Neuronal Mechanisms and Attentional Modulation of Corticothalamic Alpha Oscillations
Field potential oscillations in the ∼10 Hz range are known as the alpha rhythm. The genesis and function of alpha has been the subject of intense investigation for the past 80 years. Whereas early work focused on the thalamus as the pacemaker of alpha rhythm, subsequent slice studies revealed that p...
Saved in:
Published in | The Journal of neuroscience Vol. 31; no. 13; pp. 4935 - 4943 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Society for Neuroscience
30.03.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Field potential oscillations in the ∼10 Hz range are known as the alpha rhythm. The genesis and function of alpha has been the subject of intense investigation for the past 80 years. Whereas early work focused on the thalamus as the pacemaker of alpha rhythm, subsequent slice studies revealed that pyramidal neurons in the deep layers of sensory cortices are capable of oscillating in the alpha frequency range independently. How thalamic and cortical generating mechanisms in the intact brain might interact to shape the organization and function of alpha oscillations remains unclear. We addressed this problem by analyzing laminar profiles of local field potential and multiunit activity (MUA) recorded with linear array multielectrodes from the striate cortex of two macaque monkeys performing an intermodal selective attention task. Current source density (CSD) analysis was combined with CSD–MUA coherence to identify intracortical alpha current generators and assess their potential for pacemaking. Coherence and Granger causality analysis was applied to delineate the patterns of interaction among different alpha current generators. We found that (1) separable alpha current generators are located in superficial, granular, and deep layers, with both layer 4C and deep layers containing primary local pacemaking generators, suggesting the involvement of the thalamocortical network, and (2) visual attention reduces the magnitude of alpha oscillations as well as the level of alpha interactions, consistent with numerous reports of occipital alpha reduction with visual attention in human EEG. There is also indication that alpha oscillations in the lateral geniculate cohere with those in V1. |
---|---|
AbstractList | Field potential oscillations in the ∼10 Hz range are known as the alpha rhythm. The genesis and function of alpha has been the subject of intense investigation for the past 80 years. Whereas early work focused on the thalamus as the pacemaker of alpha rhythm, subsequent slice studies revealed that pyramidal neurons in the deep layers of sensory cortices are capable of oscillating in the alpha frequency range independently. How thalamic and cortical generating mechanisms in the intact brain might interact to shape the organization and function of alpha oscillations remains unclear. We addressed this problem by analyzing laminar profiles of local field potential and multiunit activity (MUA) recorded with linear array multielectrodes from the striate cortex of two macaque monkeys performing an intermodal selective attention task. Current source density (CSD) analysis was combined with CSD-MUA coherence to identify intracortical alpha current generators and assess their potential for pacemaking. Coherence and Granger causality analysis was applied to delineate the patterns of interaction among different alpha current generators. We found that (1) separable alpha current generators are located in superficial, granular, and deep layers, with both layer 4C and deep layers containing primary local pacemaking generators, suggesting the involvement of the thalamocortical network, and (2) visual attention reduces the magnitude of alpha oscillations as well as the level of alpha interactions, consistent with numerous reports of occipital alpha reduction with visual attention in human EEG. There is also indication that alpha oscillations in the lateral geniculate cohere with those in V1. Field potential oscillations in the ∼10 Hz range are known as the alpha rhythm. The genesis and function of alpha has been the subject of intense investigation for the past 80 years. Whereas early work focused on the thalamus as the pacemaker of alpha rhythm, subsequent slice studies revealed that pyramidal neurons in the deep layers of sensory cortices are capable of oscillating in the alpha frequency range independently. How thalamic and cortical generating mechanisms in the intact brain might interact to shape the organization and function of alpha oscillations remains unclear. We addressed this problem by analyzing laminar profiles of local field potential and multiunit activity (MUA) recorded with linear array multielectrodes from the striate cortex of two macaque monkeys performing an intermodal selective attention task. Current source density (CSD) analysis was combined with CSD-MUA coherence to identify intracortical alpha current generators and assess their potential for pacemaking. Coherence and Granger causality analysis was applied to delineate the patterns of interaction among different alpha current generators. We found that (1) separable alpha current generators are located in superficial, granular, and deep layers, with both layer 4C and deep layers containing primary local pacemaking generators, suggesting the involvement of the thalamocortical network, and (2) visual attention reduces the magnitude of alpha oscillations as well as the level of alpha interactions, consistent with numerous reports of occipital alpha reduction with visual attention in human EEG. There is also indication that alpha oscillations in the lateral geniculate cohere with those in V1.Field potential oscillations in the ∼10 Hz range are known as the alpha rhythm. The genesis and function of alpha has been the subject of intense investigation for the past 80 years. Whereas early work focused on the thalamus as the pacemaker of alpha rhythm, subsequent slice studies revealed that pyramidal neurons in the deep layers of sensory cortices are capable of oscillating in the alpha frequency range independently. How thalamic and cortical generating mechanisms in the intact brain might interact to shape the organization and function of alpha oscillations remains unclear. We addressed this problem by analyzing laminar profiles of local field potential and multiunit activity (MUA) recorded with linear array multielectrodes from the striate cortex of two macaque monkeys performing an intermodal selective attention task. Current source density (CSD) analysis was combined with CSD-MUA coherence to identify intracortical alpha current generators and assess their potential for pacemaking. Coherence and Granger causality analysis was applied to delineate the patterns of interaction among different alpha current generators. We found that (1) separable alpha current generators are located in superficial, granular, and deep layers, with both layer 4C and deep layers containing primary local pacemaking generators, suggesting the involvement of the thalamocortical network, and (2) visual attention reduces the magnitude of alpha oscillations as well as the level of alpha interactions, consistent with numerous reports of occipital alpha reduction with visual attention in human EEG. There is also indication that alpha oscillations in the lateral geniculate cohere with those in V1. |
Author | Schroeder, Charles E. Mo, Jue Ding, Mingzhou Bollimunta, Anil |
Author_xml | – sequence: 1 givenname: Anil surname: Bollimunta fullname: Bollimunta, Anil – sequence: 2 givenname: Jue surname: Mo fullname: Mo, Jue – sequence: 3 givenname: Charles E. surname: Schroeder fullname: Schroeder, Charles E. – sequence: 4 givenname: Mingzhou surname: Ding fullname: Ding, Mingzhou |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21451032$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUV1P2zAUtSbQKN3-AsrbnsKuHX800jSpqhgDQSvx8WzdOvbqKYm7OEHav8ehBQEvPFm-55x77HOOyUEbWkvICYVTKljx_XJ5dn-zul1cnAoxgzyNGVD6iUwSWuaMAz0gE2AKcskVPyLHMf4FAAVUfSZHjHJBoWATcre0QxdarLNrazbY-tjEDNsqm_e9bXu_g0I11DhesuCyReh6b0K_wRobb7J5vd1gtorG1ztS_EIOHdbRft2fU3L_6-xu8Tu_Wp1fLOZXueGq7HO-NlRyh6aqjEExKymAcOAslcjWRSlVWXKJXFHJ5MwVqARHVgB3BmAtXTElP3d7t8O6sZVJD-6w1tvON9j91wG9fou0fqP_hAddCBAyBTAl3_YLuvBvsLHXjY_Gpn-0NgxRz0SpOPCySMyT11YvHs9JJsKPHcF0IcbOOm18_xRHcva1pqDH4vRLcXosbhyPxSW5fCd_dvhA-AgrT586 |
CitedBy_id | crossref_primary_10_1016_j_neuroimage_2015_09_007 crossref_primary_10_3389_fncom_2022_883065 crossref_primary_10_1016_j_neuroimage_2012_12_024 crossref_primary_10_1109_ACCESS_2022_3161489 crossref_primary_10_1073_pnas_2022097118 crossref_primary_10_1016_j_neuroimage_2017_11_068 crossref_primary_10_1016_j_bpsc_2017_09_009 crossref_primary_10_1371_journal_pbio_3000685 crossref_primary_10_1162_jocn_a_01600 crossref_primary_10_3389_fnsys_2024_1489949 crossref_primary_10_1111_brv_12688 crossref_primary_10_1146_annurev_neuro_062012_170433 crossref_primary_10_1038_s41598_018_35400_9 crossref_primary_10_1162_jocn_a_00637 crossref_primary_10_1016_j_neubiorev_2013_05_007 crossref_primary_10_1111_psyp_12678 crossref_primary_10_1162_neco_a_01327 crossref_primary_10_3389_fncir_2015_00080 crossref_primary_10_1016_j_neuron_2018_07_038 crossref_primary_10_1016_j_cub_2024_11_015 crossref_primary_10_1016_j_neuroimage_2023_119938 crossref_primary_10_1016_j_neuroimage_2015_03_073 crossref_primary_10_1093_scan_nsac029 crossref_primary_10_1161_STROKEAHA_114_007645 crossref_primary_10_1016_j_neuroimage_2021_118600 crossref_primary_10_3389_fncom_2018_00023 crossref_primary_10_1111_jcpp_13042 crossref_primary_10_3390_vision4020022 crossref_primary_10_1186_s40359_021_00575_w crossref_primary_10_1016_j_neuroimage_2016_01_037 crossref_primary_10_1089_brain_2012_0088 crossref_primary_10_1162_jocn_a_02118 crossref_primary_10_1016_j_neuroimage_2016_02_078 crossref_primary_10_1152_jn_00068_2022 crossref_primary_10_1016_j_nicl_2018_08_013 crossref_primary_10_1073_pnas_1402773111 crossref_primary_10_3389_fnhum_2023_1180056 crossref_primary_10_1016_j_neuroimage_2017_06_014 crossref_primary_10_1038_s41598_021_96849_9 crossref_primary_10_1371_journal_pcbi_1005519 crossref_primary_10_1016_j_brs_2019_07_018 crossref_primary_10_1007_s10548_021_00855_z crossref_primary_10_1152_jn_00471_2019 crossref_primary_10_1016_j_clinph_2013_11_028 crossref_primary_10_1111_psyp_12212 crossref_primary_10_1016_j_nbd_2024_106557 crossref_primary_10_1016_j_tics_2020_05_004 crossref_primary_10_3389_fpsyg_2024_1225737 crossref_primary_10_1016_j_bandl_2019_104741 crossref_primary_10_1162_jocn_a_02004 crossref_primary_10_1162_jocn_a_02006 crossref_primary_10_1016_j_celrep_2020_03_050 crossref_primary_10_1523_JNEUROSCI_0918_24_2024 crossref_primary_10_3389_fmedt_2022_856412 crossref_primary_10_1016_j_neuron_2013_06_047 crossref_primary_10_1038_s41598_024_78173_0 crossref_primary_10_3389_fnsys_2021_636395 crossref_primary_10_4306_jknpa_2021_60_4_379 crossref_primary_10_1111_ejn_13935 crossref_primary_10_1523_JNEUROSCI_0509_14_2014 crossref_primary_10_1097_JS9_0000000000002190 crossref_primary_10_1111_psyp_13038 crossref_primary_10_1162_jocn_a_00395 crossref_primary_10_1142_S0218127418501043 crossref_primary_10_1371_journal_pcbi_1003401 crossref_primary_10_1371_journal_pbio_3000487 crossref_primary_10_1093_cercor_bhw285 crossref_primary_10_1523_JNEUROSCI_4889_13_2014 crossref_primary_10_31083_j_jin_2021_01_297 crossref_primary_10_2196_67188 crossref_primary_10_2139_ssrn_4060645 crossref_primary_10_1038_s41467_022_32378_x crossref_primary_10_1016_j_neuroimage_2015_03_028 crossref_primary_10_1002_hbm_23207 crossref_primary_10_1016_j_neuron_2018_12_009 crossref_primary_10_1371_journal_pone_0293546 crossref_primary_10_1007_s00221_018_5200_z crossref_primary_10_1016_j_neuroimage_2022_119035 crossref_primary_10_1016_j_neuroimage_2013_07_029 crossref_primary_10_1111_ejn_12612 crossref_primary_10_1177_1745691620917340 crossref_primary_10_1073_pnas_2110868119 crossref_primary_10_1162_jocn_a_00164 crossref_primary_10_1093_cercor_bhw278 crossref_primary_10_1162_netn_a_00077 crossref_primary_10_3389_fbioe_2017_00078 crossref_primary_10_1016_j_jneumeth_2021_109473 crossref_primary_10_1038_s41467_018_07007_1 crossref_primary_10_1016_j_neuroimage_2021_118127 crossref_primary_10_1016_j_neuron_2012_04_018 crossref_primary_10_1016_j_neuron_2015_12_018 crossref_primary_10_1038_s41598_021_82504_w crossref_primary_10_1016_j_tins_2015_02_006 crossref_primary_10_1088_0967_3334_33_8_1379 crossref_primary_10_1162_jocn_a_00727 crossref_primary_10_1111_psyp_14707 crossref_primary_10_1093_cercor_bhac154 crossref_primary_10_1093_cercor_bhz214 crossref_primary_10_1111_psyp_12405 crossref_primary_10_1016_j_neuroimage_2017_11_002 crossref_primary_10_1016_j_psyneuen_2020_104838 crossref_primary_10_3389_fncir_2021_659280 crossref_primary_10_1016_j_brainresbull_2024_110947 crossref_primary_10_1016_j_clinph_2014_01_021 crossref_primary_10_1016_j_neuroimage_2015_02_031 crossref_primary_10_1016_j_schres_2016_06_003 crossref_primary_10_1111_adb_12390 crossref_primary_10_1016_j_neuroimage_2022_119060 crossref_primary_10_1523_JNEUROSCI_4216_13_2014 crossref_primary_10_1073_pnas_1704663114 crossref_primary_10_1152_jn_00224_2018 crossref_primary_10_3390_brainsci12081073 crossref_primary_10_1016_j_jpsychires_2022_02_032 crossref_primary_10_1016_j_cub_2015_10_007 crossref_primary_10_1111_ene_15927 crossref_primary_10_1007_s10548_019_00708_w crossref_primary_10_1038_ncomms5694 crossref_primary_10_1111_ejn_14931 crossref_primary_10_1523_JNEUROSCI_4939_12_2013 crossref_primary_10_1523_JNEUROSCI_5778_12_2013 crossref_primary_10_1016_j_cub_2012_10_020 crossref_primary_10_1523_JNEUROSCI_0600_15_2015 crossref_primary_10_3389_fncir_2015_00065 crossref_primary_10_1371_journal_pcbi_1005162 crossref_primary_10_1002_aur_1374 crossref_primary_10_3389_fncir_2015_00064 crossref_primary_10_1016_j_neuroimage_2024_120637 crossref_primary_10_1371_journal_pone_0129496 crossref_primary_10_1016_j_ijpsycho_2011_10_013 crossref_primary_10_1016_j_neuron_2012_09_033 crossref_primary_10_3389_fnhum_2015_00563 crossref_primary_10_1016_j_concog_2022_103337 crossref_primary_10_1186_1744_9081_8_60 crossref_primary_10_1016_j_neubiorev_2020_03_030 crossref_primary_10_1038_nn_3764 crossref_primary_10_1016_j_neuroimage_2012_11_058 crossref_primary_10_1371_journal_pbio_2003230 crossref_primary_10_1371_journal_pcbi_1010012 crossref_primary_10_1016_j_alcohol_2013_12_004 crossref_primary_10_1016_j_neuron_2013_03_007 crossref_primary_10_1523_ENEURO_0128_23_2023 crossref_primary_10_1016_j_brainres_2015_02_004 crossref_primary_10_1016_j_neuron_2012_10_038 crossref_primary_10_1002_hbm_23645 crossref_primary_10_1016_j_neuroimage_2020_117066 crossref_primary_10_1016_j_tics_2021_10_009 crossref_primary_10_1007_s10633_012_9357_7 crossref_primary_10_1080_17588928_2019_1627303 crossref_primary_10_1016_j_brainres_2014_08_035 crossref_primary_10_1523_JNEUROSCI_4102_11_2011 crossref_primary_10_3389_fninf_2022_800116 crossref_primary_10_7554_eLife_33977 crossref_primary_10_1016_j_neulet_2018_10_034 crossref_primary_10_1007_s10548_021_00851_3 crossref_primary_10_1016_j_neuroimage_2019_116408 crossref_primary_10_1038_s41598_022_12146_z crossref_primary_10_1093_texcom_tgaa064 crossref_primary_10_3389_fnhum_2021_802244 crossref_primary_10_1073_pnas_1215385109 crossref_primary_10_3389_fneur_2020_529460 crossref_primary_10_1073_pnas_1117190108 crossref_primary_10_1093_cercor_bhs389 crossref_primary_10_1016_j_brainres_2015_02_017 crossref_primary_10_1152_jn_00781_2012 crossref_primary_10_1371_journal_pcbi_1003164 crossref_primary_10_1038_s41467_019_08725_w crossref_primary_10_1523_ENEURO_0224_19_2020 crossref_primary_10_1007_s00221_016_4811_5 crossref_primary_10_3389_fncom_2014_00036 crossref_primary_10_3758_s13423_020_01711_0 crossref_primary_10_1371_journal_pcbi_1012429 crossref_primary_10_1038_s41593_023_01554_7 crossref_primary_10_1016_j_neubiorev_2021_02_043 crossref_primary_10_1093_cercor_bhae099 crossref_primary_10_1111_pcn_13300 crossref_primary_10_3390_jcm14020545 crossref_primary_10_7554_eLife_62949 crossref_primary_10_1016_j_tins_2018_08_008 crossref_primary_10_1016_j_clinph_2015_10_032 crossref_primary_10_1016_j_concog_2017_03_006 crossref_primary_10_1016_j_neuroimage_2014_12_081 crossref_primary_10_7554_eLife_67838 crossref_primary_10_1016_j_neuron_2015_11_034 crossref_primary_10_1016_j_neuropsychologia_2023_108589 crossref_primary_10_1109_TBME_2019_2900206 crossref_primary_10_1021_cn500350e crossref_primary_10_1093_cercor_bhu118 crossref_primary_10_1371_journal_pbio_2003453 crossref_primary_10_1523_JNEUROSCI_4385_13_2014 crossref_primary_10_1016_j_neuroimage_2016_05_017 crossref_primary_10_1073_pnas_1913092116 crossref_primary_10_1523_JNEUROSCI_4856_13_2014 crossref_primary_10_1098_rstb_2014_0169 crossref_primary_10_1016_j_biosystems_2021_104403 crossref_primary_10_1111_psyp_13827 crossref_primary_10_1093_cercor_bhaa185 crossref_primary_10_1523_JNEUROSCI_4641_13_2014 crossref_primary_10_1162_jocn_a_00460 crossref_primary_10_1002_cne_23458 crossref_primary_10_1523_ENEURO_0171_20_2020 crossref_primary_10_1523_JNEUROSCI_2817_11_2012 crossref_primary_10_1007_s11571_020_09651_0 crossref_primary_10_1523_JNEUROSCI_1666_13_2013 crossref_primary_10_3390_e21050500 crossref_primary_10_3389_fnsys_2016_00007 crossref_primary_10_3389_fnhum_2020_00246 crossref_primary_10_1016_j_neuroimage_2013_06_080 crossref_primary_10_1016_j_neuroimage_2019_02_067 crossref_primary_10_1523_JNEUROSCI_3015_16_2017 crossref_primary_10_1007_s00221_015_4418_2 crossref_primary_10_1016_j_neuroimage_2014_01_007 crossref_primary_10_1038_s41598_024_74008_0 crossref_primary_10_1016_j_tics_2024_11_004 crossref_primary_10_1038_s41467_021_23021_2 crossref_primary_10_1016_j_neubiorev_2015_04_014 crossref_primary_10_1016_j_alcohol_2018_01_002 crossref_primary_10_1016_j_neuroimage_2014_04_069 crossref_primary_10_1016_j_neuroimage_2022_119687 crossref_primary_10_1016_j_neuron_2015_03_047 crossref_primary_10_3389_fnsys_2015_00189 crossref_primary_10_1007_s12035_011_8214_0 crossref_primary_10_1038_s41467_018_04785_6 crossref_primary_10_1007_s00221_012_3167_8 crossref_primary_10_1016_j_bandc_2020_105677 crossref_primary_10_1016_j_neuroimage_2014_10_057 crossref_primary_10_1152_jn_00624_2014 crossref_primary_10_1016_j_bpsc_2024_12_014 crossref_primary_10_1002_ejp_960 crossref_primary_10_1016_j_cortex_2015_03_012 crossref_primary_10_1371_journal_pone_0199120 crossref_primary_10_1016_j_neuropsychologia_2017_07_010 crossref_primary_10_1111_ejn_13300 crossref_primary_10_1186_s13229_020_00411_9 crossref_primary_10_3389_fneur_2021_697923 crossref_primary_10_1523_JNEUROSCI_0608_21_2021 crossref_primary_10_3103_S1062873820110283 crossref_primary_10_1038_s42003_022_03395_9 crossref_primary_10_1038_s41598_017_15611_2 crossref_primary_10_1111_cns_70262 crossref_primary_10_1007_s41470_017_0008_x crossref_primary_10_1038_nrn3137 crossref_primary_10_1073_pnas_1522577113 crossref_primary_10_3390_ijerph16193658 crossref_primary_10_1093_nc_niab007 crossref_primary_10_1371_journal_pbio_2003805 crossref_primary_10_1111_ejn_13318 crossref_primary_10_1523_JNEUROSCI_3387_11_2011 crossref_primary_10_1371_journal_pbio_3002964 crossref_primary_10_1073_pnas_1710323115 crossref_primary_10_1007_s11062_015_9525_y crossref_primary_10_1515_revneuro_2019_0090 crossref_primary_10_1002_aur_3266 crossref_primary_10_1016_j_jneumeth_2019_108518 crossref_primary_10_1016_j_neuron_2013_10_017 crossref_primary_10_7554_eLife_51214 crossref_primary_10_1016_j_clinph_2020_10_017 crossref_primary_10_1016_j_exger_2023_112113 crossref_primary_10_1093_braincomms_fcad035 crossref_primary_10_1371_journal_pone_0175191 crossref_primary_10_1016_j_nbd_2021_105447 crossref_primary_10_1016_j_ijpsycho_2022_01_003 crossref_primary_10_1002_jez_2220 crossref_primary_10_1016_j_neuron_2019_11_001 crossref_primary_10_1515_jom_2021_0257 crossref_primary_10_1016_j_neuroimage_2015_05_044 crossref_primary_10_1038_nrn_2017_151 crossref_primary_10_1109_TNSRE_2022_3153353 crossref_primary_10_1016_j_neuroimage_2014_07_022 crossref_primary_10_1016_j_bbr_2023_114356 crossref_primary_10_1016_j_neuroimage_2021_118746 crossref_primary_10_1152_physiol_00062_2015 crossref_primary_10_1016_j_nicl_2016_01_023 crossref_primary_10_3390_math11153307 crossref_primary_10_1162_imag_a_00312 crossref_primary_10_1038_s42003_023_05200_7 crossref_primary_10_1016_j_eurpsy_2018_01_004 crossref_primary_10_1016_j_cortex_2018_10_006 crossref_primary_10_1016_j_neuroimage_2017_04_051 crossref_primary_10_1016_j_pbiomolbio_2012_08_006 crossref_primary_10_1523_ENEURO_0153_16_2017 |
Cites_doi | 10.1126/science.1154735 10.1523/JNEUROSCI.2699-08.2008 10.1007/978-1-60327-202-5_2 10.1002/9783527609970.ch17 10.1007/s00422-006-0090-8 10.1007/s004229900137 10.1152/jn.00263.2005 10.2307/2287238 10.1177/1073858405277450 10.1152/physrev.1985.65.1.37 10.1016/0042-6989(91)90040-C 10.1093/cercor/bhp223 10.1093/acprof:oso/9780195301069.001.0001 10.1016/j.tins.2007.02.001 10.1023/A:1026539805445 10.1523/JNEUROSCI.4468-07.2008 10.1007/s004220000235 10.1146/annurev.neuro.21.1.47 10.1073/pnas.1017069108 10.1093/cercor/12.8.877 10.1093/cercor/8.7.575 10.1126/science.1824881 10.1016/j.brainresrev.2006.06.003 10.1098/rstb.2002.1161 10.1016/0013-4694(90)90001-Z 10.1523/JNEUROSCI.22-17-07766.2002 10.1162/jocn.2009.21247 10.1093/cercor/10.4.343 10.1016/S0896-6273(04)00191-6 10.1016/0013-4694(73)90217-4 10.1162/jocn.2010.21478 10.1016/j.jneumeth.2005.06.011 10.1523/JNEUROSCI.5295-10.2011 10.1152/jn.1996.75.2.951 10.1007/BF00230286 10.1016/S0167-8760(97)00764-2 10.1523/JNEUROSCI.2969-10.2010 10.1109/TAC.1974.1100705 10.1016/0013-4694(80)90011-5 10.1016/0013-4694(73)90216-2 10.1016/0013-4694(91)90044-5 10.1016/S0166-2236(00)01922-6 10.1016/0304-3940(77)90024-6 10.1093/cercor/10.4.359 10.1097/WNR.0b013e3282f454c4 10.1159/000079981 10.1098/rstb.2002.1168 10.1073/pnas.0308538101 10.1523/JNEUROSCI.16-23-07742.1996 |
ContentType | Journal Article |
Copyright | Copyright © 2011 the authors 0270-6474/11/314935-09$15.00/0 2011 |
Copyright_xml | – notice: Copyright © 2011 the authors 0270-6474/11/314935-09$15.00/0 2011 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1523/JNEUROSCI.5580-10.2011 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1529-2401 |
EndPage | 4943 |
ExternalDocumentID | PMC3505610 21451032 10_1523_JNEUROSCI_5580_10_2011 |
Genre | Journal Article Comparative Study Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: MH87275 – fundername: NIMH NIH HHS grantid: R01 MH060358 – fundername: NIMH NIH HHS grantid: MH60358 – fundername: NIMH NIH HHS grantid: R01 MH079388 – fundername: NIMH NIH HHS grantid: R21 MH087275 – fundername: NIMH NIH HHS grantid: MH79388 |
GroupedDBID | --- -DZ -~X .55 18M 2WC 34G 39C 3O- 53G 5GY 5RE 5VS AAFWJ AAJMC AAYXX ABBAR ABIVO ACGUR ACNCT ADBBV ADCOW ADHGD AENEX AETEA AFCFT AFFNX AFOSN AFSQR AHWXS ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW CITATION CS3 DIK DU5 E3Z EBS EJD F5P GX1 H13 HYE H~9 KQ8 L7B MVM OK1 P0W P2P QZG R.V RHI RPM TFN TR2 W8F WH7 WOQ X7M XJT YBU YHG YKV YNH YSK CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c479t-4bc164facddcca5891005f0fe16a2b39679946a4716268f3a754a2304fc00b6f3 |
ISSN | 0270-6474 1529-2401 |
IngestDate | Thu Aug 21 18:17:46 EDT 2025 Thu Jul 10 21:16:41 EDT 2025 Sat May 31 02:08:57 EDT 2025 Thu Apr 24 23:08:44 EDT 2025 Tue Jul 01 02:59:22 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
License | https://creativecommons.org/licenses/by-nc-sa/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c479t-4bc164facddcca5891005f0fe16a2b39679946a4716268f3a754a2304fc00b6f3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 Author contributions: M.D. and C.E.S. designed research; A.B. and J.M. performed research; C.E.S. contributed unpublished reagents/analytic tools; A.B. and J.M. analyzed data; M.D., A.B., and C.E.S. wrote the paper. |
OpenAccessLink | https://www.jneurosci.org/content/jneuro/31/13/4935.full.pdf |
PMID | 21451032 |
PQID | 859740493 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3505610 proquest_miscellaneous_859740493 pubmed_primary_21451032 crossref_citationtrail_10_1523_JNEUROSCI_5580_10_2011 crossref_primary_10_1523_JNEUROSCI_5580_10_2011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-03-30 2011-Mar-30 20110330 |
PublicationDateYYYYMMDD | 2011-03-30 |
PublicationDate_xml | – month: 03 year: 2011 text: 2011-03-30 day: 30 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of neuroscience |
PublicationTitleAlternate | J Neurosci |
PublicationYear | 2011 |
Publisher | Society for Neuroscience |
Publisher_xml | – name: Society for Neuroscience |
References | Tenke (2023041303494408000_31.13.4935.55) 1993; 94 Castro-Alamancos (2023041303494408000_31.13.4935.8) 1996; 16 2023041303494408000_31.13.4935.38 2023041303494408000_31.13.4935.37 2023041303494408000_31.13.4935.35 2023041303494408000_31.13.4935.34 2023041303494408000_31.13.4935.33 Worden (2023041303494408000_31.13.4935.56) 2000; 20 2023041303494408000_31.13.4935.32 2023041303494408000_31.13.4935.31 2023041303494408000_31.13.4935.30 2023041303494408000_31.13.4935.29 2023041303494408000_31.13.4935.28 2023041303494408000_31.13.4935.27 2023041303494408000_31.13.4935.26 2023041303494408000_31.13.4935.25 2023041303494408000_31.13.4935.24 2023041303494408000_31.13.4935.23 2023041303494408000_31.13.4935.22 2023041303494408000_31.13.4935.21 2023041303494408000_31.13.4935.20 Swadlow (2023041303494408000_31.13.4935.54) 2002; 22 2023041303494408000_31.13.4935.7 2023041303494408000_31.13.4935.9 Maier (2023041303494408000_31.13.4935.36) 2010; 4:pii 2023041303494408000_31.13.4935.19 2023041303494408000_31.13.4935.18 2023041303494408000_31.13.4935.17 Schroeder (2023041303494408000_31.13.4935.47) 1995; 44 2023041303494408000_31.13.4935.15 2023041303494408000_31.13.4935.14 2023041303494408000_31.13.4935.13 2023041303494408000_31.13.4935.57 2023041303494408000_31.13.4935.12 2023041303494408000_31.13.4935.3 2023041303494408000_31.13.4935.11 2023041303494408000_31.13.4935.4 2023041303494408000_31.13.4935.10 2023041303494408000_31.13.4935.5 2023041303494408000_31.13.4935.53 2023041303494408000_31.13.4935.6 2023041303494408000_31.13.4935.52 2023041303494408000_31.13.4935.51 2023041303494408000_31.13.4935.50 2023041303494408000_31.13.4935.1 2023041303494408000_31.13.4935.2 Flint (2023041303494408000_31.13.4935.16) 1996; 75 2023041303494408000_31.13.4935.49 2023041303494408000_31.13.4935.48 2023041303494408000_31.13.4935.46 2023041303494408000_31.13.4935.45 2023041303494408000_31.13.4935.44 Mitzdorf (2023041303494408000_31.13.4935.39) 1985; 65 2023041303494408000_31.13.4935.43 2023041303494408000_31.13.4935.42 2023041303494408000_31.13.4935.41 2023041303494408000_31.13.4935.40 |
References_xml | – ident: 2023041303494408000_31.13.4935.29 doi: 10.1126/science.1154735 – ident: 2023041303494408000_31.13.4935.4 doi: 10.1523/JNEUROSCI.2699-08.2008 – ident: 2023041303494408000_31.13.4935.10 doi: 10.1007/978-1-60327-202-5_2 – ident: 2023041303494408000_31.13.4935.14 doi: 10.1002/9783527609970.ch17 – ident: 2023041303494408000_31.13.4935.26 doi: 10.1007/s00422-006-0090-8 – ident: 2023041303494408000_31.13.4935.13 doi: 10.1007/s004229900137 – ident: 2023041303494408000_31.13.4935.28 doi: 10.1152/jn.00263.2005 – ident: 2023041303494408000_31.13.4935.17 doi: 10.2307/2287238 – ident: 2023041303494408000_31.13.4935.18 doi: 10.1177/1073858405277450 – volume: 65 start-page: 37 year: 1985 ident: 2023041303494408000_31.13.4935.39 article-title: Current source density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena publication-title: Physiol Rev doi: 10.1152/physrev.1985.65.1.37 – ident: 2023041303494408000_31.13.4935.46 doi: 10.1016/0042-6989(91)90040-C – ident: 2023041303494408000_31.13.4935.3 doi: 10.1093/cercor/bhp223 – ident: 2023041303494408000_31.13.4935.6 doi: 10.1093/acprof:oso/9780195301069.001.0001 – ident: 2023041303494408000_31.13.4935.42 doi: 10.1016/j.tins.2007.02.001 – ident: 2023041303494408000_31.13.4935.23 doi: 10.1023/A:1026539805445 – ident: 2023041303494408000_31.13.4935.35 doi: 10.1523/JNEUROSCI.4468-07.2008 – ident: 2023041303494408000_31.13.4935.41 – ident: 2023041303494408000_31.13.4935.25 doi: 10.1007/s004220000235 – ident: 2023041303494408000_31.13.4935.7 doi: 10.1146/annurev.neuro.21.1.47 – ident: 2023041303494408000_31.13.4935.2 – ident: 2023041303494408000_31.13.4935.11 doi: 10.1073/pnas.1017069108 – ident: 2023041303494408000_31.13.4935.20 doi: 10.1093/cercor/12.8.877 – ident: 2023041303494408000_31.13.4935.48 doi: 10.1093/cercor/8.7.575 – volume: 44 start-page: 55 year: 1995 ident: 2023041303494408000_31.13.4935.47 article-title: Localization of ERP generators and identification of underlying neural processes publication-title: Electroencephalogr Clin Neurophysiol Suppl – ident: 2023041303494408000_31.13.4935.52 doi: 10.1126/science.1824881 – ident: 2023041303494408000_31.13.4935.27 doi: 10.1016/j.brainresrev.2006.06.003 – ident: 2023041303494408000_31.13.4935.51 doi: 10.1098/rstb.2002.1161 – ident: 2023041303494408000_31.13.4935.53 doi: 10.1016/0013-4694(90)90001-Z – volume: 22 start-page: 7766 year: 2002 ident: 2023041303494408000_31.13.4935.54 article-title: Activation of a cortical column by a thalamocortical impulse publication-title: J Neurosci doi: 10.1523/JNEUROSCI.22-17-07766.2002 – ident: 2023041303494408000_31.13.4935.49 – ident: 2023041303494408000_31.13.4935.57 doi: 10.1162/jocn.2009.21247 – ident: 2023041303494408000_31.13.4935.37 doi: 10.1093/cercor/10.4.343 – ident: 2023041303494408000_31.13.4935.19 doi: 10.1016/S0896-6273(04)00191-6 – ident: 2023041303494408000_31.13.4935.50 – ident: 2023041303494408000_31.13.4935.33 doi: 10.1016/0013-4694(73)90217-4 – ident: 2023041303494408000_31.13.4935.43 doi: 10.1162/jocn.2010.21478 – ident: 2023041303494408000_31.13.4935.9 doi: 10.1016/j.jneumeth.2005.06.011 – ident: 2023041303494408000_31.13.4935.40 doi: 10.1523/JNEUROSCI.5295-10.2011 – volume: 75 start-page: 951 year: 1996 ident: 2023041303494408000_31.13.4935.16 article-title: Two types of network oscillations in neocortex mediated by distinct glutamate receptor subtypes and neuronal populations publication-title: J Neurophysiol doi: 10.1152/jn.1996.75.2.951 – volume: 94 start-page: 183 year: 1993 ident: 2023041303494408000_31.13.4935.55 article-title: Interpretation of high-resolution current source density profiles: a simulation of sublaminar contributions to the visual evoked potential publication-title: Exp Brain Res doi: 10.1007/BF00230286 – ident: 2023041303494408000_31.13.4935.45 doi: 10.1016/S0167-8760(97)00764-2 – ident: 2023041303494408000_31.13.4935.24 doi: 10.1523/JNEUROSCI.2969-10.2010 – ident: 2023041303494408000_31.13.4935.1 doi: 10.1109/TAC.1974.1100705 – ident: 2023041303494408000_31.13.4935.34 doi: 10.1016/0013-4694(80)90011-5 – ident: 2023041303494408000_31.13.4935.32 doi: 10.1016/0013-4694(73)90216-2 – ident: 2023041303494408000_31.13.4935.30 doi: 10.1016/0013-4694(91)90044-5 – volume: 4:pii start-page: 31 year: 2010 ident: 2023041303494408000_31.13.4935.36 article-title: Distinct superficial and deep laminar domains of activity in the visual cortex during rest and stimulation publication-title: Front Syst Neurosci – ident: 2023041303494408000_31.13.4935.21 doi: 10.1016/S0166-2236(00)01922-6 – ident: 2023041303494408000_31.13.4935.31 doi: 10.1016/0304-3940(77)90024-6 – ident: 2023041303494408000_31.13.4935.12 – ident: 2023041303494408000_31.13.4935.38 doi: 10.1093/cercor/10.4.359 – ident: 2023041303494408000_31.13.4935.44 doi: 10.1097/WNR.0b013e3282f454c4 – ident: 2023041303494408000_31.13.4935.15 doi: 10.1159/000079981 – ident: 2023041303494408000_31.13.4935.22 doi: 10.1098/rstb.2002.1168 – volume: 20 start-page: 1 issue: RC63 year: 2000 ident: 2023041303494408000_31.13.4935.56 article-title: Anticipatory biasing of visuospatial attention indexed by retinotopically specific alpha-band electroencephalography increases over occipital cortex publication-title: J Neurosci – ident: 2023041303494408000_31.13.4935.5 doi: 10.1073/pnas.0308538101 – volume: 16 start-page: 7742 year: 1996 ident: 2023041303494408000_31.13.4935.8 article-title: Cellular mechanisms of the augmenting response: short-term plasticity in a thalamocortical pathway publication-title: J Neurosci doi: 10.1523/JNEUROSCI.16-23-07742.1996 |
SSID | ssj0007017 |
Score | 2.5122268 |
Snippet | Field potential oscillations in the ∼10 Hz range are known as the alpha rhythm. The genesis and function of alpha has been the subject of intense investigation... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 4935 |
SubjectTerms | Acoustic Stimulation - methods Alpha Rhythm - physiology Animals Attention - physiology Cerebral Cortex - cytology Cerebral Cortex - physiology Macaca fascicularis Male Neural Pathways - physiology Neurons - physiology Thalamus - cytology Thalamus - physiology |
Title | Neuronal Mechanisms and Attentional Modulation of Corticothalamic Alpha Oscillations |
URI | https://www.ncbi.nlm.nih.gov/pubmed/21451032 https://www.proquest.com/docview/859740493 https://pubmed.ncbi.nlm.nih.gov/PMC3505610 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FcuGCgPIIL-0BcYmcru21HR-tqqgUpQg1lXqzdtdepSixUWsf6D_h3zKzu7GdtALKxYk29sjJfJmd8cx8Q8gHWTIZiIJ5BUulxwMpPQl-uhfNpF8q2CGCAJuT56fx8Tk_uYguRqNfg6qltpFTdXNnX8n_aBXWQK_YJXsPzXZCYQHeg37hCBqG4z_p2DBrVKa7Fht4L6_XlnE5a5quknxeF25Cl6m8qFEKaEescBD9JMNW28lX2AdXq8Gzu-89hgYe64D7ss_FI6n3uq2sE5pVfcXG3OZ02u7UM7W8qsvCdR7aNP_kaNq50m66yhxeb5Z1O3we4ZuCLJdasWYrSCAg5Xb2zrR0ZjUweRx_aHed9Xf4CgdWlKeWwsTtyDy1TE63rH1kWCdOTrHo8ezw8zSKZszD4nbmDPgWvfbOttcVI2IYBJLyTk6OcnJYRjkPyMMAIhAcjvHlW09EnzAzzLn7sq75HOQc3H0_237PrWBmtyZ34OQsnpDHTtc0s1B7SkZl9YzsZ5Vo6vVP-pGaemGTiNkniw36aI8-CuijA_TRHn201nQHfdSgjw7R95ycfzpaHB57bkaHp3iSNh6XCgJuLVRRgC3AEZVg1jXTpR-LQIZpnKQpjwVHorJ4pkORRFxgIkIrxmSswxdkr6qr8hWhWnNVaKWDQjEumRIiZmFQagj_ElhkYxJtfsFcOQJ7nKOyyv-swTE56K77YSlc_noF3SgoB2uLKTRRlXV7nc8w_oagOhyTl1ZfnUik_Ed2yjFJtjTZnYBE7tufVJdLQ-geYhjis9f3vtE35FH_F3xL9pqrtnwHTnIj3xu4_galKrtw |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neuronal+Mechanisms+and+Attentional+Modulation+of+Corticothalamic+Alpha+Oscillations&rft.jtitle=The+Journal+of+neuroscience&rft.au=Bollimunta%2C+Anil&rft.au=Mo%2C+Jue&rft.au=Schroeder%2C+Charles+E.&rft.au=Ding%2C+Mingzhou&rft.date=2011-03-30&rft.issn=0270-6474&rft.eissn=1529-2401&rft.volume=31&rft.issue=13&rft.spage=4935&rft.epage=4943&rft_id=info:doi/10.1523%2FJNEUROSCI.5580-10.2011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1523_JNEUROSCI_5580_10_2011 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon |