On Consensus-Based Distributed Blind Calibration of Sensor Networks
This paper deals with recently proposed algorithms for real-time distributed blind macro-calibration of sensor networks based on consensus (synchronization). The algorithms are completely decentralized and do not require a fusion center. The goal is to consolidate all of the existing results on the...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 18; no. 11; p. 4027 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI
19.11.2018
MDPI AG |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s18114027 |
Cover
Abstract | This paper deals with recently proposed algorithms for real-time distributed blind macro-calibration of sensor networks based on consensus (synchronization). The algorithms are completely decentralized and do not require a fusion center. The goal is to consolidate all of the existing results on the subject, present them in a unified way, and provide additional important analysis of theoretical and practical issues that one can encounter when designing and applying the methodology. We first present the basic algorithm which estimates local calibration parameters by enforcing asymptotic consensus, in the mean-square sense and with probability one (w.p.1), on calibrated sensor gains and calibrated sensor offsets. For the more realistic case in which additive measurement noise, communication dropouts and additive communication noise are present, two algorithm modifications are discussed: one that uses a simple compensation term, and a more robust one based on an instrumental variable. The modified algorithms also achieve asymptotic agreement for calibrated sensor gains and offsets, in the mean-square sense and w.p.1. The convergence rate can be determined in terms of an upper bound on the mean-square error. The case when the communications between nodes is completely asynchronous, which is of substantial importance for real-world applications, is also presented. Suggestions for design of a priori adjustable weights are given. We also present the results for the case in which the underlying sensor network has a subset of (precalibrated) reference sensors with fixed calibration parameters. Wide applicability and efficacy of these algorithms are illustrated on several simulation examples. Finally, important open questions and future research directions are discussed. |
---|---|
AbstractList | This paper deals with recently proposed algorithms for real-time distributed blind macro-calibration of sensor networks based on consensus (synchronization). The algorithms are completely decentralized and do not require a fusion center. The goal is to consolidate all of the existing results on the subject, present them in a unified way, and provide additional important analysis of theoretical and practical issues that one can encounter when designing and applying the methodology. We first present the basic algorithm which estimates local calibration parameters by enforcing asymptotic consensus, in the mean-square sense and with probability one (w.p.1), on calibrated sensor gains and calibrated sensor offsets. For the more realistic case in which additive measurement noise, communication dropouts and additive communication noise are present, two algorithm modifications are discussed: one that uses a simple compensation term, and a more robust one based on an instrumental variable. The modified algorithms also achieve asymptotic agreement for calibrated sensor gains and offsets, in the mean-square sense and w.p.1. The convergence rate can be determined in terms of an upper bound on the mean-square error. The case when the communications between nodes is completely asynchronous, which is of substantial importance for real-world applications, is also presented. Suggestions for design of a priori adjustable weights are given. We also present the results for the case in which the underlying sensor network has a subset of (precalibrated) reference sensors with fixed calibration parameters. Wide applicability and efficacy of these algorithms are illustrated on several simulation examples. Finally, important open questions and future research directions are discussed. This paper deals with recently proposed algorithms for real-time distributed blind macro-calibration of sensor networks based on consensus (synchronization). The algorithms are completely decentralized and do not require a fusion center. The goal is to consolidate all of the existing results on the subject, present them in a unified way, and provide additional important analysis of theoretical and practical issues that one can encounter when designing and applying the methodology. We first present the basic algorithm which estimates local calibration parameters by enforcing asymptotic consensus, in the mean-square sense and with probability one (w.p.1), on calibrated sensor gains and calibrated sensor offsets. For the more realistic case in which additive measurement noise, communication dropouts and additive communication noise are present, two algorithm modifications are discussed: one that uses a simple compensation term, and a more robust one based on an instrumental variable. The modified algorithms also achieve asymptotic agreement for calibrated sensor gains and offsets, in the mean-square sense and w.p.1. The convergence rate can be determined in terms of an upper bound on the mean-square error. The case when the communications between nodes is completely asynchronous, which is of substantial importance for real-world applications, is also presented. Suggestions for design of a priori adjustable weights are given. We also present the results for the case in which the underlying sensor network has a subset of (precalibrated) reference sensors with fixed calibration parameters. Wide applicability and efficacy of these algorithms are illustrated on several simulation examples. Finally, important open questions and future research directions are discussed.This paper deals with recently proposed algorithms for real-time distributed blind macro-calibration of sensor networks based on consensus (synchronization). The algorithms are completely decentralized and do not require a fusion center. The goal is to consolidate all of the existing results on the subject, present them in a unified way, and provide additional important analysis of theoretical and practical issues that one can encounter when designing and applying the methodology. We first present the basic algorithm which estimates local calibration parameters by enforcing asymptotic consensus, in the mean-square sense and with probability one (w.p.1), on calibrated sensor gains and calibrated sensor offsets. For the more realistic case in which additive measurement noise, communication dropouts and additive communication noise are present, two algorithm modifications are discussed: one that uses a simple compensation term, and a more robust one based on an instrumental variable. The modified algorithms also achieve asymptotic agreement for calibrated sensor gains and offsets, in the mean-square sense and w.p.1. The convergence rate can be determined in terms of an upper bound on the mean-square error. The case when the communications between nodes is completely asynchronous, which is of substantial importance for real-world applications, is also presented. Suggestions for design of a priori adjustable weights are given. We also present the results for the case in which the underlying sensor network has a subset of (precalibrated) reference sensors with fixed calibration parameters. Wide applicability and efficacy of these algorithms are illustrated on several simulation examples. Finally, important open questions and future research directions are discussed. |
