Neuronal Mechanisms and Attentional Modulation of Corticothalamic Alpha Oscillations

Field potential oscillations in the ∼10 Hz range are known as the alpha rhythm. The genesis and function of alpha has been the subject of intense investigation for the past 80 years. Whereas early work focused on the thalamus as the pacemaker of alpha rhythm, subsequent slice studies revealed that p...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of neuroscience Vol. 31; no. 13; pp. 4935 - 4943
Main Authors Bollimunta, Anil, Mo, Jue, Schroeder, Charles E., Ding, Mingzhou
Format Journal Article
LanguageEnglish
Published United States Society for Neuroscience 30.03.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Field potential oscillations in the ∼10 Hz range are known as the alpha rhythm. The genesis and function of alpha has been the subject of intense investigation for the past 80 years. Whereas early work focused on the thalamus as the pacemaker of alpha rhythm, subsequent slice studies revealed that pyramidal neurons in the deep layers of sensory cortices are capable of oscillating in the alpha frequency range independently. How thalamic and cortical generating mechanisms in the intact brain might interact to shape the organization and function of alpha oscillations remains unclear. We addressed this problem by analyzing laminar profiles of local field potential and multiunit activity (MUA) recorded with linear array multielectrodes from the striate cortex of two macaque monkeys performing an intermodal selective attention task. Current source density (CSD) analysis was combined with CSD–MUA coherence to identify intracortical alpha current generators and assess their potential for pacemaking. Coherence and Granger causality analysis was applied to delineate the patterns of interaction among different alpha current generators. We found that (1) separable alpha current generators are located in superficial, granular, and deep layers, with both layer 4C and deep layers containing primary local pacemaking generators, suggesting the involvement of the thalamocortical network, and (2) visual attention reduces the magnitude of alpha oscillations as well as the level of alpha interactions, consistent with numerous reports of occipital alpha reduction with visual attention in human EEG. There is also indication that alpha oscillations in the lateral geniculate cohere with those in V1.
AbstractList Field potential oscillations in the ∼10 Hz range are known as the alpha rhythm. The genesis and function of alpha has been the subject of intense investigation for the past 80 years. Whereas early work focused on the thalamus as the pacemaker of alpha rhythm, subsequent slice studies revealed that pyramidal neurons in the deep layers of sensory cortices are capable of oscillating in the alpha frequency range independently. How thalamic and cortical generating mechanisms in the intact brain might interact to shape the organization and function of alpha oscillations remains unclear. We addressed this problem by analyzing laminar profiles of local field potential and multiunit activity (MUA) recorded with linear array multielectrodes from the striate cortex of two macaque monkeys performing an intermodal selective attention task. Current source density (CSD) analysis was combined with CSD-MUA coherence to identify intracortical alpha current generators and assess their potential for pacemaking. Coherence and Granger causality analysis was applied to delineate the patterns of interaction among different alpha current generators. We found that (1) separable alpha current generators are located in superficial, granular, and deep layers, with both layer 4C and deep layers containing primary local pacemaking generators, suggesting the involvement of the thalamocortical network, and (2) visual attention reduces the magnitude of alpha oscillations as well as the level of alpha interactions, consistent with numerous reports of occipital alpha reduction with visual attention in human EEG. There is also indication that alpha oscillations in the lateral geniculate cohere with those in V1.
Field potential oscillations in the ∼10 Hz range are known as the alpha rhythm. The genesis and function of alpha has been the subject of intense investigation for the past 80 years. Whereas early work focused on the thalamus as the pacemaker of alpha rhythm, subsequent slice studies revealed that pyramidal neurons in the deep layers of sensory cortices are capable of oscillating in the alpha frequency range independently. How thalamic and cortical generating mechanisms in the intact brain might interact to shape the organization and function of alpha oscillations remains unclear. We addressed this problem by analyzing laminar profiles of local field potential and multiunit activity (MUA) recorded with linear array multielectrodes from the striate cortex of two macaque monkeys performing an intermodal selective attention task. Current source density (CSD) analysis was combined with CSD-MUA coherence to identify intracortical alpha current generators and assess their potential for pacemaking. Coherence and Granger causality analysis was applied to delineate the patterns of interaction among different alpha current generators. We found that (1) separable alpha current generators are located in superficial, granular, and deep layers, with both layer 4C and deep layers containing primary local pacemaking generators, suggesting the involvement of the thalamocortical network, and (2) visual attention reduces the magnitude of alpha oscillations as well as the level of alpha interactions, consistent with numerous reports of occipital alpha reduction with visual attention in human EEG. There is also indication that alpha oscillations in the lateral geniculate cohere with those in V1.Field potential oscillations in the ∼10 Hz range are known as the alpha rhythm. The genesis and function of alpha has been the subject of intense investigation for the past 80 years. Whereas early work focused on the thalamus as the pacemaker of alpha rhythm, subsequent slice studies revealed that pyramidal neurons in the deep layers of sensory cortices are capable of oscillating in the alpha frequency range independently. How thalamic and cortical generating mechanisms in the intact brain might interact to shape the organization and function of alpha oscillations remains unclear. We addressed this problem by analyzing laminar profiles of local field potential and multiunit activity (MUA) recorded with linear array multielectrodes from the striate cortex of two macaque monkeys performing an intermodal selective attention task. Current source density (CSD) analysis was combined with CSD-MUA coherence to identify intracortical alpha current generators and assess their potential for pacemaking. Coherence and Granger causality analysis was applied to delineate the patterns of interaction among different alpha current generators. We found that (1) separable alpha current generators are located in superficial, granular, and deep layers, with both layer 4C and deep layers containing primary local pacemaking generators, suggesting the involvement of the thalamocortical network, and (2) visual attention reduces the magnitude of alpha oscillations as well as the level of alpha interactions, consistent with numerous reports of occipital alpha reduction with visual attention in human EEG. There is also indication that alpha oscillations in the lateral geniculate cohere with those in V1.
