Evolutionary Origins of Transcription Factor Binding Site Clusters
Empirical studies have revealed that regulatory DNA sequences such as enhancers or promoters often harbor multiple binding sites for the same transcription factor. Such "homotypic site clustering" has been hypothesized as arising out of functional requirements of the sequences. Here, we pr...
Saved in:
Published in | Molecular biology and evolution Vol. 29; no. 3; pp. 1059 - 1070 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Oxford University Press
01.03.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Empirical studies have revealed that regulatory DNA sequences such as enhancers or promoters often harbor multiple binding sites for the same transcription factor. Such "homotypic site clustering" has been hypothesized as arising out of functional requirements of the sequences. Here, we propose an alternative explanation of this phenomenon that multisite enhancers are common because they are favored by evolutionary sampling of the genotype-phenotype landscape. To test this hypothesis, we developed a new computational framework specialized for population genetic simulations of enhancer evolution. It uses a thermodynamics-based model of enhancer function, integrating information from strong as well as weak binding sites, to determine the strength of selection. Using this framework, we found that even when simpler genotypes exist for a desired strength of regulation, relatively complex genotypes (enhancers with more sites) are more readily reached by the simulated evolutionary process. We show that there are more ways to "build" a fit genotype with many weak sites than with a few strong sites, and this is why evolution finds complex genotypes more often. Our claims are consistent with an empirical analysis of binding site content in enhancers characterized in D
rosophila melanogaster and their orthologs in other Drosophila species. We also characterized a subtle but significant difference between genotypes likely to be sampled by evolution and equally fit genotypes one would obtain by uniform sampling of the fitness landscape, that is, an "evolutionary signature" in enhancer sequences. Finally, we investigated potential effects of other factors, such as rugged fitness landscapes, short local duplications, and noise characteristics of enhancers, on the emergence of homotypic site clustering.
Homotypic site clustering is an important contributor to the complexity and function of cis-regulatory sequences. This work provides a simple null hypothesis for its origin, against which alternative adaptationist explanations may be evaluated, and cautions against "evolutionary mirages" present in common features of genomic sequence. The quantitative framework we develop here can be used more generally to understand how mechanisms of enhancer action influence their composition and evolution. |
---|---|
AbstractList | Empirical studies have revealed that regulatory DNA sequences such as enhancers or promoters often harbor multiple binding sites for the same transcription factor. Such "homotypic site clustering" has been hypothesized as arising out of functional requirements of the sequences. Here, we propose an alternative explanation of this phenomenon that multisite enhancers are common because they are favored by evolutionary sampling of the genotype-phenotype landscape. To test this hypothesis, we developed a new computational framework specialized for population genetic simulations of enhancer evolution. It uses a thermodynamics-based model of enhancer function, integrating information from strong as well as weak binding sites, to determine the strength of selection. Using this framework, we found that even when simpler genotypes exist for a desired strength of regulation, relatively complex genotypes (enhancers with more sites) are more readily reached by the simulated evolutionary process. We show that there are more ways to "build" a fit genotype with many weak sites than with a few strong sites, and this is why evolution finds complex genotypes more often. Our claims are consistent with an empirical analysis of binding site content in enhancers characterized in Drosophila melanogaster and their orthologs in other Drosophila species. We also characterized a subtle but significant difference between genotypes likely to be sampled by evolution and equally fit genotypes one would obtain by uniform sampling of the fitness landscape, that is, an "evolutionary signature" in enhancer sequences. Finally, we investigated potential effects of other factors, such as rugged fitness landscapes, short local duplications, and noise characteristics of enhancers, on the emergence of homotypic site clustering. Homotypic site clustering is an important contributor to the complexity and function of cis-regulatory sequences. This work provides a simple null hypothesis for its origin, against which alternative adaptationist explanations may be evaluated, and cautions against "evolutionary mirages" present in common features of genomic sequence. The quantitative framework we develop here can be used more generally to understand how mechanisms of enhancer action influence their composition and evolution. [PUBLICATION ABSTRACT] Empirical studies have revealed that regulatory DNA sequences such as enhancers or promoters often harbor multiple binding sites for the same transcription factor. Such "homotypic site clustering" has been hypothesized as arising out of functional requirements of the sequences. Here, we propose an alternative explanation of this phenomenon that multisite enhancers are common because they are favored by evolutionary sampling of the genotype-phenotype landscape. To test this hypothesis, we developed a new computational framework specialized for population genetic simulations of enhancer evolution. It uses a thermodynamics-based model of enhancer function, integrating information from strong as well as weak binding sites, to determine the strength of selection. Using this framework, we found that even when simpler genotypes exist for a desired strength of regulation, relatively complex genotypes (enhancers with more sites) are more readily reached by the simulated evolutionary process. We show that there are more ways to "build" a fit genotype with many weak sites than with a few strong sites, and this is why evolution finds complex genotypes more often. Our claims are consistent with an empirical analysis of binding site content in enhancers characterized in D rosophila melanogaster and their orthologs in other Drosophila species. We also characterized a subtle but significant difference between genotypes likely to be sampled by evolution and equally fit genotypes one would obtain by uniform sampling of the fitness landscape, that is, an "evolutionary signature" in enhancer sequences. Finally, we investigated potential effects of other factors, such as rugged fitness landscapes, short local duplications, and noise characteristics of enhancers, on the emergence of homotypic site clustering. Homotypic site clustering is an important contributor to the complexity and function of cis-regulatory sequences. This work provides a simple null hypothesis for its origin, against which alternative adaptationist explanations may be evaluated, and cautions against "evolutionary mirages" present in common features of genomic sequence. The quantitative framework we develop here can be used more generally to understand how mechanisms of enhancer action influence their composition and evolution. Empirical studies have revealed that regulatory DNA sequences such as enhancers or promoters often harbor multiple binding sites for the same transcription factor. Such “homotypic site clustering” has been hypothesized as arising out of functional requirements of the sequences. Here, we propose an alternative explanation of this phenomenon that multisite enhancers are common because they are favored by evolutionary sampling of the genotype–phenotype landscape. To test this hypothesis, we developed a new computational framework specialized for population genetic simulations of enhancer evolution. It uses a thermodynamics-based model of enhancer function, integrating information from strong as well as weak binding sites, to determine the strength of selection. Using this framework, we found that even when simpler genotypes exist for a desired strength of regulation, relatively complex genotypes (enhancers with more sites) are more readily reached by the simulated evolutionary process. We show that there are more ways to “build” a fit genotype with many weak sites than with a few strong sites, and this is why evolution finds complex genotypes more often. Our claims are consistent with an empirical analysis of binding site content in enhancers characterized in D rosophila melanogaster and their orthologs in other Drosophila species. We also characterized a subtle but significant difference between genotypes likely to be sampled by evolution and equally fit genotypes one would obtain by uniform sampling of the fitness landscape, that is, an “evolutionary signature” in enhancer sequences. Finally, we investigated potential effects of other factors, such as rugged fitness landscapes, short local duplications, and noise characteristics of enhancers, on the emergence of homotypic site clustering. Homotypic site clustering is an important contributor to the complexity and function of cis -regulatory sequences. This work provides a simple null hypothesis for its origin, against which alternative adaptationist explanations may be evaluated, and cautions against “evolutionary mirages” present in common features of genomic sequence. The quantitative framework we develop here can be used more generally to understand how mechanisms of enhancer action influence their composition and evolution. Empirical studies have revealed that regulatory DNA sequences such as enhancers or promoters often harbor multiple binding sites for the same transcription factor. Such "homotypic site clustering" has been hypothesized as arising out of functional requirements of the sequences. Here, we propose an alternative explanation of this phenomenon that multisite enhancers are common because they are favored by evolutionary sampling of the genotype-phenotype landscape. To test this hypothesis, we developed a new computational framework specialized for population genetic simulations of enhancer evolution. It uses a thermodynamics-based model of enhancer function, integrating information from strong as well as weak binding sites, to determine the strength of selection. Using this framework, we found that even when simpler genotypes exist for a desired strength of regulation, relatively complex genotypes (enhancers with more sites) are more readily reached by the simulated evolutionary process. We show that there are more ways to "build" a fit genotype with many weak sites than with a few strong sites, and this is why evolution finds complex genotypes more often. Our claims are consistent with an empirical analysis of binding site content in enhancers characterized in Drosophila melanogaster and their orthologs in other Drosophila species. We also characterized a subtle but significant difference between genotypes likely to be sampled by evolution and equally fit genotypes one would obtain by uniform sampling of the fitness landscape, that is, an "evolutionary signature" in enhancer sequences. Finally, we investigated potential effects of other factors, such as rugged fitness landscapes, short local duplications, and noise characteristics of enhancers, on the emergence of homotypic site clustering. Homotypic site clustering is an important contributor to the complexity and function of cis-regulatory sequences. This work provides a simple null hypothesis for its origin, against which alternative adaptationist explanations may be evaluated, and cautions against "evolutionary mirages" present in common features of genomic sequence. The quantitative framework we develop here can be used more generally to understand how mechanisms of enhancer action influence their composition and evolution. |
Author | Sinha, Saurabh He, Xin Duque, Thyago S.P.C. |
AuthorAffiliation | 2 Department of Computer Science, University of Illinois at Urbana-Champaign 1 Department of Biochemistry, University of California at San Francisco |
AuthorAffiliation_xml | – name: 2 Department of Computer Science, University of Illinois at Urbana-Champaign – name: 1 Department of Biochemistry, University of California at San Francisco |
Author_xml | – sequence: 1 givenname: Xin surname: He fullname: He, Xin organization: 1Department of Biochemistry, University of California at San Francisco – sequence: 2 givenname: Thyago S.P.C. surname: Duque fullname: Duque, Thyago S.P.C. organization: 2Department of Computer Science, University of Illinois at Urbana-Champaign – sequence: 3 givenname: Saurabh surname: Sinha fullname: Sinha, Saurabh email: sinhas@illinois.edu organization: 2Department of Computer Science, University of Illinois at Urbana-Champaign |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22075113$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1r3DAQhkVJaTZpj70W00t7caORZH1cCtklH4VADsldyN7xRsGWtpK90H9fhU3SpIf2NIJ5eHhH7xE5CDEgIR-BfgNq-MkYhxZ3J2NOTKk3ZAENVzUoMAdkQVV5C8r1ITnK-Z5SEELKd-SQMaoaAL4gy7NdHObJx-DSr-o6-Y0PuYp9dZtcyF3y24ddde66KaZq6cPah0114yesVsOcJ0z5PXnbuyHjh8d5TG7Oz25Xl_XV9cWP1elV3Qllplq6FhlyhqgE61A3lNN1C8xIyXjTGmkccqmbXvRNb4TmWjoNWjIQSjt-TL7vrdu5HXHdYZiSG-w2-bEkt9F5-3oT_J3dxJ3lTGmhVBF8eRSk-HPGPNnR5w6HwQWMc7aGQSMNKFbIr_8kgVKti1VCQT__hd7HOYXyDcXXABUlfIHqPdSlmHPC_jk1UPtQot2XaPclFv7Ty1Of6afW_gSM8_Y_rt_jOKlp |
CitedBy_id | crossref_primary_10_3389_fgene_2014_00245 crossref_primary_10_1371_journal_pone_0184657 crossref_primary_10_1371_journal_pcbi_1003367 crossref_primary_10_1098_rspb_2013_1313 crossref_primary_10_1007_s10577_018_9571_6 crossref_primary_10_1093_nar_gkv255 crossref_primary_10_1093_nar_gkt374 crossref_primary_10_1093_nar_gkv1463 crossref_primary_10_1534_genetics_113_153262 crossref_primary_10_1016_j_cels_2015_12_002 crossref_primary_10_1002_bies_201400036 crossref_primary_10_1016_j_bbagrm_2012_10_008 crossref_primary_10_1016_j_csbj_2014_07_005 crossref_primary_10_1140_epje_i2013_13054_7 crossref_primary_10_1016_j_genrep_2018_08_008 crossref_primary_10_1371_journal_pgen_1005639 crossref_primary_10_1515_jib_2020_0036 crossref_primary_10_1016_j_cell_2014_11_041 crossref_primary_10_1534_genetics_114_168112 crossref_primary_10_1016_j_gde_2014_08_011 crossref_primary_10_1038_s41586_022_04506_6 crossref_primary_10_1093_gbe_evv080 crossref_primary_10_1016_j_jsb_2017_02_006 crossref_primary_10_1016_j_devcel_2016_10_010 crossref_primary_10_1128_spectrum_02536_23 crossref_primary_10_3389_fgene_2015_00322 crossref_primary_10_3390_cancers14184375 crossref_primary_10_1093_nar_gkab807 crossref_primary_10_1098_rstb_2013_0018 crossref_primary_10_1016_j_semcdb_2015_12_003 crossref_primary_10_1093_nar_gku078 crossref_primary_10_1142_S0219720014410091 crossref_primary_10_1186_1471_2164_16_S13_S7 crossref_primary_10_1093_molbev_mst170 crossref_primary_10_1101_gr_199166_115 crossref_primary_10_1186_s13059_021_02503_y crossref_primary_10_1002_wdev_168 crossref_primary_10_1093_nar_gkw052 crossref_primary_10_1371_journal_pcbi_1003683 crossref_primary_10_1016_j_ydbio_2016_02_030 crossref_primary_10_1016_j_isci_2022_104152 crossref_primary_10_1186_1471_2164_13_182 crossref_primary_10_1093_nar_gkaa123 crossref_primary_10_1371_journal_pcbi_1010524 crossref_primary_10_1186_s12862_016_0866_y |
Cites_doi | 10.1101/gr.104471.109 10.1101/gr.668403 10.1038/ncomms1102 10.1073/pnas.0500373102 10.1093/bioinformatics/btl565 10.1128/MCB.11.4.1935 10.1126/science.1145893 10.1126/science.270.5243.1825 10.1073/pnas.0501865102 10.1016/j.cub.2006.05.044 10.1073/pnas.0930314100 10.1371/journal.pgen.1000829 10.1371/journal.pbio.1000456 10.1385/CBB:39:1:45 10.1101/gr.6828808 10.1038/345359a0 10.1162/evco.1996.4.4.335 10.1073/pnas.0702207104 10.1371/journal.pgen.1000330 10.1016/0022-2836(87)90517-1 10.1186/gb-2007-8-6-r101 10.1073/pnas.231608898 10.1038/nrg1615 10.1016/j.ydbio.2008.12.020 10.1093/bioinformatics/16.1.16 10.1016/S0955-0674(97)80007-5 10.1371/journal.pone.0008155 10.1242/dev.125.5.949 10.1073/pnas.85.2.382 10.1371/journal.pcbi.1001069 10.1534/genetics.106.069088 10.1534/genetics.105.048223 10.1074/jbc.270.23.13850 10.1093/molbev/msi090 10.1038/nature07521 10.1073/pnas.0812260106 10.1371/journal.pgen.1001042 10.1073/pnas.0805909105 10.1038/nature06496 10.1162/106365602317301754 10.1002/jcb.20352 10.1126/science.1098641 10.1016/0022-2836(85)90086-5 10.1016/j.cub.2010.01.026 10.1371/journal.pcbi.1000935 10.1093/bioinformatics/bti173 10.1073/pnas.012591199 10.1371/journal.pcbi.1000848 10.1073/pnas.0604449103 10.1103/PhysRevA.44.6399 10.1093/genetics/148.4.1667 |
ContentType | Journal Article |
Copyright | The Author 2011. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2012 Copyright Oxford Publishing Limited(England) Mar 2012 |
Copyright_xml | – notice: The Author 2011. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2012 – notice: Copyright Oxford Publishing Limited(England) Mar 2012 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QP 7QR 7SN 7SS 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 5PM |
DOI | 10.1093/molbev/msr277 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Animal Behavior Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts MEDLINE Nucleic Acids Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1537-1719 |
EndPage | 1070 |
ExternalDocumentID | 2599207971 10_1093_molbev_msr277 22075113 10.1093/molbev/msr277 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM085233 – fundername: NIGMS NIH HHS grantid: 5R01GM085233A |
GroupedDBID | --- -E4 -~X .2P .GJ .I3 .ZR 0R~ 18M 1TH 29M 2WC 4.4 48X 53G 5VS 5WA 70D AAFWJ AAIJN AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPNW AAPQZ AAPXW AAUQX AAVAP AAVLN ABEUO ABIXL ABKDP ABLJU ABNKS ABPTD ABQLI ABQTQ ABSAR ABSMQ ABTAH ABXVV ABZBJ ACGFO ACGFS ACIPB ACIWK ACMRT ACNCT ACPRK ACUFI ACUTO ACYTK ADBBV ADEYI ADEZT ADFTL ADGZP ADHKW ADHZD ADJQC ADOCK ADRIX ADRTK ADYVW ADZTZ ADZXQ AECKG AEGPL AEJOX AEKKA AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFNX AFIYH AFOFC AFPKN AFRAH AFULF AFXEN AGINJ AGKEF AGSYK AHMBA AHXPO AIAGR AIJHB AJEUX AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC APIBT APWMN ARIXL ASAOO ATDFG AXUDD AYOIW AZVOD BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BQUQU BSWAC BTQHN BTRTY BVRKM C1A CAG CDBKE COF CS3 CXTWN CZ4 DAKXR DFGAJ DIK DILTD DU5 D~K E3Z EBS EE~ EJD EMOBN F5P F9B FHSFR FLIZI FOTVD GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HH5 HW0 HZ~ IAO IGS IOX J21 KC5 KOP KQ8 KSI KSN M-Z M49 MBTAY ML0 MVM N9A NGC NLBLG NMDNZ NOYVH NTWIH NU- O0~ O9- OAWHX ODMLO OJQWA OK1 OVD O~Y P2P PAFKI PEELM PQQKQ Q1. Q5Y RD5 RHF RNI ROL ROX ROZ RPM RUSNO RW1 RXO RZO TEORI TJP TJX TLC TN5 TOX TR2 VQA W8F WOQ X7H XJT XSW YAYTL YHZ YKOAZ YXANX ZCA ZCG ZKX ZXP ZY4 ~02 ~91 CGR CUY CVF ECM EIF ITC NPM AAYXX CITATION 7QG 7QP 7QR 7SN 7SS 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c479t-6abe2e32ee742ce85030db12966235b969ae3685f4f5f948386a818621478a3 |
IEDL.DBID | RPM |
ISSN | 0737-4038 |
IngestDate | Tue Sep 17 21:21:05 EDT 2024 Fri Oct 25 21:57:55 EDT 2024 Fri Oct 25 02:29:15 EDT 2024 Thu Oct 24 14:32:12 EDT 2024 Thu Sep 12 18:58:37 EDT 2024 Tue Oct 15 23:44:43 EDT 2024 Wed Aug 28 03:23:54 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | thermodynamic model enhancer evolution homotypic site clustering complex genotypes |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c479t-6abe2e32ee742ce85030db12966235b969ae3685f4f5f948386a818621478a3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 These authors contributed equally to this work. Associate editor: Sudhir Kumar |
OpenAccessLink | https://academic.oup.com/mbe/article-pdf/29/3/1059/13647037/msr277.pdf |
PMID | 22075113 |
PQID | 925104147 |
PQPubID | 36253 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3278477 proquest_miscellaneous_921569172 proquest_miscellaneous_1008827861 proquest_journals_925104147 crossref_primary_10_1093_molbev_msr277 pubmed_primary_22075113 oup_primary_10_1093_molbev_msr277 |
PublicationCentury | 2000 |
PublicationDate | 2012-03-01 |
PublicationDateYYYYMMDD | 2012-03-01 |
PublicationDate_xml | – month: 03 year: 2012 text: 2012-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Oxford |
PublicationTitle | Molecular biology and evolution |
PublicationTitleAlternate | Mol Biol Evol |
PublicationYear | 2012 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | 21304932 - PLoS Comput Biol. 2011;7(2):e1001069 17098775 - Bioinformatics. 2007 Jan 15;23(2):134-41 9449677 - Development. 1998 Mar;125(5):949-58 19956545 - PLoS One. 2009;4(12):e8155 18039705 - Nucleic Acids Res. 2008 Jan;36(Database issue):D594-8 18723669 - Proc Natl Acad Sci U S A. 2008 Aug 26;105(34):12376-81 20981027 - Nat Commun. 2010;1:99 20628617 - PLoS Comput Biol. 2010;6(7):e1000848 15659554 - Mol Biol Evol. 2005 Apr;22(4):874-85 17060629 - Proc Natl Acad Sci U S A. 2006 Oct 31;103(44):16337-42 15696541 - J Cell Biochem. 2005 Apr 1;94(5):890-8 16299396 - Genetics. 2006 Mar;172(3):1607-19 19132088 - PLoS Genet. 2009 Jan;5(1):e1000330 20686658 - PLoS Genet. 2010 Jul;6(7):e1001042 17550599 - Genome Biol. 2007;8(6):R101 11805330 - Proc Natl Acad Sci U S A. 2002 Jan 22;99(2):757-62 12702751 - Proc Natl Acad Sci U S A. 2003 Apr 29;100(9):5136-41 12835528 - Cell Biochem Biophys. 2003;39(1):45-59 11911781 - Evol Comput. 2002 Spring;10(1):1-34 15883588 - Nat Rev Genet. 2005 Jun;6(6):451-64 2958636 - J Mol Biol. 1987 Jul 5;196(1):149-58 12670999 - Genome Res. 2003 Apr;13(4):579-88 20808951 - PLoS Biol. 2010;8(8). pii: e1000456. doi: 10.1371/journal.pbio.1000456 15166317 - Science. 2004 Jun 18;304(5678):1811-4 10812473 - Bioinformatics. 2000 Jan;16(1):16-23 9560386 - Genetics. 1998 Apr;148(4):1667-86 11752406 - Proc Natl Acad Sci U S A. 2002 Jan 22;99(2):763-8 15980155 - Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9541-6 18256240 - Genome Res. 2008 Mar;18(3):477-88 2005889 - Mol Cell Biol. 1991 Apr;11(4):1935-43 17947444 - Genetics. 2007 Nov;177(3):1725-31 20862354 - PLoS Comput Biol. 2010;6(9). pii: e1000935. doi: 10.1371/journal.pcbi.1000935 2188137 - Nature. 1990 May 24;345(6273):359-61 8525377 - Science. 1995 Dec 15;270(5243):1825-8 20107516 - PLoS Genet. 2010 Jan;6(1):e1000829 15793007 - Proc Natl Acad Sci U S A. 2005 Apr 5;102(14):4960-5 16750631 - Curr Biol. 2006 Jul 11;16(13):1358-65 20219179 - Curr Biol. 2010 Mar 9;20(5):R249-54 3124106 - Proc Natl Acad Sci U S A. 1988 Jan;85(2):382-6 3157005 - J Mol Biol. 1985 Jan 20;181(2):211-30 9905770 - Phys Rev A. 1991 Nov 15;44(10):6399-6413 9159075 - Curr Opin Cell Biol. 1997 Jun;9(3):350-7 19029883 - Nature. 2009 Jan 8;457(7226):215-8 17872446 - Science. 2007 Sep 14;317(5844):1557-60 17494740 - Proc Natl Acad Sci U S A. 2007 May 15;104 Suppl 1:8597-604 15572468 - Bioinformatics. 2005 Apr 15;21(8):1747-9 20363979 - Genome Res. 2010 May;20(5):565-77 19497876 - Proc Natl Acad Sci U S A. 2009 Jun 16;106(24):9564-9 7775443 - J Biol Chem. 1995 Jun 9;270(23):13850-9 18172436 - Nature. 2008 Jan 31;451(7178):535-40 19135437 - Dev Biol. 2009 Mar 15;327(2):578-89 Kim ( key 20170418140056_bib22) 2009; 5 Wagner ( key 20170418140056_bib51) 2007 Raser ( key 20170418140056_bib37) 2004; 304 Lynch ( key 20170418140056_bib31) 2007; 104 Kaern ( key 20170418140056_bib19) 2005; 6 Thornton ( key 20170418140056_bib50) 2006; 172 Crocker ( key 20170418140056_bib54) 2010 Smith ( key 20170418140056_bib47) 2002; 10 Bergman ( key 20170418140056_bib3) 2005; 21 Lifanov ( key 20170418140056_bib27) 2003; 13 He ( key 20170418140056_bib13) 2009; 4 Liberman ( key 20170418140056_bib26) 2009; 327 Hordijk ( key 20170418140056_bib18) 1995; 4 Hoggart ( key 20170418140056_bib16) 2007; 177 Ochoa-Espinosa ( key 20170418140056_bib34) 2005; 102 Holloway ( key 20170418140056_bib17) 2011; 7 Lin ( key 20170418140056_bib28) 1990; 345 Roider ( key 20170418140056_bib39) 2007; 23 Kazemian ( key 20170418140056_bib20) 2010; 8 Arnosti ( key 20170418140056_bib2) 2005; 94 Hertel ( key 20170418140056_bib15) 1997; 9 Segal ( key 20170418140056_bib41) 2008; 451 Soyer ( key 20170418140056_bib48) 2006; 103 He ( key 20170418140056_bib14) 2010; 6 Sella ( key 20170418140056_bib42) 2005; 102 Sinha ( key 20170418140056_bib46) 2005; 22 Shultzaberger ( key 20170418140056_bib44) 2010; 6 Berman ( key 20170418140056_bib4) 2002; 99 Stormo ( key 20170418140056_bib49) 2000; 16 Giniger ( key 20170418140056_bib10) 1988; 85 Shea ( key 20170418140056_bib43) 1985; 181 Halfon ( key 20170418140056_bib12) 2008; 36 Lusk ( key 20170418140056_bib30) 2010; 6 Khatri ( key 20170418140056_bib21) 2009; 106 Weinberger ( key 20170418140056_bib52) 1991; 44 Gertz ( key 20170418140056_bib9) 2009; 457 Kim ( key 20170418140056_bib23) 1987; 196 Zinzen ( key 20170418140056_bib53) 2006; 16 Reid ( key 20170418140056_bib38) 2007 Paixao ( key 20170418140056_bib35) 2010; 6 Li ( key 20170418140056_bib24) 2003; 39 Anderson ( key 20170418140056_bib1) 1991; 11 Sinha ( key 20170418140056_bib45) 2008; 18 Sauer ( key 20170418140056_bib40) 1995; 270 Mustonen ( key 20170418140056_bib33) 2008; 105 Buchler ( key 20170418140056_bib6) 2003; 100 Ludwig ( key 20170418140056_bib29) 1998; 125 Brown ( key 20170418140056_bib5) 2007; 317 Coleman ( key 20170418140056_bib7) 1995; 270 Markstein ( key 20170418140056_bib32) 2002; 99 Gotea ( key 20170418140056_bib11) 2010; 20 Li ( key 20170418140056_bib25) 2007; 8 Porcher ( key 20170418140056_bib36) 2010; 20 Drake ( key 20170418140056_bib8) 1998; 148 |
References_xml | – volume: 20 start-page: 565 issue: 5 year: 2010 ident: key 20170418140056_bib11 article-title: Homotypic clusters of transcription factor binding sites are a key component of human promoters and enhancers publication-title: Genome Res. doi: 10.1101/gr.104471.109 contributor: fullname: Gotea – volume: 13 start-page: 579 issue: 4 year: 2003 ident: key 20170418140056_bib27 article-title: Homotypic regulatory clusters in Drosophila publication-title: Genome Res. doi: 10.1101/gr.668403 contributor: fullname: Lifanov – year: 2010 ident: key 20170418140056_bib54 article-title: Dynamic evolution of precise regulatory encodings creates the clustered site signature of enhancers publication-title: Nat Commun. doi: 10.1038/ncomms1102 contributor: fullname: Crocker – volume: 102 start-page: 4960 issue: 14 year: 2005 ident: key 20170418140056_bib34 article-title: The role of binding site cluster strength in Bicoid-dependent patterning in Drosophila publication-title: Proc Natl Acad Sci U S A. doi: 10.1073/pnas.0500373102 contributor: fullname: Ochoa-Espinosa – volume: 23 start-page: 134 issue: 2 year: 2007 ident: key 20170418140056_bib39 article-title: Predicting transcription factor affinities to DNA from a biophysical model publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl565 contributor: fullname: Roider – volume: 11 start-page: 1935 issue: 4 year: 1991 ident: key 20170418140056_bib1 article-title: Synergistic activation of a human promoter in vivo by transcription factor Sp1 publication-title: Mol Cell Biol. doi: 10.1128/MCB.11.4.1935 contributor: fullname: Anderson – volume: 317 start-page: 1557 issue: 5844 year: 2007 ident: key 20170418140056_bib5 article-title: Functional architecture and evolution of transcriptional elements that drive gene coexpression publication-title: Science doi: 10.1126/science.1145893 contributor: fullname: Brown – volume: 36 start-page: D594 issue: Database issue year: 2008 ident: key 20170418140056_bib12 article-title: REDfly 2.0: an integrated database of cis-regulatory modules and transcription factor binding sites in Drosophila publication-title: Nucleic Acids Res. contributor: fullname: Halfon – volume: 270 start-page: 1825 issue: 5243 year: 1995 ident: key 20170418140056_bib40 article-title: DNA template and activator-coactivator requirements for transcriptional synergism by Drosophila bicoid publication-title: Science doi: 10.1126/science.270.5243.1825 contributor: fullname: Sauer – volume: 102 start-page: 9541 issue: 27 year: 2005 ident: key 20170418140056_bib42 article-title: The application of statistical physics to evolutionary biology publication-title: Proc Natl Acad Sci U S A. doi: 10.1073/pnas.0501865102 contributor: fullname: Sella – volume: 16 start-page: 1358 issue: 13 year: 2006 ident: key 20170418140056_bib53 article-title: Computational models for neurogenic gene expression in the Drosophila embryo publication-title: Curr Biol. doi: 10.1016/j.cub.2006.05.044 contributor: fullname: Zinzen – volume: 100 start-page: 5136 issue: 9 year: 2003 ident: key 20170418140056_bib6 article-title: On schemes of combinatorial transcription logic publication-title: Proc Natl Acad Sci U S A. doi: 10.1073/pnas.0930314100 contributor: fullname: Buchler – volume: 6 start-page: e1000829 issue: 1 year: 2010 ident: key 20170418140056_bib30 article-title: Evolutionary mirages: selection on binding site composition creates the illusion of conserved grammars in Drosophila enhancers publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000829 contributor: fullname: Lusk – volume: 8 start-page: e1000456 issue: 8 year: 2010 ident: key 20170418140056_bib20 article-title: Quantitative analysis of the Drosophila segmentation regulatory network using pattern generating potentials publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1000456 contributor: fullname: Kazemian – volume: 39 start-page: 45 issue: 1 year: 2003 ident: key 20170418140056_bib24 article-title: Sensitivity and specificity amplification in signal transduction publication-title: Cell Biochem Biophys. doi: 10.1385/CBB:39:1:45 contributor: fullname: Li – volume: 18 start-page: 477 issue: 3 year: 2008 ident: key 20170418140056_bib45 article-title: Systematic functional characterization of cis-regulatory motifs in human core promoters publication-title: Genome Res. doi: 10.1101/gr.6828808 contributor: fullname: Sinha – volume: 345 start-page: 359 issue: 6273 year: 1990 ident: key 20170418140056_bib28 article-title: How different eukaryotic transcriptional activators can cooperate promiscuously publication-title: Nature doi: 10.1038/345359a0 contributor: fullname: Lin – volume: 4 start-page: 335 year: 1995 ident: key 20170418140056_bib18 article-title: A measure of landscapes publication-title: Evol Comput. doi: 10.1162/evco.1996.4.4.335 contributor: fullname: Hordijk – volume: 104 start-page: 8597 year: 2007 ident: key 20170418140056_bib31 article-title: The frailty of adaptive hypotheses for the origins of organismal complexity publication-title: Proc Natl Acad Sci U S A. doi: 10.1073/pnas.0702207104 contributor: fullname: Lynch – volume-title: Transcription factor binding site turnover in mammals year: 2007 ident: key 20170418140056_bib38 contributor: fullname: Reid – volume: 5 start-page: e1000330 issue: 1 year: 2009 ident: key 20170418140056_bib22 article-title: Evolution of regulatory sequences in 12 Drosophila species publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000330 contributor: fullname: Kim – volume: 196 start-page: 149 issue: 1 year: 1987 ident: key 20170418140056_bib23 article-title: Kinetic studies on Cro repressor-operator DNA interaction publication-title: J Mol Biol. doi: 10.1016/0022-2836(87)90517-1 contributor: fullname: Kim – volume: 8 start-page: R101 issue: 6 year: 2007 ident: key 20170418140056_bib25 article-title: Large-scale analysis of transcriptional cis-regulatory modules reveals both common features and distinct subclasses publication-title: Genome Biol. doi: 10.1186/gb-2007-8-6-r101 contributor: fullname: Li – volume: 99 start-page: 757 issue: 2 year: 2002 ident: key 20170418140056_bib4 article-title: Exploiting transcription factor binding site clustering to identify cis-regulatory modules involved in pattern formation in the Drosophila genome publication-title: Proc Natl Acad Sci U S A. doi: 10.1073/pnas.231608898 contributor: fullname: Berman – volume: 6 start-page: 451 issue: 6 year: 2005 ident: key 20170418140056_bib19 article-title: Stochasticity in gene expression: from theories to phenotypes publication-title: Nat Rev Genet. doi: 10.1038/nrg1615 contributor: fullname: Kaern – volume: 327 start-page: 578 issue: 2 year: 2009 ident: key 20170418140056_bib26 article-title: Design flexibility in cis-regulatory control of gene expression: synthetic and comparative evidence publication-title: Dev Biol. doi: 10.1016/j.ydbio.2008.12.020 contributor: fullname: Liberman – volume: 16 start-page: 16 issue: 1 year: 2000 ident: key 20170418140056_bib49 article-title: DNA binding sites: representation and discovery publication-title: Bioinformatics doi: 10.1093/bioinformatics/16.1.16 contributor: fullname: Stormo – volume: 9 start-page: 350 issue: 3 year: 1997 ident: key 20170418140056_bib15 article-title: Common themes in the function of transcription and splicing enhancers publication-title: Curr Opin Cell Biol. doi: 10.1016/S0955-0674(97)80007-5 contributor: fullname: Hertel – volume: 4 start-page: e8155 issue: 12 year: 2009 ident: key 20170418140056_bib13 article-title: A biophysical model for analysis of transcription factor interaction and binding site arrangement from genome-wide binding data publication-title: PLoS One doi: 10.1371/journal.pone.0008155 contributor: fullname: He – volume: 125 start-page: 949 issue: 5 year: 1998 ident: key 20170418140056_bib29 article-title: Functional analysis of eve stripe 2 enhancer evolution in Drosophila: rules governing conservation and change publication-title: Development doi: 10.1242/dev.125.5.949 contributor: fullname: Ludwig – volume: 85 start-page: 382 issue: 2 year: 1988 ident: key 20170418140056_bib10 article-title: Cooperative DNA binding of the yeast transcriptional activator GAL4 publication-title: Proc Natl Acad Sci U S A. doi: 10.1073/pnas.85.2.382 contributor: fullname: Giniger – volume: 7 start-page: e1001069 issue: 2 year: 2011 ident: key 20170418140056_bib17 article-title: Gene expression noise in spatial patterning: hunchback promoter structure affects noise amplitude and distribution in Drosophila segmentation publication-title: PLoS Comput Biol. doi: 10.1371/journal.pcbi.1001069 contributor: fullname: Holloway – volume-title: Robustness and evolvability in living systems year: 2007 ident: key 20170418140056_bib51 contributor: fullname: Wagner – volume: 177 start-page: 1725 issue: 3 year: 2007 ident: key 20170418140056_bib16 article-title: Sequence-level population simulations over large genomic regions publication-title: Genetics doi: 10.1534/genetics.106.069088 contributor: fullname: Hoggart – volume: 172 start-page: 1607 issue: 3 year: 2006 ident: key 20170418140056_bib50 article-title: Approximate Bayesian inference reveals evidence for a recent, severe bottleneck in a Netherlands population of Drosophila melanogaster publication-title: Genetics doi: 10.1534/genetics.105.048223 contributor: fullname: Thornton – volume: 270 start-page: 13850 issue: 23 year: 1995 ident: key 20170418140056_bib7 article-title: Evidence for functional binding and stable sliding of the TATA binding protein on nonspecific DNA publication-title: J Biol Chem. doi: 10.1074/jbc.270.23.13850 contributor: fullname: Coleman – volume: 22 start-page: 874 issue: 4 year: 2005 ident: key 20170418140056_bib46 article-title: Sequence turnover and tandem repeats in cis-regulatory modules in Drosophila publication-title: Mol Biol Evol. doi: 10.1093/molbev/msi090 contributor: fullname: Sinha – volume: 457 start-page: 215 issue: 7226 year: 2009 ident: key 20170418140056_bib9 article-title: Analysis of combinatorial cis-regulation in synthetic and genomic promoters publication-title: Nature doi: 10.1038/nature07521 contributor: fullname: Gertz – volume: 106 start-page: 9564 issue: 24 year: 2009 ident: key 20170418140056_bib21 article-title: Statistical mechanics of convergent evolution in spatial patterning publication-title: Proc Natl Acad Sci U S A. doi: 10.1073/pnas.0812260106 contributor: fullname: Khatri – volume: 6 start-page: e1001042 issue: 7 year: 2010 ident: key 20170418140056_bib44 article-title: The fitness landscapes of cis-acting binding sites in different promoter and environmental contexts publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1001042 contributor: fullname: Shultzaberger – volume: 105 start-page: 12376 issue: 34 year: 2008 ident: key 20170418140056_bib33 article-title: Energy-dependent fitness: a quantitative model for the evolution of yeast transcription factor binding sites publication-title: Proc Natl Acad Sci U S A. doi: 10.1073/pnas.0805909105 contributor: fullname: Mustonen – volume: 451 start-page: 535 issue: 7178 year: 2008 ident: key 20170418140056_bib41 article-title: Predicting expression patterns from regulatory sequence in Drosophila segmentation publication-title: Nature doi: 10.1038/nature06496 contributor: fullname: Segal – volume: 10 start-page: 1 issue: 1 year: 2002 ident: key 20170418140056_bib47 article-title: Fitness landscapes and evolvability publication-title: Evol Comput. doi: 10.1162/106365602317301754 contributor: fullname: Smith – volume: 94 start-page: 890 issue: 5 year: 2005 ident: key 20170418140056_bib2 article-title: Transcriptional enhancers: intelligent enhanceosomes or flexible billboards? publication-title: J Cell Biochem. doi: 10.1002/jcb.20352 contributor: fullname: Arnosti – volume: 304 start-page: 1811 issue: 5678 year: 2004 ident: key 20170418140056_bib37 article-title: Control of stochasticity in eukaryotic gene expression publication-title: Science doi: 10.1126/science.1098641 contributor: fullname: Raser – volume: 181 start-page: 211 issue: 2 year: 1985 ident: key 20170418140056_bib43 article-title: The OR control system of bacteriophage lambda. A physical-chemical model for gene regulation publication-title: J Mol Biol. doi: 10.1016/0022-2836(85)90086-5 contributor: fullname: Shea – volume: 20 start-page: R249 issue: 5 year: 2010 ident: key 20170418140056_bib36 article-title: The bicoid morphogen system publication-title: Curr Biol. doi: 10.1016/j.cub.2010.01.026 contributor: fullname: Porcher – volume: 6 start-page: e1000935 issue: 9 year: 2010 ident: key 20170418140056_bib14 article-title: Thermodynamics-based models of transcriptional regulation by enhancers: the roles of synergistic activation, cooperative binding and short-range repression publication-title: PLoS Comput Biol. doi: 10.1371/journal.pcbi.1000935 contributor: fullname: He – volume: 21 start-page: 1747 issue: 8 year: 2005 ident: key 20170418140056_bib3 article-title: Drosophila DNase I footprint database: a systematic genome annotation of transcription factor binding sites in the fruitfly, Drosophila melanogaster publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti173 contributor: fullname: Bergman – volume: 99 start-page: 763 issue: 2 year: 2002 ident: key 20170418140056_bib32 article-title: Genome-wide analysis of clustered Dorsal binding sites identifies putative target genes in the Drosophila embryo publication-title: Proc Natl Acad Sci U S A. doi: 10.1073/pnas.012591199 contributor: fullname: Markstein – volume: 6 start-page: e1000848 issue: 7 year: 2010 ident: key 20170418140056_bib35 article-title: Redundancy and the evolution of cis-regulatory element multiplicity publication-title: PLoS Comput Biol. doi: 10.1371/journal.pcbi.1000848 contributor: fullname: Paixao – volume: 103 start-page: 16337 issue: 44 year: 2006 ident: key 20170418140056_bib48 article-title: Evolution of complexity in signaling pathways publication-title: Proc Natl Acad Sci U S A. doi: 10.1073/pnas.0604449103 contributor: fullname: Soyer – volume: 44 start-page: 6399 year: 1991 ident: key 20170418140056_bib52 article-title: Local properties of Kauffman's N-k model: a tunably rugged energy landscape publication-title: Phys Rev A. doi: 10.1103/PhysRevA.44.6399 contributor: fullname: Weinberger – volume: 148 start-page: 1667 issue: 4 year: 1998 ident: key 20170418140056_bib8 article-title: Rates of spontaneous mutation publication-title: Genetics doi: 10.1093/genetics/148.4.1667 contributor: fullname: Drake |
SSID | ssj0014466 |
Score | 2.3187761 |
Snippet | Empirical studies have revealed that regulatory DNA sequences such as enhancers or promoters often harbor multiple binding sites for the same transcription... |
SourceID | pubmedcentral proquest crossref pubmed oup |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1059 |
SubjectTerms | Animals Binding sites Binding Sites - genetics Computer Simulation Deoxyribonucleic acid DNA Drosophila - genetics Drosophila melanogaster Enhancer Elements, Genetic - genetics Evolution, Molecular Genotype Genotype & phenotype Genotypes Insects Models, Genetic Mutation Rate Population Density Simulation Species Specificity Transcription Factors - genetics Transcription Factors - metabolism |
Title | Evolutionary Origins of Transcription Factor Binding Site Clusters |
URI | https://www.ncbi.nlm.nih.gov/pubmed/22075113 https://www.proquest.com/docview/925104147 https://search.proquest.com/docview/1008827861 https://search.proquest.com/docview/921569172 https://pubmed.ncbi.nlm.nih.gov/PMC3278477 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS-QwFD6oIPiyeFndeiOC7Fut0zS3x3VwEMELqDBvJWkTdmCmI9MZwX-_J2k7OIIs-FIKTUs4Oen5Dufk-wDOpXQyVVrGutQ0zozFLeWEjYuSWefrOCxoHd7d85uX7HbIhmvAurMwoWm_MKOLajy5qEZ_Q2_l66RIuj6x5PGuT321TIhkHdbRQbsUvS0ddAVKQQUmR1S2xJqYuSeT6djYt2RSz1Lh1ffSFANmr0dXYtLKObcPcPNz1-SHMDTYhh8tfiR_mnnuwJqtdmGzUZR834Or67fWl_TsnTwE1auaTB0JMan7Q5BBUNkhV6NwpoU8Ie4k_fHCkybUP-FpcP3cv4lbmYS4yISax1wbm1qaWotprlchxX1bGozjHKENM4orbT3NvMsccyqTVHLteey8QpHUdB82qmllfwERgpXWKa610VlRUryjRcGNZYo56ngEvzsz5a8NF0be1LBp3pg2b0wbwRka8X9jjjoT5-22qXOFaOsyw3nhF5ZP0d99EUNXdrqoPccyJgVC8l4E5IsxCnEMxzw0jeCgWbPlXLolj0CsrOZygKfbXn2CXhhot1uvO_z2m0ewhXArbTrYjmFjPlvYE4Q0c3MaXBivzw_Df_B5-ZU |
link.rule.ids | 230,315,730,783,787,888,1607,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6NIQQv_B6EMTAS4i3NGid2_MiqVQXWgbSB9hbZia1Va9OpaSeNv56zHVfrpAnBWyQ7kZ27832nO38H8LEoTJEKWcSyljTOlEaTMlzHVZ1rY_M4uet1OD5mo5_Z17P8bAvycBfGFe1XatJrprNeMzl3tZWXsyoJdWLJj_GA2mwZ58k9uI_2up-FIL1LHoQUJaccwyNadNSaGLsns_lU6atk1i5SbvvvpSm6zH6fbniljZtuNwDn7brJG45o-AR-hS34-pOL3mqpetXvW-yO_7zHp_C4g6bksx9-Blu6eQ4PfLPK6xdwcHjVqalcXJPvrqFWS-aGOHcXDh8ydA18yMHEXZchJwhpyWC6snwM7Us4GR6eDkZx14EhrjIuljGTSqeaplpjBG0bnOKRUCuECAxRU64EE1JbBnuTmdyIrKAFk5YizzY_KiTdge1m3ujXQDjPa20Ek1LJrKopPtGqYkrnIjfUsAg-hf9fXnqajdKnx2npZVZ6mUXwAaXztzm7QXZlZ5FtKRDI7We4LvzCehRNyeZHZKPnq9bSN2O8wQvWj4DcMUcgRGIY4qYRvPLKsF5L0KUI-IaarCdYJu_NERS-Y_TuhP3mv998Dw9Hp-Oj8ujL8bddeISoLvWFcm9he7lY6T1ETkv1ztnJH9O4GoQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED-2jo2-bN1X63XdNBh7c9xYtj4e16yh-2hX6AZlL0ayJRaaOCFOCt1fv5Nkh6QwBn0zSDYydyf9jjv9fgDvhbAilUrEqlI0zrTBkLLcxGWVG-vqOLnXOjw9Yyc_sy-X-eWa1Jdv2i_1qFePJ7169Nv3Vs4mZdL1iSXnpwPqqmWcJ7PKJvfhAcbsIesS9baA0JUpOeWYIlHR0mti_p5MpmNtrpNJM0-50-BLUzw2-326cTJt3HZbA523eyfXDqPhE_jV_UboQbnqLRe6V_65xfB4p__cgcctRCUfw5SncM_Uz-BhEK28eQ5Hx9etu6r5DfnuhbUaMrXEH3vdJkSGXsiHHI38tRlygdCWDMZLx8vQvICL4fGPwUncKjHEZcblImZKm9TQ1BjMpJ3QKW4NlUaowBA95VoyqYxjsreZza3MBBVMOao8J4IkFH0JW_W0NntAOM8rYyVTSqusrCg-0bJk2uQyt9SyCD50NihmgW6jCGVyWgS7FcFuEbxDC_1vzn5nv6KNzKaQCOgOM1wXfmE1iiHl6iSqNtNl42icMe_ggvUjIP-YIxEqMUx10wh2g0Os1tL5UwR8w1VWExyj9-YIOoBn9m4N_urOb76FR-efhsW3z2df92EbwV0a-uVew9ZivjQHCKAW-o0Plb-cWx0E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolutionary+origins+of+transcription+factor+binding+site+clusters&rft.jtitle=Molecular+biology+and+evolution&rft.au=He%2C+Xin&rft.au=Duque%2C+Thyago+S+P+C&rft.au=Sinha%2C+Saurabh&rft.date=2012-03-01&rft.eissn=1537-1719&rft.volume=29&rft.issue=3&rft.spage=1059&rft_id=info:doi/10.1093%2Fmolbev%2Fmsr277&rft_id=info%3Apmid%2F22075113&rft.externalDocID=22075113 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0737-4038&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0737-4038&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0737-4038&client=summon |