Isoform-Specific Toxicity of Mecp2 in Postmitotic Neurons: Suppression of Neurotoxicity by FoxG1

The methyl-CpG binding protein 2 (MeCP2) is a widely expressed protein, the mutations of which cause Rett syndrome. The level of MeCP2 is highest in the brain where it is expressed selectively in mature neurons. Its functions in postmitotic neurons are not known. The MeCP2 gene is alternatively spli...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of neuroscience Vol. 32; no. 8; pp. 2846 - 2855
Main Authors Dastidar, Somasish Ghosh, Bardai, Farah H., Ma, Chi, Price, Valerie, Rawat, Varun, Verma, Pragya, Narayanan, Vinodh, D'Mello, Santosh R.
Format Journal Article
LanguageEnglish
Published United States Society for Neuroscience 22.02.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The methyl-CpG binding protein 2 (MeCP2) is a widely expressed protein, the mutations of which cause Rett syndrome. The level of MeCP2 is highest in the brain where it is expressed selectively in mature neurons. Its functions in postmitotic neurons are not known. The MeCP2 gene is alternatively spliced to generate two proteins with different N termini, designated as MeCP2-e1 and MeCP2-e2 . The physiological significance of these two isoforms has not been elucidated, and it is generally assumed they are functionally equivalent. We report that in cultured cerebellar granule neurons induced to die by low potassium treatment and in Aβ-treated cortical neurons, Mecp2-e2 expression is upregulated whereas expression of the Mecp2-e1 isoform is downregulated. Knockdown of Mecp2-e2 protects neurons from death, whereas knockdown of the e1 isoform has no effect. Forced expression of MeCP2-e2, but not MeCP2-e1, promotes apoptosis in otherwise healthy neurons. We find that MeCP2-e2 interacts with the forkhead protein FoxG1, mutations of which also cause Rett syndrome. FoxG1 has been shown to promote neuronal survival and its downregulation leads to neuronal death. We find that elevated FoxG1 expression inhibits MeCP2-e2 neurotoxicity. MeCP2-e2 neurotoxicity is also inhibited by IGF-1, which prevents the neuronal death-associated downregulation of FoxG1 expression, and by Akt, the activation of which is necessary for FoxG1-mediated neuroprotection. Finally, MeCP2-e2 neurotoxicity is enhanced if FoxG1 expression is suppressed or in neurons cultured from FoxG1 -haplodeficient mice. Our results indicate that Mecp2-e2 promotes neuronal death and that this activity is normally inhibited by FoxG1. Reduced FoxG1expression frees MecP2-e2 to promote neuronal death.
AbstractList The methyl-CpG binding protein 2 (MeCP2) is a widely expressed protein, the mutations of which cause Rett syndrome. The level of MeCP2 is highest in the brain where it is expressed selectively in mature neurons. Its functions in postmitotic neurons are not known. The MeCP2 gene is alternatively spliced to generate two proteins with different N termini, designated as MeCP2-e1 and MeCP2-e2 . The physiological significance of these two isoforms has not been elucidated, and it is generally assumed they are functionally equivalent. We report that in cultured cerebellar granule neurons induced to die by low potassium treatment and in Aβ-treated cortical neurons, Mecp2-e2 expression is upregulated whereas expression of the Mecp2-e1 isoform is downregulated. Knockdown of Mecp2-e2 protects neurons from death, whereas knockdown of the e1 isoform has no effect. Forced expression of MeCP2-e2, but not MeCP2-e1, promotes apoptosis in otherwise healthy neurons. We find that MeCP2-e2 interacts with the forkhead protein FoxG1, mutations of which also cause Rett syndrome. FoxG1 has been shown to promote neuronal survival and its downregulation leads to neuronal death. We find that elevated FoxG1 expression inhibits MeCP2-e2 neurotoxicity. MeCP2-e2 neurotoxicity is also inhibited by IGF-1, which prevents the neuronal death-associated downregulation of FoxG1 expression, and by Akt, the activation of which is necessary for FoxG1-mediated neuroprotection. Finally, MeCP2-e2 neurotoxicity is enhanced if FoxG1 expression is suppressed or in neurons cultured from FoxG1 -haplodeficient mice. Our results indicate that Mecp2-e2 promotes neuronal death and that this activity is normally inhibited by FoxG1. Reduced FoxG1expression frees MecP2-e2 to promote neuronal death.