Author Schroeder, Charles E.
Mo, Jue
Ding, Mingzhou
Bollimunta, Anil
Author_xml – sequence: 1
  givenname: Anil
  surname: Bollimunta
  fullname: Bollimunta, Anil
– sequence: 2
  givenname: Jue
  surname: Mo
  fullname: Mo, Jue
– sequence: 3
  givenname: Charles E.
  surname: Schroeder
  fullname: Schroeder, Charles E.
– sequence: 4
  givenname: Mingzhou
  surname: Ding
  fullname: Ding, Mingzhou
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21451032$$D View this record in MEDLINE/PubMed
BookMark eNqFUV1P2zAUtSbQKN3-AsrbnsKuHX800jSpqhgDQSvx8WzdOvbqKYm7OEHav8ehBQEvPFm-55x77HOOyUEbWkvICYVTKljx_XJ5dn-zul1cnAoxgzyNGVD6iUwSWuaMAz0gE2AKcskVPyLHMf4FAAVUfSZHjHJBoWATcre0QxdarLNrazbY-tjEDNsqm_e9bXu_g0I11DhesuCyReh6b0K_wRobb7J5vd1gtorG1ztS_EIOHdbRft2fU3L_6-xu8Tu_Wp1fLOZXueGq7HO-NlRyh6aqjEExKymAcOAslcjWRSlVWXKJXFHJ5MwVqARHVgB3BmAtXTElP3d7t8O6sZVJD-6w1tvON9j91wG9fou0fqP_hAddCBAyBTAl3_YLuvBvsLHXjY_Gpn-0NgxRz0SpOPCySMyT11YvHs9JJsKPHcF0IcbOOm18_xRHcva1pqDH4vRLcXosbhyPxSW5fCd_dvhA-AgrT586
CitedBy_id crossref_primary_10_1016_j_neuroimage_2015_09_007
crossref_primary_10_3389_fncom_2022_883065
crossref_primary_10_1016_j_neuroimage_2012_12_024
crossref_primary_10_1109_ACCESS_2022_3161489
crossref_primary_10_1073_pnas_2022097118
crossref_primary_10_1016_j_neuroimage_2017_11_068
crossref_primary_10_1016_j_bpsc_2017_09_009
crossref_primary_10_1371_journal_pbio_3000685
crossref_primary_10_1162_jocn_a_01600
crossref_primary_10_3389_fnsys_2024_1489949
crossref_primary_10_1111_brv_12688
crossref_primary_10_1146_annurev_neuro_062012_170433
crossref_primary_10_1038_s41598_018_35400_9
crossref_primary_10_1162_jocn_a_00637
crossref_primary_10_1016_j_neubiorev_2013_05_007
crossref_primary_10_1111_psyp_12678
crossref_primary_10_1162_neco_a_01327
crossref_primary_10_3389_fncir_2015_00080
crossref_primary_10_1016_j_neuron_2018_07_038
crossref_primary_10_1016_j_cub_2024_11_015
crossref_primary_10_1016_j_neuroimage_2023_119938
crossref_primary_10_1016_j_neuroimage_2015_03_073
crossref_primary_10_1093_scan_nsac029
crossref_primary_10_1161_STROKEAHA_114_007645
crossref_primary_10_1016_j_neuroimage_2021_118600
crossref_primary_10_3389_fncom_2018_00023
crossref_primary_10_1111_jcpp_13042
crossref_primary_10_3390_vision4020022
crossref_primary_10_1186_s40359_021_00575_w
crossref_primary_10_1016_j_neuroimage_2016_01_037
crossref_primary_10_1089_brain_2012_0088
crossref_primary_10_1162_jocn_a_02118
crossref_primary_10_1016_j_neuroimage_2016_02_078
crossref_primary_10_1152_jn_00068_2022
crossref_primary_10_1016_j_nicl_2018_08_013
crossref_primary_10_1073_pnas_1402773111
crossref_primary_10_3389_fnhum_2023_1180056
crossref_primary_10_1016_j_neuroimage_2017_06_014
crossref_primary_10_1038_s41598_021_96849_9
crossref_primary_10_1371_journal_pcbi_1005519
crossref_primary_10_1016_j_brs_2019_07_018
crossref_primary_10_1007_s10548_021_00855_z
crossref_primary_10_1152_jn_00471_2019
crossref_primary_10_1016_j_clinph_2013_11_028
crossref_primary_10_1111_psyp_12212
crossref_primary_10_1016_j_nbd_2024_106557
crossref_primary_10_1016_j_tics_2020_05_004
crossref_primary_10_3389_fpsyg_2024_1225737
crossref_primary_10_1016_j_bandl_2019_104741
crossref_primary_10_1162_jocn_a_02004
crossref_primary_10_1162_jocn_a_02006
crossref_primary_10_1016_j_celrep_2020_03_050
crossref_primary_10_1523_JNEUROSCI_0918_24_2024
crossref_primary_10_3389_fmedt_2022_856412
crossref_primary_10_1016_j_neuron_2013_06_047
crossref_primary_10_1038_s41598_024_78173_0
crossref_primary_10_3389_fnsys_2021_636395
crossref_primary_10_4306_jknpa_2021_60_4_379
crossref_primary_10_1111_ejn_13935
crossref_primary_10_1523_JNEUROSCI_0509_14_2014
crossref_primary_10_1097_JS9_0000000000002190
crossref_primary_10_1111_psyp_13038
crossref_primary_10_1162_jocn_a_00395
crossref_primary_10_1142_S0218127418501043
crossref_primary_10_1371_journal_pcbi_1003401
crossref_primary_10_1371_journal_pbio_3000487