Author | Stanković, Srdjan S. Stanković, Miloš S. Johansson, Karl Henrik Beko, Marko Camarinha-Matos, Luis M. |
AuthorAffiliation | 2 Vlatacom Institute, 11070 Belgrade, Serbia; stankovic@etf.rs 6 COPELABS, Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal; mbeko@uninova.pt 7 CTS/UNINOVA , Monte de Caparica, 2829-516 Caparica, Portugal; cam@uninova.pt 5 ACCESS Linnaeus Center, School of Electrical Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden; kallej@kth.se 1 Innovation Center, School of Electrical Engineering, University of Belgrade, 11120 Belgrade, Serbia 3 School of Technical Sciences, Singidunum University, 11000 Belgrade, Serbia 4 School of Electrical Engineering, University of Belgrade, 11120 Belgrade, Serbia 8 Faculty of Sciences and Technology, NOVA University of Lisbon, 2825-149 Caparica, Portugal |
AuthorAffiliation_xml | – name: 5 ACCESS Linnaeus Center, School of Electrical Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden; kallej@kth.se – name: 8 Faculty of Sciences and Technology, NOVA University of Lisbon, 2825-149 Caparica, Portugal – name: 7 CTS/UNINOVA , Monte de Caparica, 2829-516 Caparica, Portugal; cam@uninova.pt – name: 4 School of Electrical Engineering, University of Belgrade, 11120 Belgrade, Serbia – name: 1 Innovation Center, School of Electrical Engineering, University of Belgrade, 11120 Belgrade, Serbia – name: 6 COPELABS, Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal; mbeko@uninova.pt – name: 3 School of Technical Sciences, Singidunum University, 11000 Belgrade, Serbia – name: 2 Vlatacom Institute, 11070 Belgrade, Serbia; stankovic@etf.rs |
Author_xml | – sequence: 1 givenname: Miloš S. orcidid: 0000-0001-9064-7059 surname: Stanković fullname: Stanković, Miloš S. – sequence: 2 givenname: Srdjan S. surname: Stanković fullname: Stanković, Srdjan S. – sequence: 3 givenname: Karl Henrik orcidid: 0000-0001-9940-5929 surname: Johansson fullname: Johansson, Karl Henrik – sequence: 4 givenname: Marko orcidid: 0000-0001-7315-8739 surname: Beko fullname: Beko, Marko – sequence: 5 givenname: Luis M. orcidid: 0000-0003-0594-1961 surname: Camarinha-Matos fullname: Camarinha-Matos, Luis M. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30463196$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-270812$$DView record from Swedish Publication Index |
BookMark | eNptkktPHSEUgEljUx_ton-gmWW7mHp4OMCmiY59mBhdWN0ShgFF54ICU9N_X7zX3nibrjiB73znkHN20VaIwSL0HsNnSiXsZywwZkD4K7SDGWGtIAS2XsTbaDfnWwBCKRVv0DYF1lEsux3Un4emjyHbkOfcHulsx-bY55L8MJcaH00-jE2vJz8kXXwMTXTNRaVjas5seYzpLr9Fr52esn33fO6hy29ff_Y_2tPz7yf94WlrGJelZdZywFRycMIYwGQAosGBkERyjjUwwx1A_QuXg-yccANzBxTAao01IXQPnay8Y9S36j75hU6_VdReLS9iulY6FW8mqywXfDgg0lDQbMBUWzkKJ6TDxBnT2epqV678aO_nYcN27K8Ol7a7cqMIB4Gfan9Z8RVe2NHYUJKeNtI2X4K_Udfxl-pIxzDQKvj4LEjxYba5qIXPxk6TDjbOWRFMRVfH08mKfnhZa13k79Qq8GkFmBRzTtatEQzqaSPUeiMqu_8Pa3xZTrK26af_ZPwBRQu2Yw |
CitedBy_id | crossref_primary_10_1016_j_sysconle_2020_104667 crossref_primary_10_1016_j_ifacol_2020_12_2184 crossref_primary_10_1109_TCOMM_2021_3077061 crossref_primary_10_1016_j_measen_2024_101799 crossref_primary_10_1021_acssensors_9b01455 crossref_primary_10_1049_iet_cta_2019_0672 |
Cites_doi | 10.1145/570738.570747 10.1109/TCNS.2016.2633788 10.1109/IPSN.2007.4379667 10.1109/MED.2012.6265777 10.1109/JSEN.2017.2703885 10.1109/CDC.2006.377325 10.1109/TAC.2010.2079650 10.1137/S0363012997331639 10.1109/CDC.2012.6426180 10.1109/ICASSP.2017.7952949 10.1145/2736697 10.1016/j.automatica.2015.11.034 10.1109/TAC.2011.2107051 10.1109/TCNS.2014.2367571 10.1109/ACC.2013.6580870 10.1016/j.pmcj.2016.09.013 10.1109/ICASSP.2016.7472216 10.1002/rnc.1452 10.1109/CDC.2012.6426752 10.1002/9780470515181 10.3390/s141018410 10.1007/978-1-4613-0163-9 10.1109/TVT.2010.2049869 10.2298/SJEE1601111S 10.1109/JPROC.2003.814925 10.1016/0022-0531(74)90064-7 10.1016/S1389-1286(01)00302-4 10.1109/TAC.2009.2036291 10.1109/TAC.2010.2042982 10.1109/CDC.2006.377101 10.1109/JSEN.2013.2297714 10.1016/0022-247X(85)90250-1 10.1109/TSP.2014.2342651 10.1109/JPROC.2012.2189792 10.1016/j.automatica.2018.03.054 10.1109/TCNS.2014.2353512 10.1109/JPROC.2006.887293 10.1109/LWC.2016.2567394 10.1007/978-3-319-22482-4 10.1145/1435473.1435477 10.1109/MED.2016.7535942 10.1049/iet-cta.2018.5417 10.1109/JSTSP.2011.2119291 10.1109/TSP.2014.2376884 10.1109/TAC.2015.2426272 10.1109/ICASSP.2014.6854402 10.1016/j.automatica.2009.02.014 10.1016/j.automatica.2013.07.015 10.1007/978-1-4757-2985-6 10.1088/1742-5468/2015/11/P11013 10.1109/ICC.2008.176 10.1109/TAC.2008.2009583 10.1214/154957805100000104 10.1007/978-1-4612-5612-0_14 10.1109/GlobalSIP.2015.7418249 10.1023/A:1024548100497 10.1007/3-540-36978-3_20 10.1109/TAC.2005.846556 10.1109/TSP.2009.2016247 10.1073/pnas.42.1.43 10.1016/j.automatica.2011.06.012 10.1109/CVPRW.2009.5206815 10.1016/j.automatica.2015.07.018 |
ContentType | Journal Article |
Copyright | 2018 by the authors. 2018 |
Copyright_xml | – notice: 2018 by the authors. 2018 |
DBID | AAYXX CITATION NPM 7X8 5PM ADTPV AOWAS D8V DOA |
DOI | 10.3390/s18114027 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) SwePub SwePub Articles SWEPUB Kungliga Tekniska Högskolan DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_e787b529c30a4b13ae9d8f89f12fcc6e oai_DiVA_org_kth_270812 PMC6264103 30463196 10_3390_s18114027 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: Program Investigador FCT grantid: IF/00325/2015 – fundername: Fundação para a Ciência e a Tecnologia grantid: UID/EEA/00066/2013, foRESTER PCIF/SSI/0102/2017 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS ADRAZ AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IPNFZ KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RIG RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ARAPS HCIFZ KB. M7S NPM PDBOC 7X8 PJZUB PPXIY PUEGO 5PM ADTPV AOWAS D8V IAO ITC |
ID | FETCH-LOGICAL-c479t-4ee7013970f8cc012b02a0f08929771a04c7f0018179b96f8fb4f5300eaa1a223 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:29:00 EDT 2025 Wed Sep 10 00:36:10 EDT 2025 Thu Aug 21 14:00:58 EDT 2025 Thu Sep 04 17:59:00 EDT 2025 Wed Feb 19 02:32:14 EST 2025 Thu Apr 24 22:55:56 EDT 2025 Tue Jul 01 00:41:46 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | consensus distributed estimation macro calibration blind calibration synchronization sensor networks stochastic approximation |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c479t-4ee7013970f8cc012b02a0f08929771a04c7f0018179b96f8fb4f5300eaa1a223 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-7315-8739 0000-0001-9940-5929 0000-0001-9064-7059 0000-0003-0594-1961 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s18114027 |
PMID | 30463196 |
PQID | 2138633369 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e787b529c30a4b13ae9d8f89f12fcc6e swepub_primary_oai_DiVA_org_kth_270812 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6264103 proquest_miscellaneous_2138633369 pubmed_primary_30463196 crossref_primary_10_3390_s18114027 crossref_citationtrail_10_3390_s18114027 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-11-19 |
PublicationDateYYYYMMDD | 2018-11-19 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-19 day: 19 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2018 |
Publisher | MDPI MDPI AG |
Publisher_xml | – name: MDPI – name: MDPI AG |
References | Fax (ref_18) 2007; 95 ref_57 ref_12 ref_56 ref_55 ref_10 ref_53 ref_51 Akyildiz (ref_5) 2002; 38 (ref_63) 2011; 56 ref_16 ref_15 Whitehouse (ref_11) 2003; 8 (ref_74) 2009; 45 Tomic (ref_8) 2017; 37 Pierce (ref_21) 1974; 9 ref_61 ref_60 Tomic (ref_9) 2014; 14 Bilen (ref_27) 2014; 62 ref_25 ref_69 Tian (ref_70) 2016; 65 ref_24 Carron (ref_49) 2014; 1 Bolognani (ref_50) 2010; 20 ref_67 ref_22 Lee (ref_35) 2014; 14 ref_20 Bradley (ref_64) 2005; 2 Ibragimov (ref_65) 1959; 125 Ramakrishnan (ref_52) 2011; 5 Ren (ref_54) 2005; 50 ref_29 ref_28 Kim (ref_1) 2012; 100 ref_26 Aysal (ref_62) 2009; 57 (ref_72) 2018; 12 Gharavi (ref_4) 2003; 91 Liao (ref_46) 2013; 49 Ohta (ref_19) 1985; 112 (ref_75) 2015; 60 ref_36 ref_34 ref_77 Johansson (ref_13) 2015; 60 ref_31 ref_30 Huang (ref_59) 2010; 55 (ref_76) 2001; 8 (ref_73) 2009; 54 ref_38 ref_37 Li (ref_58) 2010; 55 Johansson (ref_14) 2018; 5 Ravazzi (ref_48) 2015; 2 Wang (ref_32) 2016; 16 Chen (ref_71) 2010; 59 Carli (ref_45) 2008; 56 Johansson (ref_41) 2018; 93 Kumar (ref_39) 2015; 11 Rosenblatt (ref_66) 1956; 42 Tomic (ref_7) 2016; 5 Schenato (ref_44) 2011; 47 Yu (ref_23) 2015; 63 ref_47 ref_43 ref_42 Wang (ref_33) 2017; 17 ref_40 ref_3 ref_2 Borkar (ref_68) 2000; 38 Johansson (ref_17) 2016; 13 ref_6 16589813 - Proc Natl Acad Sci U S A. 1956 Jan;42(1):43-7 25275350 - Sensors (Basel). 2014 Oct 01;14(10):18410-32 |
References_xml | – ident: ref_10 doi: 10.1145/570738.570747 – volume: 8 start-page: 816 year: 2001 ident: ref_76 article-title: Model abstraction and inclusion principle: A comparison publication-title: IEEE Trans. Autom. Control – volume: 5 start-page: 571 year: 2018 ident: ref_14 article-title: Asynchronous Distributed Blind Calibration of Sensor Networks under Noisy Measurements publication-title: IEEE Trans. Control Netw. Syst. doi: 10.1109/TCNS.2016.2633788 – ident: ref_12 doi: 10.1109/IPSN.2007.4379667 – ident: ref_51 – ident: ref_15 doi: 10.1109/MED.2012.6265777 – volume: 17 start-page: 4158 year: 2017 ident: ref_33 article-title: A Deep Learning Approach for Blind Drift Calibration of Sensor Networks publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2017.2703885 – ident: ref_42 doi: 10.1109/CDC.2006.377325 – volume: 56 start-page: 1337 year: 2011 ident: ref_63 article-title: Asynchronous broadcast-based convex optimization over a network publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2010.2079650 – ident: ref_61 – volume: 38 start-page: 447 year: 2000 ident: ref_68 article-title: The ODE method for convergence of stochastic approximation and reinforcement learning publication-title: SIAM J. Control Optim. doi: 10.1137/S0363012997331639 – ident: ref_16 doi: 10.1109/CDC.2012.6426180 – ident: ref_34 doi: 10.1109/ICASSP.2017.7952949 – volume: 11 start-page: 50 year: 2015 ident: ref_39 article-title: Geospatial Estimation-Based Auto Drift Correction in Wireless Sensor Networks publication-title: ACM Trans. Sens. Netw. doi: 10.1145/2736697 – volume: 65 start-page: 64 year: 2016 ident: ref_70 article-title: Structural modeling and convergence analysis of consensus-based time synchronization algorithms over networks: Non-topological conditions publication-title: Automatica doi: 10.1016/j.automatica.2015.11.034 – ident: ref_31 – volume: 56 start-page: 1146 year: 2008 ident: ref_45 article-title: Optimal Synchronization for Networks of Noisy Double Integrators publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2011.2107051 – volume: 2 start-page: 78 year: 2015 ident: ref_48 article-title: Ergodic randomized algorithms and dynamics over networks publication-title: IEEE Trans. Control Netw. Syst. doi: 10.1109/TCNS.2014.2367571 – ident: ref_53 doi: 10.1109/ACC.2013.6580870 – volume: 37 start-page: 63 year: 2017 ident: ref_8 article-title: Distributed algorithm for target localization in wireless sensor networks using RSS and AoA measurements publication-title: Pervasive Mob. Comput. doi: 10.1016/j.pmcj.2016.09.013 – ident: ref_37 doi: 10.1109/ICASSP.2016.7472216 – volume: 20 start-page: 176 year: 2010 ident: ref_50 article-title: Consensus-based distributed sensor calibration and least-square parameter identification in WSNs publication-title: Int. J. Robust Nonlinear Control doi: 10.1002/rnc.1452 – ident: ref_77 doi: 10.1109/CDC.2012.6426752 – ident: ref_3 doi: 10.1002/9780470515181 – volume: 14 start-page: 18410 year: 2014 ident: ref_9 article-title: Distributed RSS-Based Localization in Wireless Sensor Networks Based on Second-Order Cone Programming publication-title: Sensors doi: 10.3390/s141018410 – ident: ref_67 doi: 10.1007/978-1-4613-0163-9 – volume: 59 start-page: 2963 year: 2010 ident: ref_71 article-title: Feedback-Based Clock Synchronization in Wireless Sensor Networks: A Control Theoretic Approach publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2010.2049869 – volume: 13 start-page: 111 year: 2016 ident: ref_17 article-title: A consensus-based distributed calibration algorithm for sensor networks publication-title: Serb. J. Electr. Eng. doi: 10.2298/SJEE1601111S – volume: 91 start-page: 1151 year: 2003 ident: ref_4 article-title: Special issue on sensor networks and applications publication-title: Proc. IEEE doi: 10.1109/JPROC.2003.814925 – volume: 9 start-page: 159 year: 1974 ident: ref_21 article-title: Matrices with dominating diagonal blocks publication-title: J. Econ. Theory doi: 10.1016/0022-0531(74)90064-7 – volume: 38 start-page: 393 year: 2002 ident: ref_5 article-title: Wireless sensor networks: A survey publication-title: Comput. Netw. doi: 10.1016/S1389-1286(01)00302-4 – ident: ref_20 – volume: 55 start-page: 235 year: 2010 ident: ref_59 article-title: Stochastic consensus seeking with noisy and directed inter-agent communications: Fixed and randomly varying topologies publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2009.2036291 – volume: 55 start-page: 2043 year: 2010 ident: ref_58 article-title: Consensus conditions of multi agent systems with time varying topologies publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2010.2042982 – ident: ref_30 – ident: ref_6 doi: 10.1109/CDC.2006.377101 – volume: 14 start-page: 1518 year: 2014 ident: ref_35 article-title: A Blind Calibration Scheme Exploiting Mutual Calibration Relationships for a Dense Mobile Sensor Network publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2013.2297714 – volume: 112 start-page: 396 year: 1985 ident: ref_19 article-title: Overlapping block diagonal dominance and existence of Lyapunov functions publication-title: J. Math. Anal. Appl. doi: 10.1016/0022-247X(85)90250-1 – volume: 62 start-page: 4847 year: 2014 ident: ref_27 article-title: Convex Optimization Approaches for Blind Sensor Calibration Using Sparsity publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2014.2342651 – volume: 100 start-page: 1287 year: 2012 ident: ref_1 article-title: Cyber–physical systems: A perspective at the centennial publication-title: Proc. IEEE doi: 10.1109/JPROC.2012.2189792 – ident: ref_47 – volume: 93 start-page: 126 year: 2018 ident: ref_41 article-title: Distributed time synchronization for networks with random delays and measurement noise publication-title: Automatica doi: 10.1016/j.automatica.2018.03.054 – volume: 1 start-page: 283 year: 2014 ident: ref_49 article-title: An asynchrnous consensus-based algorithm for estimation from noisy relative measurements publication-title: IEEE Trans. Control Netw. Syst. doi: 10.1109/TCNS.2014.2353512 – volume: 95 start-page: 215 year: 2007 ident: ref_18 article-title: Consensus and cooperation in networked multi-agent systems publication-title: Proc. IEEE doi: 10.1109/JPROC.2006.887293 – volume: 5 start-page: 392 year: 2016 ident: ref_7 article-title: Distributed RSS-AoA Based Localization with Unknown Transmit Powers publication-title: IEEE Wirel. Commun. Lett. doi: 10.1109/LWC.2016.2567394 – ident: ref_36 doi: 10.1007/978-3-319-22482-4 – ident: ref_43 doi: 10.1145/1435473.1435477 – volume: 125 start-page: 711 year: 1959 ident: ref_65 article-title: Some limit theorems for stochastic processes stationary in the strict sense publication-title: Dokl. Akad. Nauk SSSR – ident: ref_40 doi: 10.1109/MED.2016.7535942 – ident: ref_69 doi: 10.1016/j.automatica.2018.03.054 – volume: 12 start-page: 2287 year: 2018 ident: ref_72 article-title: Distributed Asynchronous Consensus-based Algorithm for Blind Calibration of Sensor Networks with Autonomous Gain Correction publication-title: IET Control Theory Appl. doi: 10.1049/iet-cta.2018.5417 – ident: ref_25 – volume: 5 start-page: 665 year: 2011 ident: ref_52 article-title: Gossip-Based Algorithm for Joint Signature Estimation and Node Calibration in Sensor Networks publication-title: IEEE J. Sel. Top. Signal Process. doi: 10.1109/JSTSP.2011.2119291 – volume: 63 start-page: 662 year: 2015 ident: ref_23 article-title: On Recursive Blind Equalization in Sensor Networks publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2014.2376884 – ident: ref_2 – volume: 60 start-page: 3257 year: 2015 ident: ref_13 article-title: Distributed Blind Calibration in Lossy Sensor Networks via Output Synchronization publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2015.2426272 – ident: ref_26 doi: 10.1109/ICASSP.2014.6854402 – volume: 45 start-page: 1397 year: 2009 ident: ref_74 article-title: Consensus Based Overlapping Decentralized Estimation with Missing Observations and Communication Faults publication-title: Automatica doi: 10.1016/j.automatica.2009.02.014 – volume: 49 start-page: 3015 year: 2013 ident: ref_46 article-title: Distributed clock skew and offset estimation from relative measurements in mobile networks with Markovian switching topologies publication-title: Automatica doi: 10.1016/j.automatica.2013.07.015 – ident: ref_24 doi: 10.1007/978-1-4757-2985-6 – ident: ref_38 doi: 10.1088/1742-5468/2015/11/P11013 – volume: 16 start-page: 6249 year: 2016 ident: ref_32 article-title: Blind Drift Calibration of Sensor Networks Using Sparse Bayesian Learning publication-title: IEEE Sens. J. – ident: ref_29 doi: 10.1109/ICC.2008.176 – ident: ref_60 – volume: 54 start-page: 410 year: 2009 ident: ref_73 article-title: Consensus based overlapping decentralized estimator publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2008.2009583 – volume: 2 start-page: 107 year: 2005 ident: ref_64 article-title: Basic Properties of Strong Mixing Conditions a Survey and Some Open Questions publication-title: Probab. Surv. doi: 10.1214/154957805100000104 – ident: ref_55 doi: 10.1007/978-1-4612-5612-0_14 – ident: ref_56 doi: 10.1109/GlobalSIP.2015.7418249 – ident: ref_57 – volume: 8 start-page: 463 year: 2003 ident: ref_11 article-title: Macro-calibration in sensor/actuator networks publication-title: Mob. Netw. Appl. doi: 10.1023/A:1024548100497 – ident: ref_28 doi: 10.1007/3-540-36978-3_20 – volume: 50 start-page: 655 year: 2005 ident: ref_54 article-title: Consensus seeking in multi-agent systems under dynamically changing interaction topologies publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2005.846556 – volume: 57 start-page: 2748 year: 2009 ident: ref_62 article-title: Broadcast gossip algorithms for consensus publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2009.2016247 – volume: 42 start-page: 43 year: 1956 ident: ref_66 article-title: A central limit theorem and a strong mixing condition publication-title: Proc. Natl. acad. Sci. USA doi: 10.1073/pnas.42.1.43 – volume: 47 start-page: 1878 year: 2011 ident: ref_44 article-title: Average TimeSynch: A consensus-based protocol for time synchronization in wireless sensor networks publication-title: Automatica doi: 10.1016/j.automatica.2011.06.012 – ident: ref_22 doi: 10.1109/CVPRW.2009.5206815 – volume: 60 start-page: 219 year: 2015 ident: ref_75 article-title: Consensus-based decentralized real-time identification of large-scale systems publication-title: Automatica doi: 10.1016/j.automatica.2015.07.018 – reference: 25275350 - Sensors (Basel). 2014 Oct 01;14(10):18410-32 – reference: 16589813 - Proc Natl Acad Sci U S A. 1956 Jan;42(1):43-7 |
SSID | ssj0023338 |
Score | 2.3207498 |
SecondaryResourceType | review_article |
Snippet | This paper deals with recently proposed algorithms for real-time distributed blind macro-calibration of sensor networks based on consensus (synchronization).... |
SourceID | doaj swepub pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 4027 |
SubjectTerms | blind calibration consensus distributed estimation macro calibration Review sensor networks stochastic approximation synchronization |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB6hnuCw4rkEFhQQQnuJasdOYh_7oKqQKAfoqrfIdmy1AqVo2_7_Hdtp1YhKXLhFyVhxZsaeb5TxNwCfmKXcKm2y3DifoBRlJnjTZFpT3RSsISqU_H9blPMl_7oqVmetvnxNWKQHjoobWvQoXeTSMKK4pkxZ2QgnpKO5M6a0fvclkhyTqS7VYph5RR4hhkn9cIdxDDMJ3zrmLPoEkv5LyPLvAskejWgIPbOncNVhxnQU5_oMHtn2OTw5YxJ8AZPvbep7b_rGFbtsjKGpSaeeE9e3s8LrMaLJJvUHsXQ0ebp16Q-U3t6ni1gJvnsJy9mXn5N51vVHyAyv5D7j1lYBwREnjMFIo0muiCMCIU9VUUW4qZzvuoeLTsvSCae5KxghVimqEBe8gkG7be1rSCuHI7UococASSqt0HJcq8aZUlNnTQK3R73VpiMP9z0sfteYRHgV1ycVJ_DxJPonMmZcEhp75Z8EPMl1uIGmrzvT1_8yfQIfjqarcVH4Px2qtdvDrs4pEyX6QCkTuI6mPL0qcKThvpNA1TNyby79J-1mHYi3MfnjlLAEPkd36A2Zbu5GYfq_9us6rxBq5W_-x1e-hccI0oQ__0jlDQz29wf7DoHQXr8PPv8AF6kJRQ priority: 102 providerName: Directory of Open Access Journals |
Title | On Consensus-Based Distributed Blind Calibration of Sensor Networks |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30463196 https://www.proquest.com/docview/2138633369 https://pubmed.ncbi.nlm.nih.gov/PMC6264103 https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-270812 https://doaj.org/article/e787b529c30a4b13ae9d8f89f12fcc6e |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB314wIHxDcpsAoIIS4B23Fi54BQt-1SIXVBwKK9RbZj04oqKZutBP-esZONiNgDlyhKxoo1Y2feJPZ7AC9SS7lV2iTMOF-gZHkieVUlWlNdZWlFVFjyfzbPTxf8wzJb7sBGY7N3YLu1tPN6UovV5etfP3-_wwn_1lecWLK_aTFLYZ3AxC7sY0LKfQ12xoefCSxNg6C139OVYD4kHcHQuOkoLQX2_m2Q89-VkyN-0ZCTZrfhVg8m48Mu-ndgx9Z34eZfFIP34OhjHXtRTq9o0SZTzFlVfOzJcr3OFZ5PEWZWsd-hpbuxEDcu_oLWzSqed0vE2_uwmJ18PTpNeuGExHBRrBNurQjQjjhpDKYgTZgijkjEQkJQRbgRzsvx4WzURe6k09xlKSFWKaoQMDyAvbqp7SOIhcOWWmbMIXIqlFYYUq5V5UyuqbMmglcbv5WmZxX34haXJVYX3sXl4OIIng-mVx2VxjajqXf-YODZr8OFZvW97CdTafEtozNWmJQormmqbFFJJwtHmTMmtxE824SuxNnif4Go2jbXbcloKnMcD3kRwcMulMOjAnkavpAiEKMgj_oyvlNfnAdGbqwKOSVpBC-74TBqcnzx7TB0_8f6vGQCMRg7-F_Dx3ADEZr0mx9p8QT21qtr-xRR0FpPYFcsBR7l7P0E9qcn80-fJ-GLwiSM_j9S2gvP |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+Consensus-Based+Distributed+Blind+Calibration+of+Sensor+Networks&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Stankovic%2C+Milos+S.&rft.au=Stankovic%2C+Srdjan+S.&rft.au=Johansson%2C+Karl+Henrik&rft.au=Beko%2C+Marko&rft.date=2018-11-19&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=18&rft.issue=11&rft_id=info:doi/10.3390%2Fs18114027&rft.externalDocID=oai_DiVA_org_kth_270812 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |