bacterial persistence at mini...

Full description

Saved in:
Bibliographic Details
Published inSensors and actuators. B, Chemical Vol. 312; p. 127936
Main Authors Liu, Yi, Moore, John H., Kolling, Glynis L., McGrath, John S., Papin, Jason A., Swami, Nathan S.
Format Journal Article
LanguageEnglish
Published Switzerland Elsevier B.V 01.06.2020
Elsevier Science Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Pyocyanin as a marker for determining bactericidal deactivation of P. aeruginosa.•Nanoporous gold for electrochemical detection of pyocyanin in biological matrices.•Rapidly determines ciprofloxacin level for bactericidal deactivation of P. aeruginosa.•Bacterial persistence at minimum inhibitory levels detected without prolonged culture. Infections due to Pseudomonas aeruginosa (P. aeruginosa) often exhibit broad-spectrum resistance and persistence to common antibiotics. Persistence is especially problematic with immune-compromised subjects who are unable to eliminate the inhibited bacteria. Hence, antibiotics must be used at the appropriate minimum bactericidal concentration (MBC) rather than at minimum inhibitory concentration (MIC) levels. However, MBC determination by conventional methods requires a 24 h culture step in the antibiotic media to confirm inhibition, followed by a 24 h sub-culture step in antibiotic-free media to confirm the lack of bacterial growth. We show that electrochemical detection of pyocyanin (PYO), which is a redox-active bacterial metabolite secreted by P. aeruginosa, can be used to rapidly assess the critical ciprofloxacin level required for bactericidal deactivation of P. aeruginosa within just 2 h in antibiotic-treated growth media. The detection sensitivity for PYO can be enhanced by using nanoporous gold that is modified with a self-assembled monolayer to lower interference from oxygen reduction, while maintaining a low charge transfer resistance level and preventing electrode fouling within biological sample matrices. In this manner, bactericidal efficacy of ciprofloxacin towards P. aeruginosa at the MBC level and bacterial persistence at the MIC level can be determined rapidly, as validated at later timepoints using bacterial subculture in antibiotic-free media.
AbstractList Infections due to Pseudomonas aeruginosa (P. aeruginosa) often exhibit broad-spectrum resistance and persistence to common antibiotics. Persistence is especially problematic with immune-compromised subjects who are unable to eliminate the inhibited bacteria. Hence, antibiotics must be used at the appropriate minimum bactericidal concentration (MBC) rather than at minimum inhibitory concentration (MIC) levels. However, MBC determination by conventional methods requires a 24 h culture step in the antibiotic media to confirm inhibition, followed by a 24 h sub-culture step in antibiotic-free media to confirm the lack of bacterial growth. We show that electrochemical detection of pyocyanin (PYO), which is a redox-active bacterial metabolite secreted by P. aeruginosa, can be used to rapidly assess the critical ciprofloxacin level required for bactericidal deactivation of P. aeruginosa within just 2 h in antibiotic-treated growth media. The detection sensitivity for PYO can be enhanced by using nanoporous gold that is modified with a self-assembled monolayer to lower interference from oxygen reduction, while maintaining a low charge transfer resistance level and preventing electrode fouling within biological sample matrices. In this manner, bactericidal efficacy of ciprofloxacin towards P. aeruginosa at the MBC level and bacterial persistence at the MIC level can be determined rapidly, as validated at later timepoints using bacterial subculture in antibiotic-free media.
[Display omitted] •Pyocyanin as a marker for determining bactericidal deactivation of P. aeruginosa.•Nanoporous gold for electrochemical detection of pyocyanin in biological matrices.•Rapidly determines ciprofloxacin level for bactericidal deactivation of P. aeruginosa.•Bacterial persistence at minimum inhibitory levels detected without prolonged culture. Infections due to Pseudomonas aeruginosa (P. aeruginosa) often exhibit broad-spectrum resistance and persistence to common antibiotics. Persistence is especially problematic with immune-compromised subjects who are unable to eliminate the inhibited bacteria. Hence, antibiotics must be used at the appropriate minimum bactericidal concentration (MBC) rather than at minimum inhibitory concentration (MIC) levels. However, MBC determination by conventional methods requires a 24 h culture step in the antibiotic media to confirm inhibition, followed by a 24 h sub-culture step in antibiotic-free media to confirm the lack of bacterial growth. We show that electrochemical detection of pyocyanin (PYO), which is a redox-active bacterial metabolite secreted by P. aeruginosa, can be used to rapidly assess the critical ciprofloxacin level required for bactericidal deactivation of P. aeruginosa within just 2 h in antibiotic-treated growth media. The detection sensitivity for PYO can be enhanced by using nanoporous gold that is modified with a self-assembled monolayer to lower interference from oxygen reduction, while maintaining a low charge transfer resistance level and preventing electrode fouling within biological sample matrices. In this manner, bactericidal efficacy of ciprofloxacin towards P. aeruginosa at the MBC level and bacterial persistence at the MIC level can be determined rapidly, as validated at later timepoints using bacterial subculture in antibiotic-free media.
Infections due to Pseudomonas aeruginosa ( P. aeruginosa ) often exhibit broad-spectrum resistance and persistence to common antibiotics. Persistence is especially problematic with immune-compromised subjects who are unable to eliminate the inhibited bacteria. Hence, antibiotics must be used at the appropriate minimum bactericidal concentration (MBC) rather than at minimum inhibitory concentration (MIC) levels. However, MBC determination by conventional methods requires a 24 h culture step in the antibiotic media to confirm inhibition, followed by a 24 h sub-culture step in antibiotic-free media to confirm the lack of bacterial growth. We show that electrochemical detection of pyocyanin (PYO), which is a redox-active bacterial metabolite secreted by P. aeruginosa , can be used to rapidly assess the critical ciprofloxacin level required for bactericidal deactivation of P. aeruginosa within just 2 hours in antibiotic-treated growth media. The detection sensitivity for PYO can be enhanced by using nanoporous gold that is modified with a self-assembled monolayer to lower interference from oxygen reduction, while maintaining a low charge transfer resistance level and preventing electrode fouling within biological sample matrices. In this manner, bactericidal efficacy of ciprofloxacin towards P. aeruginosa at the MBC level and bacterial persistence at the MIC level can be determined rapidly, as validated at later timepoints using bacterial subculture in antibiotic-free media.
Infections due to Pseudomonas aeruginosa (P. aeruginosa) often exhibit broad-spectrum resistance and persistence to common antibiotics. Persistence is especially problematic with immune-compromised subjects who are unable to eliminate the inhibited bacteria. Hence, antibiotics must be used at the appropriate minimum bactericidal concentration (MBC) rather than at minimum inhibitory concentration (MIC) levels. However, MBC determination by conventional methods requires a 24 h culture step in the antibiotic media to confirm inhibition, followed by a 24 h sub-culture step in antibiotic-free media to confirm the lack of bacterial growth. We show that electrochemical detection of pyocyanin (PYO), which is a redox-active bacterial metabolite secreted by P. aeruginosa, can be used to rapidly assess the critical ciprofloxacin level required for bactericidal deactivation of P. aeruginosa within just 2 hours in antibiotic-treated growth media. The detection sensitivity for PYO can be enhanced by using nanoporous gold that is modified with a self-assembled monolayer to lower interference from oxygen reduction, while maintaining a low charge transfer resistance level and preventing electrode fouling within biological sample matrices. In this manner, bactericidal efficacy of ciprofloxacin towards P. aeruginosa at the MBC level and bacterial persistence at the MIC level can be determined rapidly, as validated at later timepoints using bacterial subculture in antibiotic-free media.Infections due to Pseudomonas aeruginosa (P. aeruginosa) often exhibit broad-spectrum resistance and persistence to common antibiotics. Persistence is especially problematic with immune-compromised subjects who are unable to eliminate the inhibited bacteria. Hence, antibiotics must be used at the appropriate minimum bactericidal concentration (MBC) rather than at minimum inhibitory concentration (MIC) levels. However, MBC determination by conventional methods requires a 24 h culture step in the antibiotic media to confirm inhibition, followed by a 24 h sub-culture step in antibiotic-free media to confirm the lack of bacterial growth. We show that electrochemical detection of pyocyanin (PYO), which is a redox-active bacterial metabolite secreted by P. aeruginosa, can be used to rapidly assess the critical ciprofloxacin level required for bactericidal deactivation of P. aeruginosa within just 2 hours in antibiotic-treated growth media. The detection sensitivity for PYO can be enhanced by using nanoporous gold that is modified with a self-assembled monolayer to lower interference from oxygen reduction, while maintaining a low charge transfer resistance level and preventing electrode fouling within biological sample matrices. In this manner, bactericidal efficacy of ciprofloxacin towards P. aeruginosa at the MBC level and bacterial persistence at the MIC level can be determined rapidly, as validated at later timepoints using bacterial subculture in antibiotic-free media.
Infections due to ( ) often exhibit broad-spectrum resistance and persistence to common antibiotics. Persistence is especially problematic with immune-compromised subjects who are unable to eliminate the inhibited bacteria. Hence, antibiotics must be used at the appropriate minimum bactericidal concentration (MBC) rather than at minimum inhibitory concentration (MIC) levels. However, MBC determination by conventional methods requires a 24 h culture step in the antibiotic media to confirm inhibition, followed by a 24 h sub-culture step in antibiotic-free media to confirm the lack of bacterial growth. We show that electrochemical detection of pyocyanin (PYO), which is a redox-active bacterial metabolite secreted by , can be used to rapidly assess the critical ciprofloxacin level required for bactericidal deactivation of within just 2 hours in antibiotic-treated growth media. The detection sensitivity for PYO can be enhanced by using nanoporous gold that is modified with a self-assembled monolayer to lower interference from oxygen reduction, while maintaining a low charge transfer resistance level and preventing electrode fouling within biological sample matrices. In this manner, bactericidal efficacy of ciprofloxacin towards at the MBC level and bacterial persistence at the MIC level can be determined rapidly, as validated at later timepoints using bacterial subculture in antibiotic-free media.
ArticleNumber 127936
Author McGrath, John S.
Papin, Jason A.
Kolling, Glynis L.
Swami, Nathan S.
Moore, John H.
Liu, Yi
AuthorAffiliation a Electrical and Computer Engineering, University of Virginia, Charlottesville, Virginia 22904, USA
b Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA
c Chemistry, University of Virginia, Charlottesville, VA 22904, USA
AuthorAffiliation_xml – name: a Electrical and Computer Engineering, University of Virginia, Charlottesville, Virginia 22904, USA
– name: b Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA
– name: c Chemistry, University of Virginia, Charlottesville, VA 22904, USA
Author_xml – sequence: 1
  givenname: Yi
  surname: Liu
  fullname: Liu, Yi
  organization: Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, 22904, USA
– sequence: 2
  givenname: John H.
  surname: Moore
  fullname: Moore, John H.
  organization: Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, 22904, USA
– sequence: 3
  givenname: Glynis L.
  surname: Kolling
  fullname: Kolling, Glynis L.
  organization: Biomedical Engineering, University of Virginia, Charlottesville, VA, 22904, USA
– sequence: 4
  givenname: John S.
  orcidid: 0000-0001-9110-7759
  surname: McGrath
  fullname: McGrath, John S.
  organization: Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, 22904, USA
– sequence: 5
  givenname: Jason A.
  surname: Papin
  fullname: Papin, Jason A.
  organization: Biomedical Engineering, University of Virginia, Charlottesville, VA, 22904, USA
– sequence: 6
  givenname: Nathan S.
  orcidid: 0000-0002-0492-1160
  surname: Swami
  fullname: Swami, Nathan S.
  email: nswami@virginia.edu
  organization: Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, 22904, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32606491$$D View this record in MEDLINE/PubMed
BookMark eNp9kk9v1DAQxS1URLeFD8AFReLCZRf_ie1GSEioAlqpCA5wtiaTSfEqsYOdVOyB746XLRX00JM18u89zfPzCTsKMRBjzwXfCC7M6-0mh3YjuSyztI0yj9hKnFm1VtzaI7bijdTrmnN9zE5y3nLOa2X4E3aspOGmbsSK_frkgx-XsWoBZ0oefQdDhTEghTnB7GOoYl-hn1Lsh_gT0IdqjtWXTEsXxxggV0BpufYhZqg6KiajD9RVCSbfDbtinMtUbKZdxB2Eos-EifbWT9njHoZMz27PU_btw_uv5xfrq88fL8_fXa2xts28tmjQ1gi6h6ZvSCqDqEEC77XVLSne05nRSjbQCc0BRSts4aUi0wBaUKfs7cF3WtqRukO2wU3Jj5B2LoJ3_98E_91dxxtny0spoYvBq1uDFH8slGc3-ow0DBAoLtnJWjS14FqLgr68h27jkkKJV6i6NrY2Uhbqxb8b3a3yt5kCiAOAKeacqL9DBHf79t3Wlfbdvn13aL9o7D0N-vlPhyWUHx5UvjkoqbRw4ym5jJ7KJ-h8IpxdF_0D6t_AVM1G
CitedBy_id crossref_primary_10_1016_j_jcis_2022_03_031
crossref_primary_10_1016_j_molliq_2021_118083
crossref_primary_10_1016_j_talanta_2022_123210
crossref_primary_10_3390_ijms241713644
crossref_primary_10_1080_17568919_2024_2400954
crossref_primary_10_1016_j_ijbiomac_2023_126905
crossref_primary_10_1016_j_snr_2021_100072
crossref_primary_10_1016_j_scitotenv_2021_146503
crossref_primary_10_1080_09205063_2024_2301807
crossref_primary_10_3390_pharmaceutics13121988
crossref_primary_10_1021_acs_biomac_3c00132
crossref_primary_10_1016_j_coelec_2022_101033
crossref_primary_10_1016_j_snb_2022_131504
crossref_primary_10_1109_TMBMC_2023_3274112
crossref_primary_10_1002_elan_12021
crossref_primary_10_1002_anse_202300058
crossref_primary_10_1016_j_snb_2021_130427
crossref_primary_10_1149_2754_2726_ad08d4
crossref_primary_10_1038_s41598_021_01225_2
crossref_primary_10_1016_j_aca_2024_342818
crossref_primary_10_1007_s00604_021_05109_0
crossref_primary_10_1039_D2LC00552B
crossref_primary_10_1016_j_apsusc_2023_156889
Cites_doi 10.1021/ac302703y
10.1016/j.electacta.2019.06.127
10.1021/acs.analchem.9b02686
10.1021/acsami.7b08581
10.2147/IDR.S16263
10.1039/c2lc40650k
10.1038/nm.2715
10.1016/j.aca.2015.05.002
10.1021/es702290a
10.1086/381972
10.1016/j.jelechem.2016.10.013
10.1021/acs.analchem.7b00876
10.1073/pnas.1421211111
10.1021/acs.analchem.5b02969
10.1016/j.snb.2018.08.137
10.1016/j.tibtech.2017.08.001
10.1021/acs.analchem.5b00846
10.1021/la960465w
10.3390/nano8030171
10.1039/C5RA05043J
10.1016/j.nano.2014.04.010
10.1016/j.bios.2017.05.042
10.1016/j.elecom.2017.03.021
10.1149/2.0101604jes
10.1038/ncomms4256
10.1016/j.bios.2014.04.028
10.1016/j.elecom.2016.08.015
10.1021/acssensors.6b00325
10.1039/C4AN00435C
10.1038/ncomms10535
10.1021/ac403013r
10.1039/c0cp00757a
10.1089/ars.2011.4249
10.1016/j.carbpol.2018.04.096
10.3390/ma2042188
10.1128/JB.01138-07
10.1021/acssensors.8b00498
10.1039/c2jm16633j
10.1016/j.bioelechem.2009.07.008
10.1073/pnas.1117298108
10.1038/nmat4720
10.1039/C5AN01358E
10.1557/mrs.2017.298
10.1039/b712760j
10.1002/celc.201600590
10.1021/ac5029837
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright Elsevier Science Ltd. Jun 1, 2020
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Jun 1, 2020
DBID AAYXX
CITATION
NPM
7SP
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
L7M
7X8
5PM
DOI 10.1016/j.snb.2020.127936
DatabaseName CrossRef
PubMed
Electronics & Communications Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database


MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3077
ExternalDocumentID PMC7326315
32606491
10_1016_j_snb_2020_127936
S0925400520302847
Genre Journal Article
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R21 AI130902
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SST
SSZ
T5K
TN5
YK3
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
AJQLL
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
HMU
HVGLF
HZ~
R2-
RIG
SCB
SCH
SEW
SSH
WUQ
EFKBS
NPM
7SP
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
L7M
7X8
5PM
ID FETCH-LOGICAL-c479t-7c6c74ca5fa9f9e236cc5a2a0f575be30fe865329ad150ac1b1774c23e69ac7a3
IEDL.DBID .~1
ISSN 0925-4005
IngestDate Thu Aug 21 18:25:42 EDT 2025
Thu Jul 10 22:06:48 EDT 2025
Fri Jul 25 08:24:27 EDT 2025
Mon Jul 21 06:02:22 EDT 2025
Tue Jul 01 01:27:40 EDT 2025
Thu Apr 24 22:57:33 EDT 2025
Fri Feb 23 02:47:44 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Persistence
Nanoporous gold
Bacteria
Antibiotics
Pyocyanin
Microfluidics
persistence
nanoporous gold
bacteria
microfluidics
pyocyanin
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c479t-7c6c74ca5fa9f9e236cc5a2a0f575be30fe865329ad150ac1b1774c23e69ac7a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
The manuscript was written through contributions of all authors and all authors approved the final version.
Author Contributions
ORCID 0000-0001-9110-7759
0000-0002-0492-1160
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7326315
PMID 32606491
PQID 2444674622
PQPubID 2047454
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7326315
proquest_miscellaneous_2419410551
proquest_journals_2444674622
pubmed_primary_32606491
crossref_primary_10_1016_j_snb_2020_127936
crossref_citationtrail_10_1016_j_snb_2020_127936
elsevier_sciencedirect_doi_10_1016_j_snb_2020_127936
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Sensors and actuators. B, Chemical
PublicationTitleAlternate Sens Actuators B Chem
PublicationYear 2020
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Webster, Sismaet, Conte, Chan, Goluch (bib0050) 2014; 60
Makaraviciute, Xu, Nyholm, Zhang (bib0220) 2017; 9
Webster, Sismaet, Chan, Goluch (bib0045) 2015; 140
Li, Liu, Kim, Song, Tsao, Teng, Gao, Mei, Bentley, Payne, Wang (bib0095) 2018; 195
Wilson, Stoianov, O’Hare (bib0090) 2016; 71
Pankey, Sabath (bib0010) 2004; 38
Cohen, Prince (bib0015) 2012; 18
Zhu, Zhou, Yan, Yan, Wang (bib0235) 2015; 883
Liu, McGrath, Moore, Kolling, Papin, Swami (bib0100) 2019; 318
Wittstock, Biener, Baumer (bib0170) 2010; 12
Bhattarai, Neupane, Nepal, Mikhaylov, Demchenko, Stine, Preparation (bib0145) 2018; 8
Farghaly, Lam, Freeman, Uppalapati, Collinson (bib0155) 2016; 163
Goluch (bib0035) 2017; 35
Veselinovic, Almashtoub, Seker (bib0180) 2019; 9
Sismaet, Pinto, Goluch (bib0070) 2017; 97
Bellin, Sakhtah, Rosenstein, Levine, Thimot, Emmett, Dietrich, Shepard (bib0055) 2014; 5
Connell, Kim, Shear, Bard, Whiteley (bib0110) 2014; 111
Daggumati, Matharu, Wang, Seker (bib0160) 2015; 87
Wang, Newman (bib0210) 2008; 42
Rohani, Moore, Su, Stagnaro, Warren, Swami (bib0125) 2018; 276
Sharp, Gladstone, Smith, Forsythe, Davis (bib0065) 2010; 77
Liu, Tsao, Kim, Tschirhart, Terrell, Bentley, Payne (bib0215) 2017; 6
Tan, Davis, Fujikawa, Ganesh, Demchenko, Stine (bib0205) 2012; 22
Elliott, Simoska, Karasik, Shear, Stevenson (bib0075) 2017; 89
Sordé, Pahissa, Rello (bib0005) 2011; 4
Bodelón, Montes-García, López-Puente, Hill, Hamon, Sanz-Ortiz, Rodal-Cedeira, Costas, Celiksoy, Pérez-Juste, Scarabelli, Porta, Pérez-Juste, Pastoriza-Santos, Liz-Marzán (bib0020) 2016; 15
Patel, Radhakrishnan, Zhao, Uppalapati, Daniels, Ward, Collinson (bib0165) 2013; 85
Kim, Gordonov, Bentley, Payne (bib0105) 2013; 85
Webster, Goluch (bib0120) 2012; 12
Burkitt, Sharp (bib0085) 2017; 78
Saraf, Neal, Park, Das, Barkam, Cho, Seal (bib0240) 2015; 5
Khan, Gadiraju, Kumar, Hatmaker, Fisher, Natarajan, Reiner, Collinson (bib0140) 2018; 3
Wurtzel, Yoder-Himes, Han, Dandekar, Edelheit, Greenberg, Sorek, Lory (bib0195) 2016; 8
Koley, Ramsey, Bard, Whiteley (bib0115) 2011; 108
Shulga, Zhou, Demchenko, Stine (bib0190) 2008; 133
Seker, Shih, Stine (bib0135) 2018; 43
Palmer, Aye, Whiteley (bib0185) 2007; 189
Sharma, Bhattarai, Nigudkar, Pistorio, Demchenko, Stine (bib0230) 2016; 782
Wu, Chen, Li, Zhao, Zughaier (bib0025) 2014; 10
Sadeghian, Ostrovidov, Han, Salehi, Bahraminejad, Bae, Chen, Khademhosseini (bib0150) 2016; 1
Masyuko, Lanni, Driscoll, Shrout, Sweedler, Bohn (bib0030) 2014; 139
Okegbe, Sakhtah, Sekedat, Price-Whelan, Dietrich (bib0060) 2012; 16
Su, Warren, Guerrant, Swami (bib0130) 2014; 86
Buzid, Reen, Langsi, Muimhneachain, O’Gara, McGlacken, Luong, Glennon (bib0080) 2017; 4
Seker, Reed, Begley (bib0175) 2009; 2
Daggumati, Matharu, Seker (bib0200) 2015; 87
Bellin, Sakhtah, Zhang, Price-Whelan, Dietrich, Shepard (bib0040) 2016; 7
Castner, Hinds, Grainger (bib0225) 1996; 12
Makaraviciute (10.1016/j.snb.2020.127936_bib0220) 2017; 9
Bellin (10.1016/j.snb.2020.127936_bib0055) 2014; 5
Sharp (10.1016/j.snb.2020.127936_bib0065) 2010; 77
Daggumati (10.1016/j.snb.2020.127936_bib0160) 2015; 87
Webster (10.1016/j.snb.2020.127936_bib0120) 2012; 12
Wurtzel (10.1016/j.snb.2020.127936_bib0195) 2016; 8
Buzid (10.1016/j.snb.2020.127936_bib0080) 2017; 4
Shulga (10.1016/j.snb.2020.127936_bib0190) 2008; 133
Goluch (10.1016/j.snb.2020.127936_bib0035) 2017; 35
Seker (10.1016/j.snb.2020.127936_bib0175) 2009; 2
Webster (10.1016/j.snb.2020.127936_bib0050) 2014; 60
Masyuko (10.1016/j.snb.2020.127936_bib0030) 2014; 139
Zhu (10.1016/j.snb.2020.127936_bib0235) 2015; 883
Khan (10.1016/j.snb.2020.127936_bib0140) 2018; 3
Daggumati (10.1016/j.snb.2020.127936_bib0200) 2015; 87
Elliott (10.1016/j.snb.2020.127936_bib0075) 2017; 89
Saraf (10.1016/j.snb.2020.127936_bib0240) 2015; 5
Palmer (10.1016/j.snb.2020.127936_bib0185) 2007; 189
Burkitt (10.1016/j.snb.2020.127936_bib0085) 2017; 78
Koley (10.1016/j.snb.2020.127936_bib0115) 2011; 108
Kim (10.1016/j.snb.2020.127936_bib0105) 2013; 85
Veselinovic (10.1016/j.snb.2020.127936_bib0180) 2019; 9
Connell (10.1016/j.snb.2020.127936_bib0110) 2014; 111
Wu (10.1016/j.snb.2020.127936_bib0025) 2014; 10
Patel (10.1016/j.snb.2020.127936_bib0165) 2013; 85
Pankey (10.1016/j.snb.2020.127936_bib0010) 2004; 38
Sadeghian (10.1016/j.snb.2020.127936_bib0150) 2016; 1
Wang (10.1016/j.snb.2020.127936_bib0210) 2008; 42
Liu (10.1016/j.snb.2020.127936_bib0215) 2017; 6
Cohen (10.1016/j.snb.2020.127936_bib0015) 2012; 18
Castner (10.1016/j.snb.2020.127936_bib0225) 1996; 12
Sordé (10.1016/j.snb.2020.127936_bib0005) 2011; 4
Sismaet (10.1016/j.snb.2020.127936_bib0070) 2017; 97
Wilson (10.1016/j.snb.2020.127936_bib0090) 2016; 71
Farghaly (10.1016/j.snb.2020.127936_bib0155) 2016; 163
Okegbe (10.1016/j.snb.2020.127936_bib0060) 2012; 16
Liu (10.1016/j.snb.2020.127936_bib0100) 2019; 318
Tan (10.1016/j.snb.2020.127936_bib0205) 2012; 22
Wittstock (10.1016/j.snb.2020.127936_bib0170) 2010; 12
Bellin (10.1016/j.snb.2020.127936_bib0040) 2016; 7
Webster (10.1016/j.snb.2020.127936_bib0045) 2015; 140
Li (10.1016/j.snb.2020.127936_bib0095) 2018; 195
Bodelón (10.1016/j.snb.2020.127936_bib0020) 2016; 15
Seker (10.1016/j.snb.2020.127936_bib0135) 2018; 43
Bhattarai (10.1016/j.snb.2020.127936_bib0145) 2018; 8
Sharma (10.1016/j.snb.2020.127936_bib0230) 2016; 782
Su (10.1016/j.snb.2020.127936_bib0130) 2014; 86
Rohani (10.1016/j.snb.2020.127936_bib0125) 2018; 276
References_xml – volume: 18
  start-page: 509
  year: 2012
  end-page: 519
  ident: bib0015
  article-title: Cystic fibrosis: a mucosal immunodeficiency syndrome
  publication-title: Nat. Med.
– volume: 60
  start-page: 265
  year: 2014
  end-page: 270
  ident: bib0050
  article-title: Electrochemical detection of Pseudomonas aeruginosa in human fluid samples via pyocyanin
  publication-title: Biosens. Bioelectron.
– volume: 22
  start-page: 6733
  year: 2012
  end-page: 6745
  ident: bib0205
  article-title: Surface area and pore size characteristics of nanoporous gold subjected to thermal, mechanical, or surface modification studied using gas adsorption isotherms, cyclic voltammetry, thermogravimetric analysis, and scanning electron microscopy
  publication-title: J. Mater. Chem.
– volume: 108
  start-page: 19996
  year: 2011
  end-page: 20001
  ident: bib0115
  article-title: Discovery of a biofilm electrocline using real-time 3D metabolite analysis
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 9
  start-page: 26610
  year: 2017
  end-page: 26621
  ident: bib0220
  article-title: Systematic approach to the development of microfabricated biosensors: relationship between gold surface pretreatment and thiolated molecule binding
  publication-title: ACS Appl. Mater. Interfaces
– volume: 139
  start-page: 5700
  year: 2014
  end-page: 5708
  ident: bib0030
  article-title: Spatial organization of Pseudomonas aeruginosa biofilms probed by combined matrix-assisted Laser desorption ionization mass spectrometry and confocal Raman microscopy
  publication-title: Analyst
– volume: 140
  start-page: 7195
  year: 2015
  end-page: 7201
  ident: bib0045
  article-title: Electrochemically monitoring the antibiotic susceptibility of Pseudomonas aeruginosa biofilms
  publication-title: Analyst
– volume: 189
  start-page: 8079
  year: 2007
  end-page: 8087
  ident: bib0185
  article-title: Nutritional cues control
  publication-title: J. Bacteriol.
– volume: 10
  start-page: 1863
  year: 2014
  end-page: 1870
  ident: bib0025
  article-title: Culture-free diagnostics of Pseudomonas aeruginosa infection by silver nanorod array based SERS from clinical sputum samples
  publication-title: Nanomed.-Nanotechnol. Biol. Med.
– volume: 9
  start-page: 11923
  year: 2019
  end-page: 11931
  ident: bib0180
  article-title: Anomalous trends in nucleic acid-based electrochemical biosensors with nanoporous gold electrodes
  publication-title: Anal. Chem.
– volume: 38
  start-page: 864
  year: 2004
  end-page: 870
  ident: bib0010
  article-title: Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of gram-positive bacterial infections
  publication-title: Clin. Infect. Dis.
– volume: 77
  start-page: 114
  year: 2010
  end-page: 119
  ident: bib0065
  article-title: Approaching intelligent infection diagnostics: carbon fibre sensor for electrochemical pyocyanin detection
  publication-title: Bioelectrochemistry
– volume: 35
  start-page: 1125
  year: 2017
  end-page: 1128
  ident: bib0035
  article-title: Microbial identification using electrochemical detection of metabolites
  publication-title: Trends Biotechnol.
– volume: 6
  year: 2017
  ident: bib0215
  article-title: Using a redox modality to connect synthetic biology to electronics: hydrogel-based chemo-electro signal transduction for molecular communication
  publication-title: Adv. Healthc. Mater.
– volume: 5
  start-page: 46501
  year: 2015
  end-page: 46508
  ident: bib0240
  article-title: Electrochemical study of nanoporous gold revealing anti-biofouling properties
  publication-title: RSC Adv.
– volume: 8
  year: 2016
  ident: bib0195
  article-title: The single-nucleotide resolution transcriptome of Pseudomonas aeruginosa grown in body temperature
  publication-title: PLoS Pathog.
– volume: 12
  start-page: 12919
  year: 2010
  end-page: 12930
  ident: bib0170
  article-title: Nanoporous gold: a new material for catalytic and sensor applications
  publication-title: Phys. Chem. Chem. Phys.
– volume: 4
  start-page: 31
  year: 2011
  end-page: 41
  ident: bib0005
  article-title: Management of refractory
  publication-title: Infect. Drug Resist.
– volume: 16
  start-page: 658
  year: 2012
  end-page: 667
  ident: bib0060
  article-title: Redox Eustress: Roles for Redox-Active Metabolites in Bacterial Signaling and Behavior
  publication-title: Antioxid. Redox Signal.
– volume: 42
  start-page: 2380
  year: 2008
  end-page: 2386
  ident: bib0210
  article-title: Redox reactions of phenazine antibiotics with ferric (hydr)oxides and molecular oxygen
  publication-title: Environ. Sci. Technol.
– volume: 5
  start-page: 3256
  year: 2014
  ident: bib0055
  article-title: Integrated circuit-based electrochemical sensor for spatially resolved detection of redox-active metabolites in biofilms
  publication-title: Nat. Commun.
– volume: 15
  start-page: 1203
  year: 2016
  end-page: 1211
  ident: bib0020
  article-title: Detection and imaging of quorum sensing in Pseudomonas aeruginosa biofilm communities by surface-enhanced resonance Raman scattering
  publication-title: Nat. Mater.
– volume: 7
  start-page: 10535
  year: 2016
  ident: bib0040
  article-title: Electrochemical camera chip for simultaneous imaging of multiple metabolites in biofilms
  publication-title: Nat. Commun.
– volume: 2
  start-page: 2188
  year: 2009
  end-page: 2215
  ident: bib0175
  article-title: Nanoporous gold: fabrication, characterization, and applications
  publication-title: Materials
– volume: 85
  start-page: 11610
  year: 2013
  end-page: 11618
  ident: bib0165
  article-title: Electrochemical properties of nanostructured porous gold electrodes in biofouling solutions
  publication-title: Anal. Chem.
– volume: 1
  start-page: 921
  year: 2016
  end-page: 928
  ident: bib0150
  article-title: Online monitoring of superoxide anions released from skeletal muscle cells using an electrochemical biosensor based on thick-film nanoporous gold
  publication-title: ACS Sens.
– volume: 4
  start-page: 533
  year: 2017
  end-page: 541
  ident: bib0080
  article-title: Direct and Rapid Electrochemical Detection of Pseudomonas aeruginosa Quorum Signaling Molecules in Bacterial Cultures and Cystic Fibrosis Sputum Samples through Cationic Surfactant-Assisted Membrane Disruption
  publication-title: Chemelectrochem
– volume: 43
  start-page: 49
  year: 2018
  end-page: 56
  ident: bib0135
  article-title: Nanoporous metals by alloy corrosion: bioanalytical and biomedical applications
  publication-title: MRS Bull.
– volume: 12
  start-page: 5083
  year: 1996
  end-page: 5086
  ident: bib0225
  article-title: X-ray photoelectron spectroscopy sulfur 2p study of organic thiol and disulfide binding interactions with gold surfaces
  publication-title: Langmuir
– volume: 12
  start-page: 5195
  year: 2012
  end-page: 5201
  ident: bib0120
  article-title: Electrochemical detection of pyocyanin in nanochannels with integrated palladium hydride reference electrodes
  publication-title: Lab Chip
– volume: 86
  start-page: 10855
  year: 2014
  end-page: 10863
  ident: bib0130
  article-title: Dielectrophoretic monitoring and interstrain separation of intact Clostridium difficile based on their S(Surface)-Layers
  publication-title: Anal. Chem.
– volume: 8
  start-page: 171
  year: 2018
  ident: bib0145
  article-title: Characterization, and biosensing application of nanoporous gold using electrochemical techniques
  publication-title: Nanomaterials
– volume: 87
  start-page: 8618
  year: 2015
  end-page: 8622
  ident: bib0160
  article-title: Biofouling-resilient nanoporous gold electrodes for DNA sensing
  publication-title: Anal. Chem.
– volume: 883
  start-page: 81
  year: 2015
  end-page: 89
  ident: bib0235
  article-title: Aptamer-functionalized nanoporous gold film for high-performance direct electrochemical detection of bisphenol A in human serum
  publication-title: Anal. Chim. Acta
– volume: 3
  start-page: 1601
  year: 2018
  end-page: 1608
  ident: bib0140
  article-title: Redox potential measurements in red blood cell packets using nanoporous gold electrodes
  publication-title: ACS Sens.
– volume: 78
  start-page: 43
  year: 2017
  end-page: 46
  ident: bib0085
  article-title: Submicromolar quantification of pyocyanin in complex biological fluids using pad-printed carbon electrodes
  publication-title: Electrochem. Comm.
– volume: 318
  start-page: 828
  year: 2019
  end-page: 836
  ident: bib0100
  article-title: Electrofabricated biomaterial-based capacitor on nanoporous gold for enhanced redox amplification
  publication-title: Electrochim. Acta
– volume: 85
  start-page: 2102
  year: 2013
  end-page: 2108
  ident: bib0105
  article-title: Amplified and in situ detection of redox-active metabolite using a biobased redox capacitor
  publication-title: Anal. Chem.
– volume: 782
  start-page: 174
  year: 2016
  end-page: 181
  ident: bib0230
  article-title: Electrochemical impedance spectroscopy study of carbohydrate-terminated alkanethiol monolayers on nanoporous gold: implications for pore wetting
  publication-title: J. Electroanal. Chem.
– volume: 276
  start-page: 472
  year: 2018
  end-page: 480
  ident: bib0125
  article-title: Single-cell electro-phenotyping for rapid assessment of Clostridium difficile heterogeneity under vancomycin treatment at sub-MIC (minimum inhibitory concentration) levels
  publication-title: Sen. Actuators B-Chem.
– volume: 87
  start-page: 8149
  year: 2015
  end-page: 8156
  ident: bib0200
  article-title: Effect of nanoporous gold thin film morphology on electrochemical DNA sensing
  publication-title: Anal. Chem.
– volume: 89
  start-page: 6285
  year: 2017
  end-page: 6289
  ident: bib0075
  article-title: Transparent carbon ultramicroelectrode arrays for the electrochemical detection of a bacterial warfare toxin, pyocyanin
  publication-title: Anal. Chem.
– volume: 133
  start-page: 319
  year: 2008
  end-page: 322
  ident: bib0190
  article-title: Detection of free prostate specific antigen (fPSA) on a nanoporous gold platform
  publication-title: Analyst
– volume: 163
  start-page: H3083
  year: 2016
  end-page: H3087
  ident: bib0155
  article-title: Potentiometric measurements in biofouling solutions: comparison of nanoporous gold to planar gold
  publication-title: J. Electrochem. Soc.
– volume: 97
  start-page: 65
  year: 2017
  end-page: 69
  ident: bib0070
  article-title: Electrochemical sensors for identifying pyocyanin production in clinical Pseudomonas aeruginosa isolates
  publication-title: Biosens. Bioelectron.
– volume: 71
  start-page: 79
  year: 2016
  end-page: 83
  ident: bib0090
  article-title: Biofouling and in situ electrochemical cleaning of a boron-doped diamond free chlorine sensor
  publication-title: Electrochem. Commun.
– volume: 111
  start-page: 18255
  year: 2014
  end-page: 18260
  ident: bib0110
  article-title: Real-time monitoring of quorum sensing in 3D-printed bacterial aggregates using scanning electrochemical microscopy
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 195
  start-page: 505
  year: 2018
  end-page: 514
  ident: bib0095
  article-title: Electrodeposition of a magnetic and redox-active chitosan film for capturing and sensing metabolic active bacteria
  publication-title: Carbohydr. Polym.
– volume: 85
  start-page: 2102
  year: 2013
  ident: 10.1016/j.snb.2020.127936_bib0105
  article-title: Amplified and in situ detection of redox-active metabolite using a biobased redox capacitor
  publication-title: Anal. Chem.
  doi: 10.1021/ac302703y
– volume: 318
  start-page: 828
  year: 2019
  ident: 10.1016/j.snb.2020.127936_bib0100
  article-title: Electrofabricated biomaterial-based capacitor on nanoporous gold for enhanced redox amplification
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.06.127
– volume: 9
  start-page: 11923
  year: 2019
  ident: 10.1016/j.snb.2020.127936_bib0180
  article-title: Anomalous trends in nucleic acid-based electrochemical biosensors with nanoporous gold electrodes
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.9b02686
– volume: 9
  start-page: 26610
  year: 2017
  ident: 10.1016/j.snb.2020.127936_bib0220
  article-title: Systematic approach to the development of microfabricated biosensors: relationship between gold surface pretreatment and thiolated molecule binding
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b08581
– volume: 4
  start-page: 31
  year: 2011
  ident: 10.1016/j.snb.2020.127936_bib0005
  article-title: Management of refractory Pseudomonas aeruginosa infection in cystic fibrosis
  publication-title: Infect. Drug Resist.
  doi: 10.2147/IDR.S16263
– volume: 12
  start-page: 5195
  year: 2012
  ident: 10.1016/j.snb.2020.127936_bib0120
  article-title: Electrochemical detection of pyocyanin in nanochannels with integrated palladium hydride reference electrodes
  publication-title: Lab Chip
  doi: 10.1039/c2lc40650k
– volume: 18
  start-page: 509
  year: 2012
  ident: 10.1016/j.snb.2020.127936_bib0015
  article-title: Cystic fibrosis: a mucosal immunodeficiency syndrome
  publication-title: Nat. Med.
  doi: 10.1038/nm.2715
– volume: 883
  start-page: 81
  year: 2015
  ident: 10.1016/j.snb.2020.127936_bib0235
  article-title: Aptamer-functionalized nanoporous gold film for high-performance direct electrochemical detection of bisphenol A in human serum
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2015.05.002
– volume: 42
  start-page: 2380
  year: 2008
  ident: 10.1016/j.snb.2020.127936_bib0210
  article-title: Redox reactions of phenazine antibiotics with ferric (hydr)oxides and molecular oxygen
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es702290a
– volume: 38
  start-page: 864
  year: 2004
  ident: 10.1016/j.snb.2020.127936_bib0010
  article-title: Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of gram-positive bacterial infections
  publication-title: Clin. Infect. Dis.
  doi: 10.1086/381972
– volume: 782
  start-page: 174
  year: 2016
  ident: 10.1016/j.snb.2020.127936_bib0230
  article-title: Electrochemical impedance spectroscopy study of carbohydrate-terminated alkanethiol monolayers on nanoporous gold: implications for pore wetting
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2016.10.013
– volume: 89
  start-page: 6285
  year: 2017
  ident: 10.1016/j.snb.2020.127936_bib0075
  article-title: Transparent carbon ultramicroelectrode arrays for the electrochemical detection of a bacterial warfare toxin, pyocyanin
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.7b00876
– volume: 111
  start-page: 18255
  year: 2014
  ident: 10.1016/j.snb.2020.127936_bib0110
  article-title: Real-time monitoring of quorum sensing in 3D-printed bacterial aggregates using scanning electrochemical microscopy
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1421211111
– volume: 87
  start-page: 8618
  year: 2015
  ident: 10.1016/j.snb.2020.127936_bib0160
  article-title: Biofouling-resilient nanoporous gold electrodes for DNA sensing
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.5b02969
– volume: 276
  start-page: 472
  year: 2018
  ident: 10.1016/j.snb.2020.127936_bib0125
  article-title: Single-cell electro-phenotyping for rapid assessment of Clostridium difficile heterogeneity under vancomycin treatment at sub-MIC (minimum inhibitory concentration) levels
  publication-title: Sen. Actuators B-Chem.
  doi: 10.1016/j.snb.2018.08.137
– volume: 35
  start-page: 1125
  year: 2017
  ident: 10.1016/j.snb.2020.127936_bib0035
  article-title: Microbial identification using electrochemical detection of metabolites
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2017.08.001
– volume: 87
  start-page: 8149
  year: 2015
  ident: 10.1016/j.snb.2020.127936_bib0200
  article-title: Effect of nanoporous gold thin film morphology on electrochemical DNA sensing
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.5b00846
– volume: 6
  year: 2017
  ident: 10.1016/j.snb.2020.127936_bib0215
  article-title: Using a redox modality to connect synthetic biology to electronics: hydrogel-based chemo-electro signal transduction for molecular communication
  publication-title: Adv. Healthc. Mater.
– volume: 12
  start-page: 5083
  year: 1996
  ident: 10.1016/j.snb.2020.127936_bib0225
  article-title: X-ray photoelectron spectroscopy sulfur 2p study of organic thiol and disulfide binding interactions with gold surfaces
  publication-title: Langmuir
  doi: 10.1021/la960465w
– volume: 8
  start-page: 171
  year: 2018
  ident: 10.1016/j.snb.2020.127936_bib0145
  article-title: Characterization, and biosensing application of nanoporous gold using electrochemical techniques
  publication-title: Nanomaterials
  doi: 10.3390/nano8030171
– volume: 5
  start-page: 46501
  year: 2015
  ident: 10.1016/j.snb.2020.127936_bib0240
  article-title: Electrochemical study of nanoporous gold revealing anti-biofouling properties
  publication-title: RSC Adv.
  doi: 10.1039/C5RA05043J
– volume: 10
  start-page: 1863
  year: 2014
  ident: 10.1016/j.snb.2020.127936_bib0025
  article-title: Culture-free diagnostics of Pseudomonas aeruginosa infection by silver nanorod array based SERS from clinical sputum samples
  publication-title: Nanomed.-Nanotechnol. Biol. Med.
  doi: 10.1016/j.nano.2014.04.010
– volume: 97
  start-page: 65
  year: 2017
  ident: 10.1016/j.snb.2020.127936_bib0070
  article-title: Electrochemical sensors for identifying pyocyanin production in clinical Pseudomonas aeruginosa isolates
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2017.05.042
– volume: 78
  start-page: 43
  year: 2017
  ident: 10.1016/j.snb.2020.127936_bib0085
  article-title: Submicromolar quantification of pyocyanin in complex biological fluids using pad-printed carbon electrodes
  publication-title: Electrochem. Comm.
  doi: 10.1016/j.elecom.2017.03.021
– volume: 163
  start-page: H3083
  year: 2016
  ident: 10.1016/j.snb.2020.127936_bib0155
  article-title: Potentiometric measurements in biofouling solutions: comparison of nanoporous gold to planar gold
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0101604jes
– volume: 5
  start-page: 3256
  year: 2014
  ident: 10.1016/j.snb.2020.127936_bib0055
  article-title: Integrated circuit-based electrochemical sensor for spatially resolved detection of redox-active metabolites in biofilms
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4256
– volume: 60
  start-page: 265
  year: 2014
  ident: 10.1016/j.snb.2020.127936_bib0050
  article-title: Electrochemical detection of Pseudomonas aeruginosa in human fluid samples via pyocyanin
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2014.04.028
– volume: 71
  start-page: 79
  year: 2016
  ident: 10.1016/j.snb.2020.127936_bib0090
  article-title: Biofouling and in situ electrochemical cleaning of a boron-doped diamond free chlorine sensor
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2016.08.015
– volume: 1
  start-page: 921
  year: 2016
  ident: 10.1016/j.snb.2020.127936_bib0150
  article-title: Online monitoring of superoxide anions released from skeletal muscle cells using an electrochemical biosensor based on thick-film nanoporous gold
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.6b00325
– volume: 139
  start-page: 5700
  year: 2014
  ident: 10.1016/j.snb.2020.127936_bib0030
  article-title: Spatial organization of Pseudomonas aeruginosa biofilms probed by combined matrix-assisted Laser desorption ionization mass spectrometry and confocal Raman microscopy
  publication-title: Analyst
  doi: 10.1039/C4AN00435C
– volume: 7
  start-page: 10535
  year: 2016
  ident: 10.1016/j.snb.2020.127936_bib0040
  article-title: Electrochemical camera chip for simultaneous imaging of multiple metabolites in biofilms
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10535
– volume: 85
  start-page: 11610
  year: 2013
  ident: 10.1016/j.snb.2020.127936_bib0165
  article-title: Electrochemical properties of nanostructured porous gold electrodes in biofouling solutions
  publication-title: Anal. Chem.
  doi: 10.1021/ac403013r
– volume: 12
  start-page: 12919
  year: 2010
  ident: 10.1016/j.snb.2020.127936_bib0170
  article-title: Nanoporous gold: a new material for catalytic and sensor applications
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c0cp00757a
– volume: 16
  start-page: 658
  year: 2012
  ident: 10.1016/j.snb.2020.127936_bib0060
  article-title: Redox Eustress: Roles for Redox-Active Metabolites in Bacterial Signaling and Behavior
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2011.4249
– volume: 195
  start-page: 505
  year: 2018
  ident: 10.1016/j.snb.2020.127936_bib0095
  article-title: Electrodeposition of a magnetic and redox-active chitosan film for capturing and sensing metabolic active bacteria
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2018.04.096
– volume: 2
  start-page: 2188
  year: 2009
  ident: 10.1016/j.snb.2020.127936_bib0175
  article-title: Nanoporous gold: fabrication, characterization, and applications
  publication-title: Materials
  doi: 10.3390/ma2042188
– volume: 189
  start-page: 8079
  year: 2007
  ident: 10.1016/j.snb.2020.127936_bib0185
  article-title: Nutritional cues control Pseudomonas aeruginosa multicellular behavior in cystic fibrosis sputum
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.01138-07
– volume: 3
  start-page: 1601
  year: 2018
  ident: 10.1016/j.snb.2020.127936_bib0140
  article-title: Redox potential measurements in red blood cell packets using nanoporous gold electrodes
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.8b00498
– volume: 22
  start-page: 6733
  year: 2012
  ident: 10.1016/j.snb.2020.127936_bib0205
  article-title: Surface area and pore size characteristics of nanoporous gold subjected to thermal, mechanical, or surface modification studied using gas adsorption isotherms, cyclic voltammetry, thermogravimetric analysis, and scanning electron microscopy
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm16633j
– volume: 77
  start-page: 114
  year: 2010
  ident: 10.1016/j.snb.2020.127936_bib0065
  article-title: Approaching intelligent infection diagnostics: carbon fibre sensor for electrochemical pyocyanin detection
  publication-title: Bioelectrochemistry
  doi: 10.1016/j.bioelechem.2009.07.008
– volume: 8
  year: 2016
  ident: 10.1016/j.snb.2020.127936_bib0195
  article-title: The single-nucleotide resolution transcriptome of Pseudomonas aeruginosa grown in body temperature
  publication-title: PLoS Pathog.
– volume: 108
  start-page: 19996
  year: 2011
  ident: 10.1016/j.snb.2020.127936_bib0115
  article-title: Discovery of a biofilm electrocline using real-time 3D metabolite analysis
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1117298108
– volume: 15
  start-page: 1203
  year: 2016
  ident: 10.1016/j.snb.2020.127936_bib0020
  article-title: Detection and imaging of quorum sensing in Pseudomonas aeruginosa biofilm communities by surface-enhanced resonance Raman scattering
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4720
– volume: 140
  start-page: 7195
  year: 2015
  ident: 10.1016/j.snb.2020.127936_bib0045
  article-title: Electrochemically monitoring the antibiotic susceptibility of Pseudomonas aeruginosa biofilms
  publication-title: Analyst
  doi: 10.1039/C5AN01358E
– volume: 43
  start-page: 49
  year: 2018
  ident: 10.1016/j.snb.2020.127936_bib0135
  article-title: Nanoporous metals by alloy corrosion: bioanalytical and biomedical applications
  publication-title: MRS Bull.
  doi: 10.1557/mrs.2017.298
– volume: 133
  start-page: 319
  year: 2008
  ident: 10.1016/j.snb.2020.127936_bib0190
  article-title: Detection of free prostate specific antigen (fPSA) on a nanoporous gold platform
  publication-title: Analyst
  doi: 10.1039/b712760j
– volume: 4
  start-page: 533
  year: 2017
  ident: 10.1016/j.snb.2020.127936_bib0080
  article-title: Direct and Rapid Electrochemical Detection of Pseudomonas aeruginosa Quorum Signaling Molecules in Bacterial Cultures and Cystic Fibrosis Sputum Samples through Cationic Surfactant-Assisted Membrane Disruption
  publication-title: Chemelectrochem
  doi: 10.1002/celc.201600590
– volume: 86
  start-page: 10855
  year: 2014
  ident: 10.1016/j.snb.2020.127936_bib0130
  article-title: Dielectrophoretic monitoring and interstrain separation of intact Clostridium difficile based on their S(Surface)-Layers
  publication-title: Anal. Chem.
  doi: 10.1021/ac5029837
SSID ssj0004360
Score 2.450552
Snippet [Display omitted] •Pyocyanin as a marker for determining bactericidal deactivation of P. aeruginosa.•Nanoporous gold for electrochemical detection of pyocyanin...
Infections due to ( ) often exhibit broad-spectrum resistance and persistence to common antibiotics. Persistence is especially problematic with...
Infections due to Pseudomonas aeruginosa (P. aeruginosa) often exhibit broad-spectrum resistance and persistence to common antibiotics. Persistence is...
Infections due to Pseudomonas aeruginosa ( P. aeruginosa ) often exhibit broad-spectrum resistance and persistence to common antibiotics. Persistence is...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 127936
SubjectTerms Antibiotics
Bacteria
Charge transfer
Deactivation
Electrochemical analysis
Metabolites
Microfluidics
Nanoporous gold
Persistence
Pseudomonas aeruginosa
Pyocyanin
Self-assembled monolayers
Self-assembly
Title Minimum bactericidal concentration of ciprofloxacin to Pseudomonas aeruginosa determined rapidly based on pyocyanin secretion
URI https://dx.doi.org/10.1016/j.snb.2020.127936
https://www.ncbi.nlm.nih.gov/pubmed/32606491
https://www.proquest.com/docview/2444674622
https://www.proquest.com/docview/2419410551
https://pubmed.ncbi.nlm.nih.gov/PMC7326315
Volume 312
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcoED4s22pTISJ6Sw2TiJ42NVUS2gVkhQqbdo_BJBW2e12Ujsofx2ZvJYuiB64Jh4xko8Y_uz_M0MY2-UVsrFGo-puvARFduOCgM2siBl4XTqky7K9fwin1-mH6-yqz12OsbCEK1yWPv7Nb1brYc302E0p8uqmn6JFR5uOh6HiGmRpQj2VJKXv_v5m-aRii5SmIQjkh5vNjuOVxM0HhETyrGAfpr_a2_6G3v-SaG8tSedPWIPBzDJT_rvfcz2XHjCHtxKMfiU3ZxXobpur7nu0zKbyqKGoWDFMGTM5bXnpqLi3Yv6B5gq8HXNPzeutTX6KDQc3KrFLusGuB3YM87yFSwru9hw2gctx26Wm9psIKB-Q1iUun7GLs_efz2dR0PJhcikUq0jaXIjUwOZB-WVS0RuTAYJxB5hnXYi9q7IM5EosIgkwcwoe1VqEuFyBUaCeM72Qx3cS8Zj54vCFIlXGhClIA7ThB0Lm-UCCucnLB4HuzRDPnIqi7EoR-LZ9xLtU5J9yt4-E_Z2q7Lsk3HcJZyOFix3PKrEzeIutaPR2uUwnZsSMRBVZcmTZMJeb5txItLtCgRXtyQzU8SZzWYT9qJ3ju1HIkZG6KewRe64zVaAknzvtoTqW5fsW6KumGUH__c3h-w-PfXctiO2v1617hWiqLU-7qbJMbt38uHT_OIX3C8f-A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEBapc2h7CH3XTdqq0FNh8XrfOoaQ4DSxKTSB3ISeZIujNV4vxIf8987sap24pTn0uqMRWs1I-oRmviHkK5OMmVDCNVUWNsBi20GhhA60yPPCyMRGbZbrdJZNLpPvV-nVDjnqc2EwrNLv_d2e3u7W_svIz-ZoUZajnyGDy00bxxGHuMk-IbvITpUOyO7h6dlkdp8eGbfJwtg-QIX-cbMN86qdhFtihDQL4KrZv46nv-Hnn1GUD46lkxdkz-NJetgN-SXZMe4Vef6AZfA1uZuWrrxpbqjsmJlVqUFDYb6i86S5tLJUlVi_e17dClU6uqroj9o0ugI3FTUVZtlAl1UtqPYBNEbTpViUer6meBRqCt0s1pVaCwf6NcJR7PoNuTw5vjiaBL7qQqCSnK2CXGUqT5RIrWCWmSjOlEpFJEILyE6aOLSmyNI4YkIDmBRqjARWiYpikzGhchG_JQNXOfOe0NDYolBFZJkUAFQAikmEj4VOs1gUxg5J2E82V56SHCtjzHkfe_aLg3042od39hmSbxuVRcfH8VjjpLcg33IqDufFY2oHvbW5X9E1BxiEhVmyKBqSLxsxrEV8YBHOVA22GTMMm03HQ_Kuc47NIAEmA_pjIMm33GbTAHm-tyWuvG75vnPQjcfph__7m8_k6eRies7PT2dn--QZSrpQtwMyWC0b8xFA1Up-8ovmN54aIqk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Minimum+bactericidal+concentration+of+ciprofloxacin+to+Pseudomonas+aeruginosa+determined+rapidly+based+on+pyocyanin+secretion&rft.jtitle=Sensors+and+actuators.+B%2C+Chemical&rft.au=Liu%2C+Yi&rft.au=Moore%2C+John+H.&rft.au=Kolling%2C+Glynis+L.&rft.au=McGrath%2C+John+S.&rft.date=2020-06-01&rft.pub=Elsevier+B.V&rft.issn=0925-4005&rft.eissn=1873-3077&rft.volume=312&rft_id=info:doi/10.1016%2Fj.snb.2020.127936&rft.externalDocID=S0925400520302847
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-4005&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-4005&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-4005&client=summon