The methyl-CpG binding protein 2 (MeCP2) is a widely expressed protein, the mutations of which cause Rett syndrome. The level of MeCP2 is highest in the brain where it is expressed selectively in mature neurons. Its functions in postmitotic neurons are not known. The MeCP2 gene is alternatively spliced to generate two proteins with different N termini, designated as MeCP2-e1 and MeCP2-e2. The physiological significance of these two isoforms has not been elucidated, and it is generally assumed they are functionally equivalent. We report that in cultured cerebellar granule neurons induced to die by low potassium treatment and in Aβ-treated cortical neurons, Mecp2-e2 expression is upregulated whereas expression of the Mecp2-e1 isoform is downregulated. Knockdown of Mecp2-e2 protects neurons from death, whereas knockdown of the e1 isoform has no effect. Forced expression of MeCP2-e2, but not MeCP2-e1, promotes apoptosis in otherwise healthy neurons. We find that MeCP2-e2 interacts with the forkhead protein FoxG1, mutations of which also cause Rett syndrome. FoxG1 has been shown to promote neuronal survival and its downregulation leads to neuronal death. We find that elevated FoxG1 expression inhibits MeCP2-e2 neurotoxicity. MeCP2-e2 neurotoxicity is also inhibited by IGF-1, which prevents the neuronal death-associated downregulation of FoxG1 expression, and by Akt, the activation of which is necessary for FoxG1-mediated neuroprotection. Finally, MeCP2-e2 neurotoxicity is enhanced if FoxG1 expression is suppressed or in neurons cultured from FoxG1-haplodeficient mice. Our results indicate that Mecp2-e2 promotes neuronal death and that this activity is normally inhibited by FoxG1. Reduced FoxG1 expression frees MecP2-e2 to promote neuronal death.
The methyl-CpG binding protein 2 (MeCP2) is a widely expressed protein, the mutations of which cause Rett syndrome. The level of MeCP2 is highest in the brain where it is expressed selectively in mature neurons. Its functions in postmitotic neurons are not known. The MeCP2 gene is alternatively spliced to generate two proteins with different N termini, designated as MeCP2-e1 and MeCP2-e2. The physiological significance of these two isoforms has not been elucidated, and it is generally assumed they are functionally equivalent. We report that in cultured cerebellar granule neurons induced to die by low potassium treatment and in Aβ-treated cortical neurons, Mecp2-e2 expression is upregulated whereas expression of the Mecp2-e1 isoform is downregulated. Knockdown of Mecp2-e2 protects neurons from death, whereas knockdown of the e1 isoform has no effect. Forced expression of MeCP2-e2, but not MeCP2-e1, promotes apoptosis in otherwise healthy neurons. We find that MeCP2-e2 interacts with the forkhead protein FoxG1, mutations of which also cause Rett syndrome. FoxG1 has been shown to promote neuronal survival and its downregulation leads to neuronal death. We find that elevated FoxG1 expression inhibits MeCP2-e2 neurotoxicity. MeCP2-e2 neurotoxicity is also inhibited by IGF-1, which prevents the neuronal death-associated downregulation of FoxG1 expression, and by Akt, the activation of which is necessary for FoxG1-mediated neuroprotection. Finally, MeCP2-e2 neurotoxicity is enhanced if FoxG1 expression is suppressed or in neurons cultured from FoxG1-haplodeficient mice. Our results indicate that Mecp2-e2 promotes neuronal death and that this activity is normally inhibited by FoxG1. Reduced FoxG1 expression frees MecP2-e2 to promote neuronal death.The methyl-CpG binding protein 2 (MeCP2) is a widely expressed protein, the mutations of which cause Rett syndrome. The level of MeCP2 is highest in the brain where it is expressed selectively in mature neurons. Its functions in postmitotic neurons are not known. The MeCP2 gene is alternatively spliced to generate two proteins with different N termini, designated as MeCP2-e1 and MeCP2-e2. The physiological significance of these two isoforms has not been elucidated, and it is generally assumed they are functionally equivalent. We report that in cultured cerebellar granule neurons induced to die by low potassium treatment and in Aβ-treated cortical neurons, Mecp2-e2 expression is upregulated whereas expression of the Mecp2-e1 isoform is downregulated. Knockdown of Mecp2-e2 protects neurons from death, whereas knockdown of the e1 isoform has no effect. Forced expression of MeCP2-e2, but not MeCP2-e1, promotes apoptosis in otherwise healthy neurons. We find that MeCP2-e2 interacts with the forkhead protein FoxG1, mutations of which also cause Rett syndrome. FoxG1 has been shown to promote neuronal survival and its downregulation leads to neuronal death. We find that elevated FoxG1 expression inhibits MeCP2-e2 neurotoxicity. MeCP2-e2 neurotoxicity is also inhibited by IGF-1, which prevents the neuronal death-associated downregulation of FoxG1 expression, and by Akt, the activation of which is necessary for FoxG1-mediated neuroprotection. Finally, MeCP2-e2 neurotoxicity is enhanced if FoxG1 expression is suppressed or in neurons cultured from FoxG1-haplodeficient mice. Our results indicate that Mecp2-e2 promotes neuronal death and that this activity is normally inhibited by FoxG1. Reduced FoxG1 expression frees MecP2-e2 to promote neuronal death.
Author Verma, Pragya
D'Mello, Santosh R.
Narayanan, Vinodh
Price, Valerie
Dastidar, Somasish Ghosh
Bardai, Farah H.
Ma, Chi
Rawat, Varun
Author_xml – sequence: 1
  givenname: Somasish Ghosh
  surname: Dastidar
  fullname: Dastidar, Somasish Ghosh
– sequence: 2
  givenname: Farah H.
  surname: Bardai
  fullname: Bardai, Farah H.
– sequence: 3
  givenname: Chi
  surname: Ma
  fullname: Ma, Chi
– sequence: 4
  givenname: Valerie
  surname: Price
  fullname: Price, Valerie
– sequence: 5
  givenname: Varun
  surname: Rawat
  fullname: Rawat, Varun
– sequence: 6
  givenname: Pragya
  surname: Verma
  fullname: Verma, Pragya
– sequence: 7
  givenname: Vinodh
  surname: Narayanan
  fullname: Narayanan, Vinodh
– sequence: 8
  givenname: Santosh R.
  surname: D'Mello
  fullname: D'Mello, Santosh R.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22357867$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtP3DAUhS1EBcPAX0DZdZWpX4njqqpUjXhMxUsMrI3j2NRVEqe2UzH_vg4wqHTT1ZXuPece6TsHYLd3vQbgGMEFKjD59P3q5P72er1cLYqKohyhBYYI74BZuvIcU4h2wQxiBvOSMroPDkL4CSFkELE9sI8xKVhVshl4WAVnnO_y9aCVNVZld-7JKhs3mTPZpVYDzmyf3bgQOxtdTIIrPXrXh8_ZehwGr0Owrp_Ez_u4ddeb7NQ9naFD8MHINuij1zkH96cnd8vz_OL6bLX8dpErynjMCaZcK2pqQqUxRSNLxerCME0Vb1SlEGxYWdQSVpKRSmKuYAM15DVvCNMVI3Pw9eXvMNadbpTuo5etGLztpN8IJ614f-ntD_HofgtCIWEJ6Rx8fH3g3a9Rhyg6G5RuW9lrNwbBJ2YFh2VSHv8d9ZaxpZoEX14EyrsQvDYiIZExcUrJthUIiqlE8VaimEoUCImpxGQv_7FvE_5j_AM28aQ6
CitedBy_id crossref_primary_10_1038_ejhg_2012_208
crossref_primary_10_1038_emm_2013_76
crossref_primary_10_3892_mmr_2017_7186
crossref_primary_10_1007_s40142_016_0107_0
crossref_primary_10_1016_j_neuropharm_2012_11_015
crossref_primary_10_1111_jnc_15331
crossref_primary_10_1016_j_jmb_2019_10_004
crossref_primary_10_1016_j_pnpbp_2015_09_008
crossref_primary_10_1371_journal_pone_0090645
crossref_primary_10_1016_j_ijdevneu_2014_03_006
crossref_primary_10_1177_15353702231209419
crossref_primary_10_1093_hmg_ddaa154
crossref_primary_10_1016_j_jpeds_2017_12_029
crossref_primary_10_5213_inj_1938196_098
crossref_primary_10_21307_ane_2018_007
crossref_primary_10_1007_s12264_014_1452_6
crossref_primary_10_1016_j_neuroscience_2016_03_027
crossref_primary_10_1186_s40348_016_0065_3
crossref_primary_10_1371_journal_pone_0091742
crossref_primary_10_3390_cancers15102683
crossref_primary_10_3390_cells10040860
crossref_primary_10_3390_ijms22179610
crossref_primary_10_3390_cells11091442
crossref_primary_10_1016_j_toxlet_2017_11_009
crossref_primary_10_3389_fnmol_2024_1483901
crossref_primary_10_1007_s12017_014_8295_9
crossref_primary_10_3389_fncel_2015_00481
crossref_primary_10_12688_f1000research_2_204_v1
crossref_primary_10_1371_journal_pone_0159632
crossref_primary_10_3390_ijms251910846
crossref_primary_10_1002_dneu_22114
crossref_primary_10_1074_jbc_M116_723015
crossref_primary_10_1016_j_lfs_2019_02_033
crossref_primary_10_1016_j_neuropharm_2012_08_010
crossref_primary_10_1016_j_neuint_2021_105076
crossref_primary_10_3390_ijms18061254
crossref_primary_10_1016_j_nbd_2014_03_009
crossref_primary_10_1007_s12035_014_9074_1
crossref_primary_10_1016_j_ejcb_2022_151237
crossref_primary_10_1111_dgd_12367
crossref_primary_10_1212_WNL_0000000000002585
crossref_primary_10_3389_fped_2014_00086
crossref_primary_10_1016_j_neubiorev_2023_105330
crossref_primary_10_1210_me_2013_1079
crossref_primary_10_1007_s13311_013_0227_0
crossref_primary_10_3390_ijms24043796
crossref_primary_10_1038_ejhg_2013_86
crossref_primary_10_1007_s12031_023_02177_0
crossref_primary_10_3233_JAD_215144
crossref_primary_10_1038_s41467_021_23987_z
crossref_primary_10_1186_2040_2392_4_46
crossref_primary_10_3389_fcell_2020_614954
crossref_primary_10_3390_ijms22105308
crossref_primary_10_1016_j_mcn_2017_10_006
Cites_doi 10.1136/jmg.2004.023804
10.1523/JNEUROSCI.2897-10.2011
10.1016/j.mcn.2004.07.006
10.1007/s10048-009-0220-2
10.1002/humu.9338
10.1111/j.1460-9568.2008.06491.x
10.1074/jbc.M110.146860
10.1016/S0092-8674(00)81369-0
10.1136/jmg.2009.067884
10.1038/ng1327
10.1007/s00431-010-1144-4
10.1002/jnr.22506
10.1073/pnas.0812394106
10.1126/science.1153252
10.1002/cne.21264
10.1007/s11920-010-0097-7
10.1073/pnas.90.23.10989
10.1111/j.1471-4159.2004.02530.x
10.1093/nar/gkh349
10.1136/jmg.2009.067355
10.1016/0896-6273(92)90210-5
10.1016/j.neuron.2007.10.001
10.1602/neurorx.2.3.447
10.1073/pnas.0437870100
10.1111/j.1471-4159.2007.04450.x
10.1002/jnr.22352
10.1258/ebm.2010.010261
10.1093/hmg/ddh282
10.1523/JNEUROSCI.23-28-09418.2003
10.1007/s10048-010-0255-4
10.1523/JNEUROSCI.13-10-04181.1993
10.1073/pnas.0707442104
10.1016/j.ajhg.2008.05.015
10.1016/j.neuroscience.2007.09.076
10.1523/JNEUROSCI.22-15-06526.2002
10.1093/cercor/bhm209
10.1006/dbio.2000.9732
10.1523/JNEUROSCI.5704-10.2011
10.1038/ejhg.2009.95
10.1074/jbc.M707744200
10.1073/pnas.0401626101
10.1016/0896-6273(95)90262-7
10.1016/j.neulet.2007.08.031
10.1126/science.1090674
10.1002/neu.10201
ContentType Journal Article
Copyright Copyright © 2012 the authors 0270-6474/12/322846-10$15.00/0 2012
Copyright_xml – notice: Copyright © 2012 the authors 0270-6474/12/322846-10$15.00/0 2012
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1523/JNEUROSCI.5841-11.2012
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1529-2401
EndPage 2855
ExternalDocumentID PMC3403752
22357867
10_1523_JNEUROSCI_5841_11_2012
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R01 NS040408
– fundername: NINDS NIH HHS
  grantid: NS058462
– fundername: NINDS NIH HHS
  grantid: R21 NS058462
– fundername: NINDS NIH HHS
  grantid: R21 NS066404
– fundername: NINDS NIH HHS
  grantid: NS040408
– fundername: NINDS NIH HHS
  grantid: R21 NS078771
GroupedDBID ---
-DZ
-~X
.55
18M
2WC
34G
39C
3O-
53G
5GY
5RE
5VS
AAFWJ
AAJMC
AAYXX
ABBAR
ABIVO
ACGUR
ACNCT
ADBBV
ADCOW
ADHGD
AENEX
AETEA
AFCFT
AFOSN
AFSQR
AHWXS
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
H13
HYE
H~9
KQ8
L7B
MVM
OK1
P0W
P2P
QZG
R.V
RHI
RPM
TFN
TR2
W8F
WH7
WOQ
X7M
XJT
YBU
YHG
YKV
YNH
YSK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c479t-3249ec4fb34aff5da6c7b5f7e4c9dc8c10d765ba08a738a29c0d0e09b9d37e873
ISSN 0270-6474
1529-2401
IngestDate Thu Aug 21 13:59:38 EDT 2025
Fri Jul 11 03:05:29 EDT 2025
Sat May 31 02:13:52 EDT 2025
Tue Jul 01 03:46:48 EDT 2025
Thu Apr 24 22:52:38 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://creativecommons.org/licenses/by-nc-sa/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c479t-3249ec4fb34aff5da6c7b5f7e4c9dc8c10d765ba08a738a29c0d0e09b9d37e873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author contributions: S.G.D. and S.R.D. designed research; S.G.D., F.H.B., C.M., V.P., V.R., and P.V. performed research; V.N. contributed unpublished reagents/analytic tools; S.G.D., F.H.B., C.M., and S.R.D. analyzed data; S.G.D. and S.R.D. wrote the paper.
OpenAccessLink https://www.jneurosci.org/content/jneuro/32/8/2846.full.pdf
PMID 22357867
PQID 923575906
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3403752
proquest_miscellaneous_923575906
pubmed_primary_22357867
crossref_citationtrail_10_1523_JNEUROSCI_5841_11_2012
crossref_primary_10_1523_JNEUROSCI_5841_11_2012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-02-22
2012-Feb-22
20120222
PublicationDateYYYYMMDD 2012-02-22
PublicationDate_xml – month: 02
  year: 2012
  text: 2012-02-22
  day: 22
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of neuroscience
PublicationTitleAlternate J Neurosci
PublicationYear 2012
Publisher Society for Neuroscience
Publisher_xml – name: Society for Neuroscience
References Beal (2023041303550700000_32.8.2846.4) 1993; 13
2023041303550700000_32.8.2846.27
2023041303550700000_32.8.2846.28
2023041303550700000_32.8.2846.29
2023041303550700000_32.8.2846.23
2023041303550700000_32.8.2846.45
2023041303550700000_32.8.2846.24
2023041303550700000_32.8.2846.25
2023041303550700000_32.8.2846.26
2023041303550700000_32.8.2846.1
2023041303550700000_32.8.2846.2
2023041303550700000_32.8.2846.5
2023041303550700000_32.8.2846.6
2023041303550700000_32.8.2846.3
2023041303550700000_32.8.2846.9
2023041303550700000_32.8.2846.30
2023041303550700000_32.8.2846.31
2023041303550700000_32.8.2846.7
2023041303550700000_32.8.2846.10
2023041303550700000_32.8.2846.32
2023041303550700000_32.8.2846.8
2023041303550700000_32.8.2846.11
2023041303550700000_32.8.2846.33
Ferrante (2023041303550700000_32.8.2846.18) 2003; 23
2023041303550700000_32.8.2846.16
2023041303550700000_32.8.2846.38
2023041303550700000_32.8.2846.17
2023041303550700000_32.8.2846.19
2023041303550700000_32.8.2846.12
2023041303550700000_32.8.2846.34
Shi (2023041303550700000_32.8.2846.39) 2005; 25
2023041303550700000_32.8.2846.13
2023041303550700000_32.8.2846.35
2023041303550700000_32.8.2846.14
2023041303550700000_32.8.2846.36
2023041303550700000_32.8.2846.15
2023041303550700000_32.8.2846.37
Hanashima (2023041303550700000_32.8.2846.20) 2002; 22
2023041303550700000_32.8.2846.41
2023041303550700000_32.8.2846.42
2023041303550700000_32.8.2846.21
2023041303550700000_32.8.2846.43
2023041303550700000_32.8.2846.22
2023041303550700000_32.8.2846.44
2023041303550700000_32.8.2846.40
22787029 - J Neurosci. 2012 Jul 11;32(28):9451-3. doi: 10.1523/JNEUROSCI.2043-12.2012.
References_xml – ident: 2023041303550700000_32.8.2846.33
  doi: 10.1136/jmg.2004.023804
– ident: 2023041303550700000_32.8.2846.13
  doi: 10.1523/JNEUROSCI.2897-10.2011
– ident: 2023041303550700000_32.8.2846.26
  doi: 10.1016/j.mcn.2004.07.006
– ident: 2023041303550700000_32.8.2846.2
  doi: 10.1007/s10048-009-0220-2
– volume: 25
  start-page: 505
  year: 2005
  ident: 2023041303550700000_32.8.2846.39
  article-title: Detection of heterozygous deletions and duplications in the MECP2 gene in rett syndrome by robust dosage PCR (RD-PCR)
  publication-title: Hum Mutat
  doi: 10.1002/humu.9338
– ident: 2023041303550700000_32.8.2846.10
  doi: 10.1111/j.1460-9568.2008.06491.x
– ident: 2023041303550700000_32.8.2846.31
  doi: 10.1074/jbc.M110.146860
– ident: 2023041303550700000_32.8.2846.32
  doi: 10.1016/S0092-8674(00)81369-0
– ident: 2023041303550700000_32.8.2846.34
  doi: 10.1136/jmg.2009.067884
– ident: 2023041303550700000_32.8.2846.35
  doi: 10.1038/ng1327
– ident: 2023041303550700000_32.8.2846.37
  doi: 10.1007/s00431-010-1144-4
– ident: 2023041303550700000_32.8.2846.9
  doi: 10.1002/jnr.22506
– ident: 2023041303550700000_32.8.2846.42
  doi: 10.1073/pnas.0812394106
– ident: 2023041303550700000_32.8.2846.8
  doi: 10.1126/science.1153252
– ident: 2023041303550700000_32.8.2846.16
  doi: 10.1002/cne.21264
– ident: 2023041303550700000_32.8.2846.19
  doi: 10.1007/s11920-010-0097-7
– ident: 2023041303550700000_32.8.2846.15
  doi: 10.1073/pnas.90.23.10989
– ident: 2023041303550700000_32.8.2846.11
  doi: 10.1111/j.1471-4159.2004.02530.x
– ident: 2023041303550700000_32.8.2846.27
  doi: 10.1093/nar/gkh349
– ident: 2023041303550700000_32.8.2846.36
  doi: 10.1136/jmg.2009.067355
– ident: 2023041303550700000_32.8.2846.41
  doi: 10.1016/0896-6273(92)90210-5
– ident: 2023041303550700000_32.8.2846.7
  doi: 10.1016/j.neuron.2007.10.001
– ident: 2023041303550700000_32.8.2846.29
  doi: 10.1602/neurorx.2.3.447
– ident: 2023041303550700000_32.8.2846.23
  doi: 10.1073/pnas.0437870100
– ident: 2023041303550700000_32.8.2846.14
  doi: 10.1111/j.1471-4159.2007.04450.x
– ident: 2023041303550700000_32.8.2846.43
  doi: 10.1002/jnr.22352
– ident: 2023041303550700000_32.8.2846.6
  doi: 10.1258/ebm.2010.010261
– ident: 2023041303550700000_32.8.2846.12
  doi: 10.1093/hmg/ddh282
– volume: 23
  start-page: 9418
  year: 2003
  ident: 2023041303550700000_32.8.2846.18
  article-title: Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington's disease mice
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.23-28-09418.2003
– ident: 2023041303550700000_32.8.2846.28
  doi: 10.1007/s10048-010-0255-4
– volume: 13
  start-page: 4181
  year: 1993
  ident: 2023041303550700000_32.8.2846.4
  article-title: Neurochemical and histological characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-Nitropropionic acid
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.13-10-04181.1993
– ident: 2023041303550700000_32.8.2846.45
  doi: 10.1073/pnas.0707442104
– ident: 2023041303550700000_32.8.2846.1
  doi: 10.1016/j.ajhg.2008.05.015
– ident: 2023041303550700000_32.8.2846.38
  doi: 10.1016/j.neuroscience.2007.09.076
– volume: 22
  start-page: 6526
  year: 2002
  ident: 2023041303550700000_32.8.2846.20
  article-title: Brain factor-1 controls the proliferation and differentiation of neocortical progenitor cells through independent mechanisms
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.22-15-06526.2002
– ident: 2023041303550700000_32.8.2846.40
  doi: 10.1093/cercor/bhm209
– ident: 2023041303550700000_32.8.2846.22
  doi: 10.1006/dbio.2000.9732
– ident: 2023041303550700000_32.8.2846.3
  doi: 10.1523/JNEUROSCI.5704-10.2011
– ident: 2023041303550700000_32.8.2846.24
  doi: 10.1038/ejhg.2009.95
– ident: 2023041303550700000_32.8.2846.5
  doi: 10.1074/jbc.M707744200
– ident: 2023041303550700000_32.8.2846.30
  doi: 10.1073/pnas.0401626101
– ident: 2023041303550700000_32.8.2846.44
  doi: 10.1016/0896-6273(95)90262-7
– ident: 2023041303550700000_32.8.2846.17
  doi: 10.1016/j.neulet.2007.08.031
– ident: 2023041303550700000_32.8.2846.21
  doi: 10.1126/science.1090674
– ident: 2023041303550700000_32.8.2846.25
  doi: 10.1002/neu.10201
– reference: 22787029 - J Neurosci. 2012 Jul 11;32(28):9451-3. doi: 10.1523/JNEUROSCI.2043-12.2012.
SSID ssj0007017
Score 2.3264463
Snippet The methyl-CpG binding protein 2 (MeCP2) is a widely expressed protein, the mutations of which cause Rett syndrome. The level of MeCP2 is highest in the brain...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2846
SubjectTerms Animals
Animals, Newborn
Apoptosis - drug effects
Apoptosis - genetics
Apoptosis - physiology
Cells, Cultured
Cerebellum - cytology
Disease Models, Animal
Female
Forkhead Transcription Factors
Gene Expression Regulation - drug effects
Gene Expression Regulation - genetics
Huntingtin Protein
Huntington Disease - metabolism
Huntington Disease - pathology
Immunoprecipitation
Insulin-Like Growth Factor I - metabolism
Male
Methyl-CpG-Binding Protein 2 - genetics
Methyl-CpG-Binding Protein 2 - metabolism
Mice
Mice, Inbred C57BL
Mice, Transgenic
Mitosis
Mutation - genetics
Nerve Tissue Proteins - genetics
Neurons - drug effects
Neurons - metabolism
Neurons - physiology
Neurotoxicity Syndromes - etiology
Neurotoxicity Syndromes - metabolism
Nitro Compounds - toxicity
Nuclear Proteins - genetics
Potassium - pharmacology
Propionates - toxicity
Protein Isoforms - genetics
Protein Isoforms - metabolism
RNA, Messenger - metabolism
RNA, Small Interfering - genetics
RNA, Small Interfering - metabolism
RNA, Small Interfering - pharmacology
Signal Transduction - drug effects
Signal Transduction - physiology
Transfection
Title Isoform-Specific Toxicity of Mecp2 in Postmitotic Neurons: Suppression of Neurotoxicity by FoxG1
URI https://www.ncbi.nlm.nih.gov/pubmed/22357867
https://www.proquest.com/docview/923575906
https://pubmed.ncbi.nlm.nih.gov/PMC3403752
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgvPCCgHEpN_kB8ZYtcS6OeRvTugtrEVqL9hYc29EqbUm1phLj13OO4ybpVmnAS1QlcRz1Oz45tr_zHUI--lz6qYKRFkUaU3JU7smUc89XKS8U0yqw2wWjcXI0jU7O4_OOOmSzS-p8R_3emFfyP6jCOcAVs2T_Adn2oXACfgO-cASE4fhXGB8vKow5PUyXRMoPBJK_ZsqRLEZGzZkliVeL-goGLkqzWvnK0tLgFsu5I8HaiNFeadtDUArfpcOgH7t2WWSXbQP3Ae3Wu8Fj6IazfYbMI9RLOryoFu2i8xewyKYC9hDXorvciJFsdv9nrbNeFaT_Ad-w65npr08g0YN5jPVdKrN7OM0bmw3nnB_u1jmXKx6vc6pps0p5x9vHVnXiZIykx7P94x0IpgIvwFm_o2avyWuPv2XD6elpNjk4nzwkjxjMK7Dkxdfvnbw8922J5vb1XEo59LO7uZf1aObOFOU207YXukyekicOM7rXGNAz8sCUz8n2Xinr6uqGfqKWBWy3V7bJz9s2RVc2QauCWpuis5L2bIo6m_pMexaFN69ZFM1vqLWoF2Q6PJjsH3muCoenIi5qDyJuYVRU5GEkiyLWMlE8jwtuIiW0SlXga57EOQx5ycNUMqF87Rtf5EKH3KQ8fEm2yqo0rwlVQulEJykWGUApg5zHXASaFakojJThgMSrfzNTTqIeK6VcZjhVBRSyFoUMUYDpa4YoDMhu227eiLTc24KuwMrAn-ImmSxNtVxkAvWfYuEnA_Kqwa59JLPSUAkfEL6GansDSrWvXylnF1ayPYyw1jR7c3-3b8njbhS9I1v19dK8h7i3zj9YW_0DLsGwZw
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Isoform-specific+toxicity+of+Mecp2+in+postmitotic+neurons%3A+suppression+of+neurotoxicity+by+FoxG1&rft.jtitle=The+Journal+of+neuroscience&rft.au=Dastidar%2C+Somasish+Ghosh&rft.au=Bardai%2C+Farah+H&rft.au=Ma%2C+Chi&rft.au=Price%2C+Valerie&rft.date=2012-02-22&rft.issn=1529-2401&rft.eissn=1529-2401&rft.volume=32&rft.issue=8&rft.spage=2846&rft_id=info:doi/10.1523%2FJNEUROSCI.5841-11.2012&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon