Approximation and spatial regionalization of rainfall erosivity based on sparse data in a mountainous catchment of the Yangtze River in Central China
In densely populated countries like China, clean water is one of the most challenging issues of prospective politics and environmental planning. Water pollution and eutrophication by excessive input of nitrogen and phosphorous from nonpoint sources is mostly linked to soil erosion from agricultural...
Saved in:
Published in | Environmental science and pollution research international Vol. 20; no. 10; pp. 6917 - 6933 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.10.2013
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0944-1344 1614-7499 1614-7499 |
DOI | 10.1007/s11356-012-1441-8 |
Cover
Abstract | In densely populated countries like China, clean water is one of the most challenging issues of prospective politics and environmental planning. Water pollution and eutrophication by excessive input of nitrogen and phosphorous from nonpoint sources is mostly linked to soil erosion from agricultural land. In order to prevent such water pollution by diffuse matter fluxes, knowledge about the extent of soil loss and the spatial distribution of hot spots of soil erosion is essential. In remote areas such as the mountainous regions of the upper and middle reaches of the Yangtze River, rainfall data are scarce. Since rainfall erosivity is one of the key factors in soil erosion modeling, e.g., expressed as
R
factor in the Revised Universal Soil Loss Equation model, a methodology is needed to spatially determine rainfall erosivity. Our study aims at the approximation and spatial regionalization of rainfall erosivity from sparse data in the large (3,200 km
2
) and strongly mountainous catchment of the Xiangxi River, a first order tributary to the Yangtze River close to the Three Gorges Dam. As data on rainfall were only obtainable in daily records for one climate station in the central part of the catchment and five stations in its surrounding area, we approximated rainfall erosivity as
R
factors using regression analysis combined with elevation bands derived from a digital elevation model. The mean annual
R
factor (
R
a
) amounts for approximately 5,222 MJ mm ha
−1
h
−1
a
−1
. With increasing altitudes,
R
a
rises up to maximum 7,547 MJ mm ha
−1
h
−1
a
−1
at an altitude of 3,078 m a.s.l. At the outlet of the Xiangxi catchment erosivity is at minimum with approximate
R
a
= 1,986 MJ mm ha
−1
h
−1
a
−1
. The comparison of our results with
R
factors from high-resolution measurements at comparable study sites close to the Xiangxi catchment shows good consistance and allows us to calculate grid-based
R
a
as input for a spatially high-resolution and area-specific assessment of soil erosion risk. |
---|---|
AbstractList | In densely populated countries like China, clean water is one of the most challenging issues of prospective politics and environmental planning. Water pollution and eutrophication by excessive input of nitrogen and phosphorous from nonpoint sources is mostly linked to soil erosion from agricultural land. In order to prevent such water pollution by diffuse matter fluxes, knowledge about the extent of soil loss and the spatial distribution of hot spots of soil erosion is essential. In remote areas such as the mountainous regions of the upper and middle reaches of the Yangtze River, rainfall data are scarce. Since rainfall erosivity is one of the key factors in soil erosion modeling, e.g., expressed as R factor in the Revised Universal Soil Loss Equation model, a methodology is needed to spatially determine rainfall erosivity. Our study aims at the approximation and spatial regionalization of rainfall erosivity from sparse data in the large (3,200 km(2)) and strongly mountainous catchment of the Xiangxi River, a first order tributary to the Yangtze River close to the Three Gorges Dam. As data on rainfall were only obtainable in daily records for one climate station in the central part of the catchment and five stations in its surrounding area, we approximated rainfall erosivity as R factors using regression analysis combined with elevation bands derived from a digital elevation model. The mean annual R factor (R a) amounts for approximately 5,222 MJ mm ha(-1) h(-1) a(-1). With increasing altitudes, R a rises up to maximum 7,547 MJ mm ha(-1) h(-1) a(-1) at an altitude of 3,078 m a.s.l. At the outlet of the Xiangxi catchment erosivity is at minimum with approximate R a = 1,986 MJ mm ha(-1) h(-1) a(-1). The comparison of our results with R factors from high-resolution measurements at comparable study sites close to the Xiangxi catchment shows good consistance and allows us to calculate grid-based R a as input for a spatially high-resolution and area-specific assessment of soil erosion risk. In densely populated countries like China, clean water is one of the most challenging issues of prospective politics and environmental planning. Water pollution and eutrophication by excessive input of nitrogen and phosphorous from nonpoint sources is mostly linked to soil erosion from agricultural land. In order to prevent such water pollution by diffuse matter fluxes, knowledge about the extent of soil loss and the spatial distribution of hot spots of soil erosion is essential. In remote areas such as the mountainous regions of the upper and middle reaches of the Yangtze River, rainfall data are scarce. Since rainfall erosivity is one of the key factors in soil erosion modeling, e.g., expressed as R factor in the Revised Universal Soil Loss Equation model, a methodology is needed to spatially determine rainfall erosivity. Our study aims at the approximation and spatial regionalization of rainfall erosivity from sparse data in the large (3,200 km(2)) and strongly mountainous catchment of the Xiangxi River, a first order tributary to the Yangtze River close to the Three Gorges Dam. As data on rainfall were only obtainable in daily records for one climate station in the central part of the catchment and five stations in its surrounding area, we approximated rainfall erosivity as R factors using regression analysis combined with elevation bands derived from a digital elevation model. The mean annual R factor (R a) amounts for approximately 5,222 MJ mm ha(-1) h(-1) a(-1). With increasing altitudes, R a rises up to maximum 7,547 MJ mm ha(-1) h(-1) a(-1) at an altitude of 3,078 m a.s.l. At the outlet of the Xiangxi catchment erosivity is at minimum with approximate R a=1,986 MJ mm ha(-1) h(-1) a(-1). The comparison of our results with R factors from high-resolution measurements at comparable study sites close to the Xiangxi catchment shows good consistance and allows us to calculate grid-based R a as input for a spatially high-resolution and area-specific assessment of soil erosion risk.In densely populated countries like China, clean water is one of the most challenging issues of prospective politics and environmental planning. Water pollution and eutrophication by excessive input of nitrogen and phosphorous from nonpoint sources is mostly linked to soil erosion from agricultural land. In order to prevent such water pollution by diffuse matter fluxes, knowledge about the extent of soil loss and the spatial distribution of hot spots of soil erosion is essential. In remote areas such as the mountainous regions of the upper and middle reaches of the Yangtze River, rainfall data are scarce. Since rainfall erosivity is one of the key factors in soil erosion modeling, e.g., expressed as R factor in the Revised Universal Soil Loss Equation model, a methodology is needed to spatially determine rainfall erosivity. Our study aims at the approximation and spatial regionalization of rainfall erosivity from sparse data in the large (3,200 km(2)) and strongly mountainous catchment of the Xiangxi River, a first order tributary to the Yangtze River close to the Three Gorges Dam. As data on rainfall were only obtainable in daily records for one climate station in the central part of the catchment and five stations in its surrounding area, we approximated rainfall erosivity as R factors using regression analysis combined with elevation bands derived from a digital elevation model. The mean annual R factor (R a) amounts for approximately 5,222 MJ mm ha(-1) h(-1) a(-1). With increasing altitudes, R a rises up to maximum 7,547 MJ mm ha(-1) h(-1) a(-1) at an altitude of 3,078 m a.s.l. At the outlet of the Xiangxi catchment erosivity is at minimum with approximate R a=1,986 MJ mm ha(-1) h(-1) a(-1). The comparison of our results with R factors from high-resolution measurements at comparable study sites close to the Xiangxi catchment shows good consistance and allows us to calculate grid-based R a as input for a spatially high-resolution and area-specific assessment of soil erosion risk. In densely populated countries like China, clean water is one of the most challenging issues of prospective politics and environmental planning. Water pollution and eutrophication by excessive input of nitrogen and phosphorous from nonpoint sources is mostly linked to soil erosion from agricultural land. In order to prevent such water pollution by diffuse matter fluxes, knowledge about the extent of soil loss and the spatial distribution of hot spots of soil erosion is essential. In remote areas such as the mountainous regions of the upper and middle reaches of the Yangtze River, rainfall data are scarce. Since rainfall erosivity is one of the key factors in soil erosion modeling, e.g., expressed as R factor in the Revised Universal Soil Loss Equation model, a methodology is needed to spatially determine rainfall erosivity. Our study aims at the approximation and spatial regionalization of rainfall erosivity from sparse data in the large (3,200 km super(2)) and strongly mountainous catchment of the Xiangxi River, a first order tributary to the Yangtze River close to the Three Gorges Dam. As data on rainfall were only obtainable in daily records for one climate station in the central part of the catchment and five stations in its surrounding area, we approximated rainfall erosivity as R factors using regression analysis combined with elevation bands derived from a digital elevation model. The mean annual R factor (R sub(a)) amounts for approximately 5,222 MJmmha super(-1)h super(-1)a super(-1). With increasing altitudes, R sub(a) rises up to maximum 7,547 MJmm ha super(-1)h super(-1) a super(-1) at an altitude of 3,078 m a.s.l. At the outlet of the Xiangxi catchment erosivity is at minimum with approximate R sub(a)=1,986 MJmmha super(-1)h super(-1)a super(-1). The comparison of our results with R factors from high-resolution measurements at comparable study sites close to the Xiangxi catchment shows good consistance and allows us to calculate grid-based R sub(a) as input for a spatially high-resolution and area-specific assessment of soil erosion risk. In densely populated countries like China, clean water is one of the most challenging issues of prospective politics and environmental planning. Water pollution and eutrophication by excessive input of nitrogen and phosphorous from nonpoint sources is mostly linked to soil erosion from agricultural land. In order to prevent such water pollution by diffuse matter fluxes, knowledge about the extent of soil loss and the spatial distribution of hot spots of soil erosion is essential. In remote areas such as the mountainous regions of the upper and middle reaches of the Yangtze River, rainfall data are scarce. Since rainfall erosivity is one of the key factors in soil erosion modeling, e.g., expressed as R factor in the Revised Universal Soil Loss Equation model, a methodology is needed to spatially determine rainfall erosivity. Our study aims at the approximation and spatial regionalization of rainfall erosivity from sparse data in the large (3,200 km 2 ) and strongly mountainous catchment of the Xiangxi River, a first order tributary to the Yangtze River close to the Three Gorges Dam. As data on rainfall were only obtainable in daily records for one climate station in the central part of the catchment and five stations in its surrounding area, we approximated rainfall erosivity as R factors using regression analysis combined with elevation bands derived from a digital elevation model. The mean annual R factor ( R a ) amounts for approximately 5,222 MJ mm ha −1 h −1 a −1 . With increasing altitudes, R a rises up to maximum 7,547 MJ mm ha −1 h −1 a −1 at an altitude of 3,078 m a.s.l. At the outlet of the Xiangxi catchment erosivity is at minimum with approximate R a = 1,986 MJ mm ha −1 h −1 a −1 . The comparison of our results with R factors from high-resolution measurements at comparable study sites close to the Xiangxi catchment shows good consistance and allows us to calculate grid-based R a as input for a spatially high-resolution and area-specific assessment of soil erosion risk. In densely populated countries like China, clean water is one of the most challenging issues of prospective politics and environmental planning. Water pollution and eutrophication by excessive input of nitrogen and phosphorous from nonpoint sources is mostly linked to soil erosion from agricultural land. In order to prevent such water pollution by diffuse matter fluxes, knowledge about the extent of soil loss and the spatial distribution of hot spots of soil erosion is essential. In remote areas such as the mountainous regions of the upper and middle reaches of the Yangtze River, rainfall data are scarce. Since rainfall erosivity is one of the key factors in soil erosion modeling, e.g., expressed as R factor in the Revised Universal Soil Loss Equation model, a methodology is needed to spatially determine rainfall erosivity. Our study aims at the approximation and spatial regionalization of rainfall erosivity from sparse data in the large (3,200 km^sup 2^) and strongly mountainous catchment of the Xiangxi River, a first order tributary to the Yangtze River close to the Three Gorges Dam. As data on rainfall were only obtainable in daily records for one climate station in the central part of the catchment and five stations in its surrounding area, we approximated rainfall erosivity as R factors using regression analysis combined with elevation bands derived from a digital elevation model. The mean annual R factor (R ^sub a^) amounts for approximately 5,222 MJmmha^sup -1^h^sup -1^a^sup -1^. With increasing altitudes, R ^sub a^ rises up to maximum 7,547 MJmm ha^sup -1^h^sup -1^ a^sup -1^ at an altitude of 3,078 m a.s.l. At the outlet of the Xiangxi catchment erosivity is at minimum with approximate R ^sub a^=1,986 MJmmha^sup -1^h^sup -1^a^sup -1^. The comparison of our results with R factors from high-resolution measurements at comparable study sites close to the Xiangxi catchment shows good consistance and allows us to calculate grid-based R ^sub a^ as input for a spatially high-resolution and area-specific assessment of soil erosion risk.[PUBLICATION ABSTRACT] |
Author | Bosch, Anna Behrens, Thorsten Shi, Xuezheng Scholten, Thomas Hartmann, Heike Schönbrodt-Stitt, Sarah |
Author_xml | – sequence: 1 givenname: Sarah surname: Schönbrodt-Stitt fullname: Schönbrodt-Stitt, Sarah email: sarah.schoenbrodt-stitt@uni-tuebingen.de organization: Department of Geosciences, Chair of Physical Geography and Soil Science, University of Tuebingen – sequence: 2 givenname: Anna surname: Bosch fullname: Bosch, Anna organization: Department of Geosciences, Chair of Physical Geography and Soil Science, University of Tuebingen – sequence: 3 givenname: Thorsten surname: Behrens fullname: Behrens, Thorsten organization: Department of Geosciences, Chair of Physical Geography and Soil Science, University of Tuebingen – sequence: 4 givenname: Heike surname: Hartmann fullname: Hartmann, Heike organization: College of Health, Environment and Science, Department of Geography, Geology and the Environment, Slippery Rock University – sequence: 5 givenname: Xuezheng surname: Shi fullname: Shi, Xuezheng organization: Institute of Soil Science, Department for Soil Resources and Remote Sensing Application, Chinese Academy of Sciences – sequence: 6 givenname: Thomas surname: Scholten fullname: Scholten, Thomas organization: Department of Geosciences, Chair of Physical Geography and Soil Science, University of Tuebingen |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23340898$$D View this record in MEDLINE/PubMed |
BookMark | eNqNksuKFDEUhoOMOD2tD-BGAm7clOZWuSyHxhsMCKILV0U6SXVnqE61SWpw5j18X09NjSIDyqwq1Pn-_xzOf87QSRpTQOg5Ja8pIepNoZS3siGUNVQI2uhHaEUlFY0SxpygFTFCNJQLcYrOSrkkhBHD1BN0yjgXRBu9Qj_Pj8c8_ogHW-OYsE0elyO87YBz2MEvO8SbpTb2ONuYejsMOOSxxKtYr_HWluAxlEGWS8DeVosjOOHDOKUKgnEq2Nnq9oeQ6uxS9wF_s2lXbwL-HK9CnvkNFDN03exjsk_RY2hTwrO77xp9fff2y-ZDc_Hp_cfN-UXjhDK1ab3WgntHlDQqOCrb4F3rmda-Z5KovvetMNL3JvRKORnsFlbgBSeeSNkzvkavFl_YwfcplNodYnFhGGwKMHZHhSEtU5y1D0AF58oYbh6AckWplkYD-vIeejlOGZZ-S7WaCQ2-a_Tijpq2h-C7Y4a88nX3O0YA6AI4yKXk0P9BKOnmU-mWU-ngVOZJaTdr1D2Ni_U2acghDv9VskVZoEvahfzX0P8U_QIJ3dLi |
CitedBy_id | crossref_primary_10_1007_s11069_014_1199_z crossref_primary_10_1016_j_catena_2016_08_035 crossref_primary_10_1093_forsci_fxad023 crossref_primary_10_2478_eko_2020_0028 crossref_primary_10_1016_j_geoderma_2013_12_023 crossref_primary_10_1007_s11356_013_2437_8 crossref_primary_10_1002_ldr_2503 crossref_primary_10_3390_rs9111134 crossref_primary_10_1007_s12665_016_5758_3 crossref_primary_10_1016_j_matpr_2022_04_739 crossref_primary_10_1007_s12665_017_6506_z crossref_primary_10_1016_j_ecolind_2013_06_010 crossref_primary_10_1016_j_scitotenv_2017_12_258 crossref_primary_10_5194_se_6_633_2015 crossref_primary_10_1016_j_catena_2014_05_017 crossref_primary_10_1002_jpln_201500313 crossref_primary_10_1007_s00704_015_1694_5 crossref_primary_10_1016_j_envres_2018_09_029 crossref_primary_10_5194_hess_19_2945_2015 crossref_primary_10_1007_s11356_016_6112_8 crossref_primary_10_1016_j_ecolind_2024_112519 crossref_primary_10_1016_j_agwat_2014_12_014 crossref_primary_10_1016_j_rsase_2017_12_002 crossref_primary_10_1016_j_scitotenv_2019_07_150 |
Cites_doi | 10.1016/j.geoderma.2009.05.004 10.13031/2013.11435 10.1002/joc.3370060607 10.1016/S0022-1694(01)00387-0 10.1016/S0341-8162(03)00088-2 10.1016/j.catena.2007.08.002 10.1016/S0167-1987(00)00104-5 10.1002/1522-2624(200202)165:1<51::AID-JPLN51>3.0.CO;2-3 10.1007/s11703-008-0042-2 10.1016/j.catena.2004.05.008 10.1002/esp.1178 10.1080/02626669909492199 10.1016/S0341-8162(98)00116-7 10.1079/SUM200170 10.1016/j.catena.2010.10.009 10.1525/9780520933163 10.13031/2013.33893 10.13031/2013.31957 10.1002/esp.2253 10.1007/s00254-008-1261-9 10.1061/JRCEA4.0000987 10.2136/sssaj1997.03615995006100010039x 10.2136/sssaj2004.4100 10.1016/j.jhydrol.2012.03.016 10.13031/2013.23637 10.1002/qj.461 10.1029/TR039i002p00285 10.1002/ldr.738 10.1016/j.catena.2003.11.006 10.1002/jpln.201000349 10.1016/j.catena.2005.03.007 10.2136/sssaj1959.03615995002300030027x 10.1127/zfg/33/1989/373 10.1016/S0016-7061(96)00054-7 10.1016/S0304-3800(01)00507-5 10.1002/ldr.646 10.1007/BF02837879 10.1080/00224561.1981.12436140 10.1016/S0341-8162(99)00081-8 10.2134/jeq2011.0383 10.5194/hess-16-167-2012 10.1002/esp.1784 10.13031/2013.28141 10.1002/(SICI)1099-145X(199612)7:4<353::AID-LDR239>3.0.CO;2-N 10.1016/0022-1694(82)90066-X 10.1080/00224561.1993.12456816 10.2307/621986 10.1007/s10668-005-1262-8 10.1007/s11356-011-0645-7 10.1016/0022-1694(94)90110-4 |
ContentType | Journal Article |
Copyright | Springer-Verlag Berlin Heidelberg 2013 |
Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2013 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7SN 7T7 7TV 7U7 7WY 7WZ 7X7 7XB 87Z 88E 88I 8AO 8C1 8FD 8FI 8FJ 8FK 8FL ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BEZIV BHPHI C1K CCPQU DWQXO FR3 FRNLG FYUFA F~G GHDGH GNUQQ HCIFZ K60 K6~ K9. L.- M0C M0S M1P M2P M7N P64 PATMY PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQQKQ PQUKI PRINS PYCSY Q9U 7X8 7SU KR7 7S9 L.6 |
DOI | 10.1007/s11356-012-1441-8 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Ecology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Pollution Abstracts Toxicology Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials - QC ProQuest Central Business Premium Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ProQuest Health & Medical Complete (Alumni) ABI/INFORM Professional Advanced ABI/INFORM Global ProQuest Health & Medical Collection Medical Database Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection ProQuest Central Basic MEDLINE - Academic Environmental Engineering Abstracts Civil Engineering Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Business Collection (Alumni Edition) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ABI/INFORM Complete Environmental Sciences and Pollution Management ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Business Premium Collection ABI/INFORM Global ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Business Collection Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Pollution Abstracts ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection ABI/INFORM Complete (Alumni Edition) ProQuest Public Health ABI/INFORM Global (Alumni Edition) ProQuest Central Basic Toxicology Abstracts ProQuest Science Journals ProQuest Medical Library ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic Civil Engineering Abstracts Environmental Engineering Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic Civil Engineering Abstracts ProQuest Business Collection (Alumni Edition) MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Environmental Sciences Agriculture Chemistry |
EISSN | 1614-7499 |
EndPage | 6933 |
ExternalDocumentID | 3080573561 23340898 10_1007_s11356_012_1441_8 |
Genre | Journal Article |
GeographicLocations | China Yangtze River |
GeographicLocations_xml | – name: Yangtze River – name: China |
GroupedDBID | --- -5A -5G -5~ -BR -EM -Y2 -~C .VR 06D 0R~ 0VY 199 1N0 2.D 203 29G 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 4P2 53G 5GY 5VS 67M 67Z 6NX 78A 7WY 7X7 7XC 88E 88I 8AO 8C1 8FE 8FH 8FI 8FJ 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACSNA ACSVP ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EDH EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV L8X LAS LLZTM M0C M1P M2P M4Y MA- ML. N2Q N9A NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P PATMY PF0 PQBIZ PQBZA PQQKQ PROAC PSQYO PT4 PT5 PYCSY Q2X QOK QOS R89 R9I RHV RNI RNS ROL RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 Y6R YLTOR Z45 Z5O Z7R Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z87 Z8P Z8Q Z8S ZMTXR ~02 ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PUEGO CGR CUY CVF ECM EIF NPM 7QL 7SN 7T7 7TV 7U7 7XB 8FD 8FK C1K FR3 K9. L.- M7N P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 7SU KR7 7S9 L.6 |
ID | FETCH-LOGICAL-c479t-5d8843dc07697ec165edc5d288df2607ffd5496df9ef77c6eab020d430d066f23 |
IEDL.DBID | AGYKE |
ISSN | 0944-1344 1614-7499 |
IngestDate | Thu Sep 04 16:22:33 EDT 2025 Thu Sep 04 22:07:57 EDT 2025 Thu Sep 04 20:56:39 EDT 2025 Fri Jul 25 22:34:23 EDT 2025 Wed Feb 19 01:50:22 EST 2025 Wed Sep 10 04:22:43 EDT 2025 Thu Apr 24 23:00:17 EDT 2025 Fri Feb 21 02:36:38 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Soil erosion modeling Spatial regionalization Rainfall erosivity factor Elevation bands Three Gorges ecosystem Yangtze River |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c479t-5d8843dc07697ec165edc5d288df2607ffd5496df9ef77c6eab020d430d066f23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 23340898 |
PQID | 1435824844 |
PQPubID | 54208 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_1490527325 proquest_miscellaneous_1443379939 proquest_miscellaneous_1437118698 proquest_journals_1435824844 pubmed_primary_23340898 crossref_primary_10_1007_s11356_012_1441_8 crossref_citationtrail_10_1007_s11356_012_1441_8 springer_journals_10_1007_s11356_012_1441_8 |
PublicationCentury | 2000 |
PublicationDate | 2013-10-01 |
PublicationDateYYYYMMDD | 2013-10-01 |
PublicationDate_xml | – month: 10 year: 2013 text: 2013-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
PublicationTitle | Environmental science and pollution research international |
PublicationTitleAbbrev | Environ Sci Pollut Res |
PublicationTitleAlternate | Environ Sci Pollut Res Int |
PublicationYear | 2013 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | ErpulGGabrielsDNortonLDSand detachment by wind-driven raindropsEarth Surf Proc Land20053024125010.1002/esp.1178 SmithenAASchulzeREThe spatial distribution in Southern Africa of rainfall erosivity for use in the universal soil loss equationWater SA198287478 ChorleyRJKirkbyMJThe hillslope hydrological cycleHillslope hydrology1978ChichesterWiley142 AlexanderssonHA homogeneity test applied to precipitation dataJ Climatol1986666167510.1002/joc.3370060607 XuYPengJShaoXAssessment of soil erosion using RUSLE and GIS: a case study of the Maotiao River watershed, Guizhou ProvinceChina Environ Geol2009561643165210.1007/s00254-008-1261-9 BuishandTASome methods for testing the homogeneity of rainfall recordsJ Hydrol198258112710.1016/0022-1694(82)90066-X BatjesNHGlobal assessment of land vulnerability to water erosion on a ½° by ½° gridLand Degrad Dev1996735336510.1002/(SICI)1099-145X(199612)7:4<353::AID-LDR239>3.0.CO;2-N SalakoFKRainfall temporal variability and erosivity in subhumid and humid zones of southern NigeriaLand Degrad Dev19951754155510.1002/ldr.738 Da SilvaAMRainfall erosivity map for BrazilCatena20045725125910.1016/j.catena.2003.11.006 MeusbergerKSteelAPanagosPMontanarellaLAlewellCSpatial and temporal variability of rainfall erosivity factor for SwitzerlandHydrol Earth Syst Sci20121616717710.5194/hess-16-167-2012 DiodatoNBellocchiGAssessing and modelling changes in rainfall erosivity at different climate scalesEarth Surf Proc Land20093496998010.1002/esp.1784 ElsenbeerHCasselDKTinnerWA daily rainfall erosivity model for Western AmazoniaJ Soil Water Conserv199348439444 De LimaJLMPTavaresPSinghVPDe LimaMIPInvestigating the importance of rainstorm direction on overland flow and soil loss in a laboratory circular soil-flumeGeoderma200915291510.1016/j.geoderma.2009.05.004 RenardKGFreimundJRUsing monthly precipitation data to estimate the R-factor in the revised USLEJ Hydrol199415728730610.1016/0022-1694(94)90110-4 ZhangWBFuJSRainfall erosivity estimation under different rainfall amountResources Science2003253541(in Chinese with English Abstract) BolinneALauantARosseauPPauwelsJMGabrielsDAeltermannJDeBoodtMGabrielsDProvisional rain erosivity map of BelgiumAssessment of erosion1980ChichesterWiley111120 FosterGRMcCoolDKRenardKGMoldenhauerWCConversion of the universal soil loss equation to SI metric unitsJ Soil Water Conserv198136355359 GeißlerCKühnPBöhnkeMBruelheideHShiXScholtenTMeasuring splash erosion under vegetation using sand-filled splash cupsCatena201291859310.1016/j.catena.2010.10.009 Ateshian KH (1974) Estimation of rainfall erosion index. J Irrig Drain Eng, ASCE, IR-3, 293–307 ZhouPLandscape-scale erosion modeling and ecological restoration for a mountainous watershed in Sichuan, ChinaUniv Helsinki Tropic Forest Rep20083595 Aguilar E, Auer I, Brunet M, Peterson TC, Wieringa J (2003) WCDMP No. 53, WMD/TD No. 1186: Guidelines on climate metadata and homogenization. World Meteorological Organization, Geneva, pp. 51. http://www.wmo.ch/pages/prog/wcp/wcdmp/wcdmp_series/documents/WCDMP-53.pdf FerroVPortoPYuBA comparative study of rainfall erosivity estimation for southern Italy and southeastern AustraliaHydrolog Sci J19994432410.1080/02626669909492199 MontgomeryDRDirt: The erosion of civilizations2007LondonUniversity of California Press285 XieYLiuBNearingMAPractical tresholds for separating erosive and non-erosive stormsTrans ASAE20024518431847 OnchevNGEl-SwaifySAMoldenhauerWCLoAUniversal index for calculating rainfall erosivitySoil erosion and conservation1985AnkenySoil Conserv. Soc. Am424431 StockingM.A.ElwellH.A.Rainfall erosivity over RhodesiaTrans. Inst. Br. Geogr., New Series19761231245 Wu YJ, King L, Jiang T (2006) Climatic vertical graduation and its use in the Xiangxi River Catchment. In: Cai Q, Fohrer N (eds) Sino-German Workshop on Environmental Impacts of Large-scale Hydraulic Engineer. Programme and Abstracts, March 2006, Xingshan, pp 104–108 FournierFClimat et erosion; la relation entre l’erosion du sol par l’eau et les precipitations atmosperiques1960ParisPresses universitaires de Frances201 WangGGertnerGSinghVShinkarevaSParysowPAndersonASpatial and temporal prediction and uncertainty of soil loss using revised universal soil loss equation: a case study in rainfall and runoff erosivity for soil lossEcol Model200215314315510.1016/S0304-3800(01)00507-5 Yu B, Rosewell CJ (1998) RECS: A program to calculate the R-factor for the USLE/RUSLE using BOM/ AWS Pluviograph data. ENS Working Paper No. 8/98, pp. 15 GasmanPWReyesMRGreenCHArnoldJGThe Soil and Water Assessment Tool: historical development, applications, and future research directionsTrans ASABE20075012111250 SubklewGUlrichJFürstLHöltkemeierAEnvironmental Impacts of the Yangtze Three Gorges Project—an overview of the Chinese–German Research CooperationJES201021817823 Sun G, McNulty SG, Moore J, Bunch C, Ni J (2002) Potential impacts of climate change on rainfall erosivity and water availability in China in the next 100 years. Proceedings of the 12th Intern. Soil. Conserv. Conference, Beijing, China. http://efetac4.sref.info KavianAFathollah NejadYHabibnejadMSoleimaniKModeling seasonal rainfall erosivity on a regional scale: a case study from Northeastern IranInt J Environ Res20115939950 BergmannABiYChenLFloehrTHenkelmannBHolbachAHollertHHuWKranziochIKlumppEKüppersSNorraSOttermannsRPfisterGRoß-NickollMSchäfferASchleicherNSchmidtBScholz-StrakeBSchrammKWSubklewGTiehmATemokaCWangJWestrichBWilkenRDWolfAXiangXYuanYThe Yangtze-Hydro Project: a Chinese–German environmental programEnviron Sci Pollut Res2012191341134410.1007/s11356-011-0645-71:STN:280:DC%2BC38zms1GmsA%3D%3D RoglerHSchwertmannUErosivität der Niederschläge und Isoerodentkarte Bayerns. Z. Kult.techFlurbereinig19812299112 RooseEJUse of the universal soil loss equation to predict erosion in West Africa1976Ankeny, IowaSoil Conserv. Soc. Am6074 Morgan RPC, Nearing MA (eds) (2011) Handbook of erosion modelling, 1st edn. Blackwell, Chichester, p. 416 PimentelDSoil erosion: a food and environmental threatEnviron Dev Sustain2006811913710.1007/s10668-005-1262-8 LoAEl-SwaifySADanglerEWShinshirlLEl-SwaifySAMoldenhauerWCLoAEffectiveness of EI30 as an erosivity index in HawaiiSoil erosion and conservation1985AnkenySoil Conserv. Soc. Am384392 GoovaertsPUsing elevation to aid the geostatistical mapping of rainfall erosivityCatena19993422724210.1016/S0341-8162(98)00116-7 ShiZHAiLFangNFZhuHDModeling the impacts of integrated small watershed management on soil erosion and sediment delivery: a case study in the Three Gorges AreaChina J Hydrol2012438–43915616710.1016/j.jhydrol.2012.03.016 SeuffertORichterGZukunftsperspektiven der BodenerosionsforschungBodenerosion; Analyse und Bilanz eines Umweltproblems1998StuttgartWissenschaftliche Buchgesellschaft152168 BrownLCFosterGRStorm erosivity using idealized intensity distributionsTrans ASEA198730379386 NearingMAJettenVBaffautCCerdanOCouturierAHernandezMLe BissonnaisYNicholsMHNunesJPRenschlerCSSouchèreVVan OostKModeling response of soil erosion and runoff to changes in precipitation and coverCatena20056113115410.1016/j.catena.2005.03.007 Wischmeier WH, Smith DD (1978) Predicting rainfall erosion losses—a guide to conservation planning. Agriculture Handbook No. 537, USDA, Washington, p. 58, available from http://naldc.nal.usda.gov/download/CAT79706928/PDF GhahramaniAYoshiharuIMuddSMField experiments constraining the probability distribution of particle travel distances during natural rainstorms on different slope gradientsEarth Surf Proc Land20113747348510.1002/esp.2253 CaiGGWangHCurtinDZhuYEvaluation of the EUROSEM model with single event data on Steeplands in the Three Gorges Reservoir Area, ChinaCatena200559193310.1016/j.catena.2004.05.008 RichardsonCWFosterGRWrightDAEstimation of erosion index from daily rainfall amountT ASAE198326153156 LiuYLuoZA study on estimation of the amount of soil erosion in small watershed based on GIS: a case study in the Three Gorge Area of ChinaIGARSS IEEE2005318591863 SukhanovskiYPOlleschGKhanKYMeißnerRA new index for rainfall erosivity on a physical basisJ Plant Nutr Soil Sc2002165515710.1002/1522-2624(200202)165:1<51::AID-JPLN51>3.0.CO;2-31:CAS:528:DC%2BD38XitVOhs7c%3D ArnoldusHMJMethodology used to determine the maximum potential average annual soil loss due to sheet and rill erosion in MoroccoFAO Soils Bulletin1977343951 Jones A, Panagos P, Barcelo S, Bouraoui F, Bosco C, Dewitte O, Gardi C, Erhard M, Hervás J, Hiederer R, Jeffery S, Lükewille A, Marmo L, Montanarella L, Olazábal C, Petersen JE, Penizek V, Strassburger T, Tóth G, Van Den Eeckhaut M, Van Liedekerke M, Verheijen F, Viestova E, Yigini Y (2012) The state of soil in Europe—a contribution of the JRC to the EEA Environment State and Outlook Report – SOER 2010. Luxembourg: Publications Office of the European Union, 76 pp, doi:10.2788/77361 (online) WuCZhouZXiaoWWangPTengMHuangZEstimation of soil erosion in the Three Gorges Reservoir Area of China using RUSLE, remote sensing and GIS. J. FoodAgri Environ20119728734 AuerswaldKRichterGBodenerosion durch WasserBodenerosion; Analyse und Bilanz eines Umweltproblems1998StuttgartWissenschaftliche Buchgesellschaft3342 MölgTChiangJCHGohmACullenNJTemporal precipitation variability versus altitude on a tropical high mountain: Observations and mesoscale atmospheric modellingQ J R Meteorol Soc20091351439145510.1002/qj.461 MikhailovaEABryantRBSchwagerSJSmithSDPredicting rainfall erosivity in HondurasSoil Sci Soc Am J19976127327910.2136/sssaj1997.03615995006100010039x1:CAS:528:DyaK2sXhtlSnuro%3D WischmeierWHRainfall erosion potentialJ Agr Eng Res196243212225 HaoFChangYNingDAssessment of China’s economic loss resulting from the degradation of agricultural land in the end of 20th centuryJ Environ Sci200416199203 ScholtenTGeißlerCGocJKühnPWiegandCA new splash cup to measure the kinetic energy of rainfallJ Plant Nutr Soil Sc201117459660110.1002/jpln.2010003491:CAS:528:DC%2BC3MXpsFSqtL0%3D MengQHFuBJYangLZEffects on land use on soil erosion and nutrient loss in the Three Gorges Reservoir AreaChina Soil Use M K Meusberger (1441_CR46) 2012; 16 1441_CR38 H Rogler (1441_CR58) 1981; 22 FK Salako (1441_CR60) 1995; 17 1441_CR35 PW Gasman (1441_CR28) 2007; 50 1441_CR36 ZT Alipour (1441_CR3) 2012; 2 Y Xu (1441_CR86) 2009; 56 NG Onchev (1441_CR53) 1985 C Wu (1441_CR84) 2011; 9 V Ferro (1441_CR24) 1999; 44 Y Liu (1441_CR40) 2005; 3 F Fournier (1441_CR26) 1960 X Lu (1441_CR42) 2000; 39 1441_CR70 1441_CR73 MA Nearing (1441_CR51) 2005; 61 1441_CR74 TA Buishand (1441_CR13) 1982; 58 GR Foster (1441_CR25) 1981; 36 1441_CR77 Y Xie (1441_CR85) 2002; 45 T Mölg (1441_CR48) 2009; 135 G Subklew (1441_CR71) 2010; 21 1441_CR75 G Erpul (1441_CR23) 2005; 30 ZH Shi (1441_CR68) 2012; 438–439 A Kavian (1441_CR37) 2011; 5 C Geißler (1441_CR29) 2012; 91 P Goovaerts (1441_CR31) 1999; 34 M Men (1441_CR44) 2008; 2 N Santos Loureiro de (1441_CR61) 2001; 250 DR Montgomery (1441_CR49) 2007 WH Wischmeier (1441_CR79) 1959; 23 NH Batjes (1441_CR8) 1996; 7 AM Silva Da (1441_CR17) 2004; 57 A Bergmann (1441_CR9) 2012; 19 QH Meng (1441_CR45) 2001; 17 K Oduro-Afriyie (1441_CR52) 1996; 74 S Schönbrodt (1441_CR63) 2010; 21 1441_CR81 GG Cai (1441_CR14) 2005; 59 EA Mikhailova (1441_CR47) 1997; 61 1441_CR82 1441_CR1 F Hao (1441_CR32) 2004; 16 D Pimentel (1441_CR54) 2006; 8 1441_CR83 1441_CR88 1441_CR5 JLMP Lima De (1441_CR18) 2009; 152 A Ghahramani (1441_CR30) 2011; 37 KG Renard (1441_CR55) 1994; 157 1441_CR87 P Zhou (1441_CR89) 2008; 35 LC Brown (1441_CR12) 1987; 30 EJ Roose (1441_CR59) 1976 V Bagarello (1441_CR7) 1994; 37 A Lo (1441_CR41) 1985 CM Mannaerts (1441_CR43) 2000; 55 HMJ Arnoldus (1441_CR4) 1977; 34 L He (1441_CR33) 2003; 13 G Wang (1441_CR76) 2002; 153 BJ Fu (1441_CR27) 2005; 16 CW Richardson (1441_CR57) 1983; 26 W Dettling (1441_CR19) 1989; 33 WH Wischmeier (1441_CR80) 1962; 43 C Seeber (1441_CR64) 2010; 21 WH Wischmeier (1441_CR78) 1958; 39 1441_CR50 1441_CR56 YP Sukhanovski (1441_CR72) 2002; 165 1441_CR10 N Diodato (1441_CR20) 2009; 34 A Shamshad (1441_CR66) 2008; 72 ZH Shi (1441_CR67) 2004; 55 R Lal (1441_CR39) 1990 A Bolinne (1441_CR11) 1980 K Auerswald (1441_CR6) 1998 WM Cornelis (1441_CR16) 2004; 68 AA Smithen (1441_CR69) 1982; 8 RJ Chorley (1441_CR15) 1978 T Scholten (1441_CR62) 2011; 174 H Alexandersson (1441_CR2) 1986; 6 N Hudson (1441_CR34) 1995 O Seuffert (1441_CR65) 1998 H Elsenbeer (1441_CR22) 1993; 48 1441_CR21 25602538 - J Environ Qual. 2014 Jan;43(1):37-45 22012199 - Environ Sci Pollut Res Int. 2012 May;19(4):1341-4 15137638 - J Environ Sci (China). 2004;16(2):199-203 |
References_xml | – reference: ShiZHCaiCFDingSWWangTWChowTLSoil conservation planning at the small watershed level using RUSLE with GIS. A case study in the Three Gorges Area of ChinaCatena200455334810.1016/S0341-8162(03)00088-2 – reference: MontgomeryDRDirt: The erosion of civilizations2007LondonUniversity of California Press285 – reference: HudsonNSoil conservation19953LondonBatsford210 – reference: AlipourZTMahdianMHPaziraEHakimkhaniSSaeediMThe determination of the best rainfall erosivity index for Namak Lake Basin and evaluation of spatial variationsJ Basic Appl Sci Res20122484494 – reference: Renard KG, Foster GR, Weesies GA, McCool DK, Yoder, DC (1997) Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). USDA Agriculture Handbook No.703, pp. 384 – reference: RichardsonCWFosterGRWrightDAEstimation of erosion index from daily rainfall amountT ASAE198326153156 – reference: StockingM.A.ElwellH.A.Rainfall erosivity over RhodesiaTrans. Inst. Br. Geogr., New Series19761231245 – reference: GoovaertsPUsing elevation to aid the geostatistical mapping of rainfall erosivityCatena19993422724210.1016/S0341-8162(98)00116-7 – reference: ElsenbeerHCasselDKTinnerWA daily rainfall erosivity model for Western AmazoniaJ Soil Water Conserv199348439444 – reference: LoAEl-SwaifySADanglerEWShinshirlLEl-SwaifySAMoldenhauerWCLoAEffectiveness of EI30 as an erosivity index in HawaiiSoil erosion and conservation1985AnkenySoil Conserv. Soc. Am384392 – reference: LiuYLuoZA study on estimation of the amount of soil erosion in small watershed based on GIS: a case study in the Three Gorge Area of ChinaIGARSS IEEE2005318591863 – reference: PimentelDSoil erosion: a food and environmental threatEnviron Dev Sustain2006811913710.1007/s10668-005-1262-8 – reference: Sun G, McNulty SG, Moore J, Bunch C, Ni J (2002) Potential impacts of climate change on rainfall erosivity and water availability in China in the next 100 years. Proceedings of the 12th Intern. Soil. Conserv. Conference, Beijing, China. http://efetac4.sref.info – reference: DiodatoNBellocchiGAssessing and modelling changes in rainfall erosivity at different climate scalesEarth Surf Proc Land20093496998010.1002/esp.1784 – reference: SeuffertORichterGZukunftsperspektiven der BodenerosionsforschungBodenerosion; Analyse und Bilanz eines Umweltproblems1998StuttgartWissenschaftliche Buchgesellschaft152168 – reference: ArnoldusHMJMethodology used to determine the maximum potential average annual soil loss due to sheet and rill erosion in MoroccoFAO Soils Bulletin1977343951 – reference: Van der Knijff JM, Jones RJA, Montanarella L (1999) Soil erosion risk management in Italy. European Commission, European Soil Bureau, p. 52 – reference: MölgTChiangJCHGohmACullenNJTemporal precipitation variability versus altitude on a tropical high mountain: Observations and mesoscale atmospheric modellingQ J R Meteorol Soc20091351439145510.1002/qj.461 – reference: Wischmeier WH, Smith DD (1965) Predicting rainfall-erosion losses from cropland east of the Rocky Mountains - Guide for Selection of Practices for Soil and Water Conservation. Agriculture Handbook No. 282, USDA, Washington, p. 47. http://naldc.nal.usda.gov/download/CAT87208342/PDF – reference: HaoFChangYNingDAssessment of China’s economic loss resulting from the degradation of agricultural land in the end of 20th centuryJ Environ Sci200416199203 – reference: RenardKGFreimundJRUsing monthly precipitation data to estimate the R-factor in the revised USLEJ Hydrol199415728730610.1016/0022-1694(94)90110-4 – reference: RoglerHSchwertmannUErosivität der Niederschläge und Isoerodentkarte Bayerns. Z. Kult.techFlurbereinig19812299112 – reference: Morgan RPC, Nearing MA (eds) (2011) Handbook of erosion modelling, 1st edn. Blackwell, Chichester, p. 416 – reference: MeusbergerKSteelAPanagosPMontanarellaLAlewellCSpatial and temporal variability of rainfall erosivity factor for SwitzerlandHydrol Earth Syst Sci20121616717710.5194/hess-16-167-2012 – reference: CaiGGWangHCurtinDZhuYEvaluation of the EUROSEM model with single event data on Steeplands in the Three Gorges Reservoir Area, ChinaCatena200559193310.1016/j.catena.2004.05.008 – reference: MikhailovaEABryantRBSchwagerSJSmithSDPredicting rainfall erosivity in HondurasSoil Sci Soc Am J19976127327910.2136/sssaj1997.03615995006100010039x1:CAS:528:DyaK2sXhtlSnuro%3D – reference: ScholtenTGeißlerCGocJKühnPWiegandCA new splash cup to measure the kinetic energy of rainfallJ Plant Nutr Soil Sc201117459660110.1002/jpln.2010003491:CAS:528:DC%2BC3MXpsFSqtL0%3D – reference: Weilguni V (2006) Regionalisierung des Niederschlags. Wiener Mitteilungen Band 197, Methoden der hydrologischen Regionalisierung, 71–92 – reference: FuBJZhaoWWChenLDZhangQJLüYHGulinckHPoesenJAssessment of soil erosion at large watershed scale using RUSLE and GIS: a case study in the Loess Plateau of ChinaLand Degrad Dev200516738510.1002/ldr.646 – reference: GhahramaniAYoshiharuIMuddSMField experiments constraining the probability distribution of particle travel distances during natural rainstorms on different slope gradientsEarth Surf Proc Land20113747348510.1002/esp.2253 – reference: SmithenAASchulzeREThe spatial distribution in Southern Africa of rainfall erosivity for use in the universal soil loss equationWater SA198287478 – reference: WischmeierWHA rainfall erosion index for a universal soil-loss equationSoil Sci Soc Am J19592324624910.2136/sssaj1959.03615995002300030027x – reference: SubklewGUlrichJFürstLHöltkemeierAEnvironmental Impacts of the Yangtze Three Gorges Project—an overview of the Chinese–German Research CooperationJES201021817823 – reference: Wischmeier WH, Smith DD (1978) Predicting rainfall erosion losses—a guide to conservation planning. Agriculture Handbook No. 537, USDA, Washington, p. 58, available from http://naldc.nal.usda.gov/download/CAT79706928/PDF – reference: LuXHiggittDEstimating erosion rates on sloping agricultural land in the Yangtze Three Gorges, China, from caesium- 137 measurementsCatena200039335110.1016/S0341-8162(99)00081-81:CAS:528:DC%2BD3cXpt1Sltg%3D%3D – reference: MenMYuZXuHStudy on the spatial pattern of rainfall erosivity based on geostatistics in Hebei ProvinceChina Front Agric China2008228128910.1007/s11703-008-0042-2 – reference: WuCZhouZXiaoWWangPTengMHuangZEstimation of soil erosion in the Three Gorges Reservoir Area of China using RUSLE, remote sensing and GIS. J. FoodAgri Environ20119728734 – reference: KavianAFathollah NejadYHabibnejadMSoleimaniKModeling seasonal rainfall erosivity on a regional scale: a case study from Northeastern IranInt J Environ Res20115939950 – reference: AlexanderssonHA homogeneity test applied to precipitation dataJ Climatol1986666167510.1002/joc.3370060607 – reference: CornelisWMOltenfreiterGGabrielsDHartmannRSplash-saltation of sand due to wind-driven rain: vertical deposition flux and sediment transport rateSoil Sci Soc Am J200468532540 – reference: SukhanovskiYPOlleschGKhanKYMeißnerRA new index for rainfall erosivity on a physical basisJ Plant Nutr Soil Sc2002165515710.1002/1522-2624(200202)165:1<51::AID-JPLN51>3.0.CO;2-31:CAS:528:DC%2BD38XitVOhs7c%3D – reference: ShiZHAiLFangNFZhuHDModeling the impacts of integrated small watershed management on soil erosion and sediment delivery: a case study in the Three Gorges AreaChina J Hydrol2012438–43915616710.1016/j.jhydrol.2012.03.016 – reference: RooseEJUse of the universal soil loss equation to predict erosion in West Africa1976Ankeny, IowaSoil Conserv. Soc. Am6074 – reference: XieYLiuBNearingMAPractical tresholds for separating erosive and non-erosive stormsTrans ASAE20024518431847 – reference: HeLKingLJiangTOn the land use in the Three Gorges Reservoir areaJ Geogr Sci20031341642210.1007/BF02837879 – reference: Ateshian KH (1974) Estimation of rainfall erosion index. J Irrig Drain Eng, ASCE, IR-3, 293–307 – reference: BuishandTASome methods for testing the homogeneity of rainfall recordsJ Hydrol198258112710.1016/0022-1694(82)90066-X – reference: ChorleyRJKirkbyMJThe hillslope hydrological cycleHillslope hydrology1978ChichesterWiley142 – reference: WischmeierWHRainfall erosion potentialJ Agr Eng Res196243212225 – reference: ZhangWBFuJSRainfall erosivity estimation under different rainfall amountResources Science2003253541(in Chinese with English Abstract) – reference: SalakoFKRainfall temporal variability and erosivity in subhumid and humid zones of southern NigeriaLand Degrad Dev19951754155510.1002/ldr.738 – reference: ZhouPLandscape-scale erosion modeling and ecological restoration for a mountainous watershed in Sichuan, ChinaUniv Helsinki Tropic Forest Rep20083595 – reference: Wu YJ, King L, Jiang T (2006) Climatic vertical graduation and its use in the Xiangxi River Catchment. In: Cai Q, Fohrer N (eds) Sino-German Workshop on Environmental Impacts of Large-scale Hydraulic Engineer. Programme and Abstracts, March 2006, Xingshan, pp 104–108 – reference: DettlingWEine mathematische Betrachtung des R-FaktorsZ Geomorphol198933373377 – reference: OnchevNGEl-SwaifySAMoldenhauerWCLoAUniversal index for calculating rainfall erosivitySoil erosion and conservation1985AnkenySoil Conserv. Soc. Am424431 – reference: ShamshadAAzhariMNIsaMHWan HussinWMAParidaBPDevelopment of an appropriate procedure for estimation of RUSLE EI30 index and preparation of erosivity maps for Pulau Penang in Peninsular MalaysiaCatena20087242343210.1016/j.catena.2007.08.002 – reference: MengQHFuBJYangLZEffects on land use on soil erosion and nutrient loss in the Three Gorges Reservoir AreaChina Soil Use Manage20011728829110.1079/SUM200170 – reference: BolinneALauantARosseauPPauwelsJMGabrielsDAeltermannJDeBoodtMGabrielsDProvisional rain erosivity map of BelgiumAssessment of erosion1980ChichesterWiley111120 – reference: ErpulGGabrielsDNortonLDSand detachment by wind-driven raindropsEarth Surf Proc Land20053024125010.1002/esp.1178 – reference: NearingMAJettenVBaffautCCerdanOCouturierAHernandezMLe BissonnaisYNicholsMHNunesJPRenschlerCSSouchèreVVan OostKModeling response of soil erosion and runoff to changes in precipitation and coverCatena20056113115410.1016/j.catena.2005.03.007 – reference: SchönbrodtSSaumerPBehrensTSeeberCScholtenTAssessing the USLE crop and management factor C for soil erosion modeling in a large mountainous watershed in Central ChinaJES201021835845 – reference: De LimaJLMPTavaresPSinghVPDe LimaMIPInvestigating the importance of rainstorm direction on overland flow and soil loss in a laboratory circular soil-flumeGeoderma200915291510.1016/j.geoderma.2009.05.004 – reference: LalRSoil erosion in the Tropics: principles and management1990New YorkMcGraw-Hill580 – reference: Oduro-AfriyieKRainfall erosivity map for GhanaGeoderma19967416116610.1016/S0016-7061(96)00054-7 – reference: Aguilar E, Auer I, Brunet M, Peterson TC, Wieringa J (2003) WCDMP No. 53, WMD/TD No. 1186: Guidelines on climate metadata and homogenization. World Meteorological Organization, Geneva, pp. 51. http://www.wmo.ch/pages/prog/wcp/wcdmp/wcdmp_series/documents/WCDMP-53.pdf – reference: XuYPengJShaoXAssessment of soil erosion using RUSLE and GIS: a case study of the Maotiao River watershed, Guizhou ProvinceChina Environ Geol2009561643165210.1007/s00254-008-1261-9 – reference: BrownLCFosterGRStorm erosivity using idealized intensity distributionsTrans ASEA198730379386 – reference: FosterGRMcCoolDKRenardKGMoldenhauerWCConversion of the universal soil loss equation to SI metric unitsJ Soil Water Conserv198136355359 – reference: MannaertsCMGabrielsDRainfall erosivity in Cape VerdeSoil Till Res20005520721210.1016/S0167-1987(00)00104-5 – reference: AuerswaldKRichterGBodenerosion durch WasserBodenerosion; Analyse und Bilanz eines Umweltproblems1998StuttgartWissenschaftliche Buchgesellschaft3342 – reference: WischmeierWHSmithDDRainfall energy and its relationship to soil lossTrans Am Geophys Union19583928529110.1029/TR039i002p00285 – reference: SeeberCHartmannHXiangWKingLLand use change and causes in the Xiangxi Catchment, Three Gorges Area, derived from multispectral dataJES201021846855 – reference: Jones A, Panagos P, Barcelo S, Bouraoui F, Bosco C, Dewitte O, Gardi C, Erhard M, Hervás J, Hiederer R, Jeffery S, Lükewille A, Marmo L, Montanarella L, Olazábal C, Petersen JE, Penizek V, Strassburger T, Tóth G, Van Den Eeckhaut M, Van Liedekerke M, Verheijen F, Viestova E, Yigini Y (2012) The state of soil in Europe—a contribution of the JRC to the EEA Environment State and Outlook Report – SOER 2010. Luxembourg: Publications Office of the European Union, 76 pp, doi:10.2788/77361 (online) – reference: DVWK (1990) Grundlagen der Verdunstungsermittlung und Erosivität von Niederschlägen. Deutscher Verband für Wasserwirtschaft und Kulturbau (eds) Parey, Hamburg – reference: Toy TJ, Foster GR (1998) Guidelines for the use of the Revised Universal Soil Loss Equation (RUSLE) version 1.06 on mined land, construction sites, reclaimed land. Office of Surface Mining, Reclamation, and Enforcement, p. 149. http://www.greenfix.com/Channel%20Web/pdfs/RUSLE%20Guidelines.pdf – reference: BagarelloVD’AsaroFEstimating single storm erosion indexT ASAE199437785791 – reference: WangGGertnerGSinghVShinkarevaSParysowPAndersonASpatial and temporal prediction and uncertainty of soil loss using revised universal soil loss equation: a case study in rainfall and runoff erosivity for soil lossEcol Model200215314315510.1016/S0304-3800(01)00507-5 – reference: FournierFClimat et erosion; la relation entre l’erosion du sol par l’eau et les precipitations atmosperiques1960ParisPresses universitaires de Frances201 – reference: Lal R (1976)Soil erosion problems on an alfisol in western Nigeria and their control. Communications and Information Office, IITA Monograph no. 1, Ibadan, Nigeria, pp. 208, available from http://library.wur.nl/isric – reference: de Santos LoureiroNde Azevedo CoutinhoMA new procedure to estimate the RUSLE EI30 index based on monthly rainfall data and applied to the Algarve regionPortugal J Hydrol2001250121810.1016/S0022-1694(01)00387-0 – reference: Da SilvaAMRainfall erosivity map for BrazilCatena20045725125910.1016/j.catena.2003.11.006 – reference: GasmanPWReyesMRGreenCHArnoldJGThe Soil and Water Assessment Tool: historical development, applications, and future research directionsTrans ASABE20075012111250 – reference: BatjesNHGlobal assessment of land vulnerability to water erosion on a ½° by ½° gridLand Degrad Dev1996735336510.1002/(SICI)1099-145X(199612)7:4<353::AID-LDR239>3.0.CO;2-N – reference: BergmannABiYChenLFloehrTHenkelmannBHolbachAHollertHHuWKranziochIKlumppEKüppersSNorraSOttermannsRPfisterGRoß-NickollMSchäfferASchleicherNSchmidtBScholz-StrakeBSchrammKWSubklewGTiehmATemokaCWangJWestrichBWilkenRDWolfAXiangXYuanYThe Yangtze-Hydro Project: a Chinese–German environmental programEnviron Sci Pollut Res2012191341134410.1007/s11356-011-0645-71:STN:280:DC%2BC38zms1GmsA%3D%3D – reference: Bieger K, Hörmann G, Fohrer N (2012) Simulation of streamflow and sediment with the Soil Water Assessment Tool in a data scarce catchment in the Three Gorges Region. China J Environ Qual. doi:10.2134/jeq2011.0383 – reference: FerroVPortoPYuBA comparative study of rainfall erosivity estimation for southern Italy and southeastern AustraliaHydrolog Sci J19994432410.1080/02626669909492199 – reference: GeißlerCKühnPBöhnkeMBruelheideHShiXScholtenTMeasuring splash erosion under vegetation using sand-filled splash cupsCatena201291859310.1016/j.catena.2010.10.009 – reference: Jarvis A, Reuter HI, Nelson A, Guevara E (2008) Hole-filled seamless SRTM data V4, International Centre for Tropical Agriculture (CIAT). http://srtm.csi.cgiar.org – reference: Yu B, Rosewell CJ (1998) RECS: A program to calculate the R-factor for the USLE/RUSLE using BOM/ AWS Pluviograph data. ENS Working Paper No. 8/98, pp. 15 – volume: 152 start-page: 9 year: 2009 ident: 1441_CR18 publication-title: Geoderma doi: 10.1016/j.geoderma.2009.05.004 – volume: 45 start-page: 1843 year: 2002 ident: 1441_CR85 publication-title: Trans ASAE doi: 10.13031/2013.11435 – start-page: 580 volume-title: Soil erosion in the Tropics: principles and management year: 1990 ident: 1441_CR39 – ident: 1441_CR56 – ident: 1441_CR81 – volume: 6 start-page: 661 year: 1986 ident: 1441_CR2 publication-title: J Climatol doi: 10.1002/joc.3370060607 – volume: 250 start-page: 12 year: 2001 ident: 1441_CR61 publication-title: Portugal J Hydrol doi: 10.1016/S0022-1694(01)00387-0 – volume: 55 start-page: 33 year: 2004 ident: 1441_CR67 publication-title: Catena doi: 10.1016/S0341-8162(03)00088-2 – volume: 3 start-page: 1859 year: 2005 ident: 1441_CR40 publication-title: IGARSS IEEE – volume: 2 start-page: 484 year: 2012 ident: 1441_CR3 publication-title: J Basic Appl Sci Res – volume: 72 start-page: 423 year: 2008 ident: 1441_CR66 publication-title: Catena doi: 10.1016/j.catena.2007.08.002 – volume: 55 start-page: 207 year: 2000 ident: 1441_CR43 publication-title: Soil Till Res doi: 10.1016/S0167-1987(00)00104-5 – volume: 165 start-page: 51 year: 2002 ident: 1441_CR72 publication-title: J Plant Nutr Soil Sc doi: 10.1002/1522-2624(200202)165:1<51::AID-JPLN51>3.0.CO;2-3 – volume: 2 start-page: 281 year: 2008 ident: 1441_CR44 publication-title: China Front Agric China doi: 10.1007/s11703-008-0042-2 – start-page: 210 volume-title: Soil conservation year: 1995 ident: 1441_CR34 – volume: 59 start-page: 19 year: 2005 ident: 1441_CR14 publication-title: Catena doi: 10.1016/j.catena.2004.05.008 – start-page: 1 volume-title: Hillslope hydrology year: 1978 ident: 1441_CR15 – volume: 30 start-page: 241 year: 2005 ident: 1441_CR23 publication-title: Earth Surf Proc Land doi: 10.1002/esp.1178 – volume: 34 start-page: 39 year: 1977 ident: 1441_CR4 publication-title: FAO Soils Bulletin – start-page: 424 volume-title: Soil erosion and conservation year: 1985 ident: 1441_CR53 – ident: 1441_CR82 – volume: 44 start-page: 3 year: 1999 ident: 1441_CR24 publication-title: Hydrolog Sci J doi: 10.1080/02626669909492199 – volume: 34 start-page: 227 year: 1999 ident: 1441_CR31 publication-title: Catena doi: 10.1016/S0341-8162(98)00116-7 – ident: 1441_CR38 – volume: 17 start-page: 288 year: 2001 ident: 1441_CR45 publication-title: China Soil Use Manage doi: 10.1079/SUM200170 – volume: 91 start-page: 85 year: 2012 ident: 1441_CR29 publication-title: Catena doi: 10.1016/j.catena.2010.10.009 – start-page: 285 volume-title: Dirt: The erosion of civilizations year: 2007 ident: 1441_CR49 doi: 10.1525/9780520933163 – volume: 9 start-page: 728 year: 2011 ident: 1441_CR84 publication-title: Agri Environ – volume: 26 start-page: 153 year: 1983 ident: 1441_CR57 publication-title: T ASAE doi: 10.13031/2013.33893 – volume: 30 start-page: 379 year: 1987 ident: 1441_CR12 publication-title: Trans ASEA doi: 10.13031/2013.31957 – volume: 37 start-page: 473 year: 2011 ident: 1441_CR30 publication-title: Earth Surf Proc Land doi: 10.1002/esp.2253 – volume: 56 start-page: 1643 year: 2009 ident: 1441_CR86 publication-title: China Environ Geol doi: 10.1007/s00254-008-1261-9 – ident: 1441_CR5 doi: 10.1061/JRCEA4.0000987 – ident: 1441_CR50 – volume: 61 start-page: 273 year: 1997 ident: 1441_CR47 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj1997.03615995006100010039x – volume: 21 start-page: 817 year: 2010 ident: 1441_CR71 publication-title: JES – ident: 1441_CR75 – volume: 68 start-page: 532 year: 2004 ident: 1441_CR16 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2004.4100 – volume: 438–439 start-page: 156 year: 2012 ident: 1441_CR68 publication-title: China J Hydrol doi: 10.1016/j.jhydrol.2012.03.016 – start-page: 33 volume-title: Bodenerosion; Analyse und Bilanz eines Umweltproblems year: 1998 ident: 1441_CR6 – volume: 50 start-page: 1211 year: 2007 ident: 1441_CR28 publication-title: Trans ASABE doi: 10.13031/2013.23637 – volume: 8 start-page: 74 year: 1982 ident: 1441_CR69 publication-title: Water SA – volume: 135 start-page: 1439 year: 2009 ident: 1441_CR48 publication-title: Q J R Meteorol Soc doi: 10.1002/qj.461 – volume: 39 start-page: 285 year: 1958 ident: 1441_CR78 publication-title: Trans Am Geophys Union doi: 10.1029/TR039i002p00285 – ident: 1441_CR35 – volume: 17 start-page: 541 year: 1995 ident: 1441_CR60 publication-title: Land Degrad Dev doi: 10.1002/ldr.738 – ident: 1441_CR87 – ident: 1441_CR83 – volume: 57 start-page: 251 year: 2004 ident: 1441_CR17 publication-title: Catena doi: 10.1016/j.catena.2003.11.006 – volume: 5 start-page: 939 year: 2011 ident: 1441_CR37 publication-title: Int J Environ Res – volume: 35 start-page: 95 year: 2008 ident: 1441_CR89 publication-title: Univ Helsinki Tropic Forest Rep – start-page: 384 volume-title: Soil erosion and conservation year: 1985 ident: 1441_CR41 – volume: 174 start-page: 596 year: 2011 ident: 1441_CR62 publication-title: J Plant Nutr Soil Sc doi: 10.1002/jpln.201000349 – start-page: 111 volume-title: Assessment of erosion year: 1980 ident: 1441_CR11 – volume: 61 start-page: 131 year: 2005 ident: 1441_CR51 publication-title: Catena doi: 10.1016/j.catena.2005.03.007 – start-page: 152 volume-title: Bodenerosion; Analyse und Bilanz eines Umweltproblems year: 1998 ident: 1441_CR65 – ident: 1441_CR1 – volume: 23 start-page: 246 year: 1959 ident: 1441_CR79 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj1959.03615995002300030027x – volume: 33 start-page: 373 year: 1989 ident: 1441_CR19 publication-title: Z Geomorphol doi: 10.1127/zfg/33/1989/373 – ident: 1441_CR74 – volume: 74 start-page: 161 year: 1996 ident: 1441_CR52 publication-title: Geoderma doi: 10.1016/S0016-7061(96)00054-7 – volume: 21 start-page: 835 year: 2010 ident: 1441_CR63 publication-title: JES – volume: 153 start-page: 143 year: 2002 ident: 1441_CR76 publication-title: Ecol Model doi: 10.1016/S0304-3800(01)00507-5 – volume: 16 start-page: 73 year: 2005 ident: 1441_CR27 publication-title: Land Degrad Dev doi: 10.1002/ldr.646 – volume: 13 start-page: 416 year: 2003 ident: 1441_CR33 publication-title: J Geogr Sci doi: 10.1007/BF02837879 – start-page: 201 volume-title: Climat et erosion; la relation entre l’erosion du sol par l’eau et les precipitations atmosperiques year: 1960 ident: 1441_CR26 – ident: 1441_CR36 – volume: 36 start-page: 355 year: 1981 ident: 1441_CR25 publication-title: J Soil Water Conserv doi: 10.1080/00224561.1981.12436140 – volume: 16 start-page: 199 year: 2004 ident: 1441_CR32 publication-title: J Environ Sci – volume: 39 start-page: 33 year: 2000 ident: 1441_CR42 publication-title: Catena doi: 10.1016/S0341-8162(99)00081-8 – ident: 1441_CR10 doi: 10.2134/jeq2011.0383 – volume: 16 start-page: 167 year: 2012 ident: 1441_CR46 publication-title: Hydrol Earth Syst Sci doi: 10.5194/hess-16-167-2012 – volume: 21 start-page: 846 year: 2010 ident: 1441_CR64 publication-title: JES – volume: 34 start-page: 969 year: 2009 ident: 1441_CR20 publication-title: Earth Surf Proc Land doi: 10.1002/esp.1784 – volume: 37 start-page: 785 year: 1994 ident: 1441_CR7 publication-title: T ASAE doi: 10.13031/2013.28141 – volume: 43 start-page: 212 year: 1962 ident: 1441_CR80 publication-title: J Agr Eng Res – start-page: 60 volume-title: Use of the universal soil loss equation to predict erosion in West Africa year: 1976 ident: 1441_CR59 – volume: 7 start-page: 353 year: 1996 ident: 1441_CR8 publication-title: Land Degrad Dev doi: 10.1002/(SICI)1099-145X(199612)7:4<353::AID-LDR239>3.0.CO;2-N – volume: 58 start-page: 11 year: 1982 ident: 1441_CR13 publication-title: J Hydrol doi: 10.1016/0022-1694(82)90066-X – ident: 1441_CR88 – volume: 48 start-page: 439 year: 1993 ident: 1441_CR22 publication-title: J Soil Water Conserv doi: 10.1080/00224561.1993.12456816 – ident: 1441_CR73 – volume: 22 start-page: 99 year: 1981 ident: 1441_CR58 publication-title: Flurbereinig – ident: 1441_CR70 doi: 10.2307/621986 – volume: 8 start-page: 119 year: 2006 ident: 1441_CR54 publication-title: Environ Dev Sustain doi: 10.1007/s10668-005-1262-8 – ident: 1441_CR77 – ident: 1441_CR21 – volume: 19 start-page: 1341 year: 2012 ident: 1441_CR9 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-011-0645-7 – volume: 157 start-page: 287 year: 1994 ident: 1441_CR55 publication-title: J Hydrol doi: 10.1016/0022-1694(94)90110-4 – reference: 25602538 - J Environ Qual. 2014 Jan;43(1):37-45 – reference: 15137638 - J Environ Sci (China). 2004;16(2):199-203 – reference: 22012199 - Environ Sci Pollut Res Int. 2012 May;19(4):1341-4 |
SSID | ssj0020927 |
Score | 2.1594656 |
Snippet | In densely populated countries like China, clean water is one of the most challenging issues of prospective politics and environmental planning. Water... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6917 |
SubjectTerms | Agricultural land Agriculture Altitude analysis Approximation Aquatic Pollution Atmospheric Protection/Air Quality Control/Air Pollution Canyons Catchments chemistry China Climate Climate change Dams Earth and Environmental Science Ecotoxicology Elevation Energy Environment Environmental Chemistry Environmental Health Environmental impact Environmental Monitoring Environmental Monitoring - methods Environmental planning Eutrophication Geologic Sediments Geologic Sediments - analysis Geological Phenomena Hydrologic data Land area Land use planning Mathematical analysis Mathematical models meteorological data methods Mountain regions Mountains nitrogen Nitrogen - analysis Nonpoint sources Outlets Phosphorus Phosphorus - analysis planning politics Population density Precipitation Processes and Environmental Quality in the Yangtze River System R factors Rain Rainfall Regression analysis Revised Universal Soil Loss Equation risk Rivers Rivers - chemistry soil Soil - chemistry Soil erosion Soil sciences Spatial Analysis Spatial distribution statistics & numerical data Studies Waste Water Technology Water Water conservation Water Management Water Pollutants Water Pollutants - analysis Water pollution Water Pollution - analysis Water Pollution - statistics & numerical data Water Pollution Control Water pollution prevention Water quality Watershed management watersheds Yangtze River |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELZ4XHpBlOdSiozECWQ1sZ3YOVWoAiEOHBBIyyny-lGQliyQRUL8j_7fzjjObivEnj12HI8f33jG8xFyxI0EM9nkDKC9ZdJ4w4xxnKHr0CrAEM7HaIur8uJWXg6LYbpwa1NYZb8nxo3aTSzekf_Ac11zqaX8-fTMkDUKvauJQmOZrMbUZTCf1XBucGVVR9laSclyIWXv1YxP53JRoC3NGZoUTP9_Ln0Amx8cpfH8OV8nawk40tNO01_Jkm82yPbZ_J0aFKaF2m6SP6eYK_ztoXuYSE3jaIux0yCEVAwRfncPMOkkUKSJCGY8ph76FtkkKJ5ujkIxVHtpPcVIUvoALdFHZJeACpPXllrYyO_x49gKQEl6Z5rf03dPrzHcA-XT7TGNPN1b5Pb87ObXBUsMDMxKVU1Z4bSWwtlMlZXyNi8L72zhuNYugCGkQnBgX5YuVD4oZUtvRjDqTorMAZQJXGyTlWbS-F1Cg_U5D1ngHkBLFgCYVDY3oxIAB4AQqwYk68e_tik9ObJkjOt5YmVUWQ0qq1FltR6Q41mVpy43xyLh_V6pdVqmbT2fVANyOCuGBYZeE9N4GEmUUTkSd-lFMlIIBVCvWiRTZZjtjhcDstNNqlmvuRAy0_iFk36W_dPJz35pb_EvfSNfOHJ3xMjDfbIyfXn13wFBTUcHcZn8BZo6GFk priority: 102 providerName: ProQuest |
Title | Approximation and spatial regionalization of rainfall erosivity based on sparse data in a mountainous catchment of the Yangtze River in Central China |
URI | https://link.springer.com/article/10.1007/s11356-012-1441-8 https://www.ncbi.nlm.nih.gov/pubmed/23340898 https://www.proquest.com/docview/1435824844 https://www.proquest.com/docview/1437118698 https://www.proquest.com/docview/1443379939 https://www.proquest.com/docview/1490527325 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD5i3Qsv3McK22QknkCeEseJncdu6phAmtC0St1T5PoCE12KllRC-x_8X87JpQUGlfbSSPWxYzt2_J2cywfwVhiJarKJOUJ7y6XxhhvjBCfToVWIIZxvvC3OstOJ_DhNp10cd9V7u_cmyeZNvQ52i5OUtF_BSQngegu201jnegDbow-Xn8YrPSvKW6bWXEoeJ1L2xsx_NfLncXQHY96xjzbHzsljuOg73HqbfDtc1rNDe_tXLsd7jugJPOpgKBu16-YpPPDlM9gZr6PesLDb9tVz-DmizOM_rtowR2ZKxyryxEYhInZowHwbzskWgRHpRDDzOfM45IabgtFZ6RgWY7WbyjPyS2VX2BK7Jq4KrLBYVszisfCVbk6tIDBll6b8Ut96dk7OIyTffYtmDev3C5icjC-OT3nH58CtVHnNU6e1TJyNVJYrb-Ms9c6mTmjtAqpVKgSH2mrmQu6DUjbzZoYP08kkcgiMgkh2YFAuSr8LLFgfixAF4RECRQFhTm5jM8sQviCksWoIUf9YC9slOyfOjXmxTtNMk1_g5Bc0-YUewrtVle9tpo9Nwnv9Wim6TV8VBD21kFrKIbxZFeN2JRuMKT3OJMmomGjA9CYZmSQKgWO-SSaPKHeeSIfwsl2rq16LJJGRpju879fdb53835Be3Uv6NTwURAzSuDXuwaC-Wfp9hGf17AC21FThrz6OD7qtidej8dnnc_x3Ika_AEYgNdM |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V2wNcEK_ClgJGggvIInGc2Dkg1MJWW1pWqGqlcgpeP9pKS7Y0W_H4H_wNfmNn8tgFVeytZ48TJ2N7vrFn5gN4LoxEN9nEHKG95dJ4w41xgtPVoVWIIZyvoy1G2fBQfjhKj1bgT5cLQ2GV3Z5Yb9RuaumM_DXZdS2klvLt2TdOrFF0u9pRaDTTYtf__I4uW_Vm5z3q94UQ24ODd0PesgpwK1U-46nTWibOogOfK2_jLPXOpk5o7QKCexWCQ58pcyH3QSmbeTNGSOVkEjk0z4EKHeCWvyopo7UHq1uD0af9uYsX5Q1JbC4ljxMpu3vUOlkvTlLy3gUnJ4brfy3hFXh75Wq2tnjbt-FWC1XZZjO37sCKL-_C2mCRGYeN7dZQ3YPfm1Sd_MdpkwrJTOlYRdHaKETkDzXgb1I-2TQwIqYIZjJhHsdW81cwsqeOYTN2O688o9hVdopPYl-JzwI7TC8qZtF0nNDL6SkIXtlnUx7Pfnm2TwEmJN-eV7OaGfw-HF6LdtagV05L_xBYsD4WIQrCI0yKAkKh3MZmnCHEQdhjVR-i7v8Xti2ITrwck2JRyplUVqDKClJZofvwct7lrKkGskx4o1Nq0W4MVbGYxn14Nm_GJU33NKb0-CdJRsVEFaaXycgkUQgu82UyeUT19UTahwfNpJqPWiSJjDS94VU3y_4a5P8-aX35Jz2FG8ODj3vF3s5o9xHcFMQcUsc9bkBvdn7hHyN-m42ftIuGwZfrXqeXtLJXGA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRUJcEK_CQgEjwQVkNbGd2DkgVNGuWooqhKi0nILXj1JpyZZmqxb-B3-mv64zeeyCKvbWs8eJk7E933jG8wG8FFahm2xTjtDecWWD5dZ6wSl06DRiCB-abIv9fOdAfRhloxW46O_CUFplvyc2G7WfOjoj3yC7boQySm3ELi3i09bw3fFPTgxSFGnt6TTaKbIXfp2h-1a_3d1CXb8SYrj95f0O7xgGuFO6mPHMG6Okd-jMFzq4NM-Cd5kXxviIQF_H6NF_yn0sQtTa5cGOEV55JROPpjpS0QPc_m9oiagK15IeLZy9pGjpYguleCqV6iOqzbW9VGbkxwtO7gw3_9rEK0D3SpC2sX3DO3C7A61ss51ld2ElVPdgbXtxRw4bu02ivg9_NqlO-flReymS2cqzmvK2UYhoIBro317-ZNPIiKIi2smEBRxbw2TByLJ6hs3Y7aQOjLJY2RE-if0gZgvsMD2tmUMj8p1eTk9BGMu-2upw9juwz5RqQvLdyTVrOMIfwMG16GYNVqtpFR4Biy6kIiZRBARMSURQVLjUjnMEOwiAnB5A0v__0nWl0YmhY1IuijqTykpUWUkqK80AXs-7HLd1QZYJr_dKLbstoi4XE3oAL-bNuLgpYmOrgH-SZHRKpGFmmYySUiPMLJbJFAlV2hPZAB62k2o-aiGlSgy94U0_y_4a5P8-6fHyT3oON3F1lh939_eewC1BFCJNAuQ6rM5OTsNTBHKz8bNmxTD4dt1L9BLEkVnf |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Approximation+and+spatial+regionalization+of+rainfall+erosivity+based+on+sparse+data+in+a+mountainous+catchment+of+the+Yangtze+River+in+Central+China&rft.jtitle=Environmental+science+and+pollution+research+international&rft.au=Sch%C3%B6nbrodt-Stitt%2C+Sarah&rft.au=Bosch%2C+Anna&rft.au=Behrens%2C+Thorsten&rft.au=Hartmann%2C+Heike&rft.date=2013-10-01&rft.issn=0944-1344&rft.eissn=1614-7499&rft.volume=20&rft.issue=10&rft.spage=6917&rft.epage=6933&rft_id=info:doi/10.1007%2Fs11356-012-1441-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11356_012_1441_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0944-1344&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0944-1344&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0944-1344&client=summon |