Evolutionary Origins of Transcription Factor Binding Site Clusters

Empirical studies have revealed that regulatory DNA sequences such as enhancers or promoters often harbor multiple binding sites for the same transcription factor. Such "homotypic site clustering" has been hypothesized as arising out of functional requirements of the sequences. Here, we pr...

Full description

Saved in:
Bibliographic Details
Published inMolecular biology and evolution Vol. 29; no. 3; pp. 1059 - 1070
Main Authors He, Xin, Duque, Thyago S.P.C., Sinha, Saurabh
Format Journal Article
LanguageEnglish
Published United States Oxford University Press 01.03.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Empirical studies have revealed that regulatory DNA sequences such as enhancers or promoters often harbor multiple binding sites for the same transcription factor. Such "homotypic site clustering" has been hypothesized as arising out of functional requirements of the sequences. Here, we propose an alternative explanation of this phenomenon that multisite enhancers are common because they are favored by evolutionary sampling of the genotype-phenotype landscape. To test this hypothesis, we developed a new computational framework specialized for population genetic simulations of enhancer evolution. It uses a thermodynamics-based model of enhancer function, integrating information from strong as well as weak binding sites, to determine the strength of selection. Using this framework, we found that even when simpler genotypes exist for a desired strength of regulation, relatively complex genotypes (enhancers with more sites) are more readily reached by the simulated evolutionary process. We show that there are more ways to "build" a fit genotype with many weak sites than with a few strong sites, and this is why evolution finds complex genotypes more often. Our claims are consistent with an empirical analysis of binding site content in enhancers characterized in D rosophila melanogaster and their orthologs in other Drosophila species. We also characterized a subtle but significant difference between genotypes likely to be sampled by evolution and equally fit genotypes one would obtain by uniform sampling of the fitness landscape, that is, an "evolutionary signature" in enhancer sequences. Finally, we investigated potential effects of other factors, such as rugged fitness landscapes, short local duplications, and noise characteristics of enhancers, on the emergence of homotypic site clustering. Homotypic site clustering is an important contributor to the complexity and function of cis-regulatory sequences. This work provides a simple null hypothesis for its origin, against which alternative adaptationist explanations may be evaluated, and cautions against "evolutionary mirages" present in common features of genomic sequence. The quantitative framework we develop here can be used more generally to understand how mechanisms of enhancer action influence their composition and evolution.
AbstractList Empirical studies have revealed that regulatory DNA sequences such as enhancers or promoters often harbor multiple binding sites for the same transcription factor. Such "homotypic site clustering" has been hypothesized as arising out of functional requirements of the sequences. Here, we propose an alternative explanation of this phenomenon that multisite enhancers are common because they are favored by evolutionary sampling of the genotype-phenotype landscape. To test this hypothesis, we developed a new computational framework specialized for population genetic simulations of enhancer evolution. It uses a thermodynamics-based model of enhancer function, integrating information from strong as well as weak binding sites, to determine the strength of selection. Using this framework, we found that even when simpler genotypes exist for a desired strength of regulation, relatively complex genotypes (enhancers with more sites) are more readily reached by the simulated evolutionary process. We show that there are more ways to "build" a fit genotype with many weak sites than with a few strong sites, and this is why evolution finds complex genotypes more often. Our claims are consistent with an empirical analysis of binding site content in enhancers characterized in Drosophila melanogaster and their orthologs in other Drosophila species. We also characterized a subtle but significant difference between genotypes likely to be sampled by evolution and equally fit genotypes one would obtain by uniform sampling of the fitness landscape, that is, an "evolutionary signature" in enhancer sequences. Finally, we investigated potential effects of other factors, such as rugged fitness landscapes, short local duplications, and noise characteristics of enhancers, on the emergence of homotypic site clustering. Homotypic site clustering is an important contributor to the complexity and function of cis-regulatory sequences. This work provides a simple null hypothesis for its origin, against which alternative adaptationist explanations may be evaluated, and cautions against "evolutionary mirages" present in common features of genomic sequence. The quantitative framework we develop here can be used more generally to understand how mechanisms of enhancer action influence their composition and evolution. [PUBLICATION ABSTRACT]
Empirical studies have revealed that regulatory DNA sequences such as enhancers or promoters often harbor multiple binding sites for the same transcription factor. Such "homotypic site clustering" has been hypothesized as arising out of functional requirements of the sequences. Here, we propose an alternative explanation of this phenomenon that multisite enhancers are common because they are favored by evolutionary sampling of the genotype-phenotype landscape. To test this hypothesis, we developed a new computational framework specialized for population genetic simulations of enhancer evolution. It uses a thermodynamics-based model of enhancer function, integrating information from strong as well as weak binding sites, to determine the strength of selection. Using this framework, we found that even when simpler genotypes exist for a desired strength of regulation, relatively complex genotypes (enhancers with more sites) are more readily reached by the simulated evolutionary process. We show that there are more ways to "build" a fit genotype with many weak sites than with a few strong sites, and this is why evolution finds complex genotypes more often. Our claims are consistent with an empirical analysis of binding site content in enhancers characterized in D rosophila melanogaster and their orthologs in other Drosophila species. We also characterized a subtle but significant difference between genotypes likely to be sampled by evolution and equally fit genotypes one would obtain by uniform sampling of the fitness landscape, that is, an "evolutionary signature" in enhancer sequences. Finally, we investigated potential effects of other factors, such as rugged fitness landscapes, short local duplications, and noise characteristics of enhancers, on the emergence of homotypic site clustering. Homotypic site clustering is an important contributor to the complexity and function of cis-regulatory sequences. This work provides a simple null hypothesis for its origin, against which alternative adaptationist explanations may be evaluated, and cautions against "evolutionary mirages" present in common features of genomic sequence. The quantitative framework we develop here can be used more generally to understand how mechanisms of enhancer action influence their composition and evolution.
Empirical studies have revealed that regulatory DNA sequences such as enhancers or promoters often harbor multiple binding sites for the same transcription factor. Such “homotypic site clustering” has been hypothesized as arising out of functional requirements of the sequences. Here, we propose an alternative explanation of this phenomenon that multisite enhancers are common because they are favored by evolutionary sampling of the genotype–phenotype landscape. To test this hypothesis, we developed a new computational framework specialized for population genetic simulations of enhancer evolution. It uses a thermodynamics-based model of enhancer function, integrating information from strong as well as weak binding sites, to determine the strength of selection. Using this framework, we found that even when simpler genotypes exist for a desired strength of regulation, relatively complex genotypes (enhancers with more sites) are more readily reached by the simulated evolutionary process. We show that there are more ways to “build” a fit genotype with many weak sites than with a few strong sites, and this is why evolution finds complex genotypes more often. Our claims are consistent with an empirical analysis of binding site content in enhancers characterized in D rosophila melanogaster and their orthologs in other Drosophila species. We also characterized a subtle but significant difference between genotypes likely to be sampled by evolution and equally fit genotypes one would obtain by uniform sampling of the fitness landscape, that is, an “evolutionary signature” in enhancer sequences. Finally, we investigated potential effects of other factors, such as rugged fitness landscapes, short local duplications, and noise characteristics of enhancers, on the emergence of homotypic site clustering. Homotypic site clustering is an important contributor to the complexity and function of cis -regulatory sequences. This work provides a simple null hypothesis for its origin, against which alternative adaptationist explanations may be evaluated, and cautions against “evolutionary mirages” present in common features of genomic sequence. The quantitative framework we develop here can be used more generally to understand how mechanisms of enhancer action influence their composition and evolution.
Empirical studies have revealed that regulatory DNA sequences such as enhancers or promoters often harbor multiple binding sites for the same transcription factor. Such "homotypic site clustering" has been hypothesized as arising out of functional requirements of the sequences. Here, we propose an alternative explanation of this phenomenon that multisite enhancers are common because they are favored by evolutionary sampling of the genotype-phenotype landscape. To test this hypothesis, we developed a new computational framework specialized for population genetic simulations of enhancer evolution. It uses a thermodynamics-based model of enhancer function, integrating information from strong as well as weak binding sites, to determine the strength of selection. Using this framework, we found that even when simpler genotypes exist for a desired strength of regulation, relatively complex genotypes (enhancers with more sites) are more readily reached by the simulated evolutionary process. We show that there are more ways to "build" a fit genotype with many weak sites than with a few strong sites, and this is why evolution finds complex genotypes more often. Our claims are consistent with an empirical analysis of binding site content in enhancers characterized in Drosophila melanogaster and their orthologs in other Drosophila species. We also characterized a subtle but significant difference between genotypes likely to be sampled by evolution and equally fit genotypes one would obtain by uniform sampling of the fitness landscape, that is, an "evolutionary signature" in enhancer sequences. Finally, we investigated potential effects of other factors, such as rugged fitness landscapes, short local duplications, and noise characteristics of enhancers, on the emergence of homotypic site clustering. Homotypic site clustering is an important contributor to the complexity and function of cis-regulatory sequences. This work provides a simple null hypothesis for its origin, against which alternative adaptationist explanations may be evaluated, and cautions against "evolutionary mirages" present in common features of genomic sequence. The quantitative framework we develop here can be used more generally to understand how mechanisms of enhancer action influence their composition and evolution.
Author Sinha, Saurabh
He, Xin
Duque, Thyago S.P.C.
AuthorAffiliation 2 Department of Computer Science, University of Illinois at Urbana-Champaign
1 Department of Biochemistry, University of California at San Francisco
AuthorAffiliation_xml – name: 2 Department of Computer Science, University of Illinois at Urbana-Champaign
– name: 1 Department of Biochemistry, University of California at San Francisco
Author_xml – sequence: 1
  givenname: Xin
  surname: He
  fullname: He, Xin
  organization: 1Department of Biochemistry, University of California at San Francisco
– sequence: 2
  givenname: Thyago S.P.C.
  surname: Duque
  fullname: Duque, Thyago S.P.C.
  organization: 2Department of Computer Science, University of Illinois at Urbana-Champaign
– sequence: 3
  givenname: Saurabh
  surname: Sinha
  fullname: Sinha, Saurabh
  email: sinhas@illinois.edu
  organization: 2Department of Computer Science, University of Illinois at Urbana-Champaign
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22075113$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1r3DAQhkVJaTZpj70W00t7caORZH1cCtklH4VADsldyN7xRsGWtpK90H9fhU3SpIf2NIJ5eHhH7xE5CDEgIR-BfgNq-MkYhxZ3J2NOTKk3ZAENVzUoMAdkQVV5C8r1ITnK-Z5SEELKd-SQMaoaAL4gy7NdHObJx-DSr-o6-Y0PuYp9dZtcyF3y24ddde66KaZq6cPah0114yesVsOcJ0z5PXnbuyHjh8d5TG7Oz25Xl_XV9cWP1elV3Qllplq6FhlyhqgE61A3lNN1C8xIyXjTGmkccqmbXvRNb4TmWjoNWjIQSjt-TL7vrdu5HXHdYZiSG-w2-bEkt9F5-3oT_J3dxJ3lTGmhVBF8eRSk-HPGPNnR5w6HwQWMc7aGQSMNKFbIr_8kgVKti1VCQT__hd7HOYXyDcXXABUlfIHqPdSlmHPC_jk1UPtQot2XaPclFv7Ty1Of6afW_gSM8_Y_rt_jOKlp
CitedBy_id crossref_primary_10_3389_fgene_2014_00245
crossref_primary_10_1371_journal_pone_0184657
crossref_primary_10_1371_journal_pcbi_1003367
crossref_primary_10_1098_rspb_2013_1313
crossref_primary_10_1007_s10577_018_9571_6
crossref_primary_10_1093_nar_gkv255
crossref_primary_10_1093_nar_gkt374
crossref_primary_10_1093_nar_gkv1463
crossref_primary_10_1534_genetics_113_153262
crossref_primary_10_1016_j_cels_2015_12_002
crossref_primary_10_1002_bies_201400036
crossref_primary_10_1016_j_bbagrm_2012_10_008
crossref_primary_10_1016_j_csbj_2014_07_005
crossref_primary_10_1140_epje_i2013_13054_7
crossref_primary_10_1016_j_genrep_2018_08_008
crossref_primary_10_1371_journal_pgen_1005639
crossref_primary_10_1515_jib_2020_0036
crossref_primary_10_1016_j_cell_2014_11_041
crossref_primary_10_1534_genetics_114_168112
crossref_primary_10_1016_j_gde_2014_08_011
crossref_primary_10_1038_s41586_022_04506_6
crossref_primary_10_1093_gbe_evv080
crossref_primary_10_1016_j_jsb_2017_02_006
crossref_primary_10_1016_j_devcel_2016_10_010
crossref_primary_10_1128_spectrum_02536_23
crossref_primary_10_3389_fgene_2015_00322
crossref_primary_10_3390_cancers14184375
crossref_primary_10_1093_nar_gkab807
crossref_primary_10_1098_rstb_2013_0018
crossref_primary_10_1016_j_semcdb_2015_12_003
crossref_primary_10_1093_nar_gku078
crossref_primary_10_1142_S0219720014410091
crossref_primary_10_1186_1471_2164_16_S13_S7
crossref_primary_10_1093_molbev_mst170
crossref_primary_10_1101_gr_199166_115
crossref_primary_10_1186_s13059_021_02503_y
crossref_primary_10_1002_wdev_168
crossref_primary_10_1093_nar_gkw052
crossref_primary_10_1371_journal_pcbi_1003683
crossref_primary_10_1016_j_ydbio_2016_02_030
crossref_primary_10_1016_j_isci_2022_104152
crossref_primary_10_1186_1471_2164_13_182
crossref_primary_10_1093_nar_gkaa123
crossref_primary_10_1371_journal_pcbi_1010524
crossref_primary_10_1186_s12862_016_0866_y
Cites_doi 10.1101/gr.104471.109
10.1101/gr.668403
10.1038/ncomms1102
10.1073/pnas.0500373102
10.1093/bioinformatics/btl565
10.1128/MCB.11.4.1935
10.1126/science.1145893
10.1126/science.270.5243.1825
10.1073/pnas.0501865102
10.1016/j.cub.2006.05.044
10.1073/pnas.0930314100
10.1371/journal.pgen.1000829
10.1371/journal.pbio.1000456
10.1385/CBB:39:1:45
10.1101/gr.6828808
10.1038/345359a0
10.1162/evco.1996.4.4.335
10.1073/pnas.0702207104
10.1371/journal.pgen.1000330
10.1016/0022-2836(87)90517-1
10.1186/gb-2007-8-6-r101
10.1073/pnas.231608898
10.1038/nrg1615
10.1016/j.ydbio.2008.12.020
10.1093/bioinformatics/16.1.16
10.1016/S0955-0674(97)80007-5
10.1371/journal.pone.0008155
10.1242/dev.125.5.949
10.1073/pnas.85.2.382
10.1371/journal.pcbi.1001069
10.1534/genetics.106.069088
10.1534/genetics.105.048223
10.1074/jbc.270.23.13850
10.1093/molbev/msi090
10.1038/nature07521
10.1073/pnas.0812260106
10.1371/journal.pgen.1001042
10.1073/pnas.0805909105
10.1038/nature06496
10.1162/106365602317301754
10.1002/jcb.20352
10.1126/science.1098641
10.1016/0022-2836(85)90086-5
10.1016/j.cub.2010.01.026
10.1371/journal.pcbi.1000935
10.1093/bioinformatics/bti173
10.1073/pnas.012591199
10.1371/journal.pcbi.1000848
10.1073/pnas.0604449103
10.1103/PhysRevA.44.6399
10.1093/genetics/148.4.1667
ContentType Journal Article
Copyright The Author 2011. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2012
Copyright Oxford Publishing Limited(England) Mar 2012
Copyright_xml – notice: The Author 2011. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2012
– notice: Copyright Oxford Publishing Limited(England) Mar 2012
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QP
7QR
7SN
7SS
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
5PM
DOI 10.1093/molbev/msr277
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts


MEDLINE
Nucleic Acids Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1537-1719
EndPage 1070
ExternalDocumentID 2599207971
10_1093_molbev_msr277
22075113
10.1093/molbev/msr277
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM085233
– fundername: NIGMS NIH HHS
  grantid: 5R01GM085233A
GroupedDBID ---
-E4
-~X
.2P
.GJ
.I3
.ZR
0R~
18M
1TH
29M
2WC
4.4
48X
53G
5VS
5WA
70D
AAFWJ
AAIJN
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPNW
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
ABEUO
ABIXL
ABKDP
ABLJU
ABNKS
ABPTD
ABQLI
ABQTQ
ABSAR
ABSMQ
ABTAH
ABXVV
ABZBJ
ACGFO
ACGFS
ACIPB
ACIWK
ACMRT
ACNCT
ACPRK
ACUFI
ACUTO
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGZP
ADHKW
ADHZD
ADJQC
ADOCK
ADRIX
ADRTK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFIYH
AFOFC
AFPKN
AFRAH
AFULF
AFXEN
AGINJ
AGKEF
AGSYK
AHMBA
AHXPO
AIAGR
AIJHB
AJEUX
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
APWMN
ARIXL
ASAOO
ATDFG
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
BTRTY
BVRKM
C1A
CAG
CDBKE
COF
CS3
CXTWN
CZ4
DAKXR
DFGAJ
DIK
DILTD
DU5
D~K
E3Z
EBS
EE~
EJD
EMOBN
F5P
F9B
FHSFR
FLIZI
FOTVD
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HH5
HW0
HZ~
IAO
IGS
IOX
J21
KC5
KOP
KQ8
KSI
KSN
M-Z
M49
MBTAY
ML0
MVM
N9A
NGC
NLBLG
NMDNZ
NOYVH
NTWIH
NU-
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
O~Y
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
RD5
RHF
RNI
ROL
ROX
ROZ
RPM
RUSNO
RW1
RXO
RZO
TEORI
TJP
TJX
TLC
TN5
TOX
TR2
VQA
W8F
WOQ
X7H
XJT
XSW
YAYTL
YHZ
YKOAZ
YXANX
ZCA
ZCG
ZKX
ZXP
ZY4
~02
~91
CGR
CUY
CVF
ECM
EIF
ITC
NPM
AAYXX
CITATION
7QG
7QP
7QR
7SN
7SS
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c479t-6abe2e32ee742ce85030db12966235b969ae3685f4f5f948386a818621478a3
IEDL.DBID RPM
ISSN 0737-4038
IngestDate Tue Sep 17 21:21:05 EDT 2024
Fri Oct 25 21:57:55 EDT 2024
Fri Oct 25 02:29:15 EDT 2024
Thu Oct 24 14:32:12 EDT 2024
Thu Sep 12 18:58:37 EDT 2024
Tue Oct 15 23:44:43 EDT 2024
Wed Aug 28 03:23:54 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords thermodynamic model
enhancer evolution
homotypic site clustering
complex genotypes
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c479t-6abe2e32ee742ce85030db12966235b969ae3685f4f5f948386a818621478a3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
These authors contributed equally to this work.
Associate editor: Sudhir Kumar
OpenAccessLink https://academic.oup.com/mbe/article-pdf/29/3/1059/13647037/msr277.pdf
PMID 22075113
PQID 925104147
PQPubID 36253
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3278477
proquest_miscellaneous_921569172
proquest_miscellaneous_1008827861
proquest_journals_925104147
crossref_primary_10_1093_molbev_msr277
pubmed_primary_22075113
oup_primary_10_1093_molbev_msr277
PublicationCentury 2000
PublicationDate 2012-03-01
PublicationDateYYYYMMDD 2012-03-01
PublicationDate_xml – month: 03
  year: 2012
  text: 2012-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Molecular biology and evolution
PublicationTitleAlternate Mol Biol Evol
PublicationYear 2012
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References 21304932 - PLoS Comput Biol. 2011;7(2):e1001069
17098775 - Bioinformatics. 2007 Jan 15;23(2):134-41
9449677 - Development. 1998 Mar;125(5):949-58
19956545 - PLoS One. 2009;4(12):e8155
18039705 - Nucleic Acids Res. 2008 Jan;36(Database issue):D594-8
18723669 - Proc Natl Acad Sci U S A. 2008 Aug 26;105(34):12376-81
20981027 - Nat Commun. 2010;1:99
20628617 - PLoS Comput Biol. 2010;6(7):e1000848
15659554 - Mol Biol Evol. 2005 Apr;22(4):874-85
17060629 - Proc Natl Acad Sci U S A. 2006 Oct 31;103(44):16337-42
15696541 - J Cell Biochem. 2005 Apr 1;94(5):890-8
16299396 - Genetics. 2006 Mar;172(3):1607-19
19132088 - PLoS Genet. 2009 Jan;5(1):e1000330
20686658 - PLoS Genet. 2010 Jul;6(7):e1001042
17550599 - Genome Biol. 2007;8(6):R101
11805330 - Proc Natl Acad Sci U S A. 2002 Jan 22;99(2):757-62
12702751 - Proc Natl Acad Sci U S A. 2003 Apr 29;100(9):5136-41
12835528 - Cell Biochem Biophys. 2003;39(1):45-59
11911781 - Evol Comput. 2002 Spring;10(1):1-34
15883588 - Nat Rev Genet. 2005 Jun;6(6):451-64
2958636 - J Mol Biol. 1987 Jul 5;196(1):149-58
12670999 - Genome Res. 2003 Apr;13(4):579-88
20808951 - PLoS Biol. 2010;8(8). pii: e1000456. doi: 10.1371/journal.pbio.1000456
15166317 - Science. 2004 Jun 18;304(5678):1811-4
10812473 - Bioinformatics. 2000 Jan;16(1):16-23
9560386 - Genetics. 1998 Apr;148(4):1667-86
11752406 - Proc Natl Acad Sci U S A. 2002 Jan 22;99(2):763-8
15980155 - Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9541-6
18256240 - Genome Res. 2008 Mar;18(3):477-88
2005889 - Mol Cell Biol. 1991 Apr;11(4):1935-43
17947444 - Genetics. 2007 Nov;177(3):1725-31
20862354 - PLoS Comput Biol. 2010;6(9). pii: e1000935. doi: 10.1371/journal.pcbi.1000935
2188137 - Nature. 1990 May 24;345(6273):359-61
8525377 - Science. 1995 Dec 15;270(5243):1825-8
20107516 - PLoS Genet. 2010 Jan;6(1):e1000829
15793007 - Proc Natl Acad Sci U S A. 2005 Apr 5;102(14):4960-5
16750631 - Curr Biol. 2006 Jul 11;16(13):1358-65
20219179 - Curr Biol. 2010 Mar 9;20(5):R249-54
3124106 - Proc Natl Acad Sci U S A. 1988 Jan;85(2):382-6
3157005 - J Mol Biol. 1985 Jan 20;181(2):211-30
9905770 - Phys Rev A. 1991 Nov 15;44(10):6399-6413
9159075 - Curr Opin Cell Biol. 1997 Jun;9(3):350-7
19029883 - Nature. 2009 Jan 8;457(7226):215-8
17872446 - Science. 2007 Sep 14;317(5844):1557-60
17494740 - Proc Natl Acad Sci U S A. 2007 May 15;104 Suppl 1:8597-604
15572468 - Bioinformatics. 2005 Apr 15;21(8):1747-9
20363979 - Genome Res. 2010 May;20(5):565-77
19497876 - Proc Natl Acad Sci U S A. 2009 Jun 16;106(24):9564-9
7775443 - J Biol Chem. 1995 Jun 9;270(23):13850-9
18172436 - Nature. 2008 Jan 31;451(7178):535-40
19135437 - Dev Biol. 2009 Mar 15;327(2):578-89
Kim ( key 20170418140056_bib22) 2009; 5
Wagner ( key 20170418140056_bib51) 2007
Raser ( key 20170418140056_bib37) 2004; 304
Lynch ( key 20170418140056_bib31) 2007; 104
Kaern ( key 20170418140056_bib19) 2005; 6
Thornton ( key 20170418140056_bib50) 2006; 172
Crocker ( key 20170418140056_bib54) 2010
Smith ( key 20170418140056_bib47) 2002; 10
Bergman ( key 20170418140056_bib3) 2005; 21
Lifanov ( key 20170418140056_bib27) 2003; 13
He ( key 20170418140056_bib13) 2009; 4
Liberman ( key 20170418140056_bib26) 2009; 327
Hordijk ( key 20170418140056_bib18) 1995; 4
Hoggart ( key 20170418140056_bib16) 2007; 177
Ochoa-Espinosa ( key 20170418140056_bib34) 2005; 102
Holloway ( key 20170418140056_bib17) 2011; 7
Lin ( key 20170418140056_bib28) 1990; 345
Roider ( key 20170418140056_bib39) 2007; 23
Kazemian ( key 20170418140056_bib20) 2010; 8
Arnosti ( key 20170418140056_bib2) 2005; 94
Hertel ( key 20170418140056_bib15) 1997; 9
Segal ( key 20170418140056_bib41) 2008; 451
Soyer ( key 20170418140056_bib48) 2006; 103
He ( key 20170418140056_bib14) 2010; 6
Sella ( key 20170418140056_bib42) 2005; 102
Sinha ( key 20170418140056_bib46) 2005; 22
Shultzaberger ( key 20170418140056_bib44) 2010; 6
Berman ( key 20170418140056_bib4) 2002; 99
Stormo ( key 20170418140056_bib49) 2000; 16
Giniger ( key 20170418140056_bib10) 1988; 85
Shea ( key 20170418140056_bib43) 1985; 181
Halfon ( key 20170418140056_bib12) 2008; 36
Lusk ( key 20170418140056_bib30) 2010; 6
Khatri ( key 20170418140056_bib21) 2009; 106
Weinberger ( key 20170418140056_bib52) 1991; 44
Gertz ( key 20170418140056_bib9) 2009; 457
Kim ( key 20170418140056_bib23) 1987; 196
Zinzen ( key 20170418140056_bib53) 2006; 16
Reid ( key 20170418140056_bib38) 2007
Paixao ( key 20170418140056_bib35) 2010; 6
Li ( key 20170418140056_bib24) 2003; 39
Anderson ( key 20170418140056_bib1) 1991; 11
Sinha ( key 20170418140056_bib45) 2008; 18
Sauer ( key 20170418140056_bib40) 1995; 270
Mustonen ( key 20170418140056_bib33) 2008; 105
Buchler ( key 20170418140056_bib6) 2003; 100
Ludwig ( key 20170418140056_bib29) 1998; 125
Brown ( key 20170418140056_bib5) 2007; 317
Coleman ( key 20170418140056_bib7) 1995; 270
Markstein ( key 20170418140056_bib32) 2002; 99
Gotea ( key 20170418140056_bib11) 2010; 20
Li ( key 20170418140056_bib25) 2007; 8
Porcher ( key 20170418140056_bib36) 2010; 20
Drake ( key 20170418140056_bib8) 1998; 148
References_xml – volume: 20
  start-page: 565
  issue: 5
  year: 2010
  ident: key 20170418140056_bib11
  article-title: Homotypic clusters of transcription factor binding sites are a key component of human promoters and enhancers
  publication-title: Genome Res.
  doi: 10.1101/gr.104471.109
  contributor:
    fullname: Gotea
– volume: 13
  start-page: 579
  issue: 4
  year: 2003
  ident: key 20170418140056_bib27
  article-title: Homotypic regulatory clusters in Drosophila
  publication-title: Genome Res.
  doi: 10.1101/gr.668403
  contributor:
    fullname: Lifanov
– year: 2010
  ident: key 20170418140056_bib54
  article-title: Dynamic evolution of precise regulatory encodings creates the clustered site signature of enhancers
  publication-title: Nat Commun.
  doi: 10.1038/ncomms1102
  contributor:
    fullname: Crocker
– volume: 102
  start-page: 4960
  issue: 14
  year: 2005
  ident: key 20170418140056_bib34
  article-title: The role of binding site cluster strength in Bicoid-dependent patterning in Drosophila
  publication-title: Proc Natl Acad Sci U S A.
  doi: 10.1073/pnas.0500373102
  contributor:
    fullname: Ochoa-Espinosa
– volume: 23
  start-page: 134
  issue: 2
  year: 2007
  ident: key 20170418140056_bib39
  article-title: Predicting transcription factor affinities to DNA from a biophysical model
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl565
  contributor:
    fullname: Roider
– volume: 11
  start-page: 1935
  issue: 4
  year: 1991
  ident: key 20170418140056_bib1
  article-title: Synergistic activation of a human promoter in vivo by transcription factor Sp1
  publication-title: Mol Cell Biol.
  doi: 10.1128/MCB.11.4.1935
  contributor:
    fullname: Anderson
– volume: 317
  start-page: 1557
  issue: 5844
  year: 2007
  ident: key 20170418140056_bib5
  article-title: Functional architecture and evolution of transcriptional elements that drive gene coexpression
  publication-title: Science
  doi: 10.1126/science.1145893
  contributor:
    fullname: Brown
– volume: 36
  start-page: D594
  issue: Database issue
  year: 2008
  ident: key 20170418140056_bib12
  article-title: REDfly 2.0: an integrated database of cis-regulatory modules and transcription factor binding sites in Drosophila
  publication-title: Nucleic Acids Res.
  contributor:
    fullname: Halfon
– volume: 270
  start-page: 1825
  issue: 5243
  year: 1995
  ident: key 20170418140056_bib40
  article-title: DNA template and activator-coactivator requirements for transcriptional synergism by Drosophila bicoid
  publication-title: Science
  doi: 10.1126/science.270.5243.1825
  contributor:
    fullname: Sauer
– volume: 102
  start-page: 9541
  issue: 27
  year: 2005
  ident: key 20170418140056_bib42
  article-title: The application of statistical physics to evolutionary biology
  publication-title: Proc Natl Acad Sci U S A.
  doi: 10.1073/pnas.0501865102
  contributor:
    fullname: Sella
– volume: 16
  start-page: 1358
  issue: 13
  year: 2006
  ident: key 20170418140056_bib53
  article-title: Computational models for neurogenic gene expression in the Drosophila embryo
  publication-title: Curr Biol.
  doi: 10.1016/j.cub.2006.05.044
  contributor:
    fullname: Zinzen
– volume: 100
  start-page: 5136
  issue: 9
  year: 2003
  ident: key 20170418140056_bib6
  article-title: On schemes of combinatorial transcription logic
  publication-title: Proc Natl Acad Sci U S A.
  doi: 10.1073/pnas.0930314100
  contributor:
    fullname: Buchler
– volume: 6
  start-page: e1000829
  issue: 1
  year: 2010
  ident: key 20170418140056_bib30
  article-title: Evolutionary mirages: selection on binding site composition creates the illusion of conserved grammars in Drosophila enhancers
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1000829
  contributor:
    fullname: Lusk
– volume: 8
  start-page: e1000456
  issue: 8
  year: 2010
  ident: key 20170418140056_bib20
  article-title: Quantitative analysis of the Drosophila segmentation regulatory network using pattern generating potentials
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1000456
  contributor:
    fullname: Kazemian
– volume: 39
  start-page: 45
  issue: 1
  year: 2003
  ident: key 20170418140056_bib24
  article-title: Sensitivity and specificity amplification in signal transduction
  publication-title: Cell Biochem Biophys.
  doi: 10.1385/CBB:39:1:45
  contributor:
    fullname: Li
– volume: 18
  start-page: 477
  issue: 3
  year: 2008
  ident: key 20170418140056_bib45
  article-title: Systematic functional characterization of cis-regulatory motifs in human core promoters
  publication-title: Genome Res.
  doi: 10.1101/gr.6828808
  contributor:
    fullname: Sinha
– volume: 345
  start-page: 359
  issue: 6273
  year: 1990
  ident: key 20170418140056_bib28
  article-title: How different eukaryotic transcriptional activators can cooperate promiscuously
  publication-title: Nature
  doi: 10.1038/345359a0
  contributor:
    fullname: Lin
– volume: 4
  start-page: 335
  year: 1995
  ident: key 20170418140056_bib18
  article-title: A measure of landscapes
  publication-title: Evol Comput.
  doi: 10.1162/evco.1996.4.4.335
  contributor:
    fullname: Hordijk
– volume: 104
  start-page: 8597
  year: 2007
  ident: key 20170418140056_bib31
  article-title: The frailty of adaptive hypotheses for the origins of organismal complexity
  publication-title: Proc Natl Acad Sci U S A.
  doi: 10.1073/pnas.0702207104
  contributor:
    fullname: Lynch
– volume-title: Transcription factor binding site turnover in mammals
  year: 2007
  ident: key 20170418140056_bib38
  contributor:
    fullname: Reid
– volume: 5
  start-page: e1000330
  issue: 1
  year: 2009
  ident: key 20170418140056_bib22
  article-title: Evolution of regulatory sequences in 12 Drosophila species
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1000330
  contributor:
    fullname: Kim
– volume: 196
  start-page: 149
  issue: 1
  year: 1987
  ident: key 20170418140056_bib23
  article-title: Kinetic studies on Cro repressor-operator DNA interaction
  publication-title: J Mol Biol.
  doi: 10.1016/0022-2836(87)90517-1
  contributor:
    fullname: Kim
– volume: 8
  start-page: R101
  issue: 6
  year: 2007
  ident: key 20170418140056_bib25
  article-title: Large-scale analysis of transcriptional cis-regulatory modules reveals both common features and distinct subclasses
  publication-title: Genome Biol.
  doi: 10.1186/gb-2007-8-6-r101
  contributor:
    fullname: Li
– volume: 99
  start-page: 757
  issue: 2
  year: 2002
  ident: key 20170418140056_bib4
  article-title: Exploiting transcription factor binding site clustering to identify cis-regulatory modules involved in pattern formation in the Drosophila genome
  publication-title: Proc Natl Acad Sci U S A.
  doi: 10.1073/pnas.231608898
  contributor:
    fullname: Berman
– volume: 6
  start-page: 451
  issue: 6
  year: 2005
  ident: key 20170418140056_bib19
  article-title: Stochasticity in gene expression: from theories to phenotypes
  publication-title: Nat Rev Genet.
  doi: 10.1038/nrg1615
  contributor:
    fullname: Kaern
– volume: 327
  start-page: 578
  issue: 2
  year: 2009
  ident: key 20170418140056_bib26
  article-title: Design flexibility in cis-regulatory control of gene expression: synthetic and comparative evidence
  publication-title: Dev Biol.
  doi: 10.1016/j.ydbio.2008.12.020
  contributor:
    fullname: Liberman
– volume: 16
  start-page: 16
  issue: 1
  year: 2000
  ident: key 20170418140056_bib49
  article-title: DNA binding sites: representation and discovery
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/16.1.16
  contributor:
    fullname: Stormo
– volume: 9
  start-page: 350
  issue: 3
  year: 1997
  ident: key 20170418140056_bib15
  article-title: Common themes in the function of transcription and splicing enhancers
  publication-title: Curr Opin Cell Biol.
  doi: 10.1016/S0955-0674(97)80007-5
  contributor:
    fullname: Hertel
– volume: 4
  start-page: e8155
  issue: 12
  year: 2009
  ident: key 20170418140056_bib13
  article-title: A biophysical model for analysis of transcription factor interaction and binding site arrangement from genome-wide binding data
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0008155
  contributor:
    fullname: He
– volume: 125
  start-page: 949
  issue: 5
  year: 1998
  ident: key 20170418140056_bib29
  article-title: Functional analysis of eve stripe 2 enhancer evolution in Drosophila: rules governing conservation and change
  publication-title: Development
  doi: 10.1242/dev.125.5.949
  contributor:
    fullname: Ludwig
– volume: 85
  start-page: 382
  issue: 2
  year: 1988
  ident: key 20170418140056_bib10
  article-title: Cooperative DNA binding of the yeast transcriptional activator GAL4
  publication-title: Proc Natl Acad Sci U S A.
  doi: 10.1073/pnas.85.2.382
  contributor:
    fullname: Giniger
– volume: 7
  start-page: e1001069
  issue: 2
  year: 2011
  ident: key 20170418140056_bib17
  article-title: Gene expression noise in spatial patterning: hunchback promoter structure affects noise amplitude and distribution in Drosophila segmentation
  publication-title: PLoS Comput Biol.
  doi: 10.1371/journal.pcbi.1001069
  contributor:
    fullname: Holloway
– volume-title: Robustness and evolvability in living systems
  year: 2007
  ident: key 20170418140056_bib51
  contributor:
    fullname: Wagner
– volume: 177
  start-page: 1725
  issue: 3
  year: 2007
  ident: key 20170418140056_bib16
  article-title: Sequence-level population simulations over large genomic regions
  publication-title: Genetics
  doi: 10.1534/genetics.106.069088
  contributor:
    fullname: Hoggart
– volume: 172
  start-page: 1607
  issue: 3
  year: 2006
  ident: key 20170418140056_bib50
  article-title: Approximate Bayesian inference reveals evidence for a recent, severe bottleneck in a Netherlands population of Drosophila melanogaster
  publication-title: Genetics
  doi: 10.1534/genetics.105.048223
  contributor:
    fullname: Thornton
– volume: 270
  start-page: 13850
  issue: 23
  year: 1995
  ident: key 20170418140056_bib7
  article-title: Evidence for functional binding and stable sliding of the TATA binding protein on nonspecific DNA
  publication-title: J Biol Chem.
  doi: 10.1074/jbc.270.23.13850
  contributor:
    fullname: Coleman
– volume: 22
  start-page: 874
  issue: 4
  year: 2005
  ident: key 20170418140056_bib46
  article-title: Sequence turnover and tandem repeats in cis-regulatory modules in Drosophila
  publication-title: Mol Biol Evol.
  doi: 10.1093/molbev/msi090
  contributor:
    fullname: Sinha
– volume: 457
  start-page: 215
  issue: 7226
  year: 2009
  ident: key 20170418140056_bib9
  article-title: Analysis of combinatorial cis-regulation in synthetic and genomic promoters
  publication-title: Nature
  doi: 10.1038/nature07521
  contributor:
    fullname: Gertz
– volume: 106
  start-page: 9564
  issue: 24
  year: 2009
  ident: key 20170418140056_bib21
  article-title: Statistical mechanics of convergent evolution in spatial patterning
  publication-title: Proc Natl Acad Sci U S A.
  doi: 10.1073/pnas.0812260106
  contributor:
    fullname: Khatri
– volume: 6
  start-page: e1001042
  issue: 7
  year: 2010
  ident: key 20170418140056_bib44
  article-title: The fitness landscapes of cis-acting binding sites in different promoter and environmental contexts
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1001042
  contributor:
    fullname: Shultzaberger
– volume: 105
  start-page: 12376
  issue: 34
  year: 2008
  ident: key 20170418140056_bib33
  article-title: Energy-dependent fitness: a quantitative model for the evolution of yeast transcription factor binding sites
  publication-title: Proc Natl Acad Sci U S A.
  doi: 10.1073/pnas.0805909105
  contributor:
    fullname: Mustonen
– volume: 451
  start-page: 535
  issue: 7178
  year: 2008
  ident: key 20170418140056_bib41
  article-title: Predicting expression patterns from regulatory sequence in Drosophila segmentation
  publication-title: Nature
  doi: 10.1038/nature06496
  contributor:
    fullname: Segal
– volume: 10
  start-page: 1
  issue: 1
  year: 2002
  ident: key 20170418140056_bib47
  article-title: Fitness landscapes and evolvability
  publication-title: Evol Comput.
  doi: 10.1162/106365602317301754
  contributor:
    fullname: Smith
– volume: 94
  start-page: 890
  issue: 5
  year: 2005
  ident: key 20170418140056_bib2
  article-title: Transcriptional enhancers: intelligent enhanceosomes or flexible billboards?
  publication-title: J Cell Biochem.
  doi: 10.1002/jcb.20352
  contributor:
    fullname: Arnosti
– volume: 304
  start-page: 1811
  issue: 5678
  year: 2004
  ident: key 20170418140056_bib37
  article-title: Control of stochasticity in eukaryotic gene expression
  publication-title: Science
  doi: 10.1126/science.1098641
  contributor:
    fullname: Raser
– volume: 181
  start-page: 211
  issue: 2
  year: 1985
  ident: key 20170418140056_bib43
  article-title: The OR control system of bacteriophage lambda. A physical-chemical model for gene regulation
  publication-title: J Mol Biol.
  doi: 10.1016/0022-2836(85)90086-5
  contributor:
    fullname: Shea
– volume: 20
  start-page: R249
  issue: 5
  year: 2010
  ident: key 20170418140056_bib36
  article-title: The bicoid morphogen system
  publication-title: Curr Biol.
  doi: 10.1016/j.cub.2010.01.026
  contributor:
    fullname: Porcher
– volume: 6
  start-page: e1000935
  issue: 9
  year: 2010
  ident: key 20170418140056_bib14
  article-title: Thermodynamics-based models of transcriptional regulation by enhancers: the roles of synergistic activation, cooperative binding and short-range repression
  publication-title: PLoS Comput Biol.
  doi: 10.1371/journal.pcbi.1000935
  contributor:
    fullname: He
– volume: 21
  start-page: 1747
  issue: 8
  year: 2005
  ident: key 20170418140056_bib3
  article-title: Drosophila DNase I footprint database: a systematic genome annotation of transcription factor binding sites in the fruitfly, Drosophila melanogaster
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti173
  contributor:
    fullname: Bergman
– volume: 99
  start-page: 763
  issue: 2
  year: 2002
  ident: key 20170418140056_bib32
  article-title: Genome-wide analysis of clustered Dorsal binding sites identifies putative target genes in the Drosophila embryo
  publication-title: Proc Natl Acad Sci U S A.
  doi: 10.1073/pnas.012591199
  contributor:
    fullname: Markstein
– volume: 6
  start-page: e1000848
  issue: 7
  year: 2010
  ident: key 20170418140056_bib35
  article-title: Redundancy and the evolution of cis-regulatory element multiplicity
  publication-title: PLoS Comput Biol.
  doi: 10.1371/journal.pcbi.1000848
  contributor:
    fullname: Paixao
– volume: 103
  start-page: 16337
  issue: 44
  year: 2006
  ident: key 20170418140056_bib48
  article-title: Evolution of complexity in signaling pathways
  publication-title: Proc Natl Acad Sci U S A.
  doi: 10.1073/pnas.0604449103
  contributor:
    fullname: Soyer
– volume: 44
  start-page: 6399
  year: 1991
  ident: key 20170418140056_bib52
  article-title: Local properties of Kauffman's N-k model: a tunably rugged energy landscape
  publication-title: Phys Rev A.
  doi: 10.1103/PhysRevA.44.6399
  contributor:
    fullname: Weinberger
– volume: 148
  start-page: 1667
  issue: 4
  year: 1998
  ident: key 20170418140056_bib8
  article-title: Rates of spontaneous mutation
  publication-title: Genetics
  doi: 10.1093/genetics/148.4.1667
  contributor:
    fullname: Drake
SSID ssj0014466
Score 2.3187761
Snippet Empirical studies have revealed that regulatory DNA sequences such as enhancers or promoters often harbor multiple binding sites for the same transcription...
SourceID pubmedcentral
proquest
crossref
pubmed
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1059
SubjectTerms Animals
Binding sites
Binding Sites - genetics
Computer Simulation
Deoxyribonucleic acid
DNA
Drosophila - genetics
Drosophila melanogaster
Enhancer Elements, Genetic - genetics
Evolution, Molecular
Genotype
Genotype & phenotype
Genotypes
Insects
Models, Genetic
Mutation Rate
Population Density
Simulation
Species Specificity
Transcription Factors - genetics
Transcription Factors - metabolism
Title Evolutionary Origins of Transcription Factor Binding Site Clusters
URI https://www.ncbi.nlm.nih.gov/pubmed/22075113
https://www.proquest.com/docview/925104147
https://search.proquest.com/docview/1008827861
https://search.proquest.com/docview/921569172
https://pubmed.ncbi.nlm.nih.gov/PMC3278477
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS-QwFD6oIPiyeFndeiOC7Fut0zS3x3VwEMELqDBvJWkTdmCmI9MZwX-_J2k7OIIs-FIKTUs4Oen5Dufk-wDOpXQyVVrGutQ0zozFLeWEjYuSWefrOCxoHd7d85uX7HbIhmvAurMwoWm_MKOLajy5qEZ_Q2_l66RIuj6x5PGuT321TIhkHdbRQbsUvS0ddAVKQQUmR1S2xJqYuSeT6djYt2RSz1Lh1ffSFANmr0dXYtLKObcPcPNz1-SHMDTYhh8tfiR_mnnuwJqtdmGzUZR834Or67fWl_TsnTwE1auaTB0JMan7Q5BBUNkhV6NwpoU8Ie4k_fHCkybUP-FpcP3cv4lbmYS4yISax1wbm1qaWotprlchxX1bGozjHKENM4orbT3NvMsccyqTVHLteey8QpHUdB82qmllfwERgpXWKa610VlRUryjRcGNZYo56ngEvzsz5a8NF0be1LBp3pg2b0wbwRka8X9jjjoT5-22qXOFaOsyw3nhF5ZP0d99EUNXdrqoPccyJgVC8l4E5IsxCnEMxzw0jeCgWbPlXLolj0CsrOZygKfbXn2CXhhot1uvO_z2m0ewhXArbTrYjmFjPlvYE4Q0c3MaXBivzw_Df_B5-ZU
link.rule.ids 230,315,730,783,787,888,1607,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6NIQQv_B6EMTAS4i3NGid2_MiqVQXWgbSB9hbZia1Va9OpaSeNv56zHVfrpAnBWyQ7kZ27832nO38H8LEoTJEKWcSyljTOlEaTMlzHVZ1rY_M4uet1OD5mo5_Z17P8bAvycBfGFe1XatJrprNeMzl3tZWXsyoJdWLJj_GA2mwZ58k9uI_2up-FIL1LHoQUJaccwyNadNSaGLsns_lU6atk1i5SbvvvpSm6zH6fbniljZtuNwDn7brJG45o-AR-hS34-pOL3mqpetXvW-yO_7zHp_C4g6bksx9-Blu6eQ4PfLPK6xdwcHjVqalcXJPvrqFWS-aGOHcXDh8ydA18yMHEXZchJwhpyWC6snwM7Us4GR6eDkZx14EhrjIuljGTSqeaplpjBG0bnOKRUCuECAxRU64EE1JbBnuTmdyIrKAFk5YizzY_KiTdge1m3ujXQDjPa20Ek1LJrKopPtGqYkrnIjfUsAg-hf9fXnqajdKnx2npZVZ6mUXwAaXztzm7QXZlZ5FtKRDI7We4LvzCehRNyeZHZKPnq9bSN2O8wQvWj4DcMUcgRGIY4qYRvPLKsF5L0KUI-IaarCdYJu_NERS-Y_TuhP3mv998Dw9Hp-Oj8ujL8bddeISoLvWFcm9he7lY6T1ETkv1ztnJH9O4GoQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED-2jo2-bN1X63XdNBh7c9xYtj4e16yh-2hX6AZlL0ayJRaaOCFOCt1fv5Nkh6QwBn0zSDYydyf9jjv9fgDvhbAilUrEqlI0zrTBkLLcxGWVG-vqOLnXOjw9Yyc_sy-X-eWa1Jdv2i_1qFePJ7169Nv3Vs4mZdL1iSXnpwPqqmWcJ7PKJvfhAcbsIesS9baA0JUpOeWYIlHR0mti_p5MpmNtrpNJM0-50-BLUzw2-326cTJt3HZbA523eyfXDqPhE_jV_UboQbnqLRe6V_65xfB4p__cgcctRCUfw5SncM_Uz-BhEK28eQ5Hx9etu6r5DfnuhbUaMrXEH3vdJkSGXsiHHI38tRlygdCWDMZLx8vQvICL4fGPwUncKjHEZcblImZKm9TQ1BjMpJ3QKW4NlUaowBA95VoyqYxjsreZza3MBBVMOao8J4IkFH0JW_W0NntAOM8rYyVTSqusrCg-0bJk2uQyt9SyCD50NihmgW6jCGVyWgS7FcFuEbxDC_1vzn5nv6KNzKaQCOgOM1wXfmE1iiHl6iSqNtNl42icMe_ggvUjIP-YIxEqMUx10wh2g0Os1tL5UwR8w1VWExyj9-YIOoBn9m4N_urOb76FR-efhsW3z2df92EbwV0a-uVew9ZivjQHCKAW-o0Plb-cWx0E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolutionary+origins+of+transcription+factor+binding+site+clusters&rft.jtitle=Molecular+biology+and+evolution&rft.au=He%2C+Xin&rft.au=Duque%2C+Thyago+S+P+C&rft.au=Sinha%2C+Saurabh&rft.date=2012-03-01&rft.eissn=1537-1719&rft.volume=29&rft.issue=3&rft.spage=1059&rft_id=info:doi/10.1093%2Fmolbev%2Fmsr277&rft_id=info%3Apmid%2F22075113&rft.externalDocID=22075113
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0737-4038&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0737-4038&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0737-4038&client=summon