crossref_primary_10_1093_cercor_bhw285
crossref_primary_10_1523_JNEUROSCI_4889_13_2014
crossref_primary_10_31083_j_jin_2021_01_297
crossref_primary_10_2196_67188
crossref_primary_10_2139_ssrn_4060645
crossref_primary_10_1038_s41467_022_32378_x
crossref_primary_10_1016_j_neuroimage_2015_03_028
crossref_primary_10_1002_hbm_23207
crossref_primary_10_1016_j_neuron_2018_12_009
crossref_primary_10_1371_journal_pone_0293546
crossref_primary_10_1007_s00221_018_5200_z
crossref_primary_10_1016_j_neuroimage_2022_119035
crossref_primary_10_1016_j_neuroimage_2013_07_029
crossref_primary_10_1111_ejn_12612
crossref_primary_10_1177_1745691620917340
crossref_primary_10_1073_pnas_2110868119
crossref_primary_10_1162_jocn_a_00164
crossref_primary_10_1093_cercor_bhw278
crossref_primary_10_1162_netn_a_00077
crossref_primary_10_3389_fbioe_2017_00078
crossref_primary_10_1016_j_jneumeth_2021_109473
crossref_primary_10_1038_s41467_018_07007_1
crossref_primary_10_1016_j_neuroimage_2021_118127
crossref_primary_10_1016_j_neuron_2012_04_018
crossref_primary_10_1016_j_neuron_2015_12_018
crossref_primary_10_1038_s41598_021_82504_w
crossref_primary_10_1016_j_tins_2015_02_006
crossref_primary_10_1088_0967_3334_33_8_1379
crossref_primary_10_1162_jocn_a_00727
crossref_primary_10_1111_psyp_14707
crossref_primary_10_1093_cercor_bhac154
crossref_primary_10_1093_cercor_bhz214
crossref_primary_10_1111_psyp_12405
crossref_primary_10_1016_j_neuroimage_2017_11_002
crossref_primary_10_1016_j_psyneuen_2020_104838
crossref_primary_10_3389_fncir_2021_659280
crossref_primary_10_1016_j_brainresbull_2024_110947
crossref_primary_10_1016_j_clinph_2014_01_021
crossref_primary_10_1016_j_neuroimage_2015_02_031
crossref_primary_10_1016_j_schres_2016_06_003
crossref_primary_10_1111_adb_12390
crossref_primary_10_1016_j_neuroimage_2022_119060
crossref_primary_10_1523_JNEUROSCI_4216_13_2014
crossref_primary_10_1073_pnas_1704663114
crossref_primary_10_1152_jn_00224_2018
crossref_primary_10_3390_brainsci12081073
crossref_primary_10_1016_j_jpsychires_2022_02_032
crossref_primary_10_1016_j_cub_2015_10_007
crossref_primary_10_1111_ene_15927
crossref_primary_10_1007_s10548_019_00708_w
crossref_primary_10_1038_ncomms5694
crossref_primary_10_1111_ejn_14931
crossref_primary_10_1523_JNEUROSCI_4939_12_2013
crossref_primary_10_1523_JNEUROSCI_5778_12_2013
crossref_primary_10_1016_j_cub_2012_10_020
crossref_primary_10_1523_JNEUROSCI_0600_15_2015
crossref_primary_10_3389_fncir_2015_00065
crossref_primary_10_1371_journal_pcbi_1005162
crossref_primary_10_1002_aur_1374
crossref_primary_10_3389_fncir_2015_00064
crossref_primary_10_1016_j_neuroimage_2024_120637
crossref_primary_10_1371_journal_pone_0129496
crossref_primary_10_1016_j_ijpsycho_2011_10_013
crossref_primary_10_1016_j_neuron_2012_09_033
crossref_primary_10_3389_fnhum_2015_00563
crossref_primary_10_1016_j_concog_2022_103337
crossref_primary_10_1186_1744_9081_8_60
crossref_primary_10_1016_j_neubiorev_2020_03_030
crossref_primary_10_1038_nn_3764
crossref_primary_10_1016_j_neuroimage_2012_11_058
crossref_primary_10_1371_journal_pbio_2003230
crossref_primary_10_1371_journal_pcbi_1010012
crossref_primary_10_1016_j_alcohol_2013_12_004
crossref_primary_10_1016_j_neuron_2013_03_007
crossref_primary_10_1523_ENEURO_0128_23_2023
crossref_primary_10_1016_j_brainres_2015_02_004
crossref_primary_10_1016_j_neuron_2012_10_038
crossref_primary_10_1002_hbm_23645
crossref_primary_10_1016_j_neuroimage_2020_117066
crossref_primary_10_1016_j_tics_2021_10_009
crossref_primary_10_1007_s10633_012_9357_7
crossref_primary_10_1080_17588928_2019_1627303
crossref_primary_10_1016_j_brainres_2014_08_035
crossref_primary_10_1523_JNEUROSCI_4102_11_2011
crossref_primary_10_3389_fninf_2022_800116
crossref_primary_10_7554_eLife_33977
crossref_primary_10_1016_j_neulet_2018_10_034
crossref_primary_10_1007_s10548_021_00851_3
crossref_primary_10_1016_j_neuroimage_2019_116408
crossref_primary_10_1038_s41598_022_12146_z
crossref_primary_10_1093_texcom_tgaa064
crossref_primary_10_3389_fnhum_2021_802244
crossref_primary_10_1073_pnas_1215385109
crossref_primary_10_3389_fneur_2020_529460
crossref_primary_10_1073_pnas_1117190108
crossref_primary_10_1093_cercor_bhs389
crossref_primary_10_1016_j_brainres_2015_02_017
crossref_primary_10_1152_jn_00781_2012
crossref_primary_10_1371_journal_pcbi_1003164
crossref_primary_10_1038_s41467_019_08725_w
crossref_primary_10_1523_ENEURO_0224_19_2020
crossref_primary_10_1007_s00221_016_4811_5
crossref_primary_10_3389_fncom_2014_00036
crossref_primary_10_3758_s13423_020_01711_0
crossref_primary_10_1371_journal_pcbi_1012429
crossref_primary_10_1038_s41593_023_01554_7
crossref_primary_10_1016_j_neubiorev_2021_02_043
crossref_primary_10_1093_cercor_bhae099
crossref_primary_10_1111_pcn_13300
crossref_primary_10_3390_jcm14020545
crossref_primary_10_7554_eLife_62949
crossref_primary_10_1016_j_tins_2018_08_008
crossref_primary_10_1016_j_clinph_2015_10_032
crossref_primary_10_1016_j_concog_2017_03_006
crossref_primary_10_1016_j_neuroimage_2014_12_081
crossref_primary_10_7554_eLife_67838
crossref_primary_10_1016_j_neuron_2015_11_034
crossref_primary_10_1016_j_neuropsychologia_2023_108589
crossref_primary_10_1109_TBME_2019_2900206
crossref_primary_10_1021_cn500350e
crossref_primary_10_1093_cercor_bhu118
crossref_primary_10_1371_journal_pbio_2003453
crossref_primary_10_1523_JNEUROSCI_4385_13_2014
crossref_primary_10_1016_j_neuroimage_2016_05_017
crossref_primary_10_1073_pnas_1913092116
crossref_primary_10_1523_JNEUROSCI_4856_13_2014
crossref_primary_10_1098_rstb_2014_0169
crossref_primary_10_1016_j_biosystems_2021_104403
crossref_primary_10_1111_psyp_13827
crossref_primary_10_1093_cercor_bhaa185
crossref_primary_10_1523_JNEUROSCI_4641_13_2014
crossref_primary_10_1162_jocn_a_00460
crossref_primary_10_1002_cne_23458
crossref_primary_10_1523_ENEURO_0171_20_2020
crossref_primary_10_1523_JNEUROSCI_2817_11_2012
crossref_primary_10_1007_s11571_020_09651_0
crossref_primary_10_1523_JNEUROSCI_1666_13_2013
crossref_primary_10_3390_e21050500
crossref_primary_10_3389_fnsys_2016_00007
crossref_primary_10_3389_fnhum_2020_00246
crossref_primary_10_1016_j_neuroimage_2013_06_080
crossref_primary_10_1016_j_neuroimage_2019_02_067
crossref_primary_10_1523_JNEUROSCI_3015_16_2017
crossref_primary_10_1007_s00221_015_4418_2
crossref_primary_10_1016_j_neuroimage_2014_01_007
crossref_primary_10_1038_s41598_024_74008_0
crossref_primary_10_1016_j_tics_2024_11_004
crossref_primary_10_1038_s41467_021_23021_2
crossref_primary_10_1016_j_neubiorev_2015_04_014
crossref_primary_10_1016_j_alcohol_2018_01_002
crossref_primary_10_1016_j_neuroimage_2014_04_069
crossref_primary_10_1016_j_neuroimage_2022_119687
crossref_primary_10_1016_j_neuron_2015_03_047
crossref_primary_10_3389_fnsys_2015_00189
crossref_primary_10_1007_s12035_011_8214_0
crossref_primary_10_1038_s41467_018_04785_6
crossref_primary_10_1007_s00221_012_3167_8
crossref_primary_10_1016_j_bandc_2020_105677
crossref_primary_10_1016_j_neuroimage_2014_10_057
crossref_primary_10_1152_jn_00624_2014
crossref_primary_10_1016_j_bpsc_2024_12_014
crossref_primary_10_1002_ejp_960
crossref_primary_10_1016_j_cortex_2015_03_012
crossref_primary_10_1371_journal_pone_0199120
crossref_primary_10_1016_j_neuropsychologia_2017_07_010
crossref_primary_10_1111_ejn_13300
crossref_primary_10_1186_s13229_020_00411_9
crossref_primary_10_3389_fneur_2021_697923
crossref_primary_10_1523_JNEUROSCI_0608_21_2021
crossref_primary_10_3103_S1062873820110283
crossref_primary_10_1038_s42003_022_03395_9
crossref_primary_10_1038_s41598_017_15611_2
crossref_primary_10_1111_cns_70262
crossref_primary_10_1007_s41470_017_0008_x
crossref_primary_10_1038_nrn3137
crossref_primary_10_1073_pnas_1522577113
crossref_primary_10_3390_ijerph16193658
crossref_primary_10_1093_nc_niab007
crossref_primary_10_1371_journal_pbio_2003805
