On Consensus-Based Distributed Blind Calibration of Sensor Networks

This paper deals with recently proposed algorithms for real-time distributed blind macro-calibration of sensor networks based on consensus (synchronization). The algorithms are completely decentralized and do not require a fusion center. The goal is to consolidate all of the existing results on the...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 18; no. 11; p. 4027
Main Authors Stanković, Miloš S., Stanković, Srdjan S., Johansson, Karl Henrik, Beko, Marko, Camarinha-Matos, Luis M.
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 19.11.2018
MDPI AG
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s18114027

Cover

Abstract This paper deals with recently proposed algorithms for real-time distributed blind macro-calibration of sensor networks based on consensus (synchronization). The algorithms are completely decentralized and do not require a fusion center. The goal is to consolidate all of the existing results on the subject, present them in a unified way, and provide additional important analysis of theoretical and practical issues that one can encounter when designing and applying the methodology. We first present the basic algorithm which estimates local calibration parameters by enforcing asymptotic consensus, in the mean-square sense and with probability one (w.p.1), on calibrated sensor gains and calibrated sensor offsets. For the more realistic case in which additive measurement noise, communication dropouts and additive communication noise are present, two algorithm modifications are discussed: one that uses a simple compensation term, and a more robust one based on an instrumental variable. The modified algorithms also achieve asymptotic agreement for calibrated sensor gains and offsets, in the mean-square sense and w.p.1. The convergence rate can be determined in terms of an upper bound on the mean-square error. The case when the communications between nodes is completely asynchronous, which is of substantial importance for real-world applications, is also presented. Suggestions for design of a priori adjustable weights are given. We also present the results for the case in which the underlying sensor network has a subset of (precalibrated) reference sensors with fixed calibration parameters. Wide applicability and efficacy of these algorithms are illustrated on several simulation examples. Finally, important open questions and future research directions are discussed.
AbstractList This paper deals with recently proposed algorithms for real-time distributed blind macro-calibration of sensor networks based on consensus (synchronization). The algorithms are completely decentralized and do not require a fusion center. The goal is to consolidate all of the existing results on the subject, present them in a unified way, and provide additional important analysis of theoretical and practical issues that one can encounter when designing and applying the methodology. We first present the basic algorithm which estimates local calibration parameters by enforcing asymptotic consensus, in the mean-square sense and with probability one (w.p.1), on calibrated sensor gains and calibrated sensor offsets. For the more realistic case in which additive measurement noise, communication dropouts and additive communication noise are present, two algorithm modifications are discussed: one that uses a simple compensation term, and a more robust one based on an instrumental variable. The modified algorithms also achieve asymptotic agreement for calibrated sensor gains and offsets, in the mean-square sense and w.p.1. The convergence rate can be determined in terms of an upper bound on the mean-square error. The case when the communications between nodes is completely asynchronous, which is of substantial importance for real-world applications, is also presented. Suggestions for design of a priori adjustable weights are given. We also present the results for the case in which the underlying sensor network has a subset of (precalibrated) reference sensors with fixed calibration parameters. Wide applicability and efficacy of these algorithms are illustrated on several simulation examples. Finally, important open questions and future research directions are discussed.
This paper deals with recently proposed algorithms for real-time distributed blind macro-calibration of sensor networks based on consensus (synchronization). The algorithms are completely decentralized and do not require a fusion center. The goal is to consolidate all of the existing results on the subject, present them in a unified way, and provide additional important analysis of theoretical and practical issues that one can encounter when designing and applying the methodology. We first present the basic algorithm which estimates local calibration parameters by enforcing asymptotic consensus, in the mean-square sense and with probability one (w.p.1), on calibrated sensor gains and calibrated sensor offsets. For the more realistic case in which additive measurement noise, communication dropouts and additive communication noise are present, two algorithm modifications are discussed: one that uses a simple compensation term, and a more robust one based on an instrumental variable. The modified algorithms also achieve asymptotic agreement for calibrated sensor gains and offsets, in the mean-square sense and w.p.1. The convergence rate can be determined in terms of an upper bound on the mean-square error. The case when the communications between nodes is completely asynchronous, which is of substantial importance for real-world applications, is also presented. Suggestions for design of a priori adjustable weights are given. We also present the results for the case in which the underlying sensor network has a subset of (precalibrated) reference sensors with fixed calibration parameters. Wide applicability and efficacy of these algorithms are illustrated on several simulation examples. Finally, important open questions and future research directions are discussed.This paper deals with recently proposed algorithms for real-time distributed blind macro-calibration of sensor networks based on consensus (synchronization). The algorithms are completely decentralized and do not require a fusion center. The goal is to consolidate all of the existing results on the subject, present them in a unified way, and provide additional important analysis of theoretical and practical issues that one can encounter when designing and applying the methodology. We first present the basic algorithm which estimates local calibration parameters by enforcing asymptotic consensus, in the mean-square sense and with probability one (w.p.1), on calibrated sensor gains and calibrated sensor offsets. For the more realistic case in which additive measurement noise, communication dropouts and additive communication noise are present, two algorithm modifications are discussed: one that uses a simple compensation term, and a more robust one based on an instrumental variable. The modified algorithms also achieve asymptotic agreement for calibrated sensor gains and offsets, in the mean-square sense and w.p.1. The convergence rate can be determined in terms of an upper bound on the mean-square error. The case when the communications between nodes is completely asynchronous, which is of substantial importance for real-world applications, is also presented. Suggestions for design of a priori adjustable weights are given. We also present the results for the case in which the underlying sensor network has a subset of (precalibrated) reference sensors with fixed calibration parameters. Wide applicability and efficacy of these algorithms are illustrated on several simulation examples. Finally, important open questions and future research directions are discussed.
Author Stanković, Srdjan S.
Stanković, Miloš S.
Johansson, Karl Henrik
Beko, Marko
Camarinha-Matos, Luis M.
AuthorAffiliation 2 Vlatacom Institute, 11070 Belgrade, Serbia; stankovic@etf.rs
6 COPELABS, Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal; mbeko@uninova.pt
7 CTS/UNINOVA , Monte de Caparica, 2829-516 Caparica, Portugal; cam@uninova.pt
5 ACCESS Linnaeus Center, School of Electrical Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden; kallej@kth.se
1 Innovation Center, School of Electrical Engineering, University of Belgrade, 11120 Belgrade, Serbia
3 School of Technical Sciences, Singidunum University, 11000 Belgrade, Serbia
4 School of Electrical Engineering, University of Belgrade, 11120 Belgrade, Serbia
8 Faculty of Sciences and Technology, NOVA University of Lisbon, 2825-149 Caparica, Portugal
AuthorAffiliation_xml – name: 5 ACCESS Linnaeus Center, School of Electrical Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden; kallej@kth.se
– name: 8 Faculty of Sciences and Technology, NOVA University of Lisbon, 2825-149 Caparica, Portugal
– name: 7 CTS/UNINOVA , Monte de Caparica, 2829-516 Caparica, Portugal; cam@uninova.pt
– name: 4 School of Electrical Engineering, University of Belgrade, 11120 Belgrade, Serbia
– name: 1 Innovation Center, School of Electrical Engineering, University of Belgrade, 11120 Belgrade, Serbia
– name: 6 COPELABS, Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal; mbeko@uninova.pt
– name: 3 School of Technical Sciences, Singidunum University, 11000 Belgrade, Serbia
– name: 2 Vlatacom Institute, 11070 Belgrade, Serbia; stankovic@etf.rs
Author_xml – sequence: 1
  givenname: Miloš S.
  orcidid: 0000-0001-9064-7059
  surname: Stanković
  fullname: Stanković, Miloš S.
– sequence: 2
  givenname: Srdjan S.
  surname: Stanković
  fullname: Stanković, Srdjan S.
– sequence: 3
  givenname: Karl Henrik
  orcidid: 0000-0001-9940-5929
  surname: Johansson
  fullname: Johansson, Karl Henrik
– sequence: 4
  givenname: Marko
  orcidid: 0000-0001-7315-8739
  surname: Beko
  fullname: Beko, Marko
– sequence: 5
  givenname: Luis M.
  orcidid: 0000-0003-0594-1961
  surname: Camarinha-Matos
  fullname: Camarinha-Matos, Luis M.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30463196$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-270812$$DView record from Swedish Publication Index
BookMark eNptkktPHSEUgEljUx_ton-gmWW7mHp4OMCmiY59mBhdWN0ShgFF54ICU9N_X7zX3nibrjiB73znkHN20VaIwSL0HsNnSiXsZywwZkD4K7SDGWGtIAS2XsTbaDfnWwBCKRVv0DYF1lEsux3Un4emjyHbkOfcHulsx-bY55L8MJcaH00-jE2vJz8kXXwMTXTNRaVjas5seYzpLr9Fr52esn33fO6hy29ff_Y_2tPz7yf94WlrGJelZdZywFRycMIYwGQAosGBkERyjjUwwx1A_QuXg-yccANzBxTAao01IXQPnay8Y9S36j75hU6_VdReLS9iulY6FW8mqywXfDgg0lDQbMBUWzkKJ6TDxBnT2epqV678aO_nYcN27K8Ol7a7cqMIB4Gfan9Z8RVe2NHYUJKeNtI2X4K_Udfxl-pIxzDQKvj4LEjxYba5qIXPxk6TDjbOWRFMRVfH08mKfnhZa13k79Qq8GkFmBRzTtatEQzqaSPUeiMqu_8Pa3xZTrK26af_ZPwBRQu2Yw
CitedBy_id crossref_primary_10_1016_j_sysconle_2020_104667
crossref_primary_10_1016_j_ifacol_2020_12_2184
crossref_primary_10_1109_TCOMM_2021_3077061
crossref_primary_10_1016_j_measen_2024_101799
crossref_primary_10_1021_acssensors_9b01455
crossref_primary_10_1049_iet_cta_2019_0672
Cites_doi 10.1145/570738.570747
10.1109/TCNS.2016.2633788
10.1109/IPSN.2007.4379667
10.1109/MED.2012.6265777
10.1109/JSEN.2017.2703885
10.1109/CDC.2006.377325
10.1109/TAC.2010.2079650
10.1137/S0363012997331639
10.1109/CDC.2012.6426180
10.1109/ICASSP.2017.7952949
10.1145/2736697
10.1016/j.automatica.2015.11.034
10.1109/TAC.2011.2107051
10.1109/TCNS.2014.2367571
10.1109/ACC.2013.6580870
10.1016/j.pmcj.2016.09.013
10.1109/ICASSP.2016.7472216
10.1002/rnc.1452
10.1109/CDC.2012.6426752
10.1002/9780470515181
10.3390/s141018410
10.1007/978-1-4613-0163-9
10.1109/TVT.2010.2049869
10.2298/SJEE1601111S
10.1109/JPROC.2003.814925
10.1016/0022-0531(74)90064-7
10.1016/S1389-1286(01)00302-4
10.1109/TAC.2009.2036291
10.1109/TAC.2010.2042982
10.1109/CDC.2006.377101
10.1109/JSEN.2013.2297714
10.1016/0022-247X(85)90250-1
10.1109/TSP.2014.2342651
10.1109/JPROC.2012.2189792
10.1016/j.automatica.2018.03.054
10.1109/TCNS.2014.2353512
10.1109/JPROC.2006.887293
10.1109/LWC.2016.2567394
10.1007/978-3-319-22482-4
10.1145/1435473.1435477
10.1109/MED.2016.7535942
10.1049/iet-cta.2018.5417
10.1109/JSTSP.2011.2119291
10.1109/TSP.2014.2376884
10.1109/TAC.2015.2426272
10.1109/ICASSP.2014.6854402
10.1016/j.automatica.2009.02.014
10.1016/j.automatica.2013.07.015
10.1007/978-1-4757-2985-6
10.1088/1742-5468/2015/11/P11013
10.1109/ICC.2008.176
10.1109/TAC.2008.2009583
10.1214/154957805100000104
10.1007/978-1-4612-5612-0_14
10.1109/GlobalSIP.2015.7418249
10.1023/A:1024548100497
10.1007/3-540-36978-3_20
10.1109/TAC.2005.846556
10.1109/TSP.2009.2016247
10.1073/pnas.42.1.43
10.1016/j.automatica.2011.06.012
10.1109/CVPRW.2009.5206815
10.1016/j.automatica.2015.07.018
ContentType Journal Article
Copyright 2018 by the authors. 2018
Copyright_xml – notice: 2018 by the authors. 2018
DBID AAYXX
CITATION
NPM
7X8
5PM
ADTPV
AOWAS
D8V
DOA
DOI 10.3390/s18114027
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
SwePub
SwePub Articles
SWEPUB Kungliga Tekniska Högskolan
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

CrossRef
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_e787b529c30a4b13ae9d8f89f12fcc6e
oai_DiVA_org_kth_270812
PMC6264103
30463196
10_3390_s18114027
Genre Journal Article
Review
GrantInformation_xml – fundername: Program Investigador FCT
  grantid: IF/00325/2015
– fundername: Fundação para a Ciência e a Tecnologia
  grantid: UID/EEA/00066/2013, foRESTER PCIF/SSI/0102/2017
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
ADRAZ
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IPNFZ
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ARAPS
HCIFZ
KB.
M7S
NPM
PDBOC
7X8
PJZUB
PPXIY
PUEGO
5PM
ADTPV
AOWAS
D8V
IAO
ITC
ID FETCH-LOGICAL-c479t-4ee7013970f8cc012b02a0f08929771a04c7f0018179b96f8fb4f5300eaa1a223
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:29:00 EDT 2025
Wed Sep 10 00:36:10 EDT 2025
Thu Aug 21 14:00:58 EDT 2025
Thu Sep 04 17:59:00 EDT 2025
Wed Feb 19 02:32:14 EST 2025
Thu Apr 24 22:55:56 EDT 2025
Tue Jul 01 00:41:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords consensus
distributed estimation
macro calibration
blind calibration
synchronization
sensor networks
stochastic approximation
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c479t-4ee7013970f8cc012b02a0f08929771a04c7f0018179b96f8fb4f5300eaa1a223
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0001-7315-8739
0000-0001-9940-5929
0000-0001-9064-7059
0000-0003-0594-1961
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s18114027
PMID 30463196
PQID 2138633369
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_e787b529c30a4b13ae9d8f89f12fcc6e
swepub_primary_oai_DiVA_org_kth_270812
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6264103
proquest_miscellaneous_2138633369
pubmed_primary_30463196
crossref_primary_10_3390_s18114027
crossref_citationtrail_10_3390_s18114027
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-11-19
PublicationDateYYYYMMDD 2018-11-19
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-19
  day: 19
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2018
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References Fax (ref_18) 2007; 95
ref_57
ref_12
ref_56
ref_55
ref_10
ref_53
ref_51
Akyildiz (ref_5) 2002; 38
(ref_63) 2011; 56
ref_16
ref_15
Whitehouse (ref_11) 2003; 8
(ref_74) 2009; 45
Tomic (ref_8) 2017; 37
Pierce (ref_21) 1974; 9
ref_61
ref_60
Tomic (ref_9) 2014; 14
Bilen (ref_27) 2014; 62
ref_25
ref_69
Tian (ref_70) 2016; 65
ref_24
Carron (ref_49) 2014; 1
Bolognani (ref_50) 2010; 20
ref_67
ref_22
Lee (ref_35) 2014; 14
ref_20
Bradley (ref_64) 2005; 2
Ibragimov (ref_65) 1959; 125
Ramakrishnan (ref_52) 2011; 5
Ren (ref_54) 2005; 50
ref_29
ref_28
Kim (ref_1) 2012; 100
ref_26
Aysal (ref_62) 2009; 57
(ref_72) 2018; 12
Gharavi (ref_4) 2003; 91
Liao (ref_46) 2013; 49
Ohta (ref_19) 1985; 112
(ref_75) 2015; 60
ref_36
ref_34
ref_77
Johansson (ref_13) 2015; 60
ref_31
ref_30
Huang (ref_59) 2010; 55
(ref_76) 2001; 8
(ref_73) 2009; 54
ref_38
ref_37
Li (ref_58) 2010; 55
Johansson (ref_14) 2018; 5
Ravazzi (ref_48) 2015; 2
Wang (ref_32) 2016; 16
Chen (ref_71) 2010; 59
Carli (ref_45) 2008; 56
Johansson (ref_41) 2018; 93
Kumar (ref_39) 2015; 11
Rosenblatt (ref_66) 1956; 42
Tomic (ref_7) 2016; 5
Schenato (ref_44) 2011; 47
Yu (ref_23) 2015; 63
ref_47
ref_43
ref_42
Wang (ref_33) 2017; 17
ref_40
ref_3
ref_2
Borkar (ref_68) 2000; 38
Johansson (ref_17) 2016; 13
ref_6
16589813 - Proc Natl Acad Sci U S A. 1956 Jan;42(1):43-7
25275350 - Sensors (Basel). 2014 Oct 01;14(10):18410-32
References_xml – ident: ref_10
  doi: 10.1145/570738.570747
– volume: 8
  start-page: 816
  year: 2001
  ident: ref_76
  article-title: Model abstraction and inclusion principle: A comparison
  publication-title: IEEE Trans. Autom. Control
– volume: 5
  start-page: 571
  year: 2018
  ident: ref_14
  article-title: Asynchronous Distributed Blind Calibration of Sensor Networks under Noisy Measurements
  publication-title: IEEE Trans. Control Netw. Syst.
  doi: 10.1109/TCNS.2016.2633788
– ident: ref_12
  doi: 10.1109/IPSN.2007.4379667
– ident: ref_51
– ident: ref_15
  doi: 10.1109/MED.2012.6265777
– volume: 17
  start-page: 4158
  year: 2017
  ident: ref_33
  article-title: A Deep Learning Approach for Blind Drift Calibration of Sensor Networks
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2017.2703885
– ident: ref_42
  doi: 10.1109/CDC.2006.377325
– volume: 56
  start-page: 1337
  year: 2011
  ident: ref_63
  article-title: Asynchronous broadcast-based convex optimization over a network
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2010.2079650
– ident: ref_61
– volume: 38
  start-page: 447
  year: 2000
  ident: ref_68
  article-title: The ODE method for convergence of stochastic approximation and reinforcement learning
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/S0363012997331639
– ident: ref_16
  doi: 10.1109/CDC.2012.6426180
– ident: ref_34
  doi: 10.1109/ICASSP.2017.7952949
– volume: 11
  start-page: 50
  year: 2015
  ident: ref_39
  article-title: Geospatial Estimation-Based Auto Drift Correction in Wireless Sensor Networks
  publication-title: ACM Trans. Sens. Netw.
  doi: 10.1145/2736697
– volume: 65
  start-page: 64
  year: 2016
  ident: ref_70
  article-title: Structural modeling and convergence analysis of consensus-based time synchronization algorithms over networks: Non-topological conditions
  publication-title: Automatica
  doi: 10.1016/j.automatica.2015.11.034
– ident: ref_31
– volume: 56
  start-page: 1146
  year: 2008
  ident: ref_45
  article-title: Optimal Synchronization for Networks of Noisy Double Integrators
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2011.2107051
– volume: 2
  start-page: 78
  year: 2015
  ident: ref_48
  article-title: Ergodic randomized algorithms and dynamics over networks
  publication-title: IEEE Trans. Control Netw. Syst.
  doi: 10.1109/TCNS.2014.2367571
– ident: ref_53
  doi: 10.1109/ACC.2013.6580870
– volume: 37
  start-page: 63
  year: 2017
  ident: ref_8
  article-title: Distributed algorithm for target localization in wireless sensor networks using RSS and AoA measurements
  publication-title: Pervasive Mob. Comput.
  doi: 10.1016/j.pmcj.2016.09.013
– ident: ref_37
  doi: 10.1109/ICASSP.2016.7472216
– volume: 20
  start-page: 176
  year: 2010
  ident: ref_50
  article-title: Consensus-based distributed sensor calibration and least-square parameter identification in WSNs
  publication-title: Int. J. Robust Nonlinear Control
  doi: 10.1002/rnc.1452
– ident: ref_77
  doi: 10.1109/CDC.2012.6426752
– ident: ref_3
  doi: 10.1002/9780470515181
– volume: 14
  start-page: 18410
  year: 2014
  ident: ref_9
  article-title: Distributed RSS-Based Localization in Wireless Sensor Networks Based on Second-Order Cone Programming
  publication-title: Sensors
  doi: 10.3390/s141018410
– ident: ref_67
  doi: 10.1007/978-1-4613-0163-9
– volume: 59
  start-page: 2963
  year: 2010
  ident: ref_71
  article-title: Feedback-Based Clock Synchronization in Wireless Sensor Networks: A Control Theoretic Approach
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2010.2049869
– volume: 13
  start-page: 111
  year: 2016
  ident: ref_17
  article-title: A consensus-based distributed calibration algorithm for sensor networks
  publication-title: Serb. J. Electr. Eng.
  doi: 10.2298/SJEE1601111S
– volume: 91
  start-page: 1151
  year: 2003
  ident: ref_4
  article-title: Special issue on sensor networks and applications
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2003.814925
– volume: 9
  start-page: 159
  year: 1974
  ident: ref_21
  article-title: Matrices with dominating diagonal blocks
  publication-title: J. Econ. Theory
  doi: 10.1016/0022-0531(74)90064-7
– volume: 38
  start-page: 393
  year: 2002
  ident: ref_5
  article-title: Wireless sensor networks: A survey
  publication-title: Comput. Netw.
  doi: 10.1016/S1389-1286(01)00302-4
– ident: ref_20
– volume: 55
  start-page: 235
  year: 2010
  ident: ref_59
  article-title: Stochastic consensus seeking with noisy and directed inter-agent communications: Fixed and randomly varying topologies
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2009.2036291
– volume: 55
  start-page: 2043
  year: 2010
  ident: ref_58
  article-title: Consensus conditions of multi agent systems with time varying topologies
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2010.2042982
– ident: ref_30
– ident: ref_6
  doi: 10.1109/CDC.2006.377101
– volume: 14
  start-page: 1518
  year: 2014
  ident: ref_35
  article-title: A Blind Calibration Scheme Exploiting Mutual Calibration Relationships for a Dense Mobile Sensor Network
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2013.2297714
– volume: 112
  start-page: 396
  year: 1985
  ident: ref_19
  article-title: Overlapping block diagonal dominance and existence of Lyapunov functions
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(85)90250-1
– volume: 62
  start-page: 4847
  year: 2014
  ident: ref_27
  article-title: Convex Optimization Approaches for Blind Sensor Calibration Using Sparsity
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2014.2342651
– volume: 100
  start-page: 1287
  year: 2012
  ident: ref_1
  article-title: Cyber–physical systems: A perspective at the centennial
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2012.2189792
– ident: ref_47
– volume: 93
  start-page: 126
  year: 2018
  ident: ref_41
  article-title: Distributed time synchronization for networks with random delays and measurement noise
  publication-title: Automatica
  doi: 10.1016/j.automatica.2018.03.054
– volume: 1
  start-page: 283
  year: 2014
  ident: ref_49
  article-title: An asynchrnous consensus-based algorithm for estimation from noisy relative measurements
  publication-title: IEEE Trans. Control Netw. Syst.
  doi: 10.1109/TCNS.2014.2353512
– volume: 95
  start-page: 215
  year: 2007
  ident: ref_18
  article-title: Consensus and cooperation in networked multi-agent systems
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2006.887293
– volume: 5
  start-page: 392
  year: 2016
  ident: ref_7
  article-title: Distributed RSS-AoA Based Localization with Unknown Transmit Powers
  publication-title: IEEE Wirel. Commun. Lett.
  doi: 10.1109/LWC.2016.2567394
– ident: ref_36
  doi: 10.1007/978-3-319-22482-4
– ident: ref_43
  doi: 10.1145/1435473.1435477
– volume: 125
  start-page: 711
  year: 1959
  ident: ref_65
  article-title: Some limit theorems for stochastic processes stationary in the strict sense
  publication-title: Dokl. Akad. Nauk SSSR
– ident: ref_40
  doi: 10.1109/MED.2016.7535942
– ident: ref_69
  doi: 10.1016/j.automatica.2018.03.054
– volume: 12
  start-page: 2287
  year: 2018
  ident: ref_72
  article-title: Distributed Asynchronous Consensus-based Algorithm for Blind Calibration of Sensor Networks with Autonomous Gain Correction
  publication-title: IET Control Theory Appl.
  doi: 10.1049/iet-cta.2018.5417
– ident: ref_25
– volume: 5
  start-page: 665
  year: 2011
  ident: ref_52
  article-title: Gossip-Based Algorithm for Joint Signature Estimation and Node Calibration in Sensor Networks
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2011.2119291
– volume: 63
  start-page: 662
  year: 2015
  ident: ref_23
  article-title: On Recursive Blind Equalization in Sensor Networks
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2014.2376884
– ident: ref_2
– volume: 60
  start-page: 3257
  year: 2015
  ident: ref_13
  article-title: Distributed Blind Calibration in Lossy Sensor Networks via Output Synchronization
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2015.2426272
– ident: ref_26
  doi: 10.1109/ICASSP.2014.6854402
– volume: 45
  start-page: 1397
  year: 2009
  ident: ref_74
  article-title: Consensus Based Overlapping Decentralized Estimation with Missing Observations and Communication Faults
  publication-title: Automatica
  doi: 10.1016/j.automatica.2009.02.014
– volume: 49
  start-page: 3015
  year: 2013
  ident: ref_46
  article-title: Distributed clock skew and offset estimation from relative measurements in mobile networks with Markovian switching topologies
  publication-title: Automatica
  doi: 10.1016/j.automatica.2013.07.015
– ident: ref_24
  doi: 10.1007/978-1-4757-2985-6
– ident: ref_38
  doi: 10.1088/1742-5468/2015/11/P11013
– volume: 16
  start-page: 6249
  year: 2016
  ident: ref_32
  article-title: Blind Drift Calibration of Sensor Networks Using Sparse Bayesian Learning
  publication-title: IEEE Sens. J.
– ident: ref_29
  doi: 10.1109/ICC.2008.176
– ident: ref_60
– volume: 54
  start-page: 410
  year: 2009
  ident: ref_73
  article-title: Consensus based overlapping decentralized estimator
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2008.2009583
– volume: 2
  start-page: 107
  year: 2005
  ident: ref_64
  article-title: Basic Properties of Strong Mixing Conditions a Survey and Some Open Questions
  publication-title: Probab. Surv.
  doi: 10.1214/154957805100000104
– ident: ref_55
  doi: 10.1007/978-1-4612-5612-0_14
– ident: ref_56
  doi: 10.1109/GlobalSIP.2015.7418249
– ident: ref_57
– volume: 8
  start-page: 463
  year: 2003
  ident: ref_11
  article-title: Macro-calibration in sensor/actuator networks
  publication-title: Mob. Netw. Appl.
  doi: 10.1023/A:1024548100497
– ident: ref_28
  doi: 10.1007/3-540-36978-3_20
– volume: 50
  start-page: 655
  year: 2005
  ident: ref_54
  article-title: Consensus seeking in multi-agent systems under dynamically changing interaction topologies
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2005.846556
– volume: 57
  start-page: 2748
  year: 2009
  ident: ref_62
  article-title: Broadcast gossip algorithms for consensus
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2009.2016247
– volume: 42
  start-page: 43
  year: 1956
  ident: ref_66
  article-title: A central limit theorem and a strong mixing condition
  publication-title: Proc. Natl. acad. Sci. USA
  doi: 10.1073/pnas.42.1.43
– volume: 47
  start-page: 1878
  year: 2011
  ident: ref_44
  article-title: Average TimeSynch: A consensus-based protocol for time synchronization in wireless sensor networks
  publication-title: Automatica
  doi: 10.1016/j.automatica.2011.06.012
– ident: ref_22
  doi: 10.1109/CVPRW.2009.5206815
– volume: 60
  start-page: 219
  year: 2015
  ident: ref_75
  article-title: Consensus-based decentralized real-time identification of large-scale systems
  publication-title: Automatica
  doi: 10.1016/j.automatica.2015.07.018
– reference: 25275350 - Sensors (Basel). 2014 Oct 01;14(10):18410-32
– reference: 16589813 - Proc Natl Acad Sci U S A. 1956 Jan;42(1):43-7
SSID ssj0023338
Score 2.3207498
SecondaryResourceType review_article
Snippet This paper deals with recently proposed algorithms for real-time distributed blind macro-calibration of sensor networks based on consensus (synchronization)....
SourceID doaj
swepub
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 4027
SubjectTerms blind calibration
consensus
distributed estimation
macro calibration
Review
sensor networks
stochastic approximation
synchronization
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB6hnuCw4rkEFhQQQnuJasdOYh_7oKqQKAfoqrfIdmy1AqVo2_7_Hdtp1YhKXLhFyVhxZsaeb5TxNwCfmKXcKm2y3DifoBRlJnjTZFpT3RSsISqU_H9blPMl_7oqVmetvnxNWKQHjoobWvQoXeTSMKK4pkxZ2QgnpKO5M6a0fvclkhyTqS7VYph5RR4hhkn9cIdxDDMJ3zrmLPoEkv5LyPLvAskejWgIPbOncNVhxnQU5_oMHtn2OTw5YxJ8AZPvbep7b_rGFbtsjKGpSaeeE9e3s8LrMaLJJvUHsXQ0ebp16Q-U3t6ni1gJvnsJy9mXn5N51vVHyAyv5D7j1lYBwREnjMFIo0muiCMCIU9VUUW4qZzvuoeLTsvSCae5KxghVimqEBe8gkG7be1rSCuHI7UococASSqt0HJcq8aZUlNnTQK3R73VpiMP9z0sfteYRHgV1ycVJ_DxJPonMmZcEhp75Z8EPMl1uIGmrzvT1_8yfQIfjqarcVH4Px2qtdvDrs4pEyX6QCkTuI6mPL0qcKThvpNA1TNyby79J-1mHYi3MfnjlLAEPkd36A2Zbu5GYfq_9us6rxBq5W_-x1e-hccI0oQ__0jlDQz29wf7DoHQXr8PPv8AF6kJRQ
  priority: 102
  providerName: Directory of Open Access Journals
Title On Consensus-Based Distributed Blind Calibration of Sensor Networks
URI https://www.ncbi.nlm.nih.gov/pubmed/30463196
https://www.proquest.com/docview/2138633369
https://pubmed.ncbi.nlm.nih.gov/PMC6264103
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-270812
https://doaj.org/article/e787b529c30a4b13ae9d8f89f12fcc6e
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB314wIHxDcpsAoIIS4B23Fi54BQt-1SIXVBwKK9RbZj04oqKZutBP-esZONiNgDlyhKxoo1Y2feJPZ7AC9SS7lV2iTMOF-gZHkieVUlWlNdZWlFVFjyfzbPTxf8wzJb7sBGY7N3YLu1tPN6UovV5etfP3-_wwn_1lecWLK_aTFLYZ3AxC7sY0LKfQ12xoefCSxNg6C139OVYD4kHcHQuOkoLQX2_m2Q89-VkyN-0ZCTZrfhVg8m48Mu-ndgx9Z34eZfFIP34OhjHXtRTq9o0SZTzFlVfOzJcr3OFZ5PEWZWsd-hpbuxEDcu_oLWzSqed0vE2_uwmJ18PTpNeuGExHBRrBNurQjQjjhpDKYgTZgijkjEQkJQRbgRzsvx4WzURe6k09xlKSFWKaoQMDyAvbqp7SOIhcOWWmbMIXIqlFYYUq5V5UyuqbMmglcbv5WmZxX34haXJVYX3sXl4OIIng-mVx2VxjajqXf-YODZr8OFZvW97CdTafEtozNWmJQormmqbFFJJwtHmTMmtxE824SuxNnif4Go2jbXbcloKnMcD3kRwcMulMOjAnkavpAiEKMgj_oyvlNfnAdGbqwKOSVpBC-74TBqcnzx7TB0_8f6vGQCMRg7-F_Dx3ADEZr0mx9p8QT21qtr-xRR0FpPYFcsBR7l7P0E9qcn80-fJ-GLwiSM_j9S2gvP
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+Consensus-Based+Distributed+Blind+Calibration+of+Sensor+Networks&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Stankovic%2C+Milos+S.&rft.au=Stankovic%2C+Srdjan+S.&rft.au=Johansson%2C+Karl+Henrik&rft.au=Beko%2C+Marko&rft.date=2018-11-19&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=18&rft.issue=11&rft_id=info:doi/10.3390%2Fs18114027&rft.externalDocID=oai_DiVA_org_kth_270812
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon