Minimum bactericidal concentration of ciprofloxacin to Pseudomonas aeruginosa determined rapidly based on pyocyanin secretion
[Display omitted] •Pyocyanin as a marker for determining bactericidal deactivation of P. aeruginosa.•Nanoporous gold for electrochemical detection of pyocyanin in biological matrices.•Rapidly determines ciprofloxacin level for bactericidal deactivation of P. aeruginosa.•Bacterial persistence at mini...
Saved in:
Published in | Sensors and actuators. B, Chemical Vol. 312; p. 127936 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Elsevier B.V
01.06.2020
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Pyocyanin as a marker for determining bactericidal deactivation of P. aeruginosa.•Nanoporous gold for electrochemical detection of pyocyanin in biological matrices.•Rapidly determines ciprofloxacin level for bactericidal deactivation of P. aeruginosa.•Bacterial persistence at minimum inhibitory levels detected without prolonged culture.
Infections due to Pseudomonas aeruginosa (P. aeruginosa) often exhibit broad-spectrum resistance and persistence to common antibiotics. Persistence is especially problematic with immune-compromised subjects who are unable to eliminate the inhibited bacteria. Hence, antibiotics must be used at the appropriate minimum bactericidal concentration (MBC) rather than at minimum inhibitory concentration (MIC) levels. However, MBC determination by conventional methods requires a 24 h culture step in the antibiotic media to confirm inhibition, followed by a 24 h sub-culture step in antibiotic-free media to confirm the lack of bacterial growth. We show that electrochemical detection of pyocyanin (PYO), which is a redox-active bacterial metabolite secreted by P. aeruginosa, can be used to rapidly assess the critical ciprofloxacin level required for bactericidal deactivation of P. aeruginosa within just 2 h in antibiotic-treated growth media. The detection sensitivity for PYO can be enhanced by using nanoporous gold that is modified with a self-assembled monolayer to lower interference from oxygen reduction, while maintaining a low charge transfer resistance level and preventing electrode fouling within biological sample matrices. In this manner, bactericidal efficacy of ciprofloxacin towards P. aeruginosa at the MBC level and bacterial persistence at the MIC level can be determined rapidly, as validated at later timepoints using bacterial subculture in antibiotic-free media. |
---|---|
AbstractList | Infections due to Pseudomonas aeruginosa (P. aeruginosa) often exhibit broad-spectrum resistance and persistence to common antibiotics. Persistence is especially problematic with immune-compromised subjects who are unable to eliminate the inhibited bacteria. Hence, antibiotics must be used at the appropriate minimum bactericidal concentration (MBC) rather than at minimum inhibitory concentration (MIC) levels. However, MBC determination by conventional methods requires a 24 h culture step in the antibiotic media to confirm inhibition, followed by a 24 h sub-culture step in antibiotic-free media to confirm the lack of bacterial growth. We show that electrochemical detection of pyocyanin (PYO), which is a redox-active bacterial metabolite secreted by P. aeruginosa, can be used to rapidly assess the critical ciprofloxacin level required for bactericidal deactivation of P. aeruginosa within just 2 h in antibiotic-treated growth media. The detection sensitivity for PYO can be enhanced by using nanoporous gold that is modified with a self-assembled monolayer to lower interference from oxygen reduction, while maintaining a low charge transfer resistance level and preventing electrode fouling within biological sample matrices. In this manner, bactericidal efficacy of ciprofloxacin towards P. aeruginosa at the MBC level and bacterial persistence at the MIC level can be determined rapidly, as validated at later timepoints using bacterial subculture in antibiotic-free media. [Display omitted] •Pyocyanin as a marker for determining bactericidal deactivation of P. aeruginosa.•Nanoporous gold for electrochemical detection of pyocyanin in biological matrices.•Rapidly determines ciprofloxacin level for bactericidal deactivation of P. aeruginosa.•Bacterial persistence at minimum inhibitory levels detected without prolonged culture. Infections due to Pseudomonas aeruginosa (P. aeruginosa) often exhibit broad-spectrum resistance and persistence to common antibiotics. Persistence is especially problematic with immune-compromised subjects who are unable to eliminate the inhibited bacteria. Hence, antibiotics must be used at the appropriate minimum bactericidal concentration (MBC) rather than at minimum inhibitory concentration (MIC) levels. However, MBC determination by conventional methods requires a 24 h culture step in the antibiotic media to confirm inhibition, followed by a 24 h sub-culture step in antibiotic-free media to confirm the lack of bacterial growth. We show that electrochemical detection of pyocyanin (PYO), which is a redox-active bacterial metabolite secreted by P. aeruginosa, can be used to rapidly assess the critical ciprofloxacin level required for bactericidal deactivation of P. aeruginosa within just 2 h in antibiotic-treated growth media. The detection sensitivity for PYO can be enhanced by using nanoporous gold that is modified with a self-assembled monolayer to lower interference from oxygen reduction, while maintaining a low charge transfer resistance level and preventing electrode fouling within biological sample matrices. In this manner, bactericidal efficacy of ciprofloxacin towards P. aeruginosa at the MBC level and bacterial persistence at the MIC level can be determined rapidly, as validated at later timepoints using bacterial subculture in antibiotic-free media. Infections due to Pseudomonas aeruginosa ( P. aeruginosa ) often exhibit broad-spectrum resistance and persistence to common antibiotics. Persistence is especially problematic with immune-compromised subjects who are unable to eliminate the inhibited bacteria. Hence, antibiotics must be used at the appropriate minimum bactericidal concentration (MBC) rather than at minimum inhibitory concentration (MIC) levels. However, MBC determination by conventional methods requires a 24 h culture step in the antibiotic media to confirm inhibition, followed by a 24 h sub-culture step in antibiotic-free media to confirm the lack of bacterial growth. We show that electrochemical detection of pyocyanin (PYO), which is a redox-active bacterial metabolite secreted by P. aeruginosa , can be used to rapidly assess the critical ciprofloxacin level required for bactericidal deactivation of P. aeruginosa within just 2 hours in antibiotic-treated growth media. The detection sensitivity for PYO can be enhanced by using nanoporous gold that is modified with a self-assembled monolayer to lower interference from oxygen reduction, while maintaining a low charge transfer resistance level and preventing electrode fouling within biological sample matrices. In this manner, bactericidal efficacy of ciprofloxacin towards P. aeruginosa at the MBC level and bacterial persistence at the MIC level can be determined rapidly, as validated at later timepoints using bacterial subculture in antibiotic-free media. Infections due to Pseudomonas aeruginosa (P. aeruginosa) often exhibit broad-spectrum resistance and persistence to common antibiotics. Persistence is especially problematic with immune-compromised subjects who are unable to eliminate the inhibited bacteria. Hence, antibiotics must be used at the appropriate minimum bactericidal concentration (MBC) rather than at minimum inhibitory concentration (MIC) levels. However, MBC determination by conventional methods requires a 24 h culture step in the antibiotic media to confirm inhibition, followed by a 24 h sub-culture step in antibiotic-free media to confirm the lack of bacterial growth. We show that electrochemical detection of pyocyanin (PYO), which is a redox-active bacterial metabolite secreted by P. aeruginosa, can be used to rapidly assess the critical ciprofloxacin level required for bactericidal deactivation of P. aeruginosa within just 2 hours in antibiotic-treated growth media. The detection sensitivity for PYO can be enhanced by using nanoporous gold that is modified with a self-assembled monolayer to lower interference from oxygen reduction, while maintaining a low charge transfer resistance level and preventing electrode fouling within biological sample matrices. In this manner, bactericidal efficacy of ciprofloxacin towards P. aeruginosa at the MBC level and bacterial persistence at the MIC level can be determined rapidly, as validated at later timepoints using bacterial subculture in antibiotic-free media.Infections due to Pseudomonas aeruginosa (P. aeruginosa) often exhibit broad-spectrum resistance and persistence to common antibiotics. Persistence is especially problematic with immune-compromised subjects who are unable to eliminate the inhibited bacteria. Hence, antibiotics must be used at the appropriate minimum bactericidal concentration (MBC) rather than at minimum inhibitory concentration (MIC) levels. However, MBC determination by conventional methods requires a 24 h culture step in the antibiotic media to confirm inhibition, followed by a 24 h sub-culture step in antibiotic-free media to confirm the lack of bacterial growth. We show that electrochemical detection of pyocyanin (PYO), which is a redox-active bacterial metabolite secreted by P. aeruginosa, can be used to rapidly assess the critical ciprofloxacin level required for bactericidal deactivation of P. aeruginosa within just 2 hours in antibiotic-treated growth media. The detection sensitivity for PYO can be enhanced by using nanoporous gold that is modified with a self-assembled monolayer to lower interference from oxygen reduction, while maintaining a low charge transfer resistance level and preventing electrode fouling within biological sample matrices. In this manner, bactericidal efficacy of ciprofloxacin towards P. aeruginosa at the MBC level and bacterial persistence at the MIC level can be determined rapidly, as validated at later timepoints using bacterial subculture in antibiotic-free media. Infections due to ( ) often exhibit broad-spectrum resistance and persistence to common antibiotics. Persistence is especially problematic with immune-compromised subjects who are unable to eliminate the inhibited bacteria. Hence, antibiotics must be used at the appropriate minimum bactericidal concentration (MBC) rather than at minimum inhibitory concentration (MIC) levels. However, MBC determination by conventional methods requires a 24 h culture step in the antibiotic media to confirm inhibition, followed by a 24 h sub-culture step in antibiotic-free media to confirm the lack of bacterial growth. We show that electrochemical detection of pyocyanin (PYO), which is a redox-active bacterial metabolite secreted by , can be used to rapidly assess the critical ciprofloxacin level required for bactericidal deactivation of within just 2 hours in antibiotic-treated growth media. The detection sensitivity for PYO can be enhanced by using nanoporous gold that is modified with a self-assembled monolayer to lower interference from oxygen reduction, while maintaining a low charge transfer resistance level and preventing electrode fouling within biological sample matrices. In this manner, bactericidal efficacy of ciprofloxacin towards at the MBC level and bacterial persistence at the MIC level can be determined rapidly, as validated at later timepoints using bacterial subculture in antibiotic-free media. |
ArticleNumber | 127936 |
Author | McGrath, John S. Papin, Jason A. Kolling, Glynis L. Swami, Nathan S. Moore, John H. Liu, Yi |
AuthorAffiliation | a Electrical and Computer Engineering, University of Virginia, Charlottesville, Virginia 22904, USA b Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA c Chemistry, University of Virginia, Charlottesville, VA 22904, USA |
AuthorAffiliation_xml | – name: a Electrical and Computer Engineering, University of Virginia, Charlottesville, Virginia 22904, USA – name: b Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA – name: c Chemistry, University of Virginia, Charlottesville, VA 22904, USA |
Author_xml | – sequence: 1 givenname: Yi surname: Liu fullname: Liu, Yi organization: Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, 22904, USA – sequence: 2 givenname: John H. surname: Moore fullname: Moore, John H. organization: Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, 22904, USA – sequence: 3 givenname: Glynis L. surname: Kolling fullname: Kolling, Glynis L. organization: Biomedical Engineering, University of Virginia, Charlottesville, VA, 22904, USA – sequence: 4 givenname: John S. orcidid: 0000-0001-9110-7759 surname: McGrath fullname: McGrath, John S. organization: Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, 22904, USA – sequence: 5 givenname: Jason A. surname: Papin fullname: Papin, Jason A. organization: Biomedical Engineering, University of Virginia, Charlottesville, VA, 22904, USA – sequence: 6 givenname: Nathan S. orcidid: 0000-0002-0492-1160 surname: Swami fullname: Swami, Nathan S. email: nswami@virginia.edu organization: Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, 22904, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32606491$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk9v1DAQxS1URLeFD8AFReLCZRf_ie1GSEioAlqpCA5wtiaTSfEqsYOdVOyB746XLRX00JM18u89zfPzCTsKMRBjzwXfCC7M6-0mh3YjuSyztI0yj9hKnFm1VtzaI7bijdTrmnN9zE5y3nLOa2X4E3aspOGmbsSK_frkgx-XsWoBZ0oefQdDhTEghTnB7GOoYl-hn1Lsh_gT0IdqjtWXTEsXxxggV0BpufYhZqg6KiajD9RVCSbfDbtinMtUbKZdxB2Eos-EifbWT9njHoZMz27PU_btw_uv5xfrq88fL8_fXa2xts28tmjQ1gi6h6ZvSCqDqEEC77XVLSne05nRSjbQCc0BRSts4aUi0wBaUKfs7cF3WtqRukO2wU3Jj5B2LoJ3_98E_91dxxtny0spoYvBq1uDFH8slGc3-ow0DBAoLtnJWjS14FqLgr68h27jkkKJV6i6NrY2Uhbqxb8b3a3yt5kCiAOAKeacqL9DBHf79t3Wlfbdvn13aL9o7D0N-vlPhyWUHx5UvjkoqbRw4ym5jJ7KJ-h8IpxdF_0D6t_AVM1G |
CitedBy_id | crossref_primary_10_1016_j_jcis_2022_03_031 crossref_primary_10_1016_j_molliq_2021_118083 crossref_primary_10_1016_j_talanta_2022_123210 crossref_primary_10_3390_ijms241713644 crossref_primary_10_1080_17568919_2024_2400954 crossref_primary_10_1016_j_ijbiomac_2023_126905 crossref_primary_10_1016_j_snr_2021_100072 crossref_primary_10_1016_j_scitotenv_2021_146503 crossref_primary_10_1080_09205063_2024_2301807 crossref_primary_10_3390_pharmaceutics13121988 crossref_primary_10_1021_acs_biomac_3c00132 crossref_primary_10_1016_j_coelec_2022_101033 crossref_primary_10_1016_j_snb_2022_131504 crossref_primary_10_1109_TMBMC_2023_3274112 crossref_primary_10_1002_elan_12021 crossref_primary_10_1002_anse_202300058 crossref_primary_10_1016_j_snb_2021_130427 crossref_primary_10_1149_2754_2726_ad08d4 crossref_primary_10_1038_s41598_021_01225_2 crossref_primary_10_1016_j_aca_2024_342818 crossref_primary_10_1007_s00604_021_05109_0 crossref_primary_10_1039_D2LC00552B crossref_primary_10_1016_j_apsusc_2023_156889 |
Cites_doi | 10.1021/ac302703y 10.1016/j.electacta.2019.06.127 10.1021/acs.analchem.9b02686 10.1021/acsami.7b08581 10.2147/IDR.S16263 10.1039/c2lc40650k 10.1038/nm.2715 10.1016/j.aca.2015.05.002 10.1021/es702290a 10.1086/381972 10.1016/j.jelechem.2016.10.013 10.1021/acs.analchem.7b00876 10.1073/pnas.1421211111 10.1021/acs.analchem.5b02969 10.1016/j.snb.2018.08.137 10.1016/j.tibtech.2017.08.001 10.1021/acs.analchem.5b00846 10.1021/la960465w 10.3390/nano8030171 10.1039/C5RA05043J 10.1016/j.nano.2014.04.010 10.1016/j.bios.2017.05.042 10.1016/j.elecom.2017.03.021 10.1149/2.0101604jes 10.1038/ncomms4256 10.1016/j.bios.2014.04.028 10.1016/j.elecom.2016.08.015 10.1021/acssensors.6b00325 10.1039/C4AN00435C 10.1038/ncomms10535 10.1021/ac403013r 10.1039/c0cp00757a 10.1089/ars.2011.4249 10.1016/j.carbpol.2018.04.096 10.3390/ma2042188 10.1128/JB.01138-07 10.1021/acssensors.8b00498 10.1039/c2jm16633j 10.1016/j.bioelechem.2009.07.008 10.1073/pnas.1117298108 10.1038/nmat4720 10.1039/C5AN01358E 10.1557/mrs.2017.298 10.1039/b712760j 10.1002/celc.201600590 10.1021/ac5029837 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright Elsevier Science Ltd. Jun 1, 2020 |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Jun 1, 2020 |
DBID | AAYXX CITATION NPM 7SP 7SR 7TB 7U5 8BQ 8FD FR3 JG9 L7M 7X8 5PM |
DOI | 10.1016/j.snb.2020.127936 |
DatabaseName | CrossRef PubMed Electronics & Communications Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3077 |
ExternalDocumentID | PMC7326315 32606491 10_1016_j_snb_2020_127936 S0925400520302847 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R21 AI130902 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE ADTZH AEBSH AECPX AEKER AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSK SST SSZ T5K TN5 YK3 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN AJQLL ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB HMU HVGLF HZ~ R2- RIG SCB SCH SEW SSH WUQ EFKBS NPM 7SP 7SR 7TB 7U5 8BQ 8FD FR3 JG9 L7M 7X8 5PM |
ID | FETCH-LOGICAL-c479t-7c6c74ca5fa9f9e236cc5a2a0f575be30fe865329ad150ac1b1774c23e69ac7a3 |
IEDL.DBID | .~1 |
ISSN | 0925-4005 |
IngestDate | Thu Aug 21 18:25:42 EDT 2025 Thu Jul 10 22:06:48 EDT 2025 Fri Jul 25 08:24:27 EDT 2025 Mon Jul 21 06:02:22 EDT 2025 Tue Jul 01 01:27:40 EDT 2025 Thu Apr 24 22:57:33 EDT 2025 Fri Feb 23 02:47:44 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Persistence Nanoporous gold Bacteria Antibiotics Pyocyanin Microfluidics persistence nanoporous gold bacteria microfluidics pyocyanin |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c479t-7c6c74ca5fa9f9e236cc5a2a0f575be30fe865329ad150ac1b1774c23e69ac7a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 The manuscript was written through contributions of all authors and all authors approved the final version. Author Contributions |
ORCID | 0000-0001-9110-7759 0000-0002-0492-1160 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/7326315 |
PMID | 32606491 |
PQID | 2444674622 |
PQPubID | 2047454 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7326315 proquest_miscellaneous_2419410551 proquest_journals_2444674622 pubmed_primary_32606491 crossref_primary_10_1016_j_snb_2020_127936 crossref_citationtrail_10_1016_j_snb_2020_127936 elsevier_sciencedirect_doi_10_1016_j_snb_2020_127936 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-01 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Lausanne |
PublicationTitle | Sensors and actuators. B, Chemical |
PublicationTitleAlternate | Sens Actuators B Chem |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier Science Ltd |
Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
References | Webster, Sismaet, Conte, Chan, Goluch (bib0050) 2014; 60 Makaraviciute, Xu, Nyholm, Zhang (bib0220) 2017; 9 Webster, Sismaet, Chan, Goluch (bib0045) 2015; 140 Li, Liu, Kim, Song, Tsao, Teng, Gao, Mei, Bentley, Payne, Wang (bib0095) 2018; 195 Wilson, Stoianov, O’Hare (bib0090) 2016; 71 Pankey, Sabath (bib0010) 2004; 38 Cohen, Prince (bib0015) 2012; 18 Zhu, Zhou, Yan, Yan, Wang (bib0235) 2015; 883 Liu, McGrath, Moore, Kolling, Papin, Swami (bib0100) 2019; 318 Wittstock, Biener, Baumer (bib0170) 2010; 12 Bhattarai, Neupane, Nepal, Mikhaylov, Demchenko, Stine, Preparation (bib0145) 2018; 8 Farghaly, Lam, Freeman, Uppalapati, Collinson (bib0155) 2016; 163 Goluch (bib0035) 2017; 35 Veselinovic, Almashtoub, Seker (bib0180) 2019; 9 Sismaet, Pinto, Goluch (bib0070) 2017; 97 Bellin, Sakhtah, Rosenstein, Levine, Thimot, Emmett, Dietrich, Shepard (bib0055) 2014; 5 Connell, Kim, Shear, Bard, Whiteley (bib0110) 2014; 111 Daggumati, Matharu, Wang, Seker (bib0160) 2015; 87 Wang, Newman (bib0210) 2008; 42 Rohani, Moore, Su, Stagnaro, Warren, Swami (bib0125) 2018; 276 Sharp, Gladstone, Smith, Forsythe, Davis (bib0065) 2010; 77 Liu, Tsao, Kim, Tschirhart, Terrell, Bentley, Payne (bib0215) 2017; 6 Tan, Davis, Fujikawa, Ganesh, Demchenko, Stine (bib0205) 2012; 22 Elliott, Simoska, Karasik, Shear, Stevenson (bib0075) 2017; 89 Sordé, Pahissa, Rello (bib0005) 2011; 4 Bodelón, Montes-García, López-Puente, Hill, Hamon, Sanz-Ortiz, Rodal-Cedeira, Costas, Celiksoy, Pérez-Juste, Scarabelli, Porta, Pérez-Juste, Pastoriza-Santos, Liz-Marzán (bib0020) 2016; 15 Patel, Radhakrishnan, Zhao, Uppalapati, Daniels, Ward, Collinson (bib0165) 2013; 85 Kim, Gordonov, Bentley, Payne (bib0105) 2013; 85 Webster, Goluch (bib0120) 2012; 12 Burkitt, Sharp (bib0085) 2017; 78 Saraf, Neal, Park, Das, Barkam, Cho, Seal (bib0240) 2015; 5 Khan, Gadiraju, Kumar, Hatmaker, Fisher, Natarajan, Reiner, Collinson (bib0140) 2018; 3 Wurtzel, Yoder-Himes, Han, Dandekar, Edelheit, Greenberg, Sorek, Lory (bib0195) 2016; 8 Koley, Ramsey, Bard, Whiteley (bib0115) 2011; 108 Shulga, Zhou, Demchenko, Stine (bib0190) 2008; 133 Seker, Shih, Stine (bib0135) 2018; 43 Palmer, Aye, Whiteley (bib0185) 2007; 189 Sharma, Bhattarai, Nigudkar, Pistorio, Demchenko, Stine (bib0230) 2016; 782 Wu, Chen, Li, Zhao, Zughaier (bib0025) 2014; 10 Sadeghian, Ostrovidov, Han, Salehi, Bahraminejad, Bae, Chen, Khademhosseini (bib0150) 2016; 1 Masyuko, Lanni, Driscoll, Shrout, Sweedler, Bohn (bib0030) 2014; 139 Okegbe, Sakhtah, Sekedat, Price-Whelan, Dietrich (bib0060) 2012; 16 Su, Warren, Guerrant, Swami (bib0130) 2014; 86 Buzid, Reen, Langsi, Muimhneachain, O’Gara, McGlacken, Luong, Glennon (bib0080) 2017; 4 Seker, Reed, Begley (bib0175) 2009; 2 Daggumati, Matharu, Seker (bib0200) 2015; 87 Bellin, Sakhtah, Zhang, Price-Whelan, Dietrich, Shepard (bib0040) 2016; 7 Castner, Hinds, Grainger (bib0225) 1996; 12 Makaraviciute (10.1016/j.snb.2020.127936_bib0220) 2017; 9 Bellin (10.1016/j.snb.2020.127936_bib0055) 2014; 5 Sharp (10.1016/j.snb.2020.127936_bib0065) 2010; 77 Daggumati (10.1016/j.snb.2020.127936_bib0160) 2015; 87 Webster (10.1016/j.snb.2020.127936_bib0120) 2012; 12 Wurtzel (10.1016/j.snb.2020.127936_bib0195) 2016; 8 Buzid (10.1016/j.snb.2020.127936_bib0080) 2017; 4 Shulga (10.1016/j.snb.2020.127936_bib0190) 2008; 133 Goluch (10.1016/j.snb.2020.127936_bib0035) 2017; 35 Seker (10.1016/j.snb.2020.127936_bib0175) 2009; 2 Webster (10.1016/j.snb.2020.127936_bib0050) 2014; 60 Masyuko (10.1016/j.snb.2020.127936_bib0030) 2014; 139 Zhu (10.1016/j.snb.2020.127936_bib0235) 2015; 883 Khan (10.1016/j.snb.2020.127936_bib0140) 2018; 3 Daggumati (10.1016/j.snb.2020.127936_bib0200) 2015; 87 Elliott (10.1016/j.snb.2020.127936_bib0075) 2017; 89 Saraf (10.1016/j.snb.2020.127936_bib0240) 2015; 5 Palmer (10.1016/j.snb.2020.127936_bib0185) 2007; 189 Burkitt (10.1016/j.snb.2020.127936_bib0085) 2017; 78 Koley (10.1016/j.snb.2020.127936_bib0115) 2011; 108 Kim (10.1016/j.snb.2020.127936_bib0105) 2013; 85 Veselinovic (10.1016/j.snb.2020.127936_bib0180) 2019; 9 Connell (10.1016/j.snb.2020.127936_bib0110) 2014; 111 Wu (10.1016/j.snb.2020.127936_bib0025) 2014; 10 Patel (10.1016/j.snb.2020.127936_bib0165) 2013; 85 Pankey (10.1016/j.snb.2020.127936_bib0010) 2004; 38 Sadeghian (10.1016/j.snb.2020.127936_bib0150) 2016; 1 Wang (10.1016/j.snb.2020.127936_bib0210) 2008; 42 Liu (10.1016/j.snb.2020.127936_bib0215) 2017; 6 Cohen (10.1016/j.snb.2020.127936_bib0015) 2012; 18 Castner (10.1016/j.snb.2020.127936_bib0225) 1996; 12 Sordé (10.1016/j.snb.2020.127936_bib0005) 2011; 4 Sismaet (10.1016/j.snb.2020.127936_bib0070) 2017; 97 Wilson (10.1016/j.snb.2020.127936_bib0090) 2016; 71 Farghaly (10.1016/j.snb.2020.127936_bib0155) 2016; 163 Okegbe (10.1016/j.snb.2020.127936_bib0060) 2012; 16 Liu (10.1016/j.snb.2020.127936_bib0100) 2019; 318 Tan (10.1016/j.snb.2020.127936_bib0205) 2012; 22 Wittstock (10.1016/j.snb.2020.127936_bib0170) 2010; 12 Bellin (10.1016/j.snb.2020.127936_bib0040) 2016; 7 Webster (10.1016/j.snb.2020.127936_bib0045) 2015; 140 Li (10.1016/j.snb.2020.127936_bib0095) 2018; 195 Bodelón (10.1016/j.snb.2020.127936_bib0020) 2016; 15 Seker (10.1016/j.snb.2020.127936_bib0135) 2018; 43 Bhattarai (10.1016/j.snb.2020.127936_bib0145) 2018; 8 Sharma (10.1016/j.snb.2020.127936_bib0230) 2016; 782 Su (10.1016/j.snb.2020.127936_bib0130) 2014; 86 Rohani (10.1016/j.snb.2020.127936_bib0125) 2018; 276 |
References_xml | – volume: 18 start-page: 509 year: 2012 end-page: 519 ident: bib0015 article-title: Cystic fibrosis: a mucosal immunodeficiency syndrome publication-title: Nat. Med. – volume: 60 start-page: 265 year: 2014 end-page: 270 ident: bib0050 article-title: Electrochemical detection of Pseudomonas aeruginosa in human fluid samples via pyocyanin publication-title: Biosens. Bioelectron. – volume: 22 start-page: 6733 year: 2012 end-page: 6745 ident: bib0205 article-title: Surface area and pore size characteristics of nanoporous gold subjected to thermal, mechanical, or surface modification studied using gas adsorption isotherms, cyclic voltammetry, thermogravimetric analysis, and scanning electron microscopy publication-title: J. Mater. Chem. – volume: 108 start-page: 19996 year: 2011 end-page: 20001 ident: bib0115 article-title: Discovery of a biofilm electrocline using real-time 3D metabolite analysis publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 9 start-page: 26610 year: 2017 end-page: 26621 ident: bib0220 article-title: Systematic approach to the development of microfabricated biosensors: relationship between gold surface pretreatment and thiolated molecule binding publication-title: ACS Appl. Mater. Interfaces – volume: 139 start-page: 5700 year: 2014 end-page: 5708 ident: bib0030 article-title: Spatial organization of Pseudomonas aeruginosa biofilms probed by combined matrix-assisted Laser desorption ionization mass spectrometry and confocal Raman microscopy publication-title: Analyst – volume: 140 start-page: 7195 year: 2015 end-page: 7201 ident: bib0045 article-title: Electrochemically monitoring the antibiotic susceptibility of Pseudomonas aeruginosa biofilms publication-title: Analyst – volume: 189 start-page: 8079 year: 2007 end-page: 8087 ident: bib0185 article-title: Nutritional cues control publication-title: J. Bacteriol. – volume: 10 start-page: 1863 year: 2014 end-page: 1870 ident: bib0025 article-title: Culture-free diagnostics of Pseudomonas aeruginosa infection by silver nanorod array based SERS from clinical sputum samples publication-title: Nanomed.-Nanotechnol. Biol. Med. – volume: 9 start-page: 11923 year: 2019 end-page: 11931 ident: bib0180 article-title: Anomalous trends in nucleic acid-based electrochemical biosensors with nanoporous gold electrodes publication-title: Anal. Chem. – volume: 38 start-page: 864 year: 2004 end-page: 870 ident: bib0010 article-title: Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of gram-positive bacterial infections publication-title: Clin. Infect. Dis. – volume: 77 start-page: 114 year: 2010 end-page: 119 ident: bib0065 article-title: Approaching intelligent infection diagnostics: carbon fibre sensor for electrochemical pyocyanin detection publication-title: Bioelectrochemistry – volume: 35 start-page: 1125 year: 2017 end-page: 1128 ident: bib0035 article-title: Microbial identification using electrochemical detection of metabolites publication-title: Trends Biotechnol. – volume: 6 year: 2017 ident: bib0215 article-title: Using a redox modality to connect synthetic biology to electronics: hydrogel-based chemo-electro signal transduction for molecular communication publication-title: Adv. Healthc. Mater. – volume: 5 start-page: 46501 year: 2015 end-page: 46508 ident: bib0240 article-title: Electrochemical study of nanoporous gold revealing anti-biofouling properties publication-title: RSC Adv. – volume: 8 year: 2016 ident: bib0195 article-title: The single-nucleotide resolution transcriptome of Pseudomonas aeruginosa grown in body temperature publication-title: PLoS Pathog. – volume: 12 start-page: 12919 year: 2010 end-page: 12930 ident: bib0170 article-title: Nanoporous gold: a new material for catalytic and sensor applications publication-title: Phys. Chem. Chem. Phys. – volume: 4 start-page: 31 year: 2011 end-page: 41 ident: bib0005 article-title: Management of refractory publication-title: Infect. Drug Resist. – volume: 16 start-page: 658 year: 2012 end-page: 667 ident: bib0060 article-title: Redox Eustress: Roles for Redox-Active Metabolites in Bacterial Signaling and Behavior publication-title: Antioxid. Redox Signal. – volume: 42 start-page: 2380 year: 2008 end-page: 2386 ident: bib0210 article-title: Redox reactions of phenazine antibiotics with ferric (hydr)oxides and molecular oxygen publication-title: Environ. Sci. Technol. – volume: 5 start-page: 3256 year: 2014 ident: bib0055 article-title: Integrated circuit-based electrochemical sensor for spatially resolved detection of redox-active metabolites in biofilms publication-title: Nat. Commun. – volume: 15 start-page: 1203 year: 2016 end-page: 1211 ident: bib0020 article-title: Detection and imaging of quorum sensing in Pseudomonas aeruginosa biofilm communities by surface-enhanced resonance Raman scattering publication-title: Nat. Mater. – volume: 7 start-page: 10535 year: 2016 ident: bib0040 article-title: Electrochemical camera chip for simultaneous imaging of multiple metabolites in biofilms publication-title: Nat. Commun. – volume: 2 start-page: 2188 year: 2009 end-page: 2215 ident: bib0175 article-title: Nanoporous gold: fabrication, characterization, and applications publication-title: Materials – volume: 85 start-page: 11610 year: 2013 end-page: 11618 ident: bib0165 article-title: Electrochemical properties of nanostructured porous gold electrodes in biofouling solutions publication-title: Anal. Chem. – volume: 1 start-page: 921 year: 2016 end-page: 928 ident: bib0150 article-title: Online monitoring of superoxide anions released from skeletal muscle cells using an electrochemical biosensor based on thick-film nanoporous gold publication-title: ACS Sens. – volume: 4 start-page: 533 year: 2017 end-page: 541 ident: bib0080 article-title: Direct and Rapid Electrochemical Detection of Pseudomonas aeruginosa Quorum Signaling Molecules in Bacterial Cultures and Cystic Fibrosis Sputum Samples through Cationic Surfactant-Assisted Membrane Disruption publication-title: Chemelectrochem – volume: 43 start-page: 49 year: 2018 end-page: 56 ident: bib0135 article-title: Nanoporous metals by alloy corrosion: bioanalytical and biomedical applications publication-title: MRS Bull. – volume: 12 start-page: 5083 year: 1996 end-page: 5086 ident: bib0225 article-title: X-ray photoelectron spectroscopy sulfur 2p study of organic thiol and disulfide binding interactions with gold surfaces publication-title: Langmuir – volume: 12 start-page: 5195 year: 2012 end-page: 5201 ident: bib0120 article-title: Electrochemical detection of pyocyanin in nanochannels with integrated palladium hydride reference electrodes publication-title: Lab Chip – volume: 86 start-page: 10855 year: 2014 end-page: 10863 ident: bib0130 article-title: Dielectrophoretic monitoring and interstrain separation of intact Clostridium difficile based on their S(Surface)-Layers publication-title: Anal. Chem. – volume: 8 start-page: 171 year: 2018 ident: bib0145 article-title: Characterization, and biosensing application of nanoporous gold using electrochemical techniques publication-title: Nanomaterials – volume: 87 start-page: 8618 year: 2015 end-page: 8622 ident: bib0160 article-title: Biofouling-resilient nanoporous gold electrodes for DNA sensing publication-title: Anal. Chem. – volume: 883 start-page: 81 year: 2015 end-page: 89 ident: bib0235 article-title: Aptamer-functionalized nanoporous gold film for high-performance direct electrochemical detection of bisphenol A in human serum publication-title: Anal. Chim. Acta – volume: 3 start-page: 1601 year: 2018 end-page: 1608 ident: bib0140 article-title: Redox potential measurements in red blood cell packets using nanoporous gold electrodes publication-title: ACS Sens. – volume: 78 start-page: 43 year: 2017 end-page: 46 ident: bib0085 article-title: Submicromolar quantification of pyocyanin in complex biological fluids using pad-printed carbon electrodes publication-title: Electrochem. Comm. – volume: 318 start-page: 828 year: 2019 end-page: 836 ident: bib0100 article-title: Electrofabricated biomaterial-based capacitor on nanoporous gold for enhanced redox amplification publication-title: Electrochim. Acta – volume: 85 start-page: 2102 year: 2013 end-page: 2108 ident: bib0105 article-title: Amplified and in situ detection of redox-active metabolite using a biobased redox capacitor publication-title: Anal. Chem. – volume: 782 start-page: 174 year: 2016 end-page: 181 ident: bib0230 article-title: Electrochemical impedance spectroscopy study of carbohydrate-terminated alkanethiol monolayers on nanoporous gold: implications for pore wetting publication-title: J. Electroanal. Chem. – volume: 276 start-page: 472 year: 2018 end-page: 480 ident: bib0125 article-title: Single-cell electro-phenotyping for rapid assessment of Clostridium difficile heterogeneity under vancomycin treatment at sub-MIC (minimum inhibitory concentration) levels publication-title: Sen. Actuators B-Chem. – volume: 87 start-page: 8149 year: 2015 end-page: 8156 ident: bib0200 article-title: Effect of nanoporous gold thin film morphology on electrochemical DNA sensing publication-title: Anal. Chem. – volume: 89 start-page: 6285 year: 2017 end-page: 6289 ident: bib0075 article-title: Transparent carbon ultramicroelectrode arrays for the electrochemical detection of a bacterial warfare toxin, pyocyanin publication-title: Anal. Chem. – volume: 133 start-page: 319 year: 2008 end-page: 322 ident: bib0190 article-title: Detection of free prostate specific antigen (fPSA) on a nanoporous gold platform publication-title: Analyst – volume: 163 start-page: H3083 year: 2016 end-page: H3087 ident: bib0155 article-title: Potentiometric measurements in biofouling solutions: comparison of nanoporous gold to planar gold publication-title: J. Electrochem. Soc. – volume: 97 start-page: 65 year: 2017 end-page: 69 ident: bib0070 article-title: Electrochemical sensors for identifying pyocyanin production in clinical Pseudomonas aeruginosa isolates publication-title: Biosens. Bioelectron. – volume: 71 start-page: 79 year: 2016 end-page: 83 ident: bib0090 article-title: Biofouling and in situ electrochemical cleaning of a boron-doped diamond free chlorine sensor publication-title: Electrochem. Commun. – volume: 111 start-page: 18255 year: 2014 end-page: 18260 ident: bib0110 article-title: Real-time monitoring of quorum sensing in 3D-printed bacterial aggregates using scanning electrochemical microscopy publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 195 start-page: 505 year: 2018 end-page: 514 ident: bib0095 article-title: Electrodeposition of a magnetic and redox-active chitosan film for capturing and sensing metabolic active bacteria publication-title: Carbohydr. Polym. – volume: 85 start-page: 2102 year: 2013 ident: 10.1016/j.snb.2020.127936_bib0105 article-title: Amplified and in situ detection of redox-active metabolite using a biobased redox capacitor publication-title: Anal. Chem. doi: 10.1021/ac302703y – volume: 318 start-page: 828 year: 2019 ident: 10.1016/j.snb.2020.127936_bib0100 article-title: Electrofabricated biomaterial-based capacitor on nanoporous gold for enhanced redox amplification publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.06.127 – volume: 9 start-page: 11923 year: 2019 ident: 10.1016/j.snb.2020.127936_bib0180 article-title: Anomalous trends in nucleic acid-based electrochemical biosensors with nanoporous gold electrodes publication-title: Anal. Chem. doi: 10.1021/acs.analchem.9b02686 – volume: 9 start-page: 26610 year: 2017 ident: 10.1016/j.snb.2020.127936_bib0220 article-title: Systematic approach to the development of microfabricated biosensors: relationship between gold surface pretreatment and thiolated molecule binding publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b08581 – volume: 4 start-page: 31 year: 2011 ident: 10.1016/j.snb.2020.127936_bib0005 article-title: Management of refractory Pseudomonas aeruginosa infection in cystic fibrosis publication-title: Infect. Drug Resist. doi: 10.2147/IDR.S16263 – volume: 12 start-page: 5195 year: 2012 ident: 10.1016/j.snb.2020.127936_bib0120 article-title: Electrochemical detection of pyocyanin in nanochannels with integrated palladium hydride reference electrodes publication-title: Lab Chip doi: 10.1039/c2lc40650k – volume: 18 start-page: 509 year: 2012 ident: 10.1016/j.snb.2020.127936_bib0015 article-title: Cystic fibrosis: a mucosal immunodeficiency syndrome publication-title: Nat. Med. doi: 10.1038/nm.2715 – volume: 883 start-page: 81 year: 2015 ident: 10.1016/j.snb.2020.127936_bib0235 article-title: Aptamer-functionalized nanoporous gold film for high-performance direct electrochemical detection of bisphenol A in human serum publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2015.05.002 – volume: 42 start-page: 2380 year: 2008 ident: 10.1016/j.snb.2020.127936_bib0210 article-title: Redox reactions of phenazine antibiotics with ferric (hydr)oxides and molecular oxygen publication-title: Environ. Sci. Technol. doi: 10.1021/es702290a – volume: 38 start-page: 864 year: 2004 ident: 10.1016/j.snb.2020.127936_bib0010 article-title: Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of gram-positive bacterial infections publication-title: Clin. Infect. Dis. doi: 10.1086/381972 – volume: 782 start-page: 174 year: 2016 ident: 10.1016/j.snb.2020.127936_bib0230 article-title: Electrochemical impedance spectroscopy study of carbohydrate-terminated alkanethiol monolayers on nanoporous gold: implications for pore wetting publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2016.10.013 – volume: 89 start-page: 6285 year: 2017 ident: 10.1016/j.snb.2020.127936_bib0075 article-title: Transparent carbon ultramicroelectrode arrays for the electrochemical detection of a bacterial warfare toxin, pyocyanin publication-title: Anal. Chem. doi: 10.1021/acs.analchem.7b00876 – volume: 111 start-page: 18255 year: 2014 ident: 10.1016/j.snb.2020.127936_bib0110 article-title: Real-time monitoring of quorum sensing in 3D-printed bacterial aggregates using scanning electrochemical microscopy publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1421211111 – volume: 87 start-page: 8618 year: 2015 ident: 10.1016/j.snb.2020.127936_bib0160 article-title: Biofouling-resilient nanoporous gold electrodes for DNA sensing publication-title: Anal. Chem. doi: 10.1021/acs.analchem.5b02969 – volume: 276 start-page: 472 year: 2018 ident: 10.1016/j.snb.2020.127936_bib0125 article-title: Single-cell electro-phenotyping for rapid assessment of Clostridium difficile heterogeneity under vancomycin treatment at sub-MIC (minimum inhibitory concentration) levels publication-title: Sen. Actuators B-Chem. doi: 10.1016/j.snb.2018.08.137 – volume: 35 start-page: 1125 year: 2017 ident: 10.1016/j.snb.2020.127936_bib0035 article-title: Microbial identification using electrochemical detection of metabolites publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2017.08.001 – volume: 87 start-page: 8149 year: 2015 ident: 10.1016/j.snb.2020.127936_bib0200 article-title: Effect of nanoporous gold thin film morphology on electrochemical DNA sensing publication-title: Anal. Chem. doi: 10.1021/acs.analchem.5b00846 – volume: 6 year: 2017 ident: 10.1016/j.snb.2020.127936_bib0215 article-title: Using a redox modality to connect synthetic biology to electronics: hydrogel-based chemo-electro signal transduction for molecular communication publication-title: Adv. Healthc. Mater. – volume: 12 start-page: 5083 year: 1996 ident: 10.1016/j.snb.2020.127936_bib0225 article-title: X-ray photoelectron spectroscopy sulfur 2p study of organic thiol and disulfide binding interactions with gold surfaces publication-title: Langmuir doi: 10.1021/la960465w – volume: 8 start-page: 171 year: 2018 ident: 10.1016/j.snb.2020.127936_bib0145 article-title: Characterization, and biosensing application of nanoporous gold using electrochemical techniques publication-title: Nanomaterials doi: 10.3390/nano8030171 – volume: 5 start-page: 46501 year: 2015 ident: 10.1016/j.snb.2020.127936_bib0240 article-title: Electrochemical study of nanoporous gold revealing anti-biofouling properties publication-title: RSC Adv. doi: 10.1039/C5RA05043J – volume: 10 start-page: 1863 year: 2014 ident: 10.1016/j.snb.2020.127936_bib0025 article-title: Culture-free diagnostics of Pseudomonas aeruginosa infection by silver nanorod array based SERS from clinical sputum samples publication-title: Nanomed.-Nanotechnol. Biol. Med. doi: 10.1016/j.nano.2014.04.010 – volume: 97 start-page: 65 year: 2017 ident: 10.1016/j.snb.2020.127936_bib0070 article-title: Electrochemical sensors for identifying pyocyanin production in clinical Pseudomonas aeruginosa isolates publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2017.05.042 – volume: 78 start-page: 43 year: 2017 ident: 10.1016/j.snb.2020.127936_bib0085 article-title: Submicromolar quantification of pyocyanin in complex biological fluids using pad-printed carbon electrodes publication-title: Electrochem. Comm. doi: 10.1016/j.elecom.2017.03.021 – volume: 163 start-page: H3083 year: 2016 ident: 10.1016/j.snb.2020.127936_bib0155 article-title: Potentiometric measurements in biofouling solutions: comparison of nanoporous gold to planar gold publication-title: J. Electrochem. Soc. doi: 10.1149/2.0101604jes – volume: 5 start-page: 3256 year: 2014 ident: 10.1016/j.snb.2020.127936_bib0055 article-title: Integrated circuit-based electrochemical sensor for spatially resolved detection of redox-active metabolites in biofilms publication-title: Nat. Commun. doi: 10.1038/ncomms4256 – volume: 60 start-page: 265 year: 2014 ident: 10.1016/j.snb.2020.127936_bib0050 article-title: Electrochemical detection of Pseudomonas aeruginosa in human fluid samples via pyocyanin publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2014.04.028 – volume: 71 start-page: 79 year: 2016 ident: 10.1016/j.snb.2020.127936_bib0090 article-title: Biofouling and in situ electrochemical cleaning of a boron-doped diamond free chlorine sensor publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2016.08.015 – volume: 1 start-page: 921 year: 2016 ident: 10.1016/j.snb.2020.127936_bib0150 article-title: Online monitoring of superoxide anions released from skeletal muscle cells using an electrochemical biosensor based on thick-film nanoporous gold publication-title: ACS Sens. doi: 10.1021/acssensors.6b00325 – volume: 139 start-page: 5700 year: 2014 ident: 10.1016/j.snb.2020.127936_bib0030 article-title: Spatial organization of Pseudomonas aeruginosa biofilms probed by combined matrix-assisted Laser desorption ionization mass spectrometry and confocal Raman microscopy publication-title: Analyst doi: 10.1039/C4AN00435C – volume: 7 start-page: 10535 year: 2016 ident: 10.1016/j.snb.2020.127936_bib0040 article-title: Electrochemical camera chip for simultaneous imaging of multiple metabolites in biofilms publication-title: Nat. Commun. doi: 10.1038/ncomms10535 – volume: 85 start-page: 11610 year: 2013 ident: 10.1016/j.snb.2020.127936_bib0165 article-title: Electrochemical properties of nanostructured porous gold electrodes in biofouling solutions publication-title: Anal. Chem. doi: 10.1021/ac403013r – volume: 12 start-page: 12919 year: 2010 ident: 10.1016/j.snb.2020.127936_bib0170 article-title: Nanoporous gold: a new material for catalytic and sensor applications publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c0cp00757a – volume: 16 start-page: 658 year: 2012 ident: 10.1016/j.snb.2020.127936_bib0060 article-title: Redox Eustress: Roles for Redox-Active Metabolites in Bacterial Signaling and Behavior publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2011.4249 – volume: 195 start-page: 505 year: 2018 ident: 10.1016/j.snb.2020.127936_bib0095 article-title: Electrodeposition of a magnetic and redox-active chitosan film for capturing and sensing metabolic active bacteria publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2018.04.096 – volume: 2 start-page: 2188 year: 2009 ident: 10.1016/j.snb.2020.127936_bib0175 article-title: Nanoporous gold: fabrication, characterization, and applications publication-title: Materials doi: 10.3390/ma2042188 – volume: 189 start-page: 8079 year: 2007 ident: 10.1016/j.snb.2020.127936_bib0185 article-title: Nutritional cues control Pseudomonas aeruginosa multicellular behavior in cystic fibrosis sputum publication-title: J. Bacteriol. doi: 10.1128/JB.01138-07 – volume: 3 start-page: 1601 year: 2018 ident: 10.1016/j.snb.2020.127936_bib0140 article-title: Redox potential measurements in red blood cell packets using nanoporous gold electrodes publication-title: ACS Sens. doi: 10.1021/acssensors.8b00498 – volume: 22 start-page: 6733 year: 2012 ident: 10.1016/j.snb.2020.127936_bib0205 article-title: Surface area and pore size characteristics of nanoporous gold subjected to thermal, mechanical, or surface modification studied using gas adsorption isotherms, cyclic voltammetry, thermogravimetric analysis, and scanning electron microscopy publication-title: J. Mater. Chem. doi: 10.1039/c2jm16633j – volume: 77 start-page: 114 year: 2010 ident: 10.1016/j.snb.2020.127936_bib0065 article-title: Approaching intelligent infection diagnostics: carbon fibre sensor for electrochemical pyocyanin detection publication-title: Bioelectrochemistry doi: 10.1016/j.bioelechem.2009.07.008 – volume: 8 year: 2016 ident: 10.1016/j.snb.2020.127936_bib0195 article-title: The single-nucleotide resolution transcriptome of Pseudomonas aeruginosa grown in body temperature publication-title: PLoS Pathog. – volume: 108 start-page: 19996 year: 2011 ident: 10.1016/j.snb.2020.127936_bib0115 article-title: Discovery of a biofilm electrocline using real-time 3D metabolite analysis publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1117298108 – volume: 15 start-page: 1203 year: 2016 ident: 10.1016/j.snb.2020.127936_bib0020 article-title: Detection and imaging of quorum sensing in Pseudomonas aeruginosa biofilm communities by surface-enhanced resonance Raman scattering publication-title: Nat. Mater. doi: 10.1038/nmat4720 – volume: 140 start-page: 7195 year: 2015 ident: 10.1016/j.snb.2020.127936_bib0045 article-title: Electrochemically monitoring the antibiotic susceptibility of Pseudomonas aeruginosa biofilms publication-title: Analyst doi: 10.1039/C5AN01358E – volume: 43 start-page: 49 year: 2018 ident: 10.1016/j.snb.2020.127936_bib0135 article-title: Nanoporous metals by alloy corrosion: bioanalytical and biomedical applications publication-title: MRS Bull. doi: 10.1557/mrs.2017.298 – volume: 133 start-page: 319 year: 2008 ident: 10.1016/j.snb.2020.127936_bib0190 article-title: Detection of free prostate specific antigen (fPSA) on a nanoporous gold platform publication-title: Analyst doi: 10.1039/b712760j – volume: 4 start-page: 533 year: 2017 ident: 10.1016/j.snb.2020.127936_bib0080 article-title: Direct and Rapid Electrochemical Detection of Pseudomonas aeruginosa Quorum Signaling Molecules in Bacterial Cultures and Cystic Fibrosis Sputum Samples through Cationic Surfactant-Assisted Membrane Disruption publication-title: Chemelectrochem doi: 10.1002/celc.201600590 – volume: 86 start-page: 10855 year: 2014 ident: 10.1016/j.snb.2020.127936_bib0130 article-title: Dielectrophoretic monitoring and interstrain separation of intact Clostridium difficile based on their S(Surface)-Layers publication-title: Anal. Chem. doi: 10.1021/ac5029837 |
SSID | ssj0004360 |
Score | 2.450552 |
Snippet | [Display omitted]
•Pyocyanin as a marker for determining bactericidal deactivation of P. aeruginosa.•Nanoporous gold for electrochemical detection of pyocyanin... Infections due to ( ) often exhibit broad-spectrum resistance and persistence to common antibiotics. Persistence is especially problematic with... Infections due to Pseudomonas aeruginosa (P. aeruginosa) often exhibit broad-spectrum resistance and persistence to common antibiotics. Persistence is... Infections due to Pseudomonas aeruginosa ( P. aeruginosa ) often exhibit broad-spectrum resistance and persistence to common antibiotics. Persistence is... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 127936 |
SubjectTerms | Antibiotics Bacteria Charge transfer Deactivation Electrochemical analysis Metabolites Microfluidics Nanoporous gold Persistence Pseudomonas aeruginosa Pyocyanin Self-assembled monolayers Self-assembly |
Title | Minimum bactericidal concentration of ciprofloxacin to Pseudomonas aeruginosa determined rapidly based on pyocyanin secretion |
URI | https://dx.doi.org/10.1016/j.snb.2020.127936 https://www.ncbi.nlm.nih.gov/pubmed/32606491 https://www.proquest.com/docview/2444674622 https://www.proquest.com/docview/2419410551 https://pubmed.ncbi.nlm.nih.gov/PMC7326315 |
Volume | 312 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcoED4s22pTISJ6Sw2TiJ42NVUS2gVkhQqbdo_BJBW2e12Ujsofx2ZvJYuiB64Jh4xko8Y_uz_M0MY2-UVsrFGo-puvARFduOCgM2siBl4XTqky7K9fwin1-mH6-yqz12OsbCEK1yWPv7Nb1brYc302E0p8uqmn6JFR5uOh6HiGmRpQj2VJKXv_v5m-aRii5SmIQjkh5vNjuOVxM0HhETyrGAfpr_a2_6G3v-SaG8tSedPWIPBzDJT_rvfcz2XHjCHtxKMfiU3ZxXobpur7nu0zKbyqKGoWDFMGTM5bXnpqLi3Yv6B5gq8HXNPzeutTX6KDQc3KrFLusGuB3YM87yFSwru9hw2gctx26Wm9psIKB-Q1iUun7GLs_efz2dR0PJhcikUq0jaXIjUwOZB-WVS0RuTAYJxB5hnXYi9q7IM5EosIgkwcwoe1VqEuFyBUaCeM72Qx3cS8Zj54vCFIlXGhClIA7ThB0Lm-UCCucnLB4HuzRDPnIqi7EoR-LZ9xLtU5J9yt4-E_Z2q7Lsk3HcJZyOFix3PKrEzeIutaPR2uUwnZsSMRBVZcmTZMJeb5txItLtCgRXtyQzU8SZzWYT9qJ3ju1HIkZG6KewRe64zVaAknzvtoTqW5fsW6KumGUH__c3h-w-PfXctiO2v1617hWiqLU-7qbJMbt38uHT_OIX3C8f-A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEBapc2h7CH3XTdqq0FNh8XrfOoaQ4DSxKTSB3ISeZIujNV4vxIf8987sap24pTn0uqMRWs1I-oRmviHkK5OMmVDCNVUWNsBi20GhhA60yPPCyMRGbZbrdJZNLpPvV-nVDjnqc2EwrNLv_d2e3u7W_svIz-ZoUZajnyGDy00bxxGHuMk-IbvITpUOyO7h6dlkdp8eGbfJwtg-QIX-cbMN86qdhFtihDQL4KrZv46nv-Hnn1GUD46lkxdkz-NJetgN-SXZMe4Vef6AZfA1uZuWrrxpbqjsmJlVqUFDYb6i86S5tLJUlVi_e17dClU6uqroj9o0ugI3FTUVZtlAl1UtqPYBNEbTpViUer6meBRqCt0s1pVaCwf6NcJR7PoNuTw5vjiaBL7qQqCSnK2CXGUqT5RIrWCWmSjOlEpFJEILyE6aOLSmyNI4YkIDmBRqjARWiYpikzGhchG_JQNXOfOe0NDYolBFZJkUAFQAikmEj4VOs1gUxg5J2E82V56SHCtjzHkfe_aLg3042od39hmSbxuVRcfH8VjjpLcg33IqDufFY2oHvbW5X9E1BxiEhVmyKBqSLxsxrEV8YBHOVA22GTMMm03HQ_Kuc47NIAEmA_pjIMm33GbTAHm-tyWuvG75vnPQjcfph__7m8_k6eRies7PT2dn--QZSrpQtwMyWC0b8xFA1Up-8ovmN54aIqk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Minimum+bactericidal+concentration+of+ciprofloxacin+to+Pseudomonas+aeruginosa+determined+rapidly+based+on+pyocyanin+secretion&rft.jtitle=Sensors+and+actuators.+B%2C+Chemical&rft.au=Liu%2C+Yi&rft.au=Moore%2C+John+H.&rft.au=Kolling%2C+Glynis+L.&rft.au=McGrath%2C+John+S.&rft.date=2020-06-01&rft.pub=Elsevier+B.V&rft.issn=0925-4005&rft.eissn=1873-3077&rft.volume=312&rft_id=info:doi/10.1016%2Fj.snb.2020.127936&rft.externalDocID=S0925400520302847 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-4005&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-4005&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-4005&client=summon |