crossref_primary_10_1111_ejn_13318
crossref_primary_10_1523_JNEUROSCI_3387_11_2011
crossref_primary_10_1371_journal_pbio_3002964
crossref_primary_10_1073_pnas_1710323115
crossref_primary_10_1007_s11062_015_9525_y
crossref_primary_10_1515_revneuro_2019_0090
crossref_primary_10_1002_aur_3266
crossref_primary_10_1016_j_jneumeth_2019_108518
crossref_primary_10_1016_j_neuron_2013_10_017
crossref_primary_10_7554_eLife_51214
crossref_primary_10_1016_j_clinph_2020_10_017
crossref_primary_10_1016_j_exger_2023_112113
crossref_primary_10_1093_braincomms_fcad035
crossref_primary_10_1371_journal_pone_0175191
crossref_primary_10_1016_j_nbd_2021_105447
crossref_primary_10_1016_j_ijpsycho_2022_01_003
crossref_primary_10_1002_jez_2220
crossref_primary_10_1016_j_neuron_2019_11_001
crossref_primary_10_1515_jom_2021_0257
crossref_primary_10_1016_j_neuroimage_2015_05_044
crossref_primary_10_1038_nrn_2017_151
crossref_primary_10_1109_TNSRE_2022_3153353
crossref_primary_10_1016_j_neuroimage_2014_07_022
crossref_primary_10_1016_j_bbr_2023_114356
crossref_primary_10_1016_j_neuroimage_2021_118746
crossref_primary_10_1152_physiol_00062_2015
crossref_primary_10_1016_j_nicl_2016_01_023
crossref_primary_10_3390_math11153307
crossref_primary_10_1162_imag_a_00312
crossref_primary_10_1038_s42003_023_05200_7
crossref_primary_10_1016_j_eurpsy_2018_01_004
crossref_primary_10_1016_j_cortex_2018_10_006
crossref_primary_10_1016_j_neuroimage_2017_04_051
crossref_primary_10_1016_j_pbiomolbio_2012_08_006
crossref_primary_10_1523_ENEURO_0153_16_2017
Cites_doi 10.1126/science.1154735
10.1523/JNEUROSCI.2699-08.2008
10.1007/978-1-60327-202-5_2
10.1002/9783527609970.ch17
10.1007/s00422-006-0090-8
10.1007/s004229900137
10.1152/jn.00263.2005
10.2307/2287238
10.1177/1073858405277450
10.1152/physrev.1985.65.1.37
10.1016/0042-6989(91)90040-C
10.1093/cercor/bhp223
10.1093/acprof:oso/9780195301069.001.0001
10.1016/j.tins.2007.02.001
10.1023/A:1026539805445
10.1523/JNEUROSCI.4468-07.2008
10.1007/s004220000235
10.1146/annurev.neuro.21.1.47
10.1073/pnas.1017069108
10.1093/cercor/12.8.877
10.1093/cercor/8.7.575
10.1126/science.1824881
10.1016/j.brainresrev.2006.06.003
10.1098/rstb.2002.1161
10.1016/0013-4694(90)90001-Z
10.1523/JNEUROSCI.22-17-07766.2002
10.1162/jocn.2009.21247
10.1093/cercor/10.4.343
10.1016/S0896-6273(04)00191-6
10.1016/0013-4694(73)90217-4
10.1162/jocn.2010.21478
10.1016/j.jneumeth.2005.06.011
10.1523/JNEUROSCI.5295-10.2011
10.1152/jn.1996.75.2.951
10.1007/BF00230286
10.1016/S0167-8760(97)00764-2
10.1523/JNEUROSCI.2969-10.2010
10.1109/TAC.1974.1100705
10.1016/0013-4694(80)90011-5
10.1016/0013-4694(73)90216-2
10.1016/0013-4694(91)90044-5
10.1016/S0166-2236(00)01922-6
10.1016/0304-3940(77)90024-6
10.1093/cercor/10.4.359
10.1097/WNR.0b013e3282f454c4
10.1159/000079981
10.1098/rstb.2002.1168
10.1073/pnas.0308538101
10.1523/JNEUROSCI.16-23-07742.1996
ContentType Journal Article
Copyright Copyright © 2011 the authors 0270-6474/11/314935-09$15.00/0 2011
Copyright_xml – notice: Copyright © 2011 the authors 0270-6474/11/314935-09$15.00/0 2011
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1523/JNEUROSCI.5580-10.2011
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1529-2401
EndPage 4943
ExternalDocumentID PMC3505610
21451032
10_1523_JNEUROSCI_5580_10_2011
Genre Journal Article
Comparative Study
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: MH87275
– fundername: NIMH NIH HHS
  grantid: R01 MH060358
– fundername: NIMH NIH HHS
  grantid: MH60358
– fundername: NIMH NIH HHS
  grantid: R01 MH079388
– fundername: NIMH NIH HHS
  grantid: R21 MH087275
– fundername: NIMH NIH HHS
  grantid: MH79388
GroupedDBID ---
-DZ
-~X
.55
18M
2WC
34G
39C
3O-
53G
5GY
5RE
5VS
AAFWJ
AAJMC
AAYXX
ABBAR
ABIVO
ACGUR
ACNCT
ADBBV
ADCOW
ADHGD
AENEX
AETEA
AFCFT
AFFNX
AFOSN
AFSQR
AHWXS
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
H13
HYE
H~9
KQ8
L7B
MVM
OK1
P0W
P2P
QZG
R.V
RHI
RPM
TFN
TR2
W8F
WH7
WOQ
X7M
XJT
YBU
YHG
YKV
YNH
YSK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c479t-4bc164facddcca5891005f0fe16a2b39679946a4716268f3a754a2304fc00b6f3
ISSN 0270-6474
1529-2401
IngestDate Thu Aug 21 18:17:46 EDT 2025
Thu Jul 10 21:16:41 EDT 2025
Sat May 31 02:08:57 EDT 2025
Thu Apr 24 23:08:44 EDT 2025
Tue Jul 01 02:59:22 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License https://creativecommons.org/licenses/by-nc-sa/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c479t-4bc164facddcca5891005f0fe16a2b39679946a4716268f3a754a2304fc00b6f3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
Author contributions: M.D. and C.E.S. designed research; A.B. and J.M. performed research; C.E.S. contributed unpublished reagents/analytic tools; A.B. and J.M. analyzed data; M.D., A.B., and C.E.S. wrote the paper.
OpenAccessLink https://www.jneurosci.org/content/jneuro/31/13/4935.full.pdf
PMID 21451032
PQID 859740493
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3505610
proquest_miscellaneous_859740493
pubmed_primary_21451032
crossref_citationtrail_10_1523_JNEUROSCI_5580_10_2011
crossref_primary_10_1523_JNEUROSCI_5580_10_2011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-03-30
2011-Mar-30
20110330
PublicationDateYYYYMMDD 2011-03-30
PublicationDate_xml – month: 03
  year: 2011
  text: 2011-03-30
  day: 30
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of neuroscience
PublicationTitleAlternate J Neurosci
PublicationYear 2011
Publisher Society for Neuroscience
Publisher_xml – name: Society for Neuroscience
References Tenke (2023041303494408000_31.13.4935.55) 1993; 94
Castro-Alamancos (2023041303494408000_31.13.4935.8) 1996; 16
2023041303494408000_31.13.4935.38
2023041303494408000_31.13.4935.37
2023041303494408000_31.13.4935.35
2023041303494408000_31.13.4935.34
2023041303494408000_31.13.4935.33
Worden (2023041303494408000_31.13.4935.56) 2000; 20
2023041303494408000_31.13.4935.32
2023041303494408000_31.13.4935.31
2023041303494408000_31.13.4935.30
2023041303494408000_31.13.4935.29
2023041303494408000_31.13.4935.28
2023041303494408000_31.13.4935.27
2023041303494408000_31.13.4935.26
2023041303494408000_31.13.4935.25
2023041303494408000_31.13.4935.24
2023041303494408000_31.13.4935.23
2023041303494408000_31.13.4935.22
2023041303494408000_31.13.4935.21
2023041303494408000_31.13.4935.20
Swadlow (2023041303494408000_31.13.4935.54) 2002; 22
2023041303494408000_31.13.4935.7
2023041303494408000_31.13.4935.9
Maier (2023041303494408000_31.13.4935.36) 2010; 4:pii
2023041303494408000_31.13.4935.19
2023041303494408000_31.13.4935.18
2023041303494408000_31.13.4935.17
Schroeder (2023041303494408000_31.13.4935.47) 1995; 44
2023041303494408000_31.13.4935.15
2023041303494408000_31.13.4935.14
2023041303494408000_31.13.4935.13
2023041303494408000_31.13.4935.57
2023041303494408000_31.13.4935.12
2023041303494408000_31.13.4935.3
2023041303494408000_31.13.4935.11
2023041303494408000_31.13.4935.4
2023041303494408000_31.13.4935.10
2023041303494408000_31.13.4935.5
2023041303494408000_31.13.4935.53
2023041303494408000_31.13.4935.6
2023041303494408000_31.13.4935.52
2023041303494408000_31.13.4935.51
2023041303494408000_31.13.4935.50
2023041303494408000_31.13.4935.1
2023041303494408000_31.13.4935.2
Flint (2023041303494408000_31.13.4935.16) 1996; 75
2023041303494408000_31.13.4935.49
2023041303494408000_31.13.4935.48
2023041303494408000_31.13.4935.46
2023041303494408000_31.13.4935.45
2023041303494408000_31.13.4935.44
Mitzdorf (2023041303494408000_31.13.4935.39) 1985; 65
2023041303494408000_31.13.4935.43
2023041303494408000_31.13.4935.42
2023041303494408000_31.13.4935.41
2023041303494408000_31.13.4935.40
References_xml – ident: 2023041303494408000_31.13.4935.29
  doi: 10.1126/science.1154735
– ident: 2023041303494408000_31.13.4935.4
  doi: 10.1523/JNEUROSCI.2699-08.2008
– ident: 2023041303494408000_31.13.4935.10
  doi: 10.1007/978-1-60327-202-5_2
– ident: 2023041303494408000_31.13.4935.14
  doi: 10.1002/9783527609970.ch17
– ident: 2023041303494408000_31.13.4935.26
  doi: 10.1007/s00422-006-0090-8
– ident: 2023041303494408000_31.13.4935.13
  doi: 10.1007/s004229900137
– ident: 2023041303494408000_31.13.4935.28
  doi: 10.1152/jn.00263.2005
– ident: 2023041303494408000_31.13.4935.17
  doi: 10.2307/2287238
– ident: 2023041303494408000_31.13.4935.18
  doi: 10.1177/1073858405277450
– volume: 65
  start-page: 37
  year: 1985
  ident: 2023041303494408000_31.13.4935.39
  article-title: Current source density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena
  publication-title: Physiol Rev
  doi: 10.1152/physrev.1985.65.1.37
– ident: 2023041303494408000_31.13.4935.46
  doi: 10.1016/0042-6989(91)90040-C
– ident: 2023041303494408000_31.13.4935.3
  doi: 10.1093/cercor/bhp223
– ident: 2023041303494408000_31.13.4935.6
  doi: 10.1093/acprof:oso/9780195301069.001.0001
– ident: 2023041303494408000_31.13.4935.42
  doi: 10.1016/j.tins.2007.02.001
– ident: 2023041303494408000_31.13.4935.23
  doi: 10.1023/A:1026539805445
– ident: 2023041303494408000_31.13.4935.35
  doi: 10.1523/JNEUROSCI.4468-07.2008
– ident: 2023041303494408000_31.13.4935.41
– ident: 2023041303494408000_31.13.4935.25
  doi: 10.1007/s004220000235
– ident: 2023041303494408000_31.13.4935.7
  doi: 10.1146/annurev.neuro.21.1.47
– ident: 2023041303494408000_31.13.4935.2
– ident: 2023041303494408000_31.13.4935.11
  doi: 10.1073/pnas.1017069108
– ident: 2023041303494408000_31.13.4935.20
  doi: 10.1093/cercor/12.8.877
– ident: 2023041303494408000_31.13.4935.48
  doi: 10.1093/cercor/8.7.575
– volume: 44
  start-page: 55
  year: 1995
  ident: 2023041303494408000_31.13.4935.47
  article-title: Localization of ERP generators and identification of underlying neural processes
  publication-title: Electroencephalogr Clin Neurophysiol Suppl
– ident: 2023041303494408000_31.13.4935.52
  doi: 10.1126/science.1824881
– ident: 2023041303494408000_31.13.4935.27
  doi: 10.1016/j.brainresrev.2006.06.003
– ident: 2023041303494408000_31.13.4935.51
  doi: 10.1098/rstb.2002.1161
– ident: 2023041303494408000_31.13.4935.53
  doi: 10.1016/0013-4694(90)90001-Z
– volume: 22
  start-page: 7766
  year: 2002
  ident: 2023041303494408000_31.13.4935.54
  article-title: Activation of a cortical column by a thalamocortical impulse
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.22-17-07766.2002
– ident: 2023041303494408000_31.13.4935.49
– ident: 2023041303494408000_31.13.4935.57
  doi: 10.1162/jocn.2009.21247
– ident: 2023041303494408000_31.13.4935.37
  doi: 10.1093/cercor/10.4.343
– ident: 2023041303494408000_31.13.4935.19
  doi: 10.1016/S0896-6273(04)00191-6
– ident: 2023041303494408000_31.13.4935.50
– ident: 2023041303494408000_31.13.4935.33
  doi: 10.1016/0013-4694(73)90217-4
– ident: 2023041303494408000_31.13.4935.43
  doi: 10.1162/jocn.2010.21478
– ident: 2023041303494408000_31.13.4935.9
  doi: 10.1016/j.jneumeth.2005.06.011
– ident: 2023041303494408000_31.13.4935.40
  doi: 10.1523/JNEUROSCI.5295-10.2011
– volume: 75
  start-page: 951
  year: 1996
  ident: 2023041303494408000_31.13.4935.16
  article-title: Two types of network oscillations in neocortex mediated by distinct glutamate receptor subtypes and neuronal populations
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1996.75.2.951
– volume: 94
  start-page: 183
  year: 1993
  ident: 2023041303494408000_31.13.4935.55
  article-title: Interpretation of high-resolution current source density profiles: a simulation of sublaminar contributions to the visual evoked potential
  publication-title: Exp Brain Res
  doi: 10.1007/BF00230286
– ident: 2023041303494408000_31.13.4935.45
  doi: 10.1016/S0167-8760(97)00764-2
– ident: 2023041303494408000_31.13.4935.24
  doi: 10.1523/JNEUROSCI.2969-10.2010
– ident: 2023041303494408000_31.13.4935.1
  doi: 10.1109/TAC.1974.1100705
– ident: 2023041303494408000_31.13.4935.34
  doi: 10.1016/0013-4694(80)90011-5
– ident: 2023041303494408000_31.13.4935.32
  doi: 10.1016/0013-4694(73)90216-2
– ident: 2023041303494408000_31.13.4935.30
  doi: 10.1016/0013-4694(91)90044-5
– volume: 4:pii
  start-page: 31
  year: 2010
  ident: 2023041303494408000_31.13.4935.36
  article-title: Distinct superficial and deep laminar domains of activity in the visual cortex during rest and stimulation
  publication-title: Front Syst Neurosci
– ident: 2023041303494408000_31.13.4935.21
  doi: 10.1016/S0166-2236(00)01922-6
– ident: 2023041303494408000_31.13.4935.31
  doi: 10.1016/0304-3940(77)90024-6
– ident: 2023041303494408000_31.13.4935.12
– ident: 2023041303494408000_31.13.4935.38
  doi: 10.1093/cercor/10.4.359
– ident: 2023041303494408000_31.13.4935.44
  doi: 10.1097/WNR.0b013e3282f454c4
– ident: 2023041303494408000_31.13.4935.15
  doi: 10.1159/000079981
– ident: 2023041303494408000_31.13.4935.22
  doi: 10.1098/rstb.2002.1168
– volume: 20
  start-page: 1
  issue: RC63
  year: 2000
  ident: 2023041303494408000_31.13.4935.56
  article-title: Anticipatory biasing of visuospatial attention indexed by retinotopically specific alpha-band electroencephalography increases over occipital cortex
  publication-title: J Neurosci
– ident: 2023041303494408000_31.13.4935.5
  doi: 10.1073/pnas.0308538101
– volume: 16
  start-page: 7742
  year: 1996
  ident: 2023041303494408000_31.13.4935.8
  article-title: Cellular mechanisms of the augmenting response: short-term plasticity in a thalamocortical pathway
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.16-23-07742.1996
SSID ssj0007017
Score 2.5122268
Snippet Field potential oscillations in the ∼10 Hz range are known as the alpha rhythm. The genesis and function of alpha has been the subject of intense investigation...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 4935
SubjectTerms Acoustic Stimulation - methods
Alpha Rhythm - physiology
Animals
Attention - physiology
Cerebral Cortex - cytology
Cerebral Cortex - physiology
Macaca fascicularis
Male
Neural Pathways - physiology
Neurons - physiology
Thalamus - cytology
Thalamus - physiology
Title Neuronal Mechanisms and Attentional Modulation of Corticothalamic Alpha Oscillations
URI https://www.ncbi.nlm.nih.gov/pubmed/21451032
https://www.proquest.com/docview/859740493
https://pubmed.ncbi.nlm.nih.gov/PMC3505610
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FcuGCgPIIL-0BcYmcru21HR-tqqgUpQg1lXqzdtdepSixUWsf6D_h3zKzu7GdtALKxYk29sjJfJmd8cx8Q8gHWTIZiIJ5BUulxwMpPQl-uhfNpF8q2CGCAJuT56fx8Tk_uYguRqNfg6qltpFTdXNnX8n_aBXWQK_YJXsPzXZCYQHeg37hCBqG4z_p2DBrVKa7Fht4L6_XlnE5a5quknxeF25Cl6m8qFEKaEescBD9JMNW28lX2AdXq8Gzu-89hgYe64D7ss_FI6n3uq2sE5pVfcXG3OZ02u7UM7W8qsvCdR7aNP_kaNq50m66yhxeb5Z1O3we4ZuCLJdasWYrSCAg5Xb2zrR0ZjUweRx_aHed9Xf4CgdWlKeWwsTtyDy1TE63rH1kWCdOTrHo8ezw8zSKZszD4nbmDPgWvfbOttcVI2IYBJLyTk6OcnJYRjkPyMMAIhAcjvHlW09EnzAzzLn7sq75HOQc3H0_237PrWBmtyZ34OQsnpDHTtc0s1B7SkZl9YzsZ5Vo6vVP-pGaemGTiNkniw36aI8-CuijA_TRHn201nQHfdSgjw7R95ycfzpaHB57bkaHp3iSNh6XCgJuLVRRgC3AEZVg1jXTpR-LQIZpnKQpjwVHorJ4pkORRFxgIkIrxmSswxdkr6qr8hWhWnNVaKWDQjEumRIiZmFQagj_ElhkYxJtfsFcOQJ7nKOyyv-swTE56K77YSlc_noF3SgoB2uLKTRRlXV7nc8w_oagOhyTl1ZfnUik_Ed2yjFJtjTZnYBE7tufVJdLQ-geYhjis9f3vtE35FH_F3xL9pqrtnwHTnIj3xu4_galKrtw
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neuronal+Mechanisms+and+Attentional+Modulation+of+Corticothalamic+Alpha+Oscillations&rft.jtitle=The+Journal+of+neuroscience&rft.au=Bollimunta%2C+Anil&rft.au=Mo%2C+Jue&rft.au=Schroeder%2C+Charles+E.&rft.au=Ding%2C+Mingzhou&rft.date=2011-03-30&rft.issn=0270-6474&rft.eissn=1529-2401&rft.volume=31&rft.issue=13&rft.spage=4935&rft.epage=4943&rft_id=info:doi/10.1523%2FJNEUROSCI.5580-10.2011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1523_JNEUROSCI_5580_10_2011
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon