Isoform-Specific Toxicity of Mecp2 in Postmitotic Neurons: Suppression of Neurotoxicity by FoxG1
The methyl-CpG binding protein 2 (MeCP2) is a widely expressed protein, the mutations of which cause Rett syndrome. The level of MeCP2 is highest in the brain where it is expressed selectively in mature neurons. Its functions in postmitotic neurons are not known. The MeCP2 gene is alternatively spli...
Saved in:
Published in | The Journal of neuroscience Vol. 32; no. 8; pp. 2846 - 2855 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Society for Neuroscience
22.02.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The methyl-CpG binding protein 2 (MeCP2) is a widely expressed protein, the mutations of which cause Rett syndrome. The level of MeCP2 is highest in the brain where it is expressed selectively in mature neurons. Its functions in postmitotic neurons are not known. The
MeCP2
gene is alternatively spliced to generate two proteins with different N termini, designated as
MeCP2-e1
and
MeCP2-e2
. The physiological significance of these two isoforms has not been elucidated, and it is generally assumed they are functionally equivalent. We report that in cultured cerebellar granule neurons induced to die by low potassium treatment and in Aβ-treated cortical neurons,
Mecp2-e2
expression is upregulated whereas expression of the
Mecp2-e1
isoform is downregulated. Knockdown of
Mecp2-e2
protects neurons from death, whereas knockdown of the e1 isoform has no effect. Forced expression of MeCP2-e2, but not MeCP2-e1, promotes apoptosis in otherwise healthy neurons. We find that MeCP2-e2 interacts with the forkhead protein FoxG1, mutations of which also cause Rett syndrome. FoxG1 has been shown to promote neuronal survival and its downregulation leads to neuronal death. We find that elevated FoxG1 expression inhibits MeCP2-e2 neurotoxicity. MeCP2-e2 neurotoxicity is also inhibited by IGF-1, which prevents the neuronal death-associated downregulation of FoxG1 expression, and by Akt, the activation of which is necessary for FoxG1-mediated neuroprotection. Finally, MeCP2-e2 neurotoxicity is enhanced if FoxG1 expression is suppressed or in neurons cultured from
FoxG1
-haplodeficient mice. Our results indicate that Mecp2-e2 promotes neuronal death and that this activity is normally inhibited by FoxG1. Reduced FoxG1expression frees MecP2-e2 to promote neuronal death. |
---|---|
AbstractList | The methyl-CpG binding protein 2 (MeCP2) is a widely expressed protein, the mutations of which cause Rett syndrome. The level of MeCP2 is highest in the brain where it is expressed selectively in mature neurons. Its functions in postmitotic neurons are not known. The
MeCP2
gene is alternatively spliced to generate two proteins with different N termini, designated as
MeCP2-e1
and
MeCP2-e2
. The physiological significance of these two isoforms has not been elucidated, and it is generally assumed they are functionally equivalent. We report that in cultured cerebellar granule neurons induced to die by low potassium treatment and in Aβ-treated cortical neurons,
Mecp2-e2
expression is upregulated whereas expression of the
Mecp2-e1
isoform is downregulated. Knockdown of
Mecp2-e2
protects neurons from death, whereas knockdown of the e1 isoform has no effect. Forced expression of MeCP2-e2, but not MeCP2-e1, promotes apoptosis in otherwise healthy neurons. We find that MeCP2-e2 interacts with the forkhead protein FoxG1, mutations of which also cause Rett syndrome. FoxG1 has been shown to promote neuronal survival and its downregulation leads to neuronal death. We find that elevated FoxG1 expression inhibits MeCP2-e2 neurotoxicity. MeCP2-e2 neurotoxicity is also inhibited by IGF-1, which prevents the neuronal death-associated downregulation of FoxG1 expression, and by Akt, the activation of which is necessary for FoxG1-mediated neuroprotection. Finally, MeCP2-e2 neurotoxicity is enhanced if FoxG1 expression is suppressed or in neurons cultured from
FoxG1
-haplodeficient mice. Our results indicate that Mecp2-e2 promotes neuronal death and that this activity is normally inhibited by FoxG1. Reduced FoxG1expression frees MecP2-e2 to promote neuronal death. The methyl-CpG binding protein 2 (MeCP2) is a widely expressed protein, the mutations of which cause Rett syndrome. The level of MeCP2 is highest in the brain where it is expressed selectively in mature neurons. Its functions in postmitotic neurons are not known. The MeCP2 gene is alternatively spliced to generate two proteins with different N termini, designated as MeCP2-e1 and MeCP2-e2. The physiological significance of these two isoforms has not been elucidated, and it is generally assumed they are functionally equivalent. We report that in cultured cerebellar granule neurons induced to die by low potassium treatment and in Aβ-treated cortical neurons, Mecp2-e2 expression is upregulated whereas expression of the Mecp2-e1 isoform is downregulated. Knockdown of Mecp2-e2 protects neurons from death, whereas knockdown of the e1 isoform has no effect. Forced expression of MeCP2-e2, but not MeCP2-e1, promotes apoptosis in otherwise healthy neurons. We find that MeCP2-e2 interacts with the forkhead protein FoxG1, mutations of which also cause Rett syndrome. FoxG1 has been shown to promote neuronal survival and its downregulation leads to neuronal death. We find that elevated FoxG1 expression inhibits MeCP2-e2 neurotoxicity. MeCP2-e2 neurotoxicity is also inhibited by IGF-1, which prevents the neuronal death-associated downregulation of FoxG1 expression, and by Akt, the activation of which is necessary for FoxG1-mediated neuroprotection. Finally, MeCP2-e2 neurotoxicity is enhanced if FoxG1 expression is suppressed or in neurons cultured from FoxG1-haplodeficient mice. Our results indicate that Mecp2-e2 promotes neuronal death and that this activity is normally inhibited by FoxG1. Reduced FoxG1 expression frees MecP2-e2 to promote neuronal death. The methyl-CpG binding protein 2 (MeCP2) is a widely expressed protein, the mutations of which cause Rett syndrome. The level of MeCP2 is highest in the brain where it is expressed selectively in mature neurons. Its functions in postmitotic neurons are not known. The MeCP2 gene is alternatively spliced to generate two proteins with different N termini, designated as MeCP2-e1 and MeCP2-e2. The physiological significance of these two isoforms has not been elucidated, and it is generally assumed they are functionally equivalent. We report that in cultured cerebellar granule neurons induced to die by low potassium treatment and in Aβ-treated cortical neurons, Mecp2-e2 expression is upregulated whereas expression of the Mecp2-e1 isoform is downregulated. Knockdown of Mecp2-e2 protects neurons from death, whereas knockdown of the e1 isoform has no effect. Forced expression of MeCP2-e2, but not MeCP2-e1, promotes apoptosis in otherwise healthy neurons. We find that MeCP2-e2 interacts with the forkhead protein FoxG1, mutations of which also cause Rett syndrome. FoxG1 has been shown to promote neuronal survival and its downregulation leads to neuronal death. We find that elevated FoxG1 expression inhibits MeCP2-e2 neurotoxicity. MeCP2-e2 neurotoxicity is also inhibited by IGF-1, which prevents the neuronal death-associated downregulation of FoxG1 expression, and by Akt, the activation of which is necessary for FoxG1-mediated neuroprotection. Finally, MeCP2-e2 neurotoxicity is enhanced if FoxG1 expression is suppressed or in neurons cultured from FoxG1-haplodeficient mice. Our results indicate that Mecp2-e2 promotes neuronal death and that this activity is normally inhibited by FoxG1. Reduced FoxG1 expression frees MecP2-e2 to promote neuronal death.The methyl-CpG binding protein 2 (MeCP2) is a widely expressed protein, the mutations of which cause Rett syndrome. The level of MeCP2 is highest in the brain where it is expressed selectively in mature neurons. Its functions in postmitotic neurons are not known. The MeCP2 gene is alternatively spliced to generate two proteins with different N termini, designated as MeCP2-e1 and MeCP2-e2. The physiological significance of these two isoforms has not been elucidated, and it is generally assumed they are functionally equivalent. We report that in cultured cerebellar granule neurons induced to die by low potassium treatment and in Aβ-treated cortical neurons, Mecp2-e2 expression is upregulated whereas expression of the Mecp2-e1 isoform is downregulated. Knockdown of Mecp2-e2 protects neurons from death, whereas knockdown of the e1 isoform has no effect. Forced expression of MeCP2-e2, but not MeCP2-e1, promotes apoptosis in otherwise healthy neurons. We find that MeCP2-e2 interacts with the forkhead protein FoxG1, mutations of which also cause Rett syndrome. FoxG1 has been shown to promote neuronal survival and its downregulation leads to neuronal death. We find that elevated FoxG1 expression inhibits MeCP2-e2 neurotoxicity. MeCP2-e2 neurotoxicity is also inhibited by IGF-1, which prevents the neuronal death-associated downregulation of FoxG1 expression, and by Akt, the activation of which is necessary for FoxG1-mediated neuroprotection. Finally, MeCP2-e2 neurotoxicity is enhanced if FoxG1 expression is suppressed or in neurons cultured from FoxG1-haplodeficient mice. Our results indicate that Mecp2-e2 promotes neuronal death and that this activity is normally inhibited by FoxG1. Reduced FoxG1 expression frees MecP2-e2 to promote neuronal death. |
Author | Verma, Pragya D'Mello, Santosh R. Narayanan, Vinodh Price, Valerie Dastidar, Somasish Ghosh Bardai, Farah H. Ma, Chi Rawat, Varun |
Author_xml | – sequence: 1 givenname: Somasish Ghosh surname: Dastidar fullname: Dastidar, Somasish Ghosh – sequence: 2 givenname: Farah H. surname: Bardai fullname: Bardai, Farah H. – sequence: 3 givenname: Chi surname: Ma fullname: Ma, Chi – sequence: 4 givenname: Valerie surname: Price fullname: Price, Valerie – sequence: 5 givenname: Varun surname: Rawat fullname: Rawat, Varun – sequence: 6 givenname: Pragya surname: Verma fullname: Verma, Pragya – sequence: 7 givenname: Vinodh surname: Narayanan fullname: Narayanan, Vinodh – sequence: 8 givenname: Santosh R. surname: D'Mello fullname: D'Mello, Santosh R. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22357867$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtP3DAUhS1EBcPAX0DZdZWpX4njqqpUjXhMxUsMrI3j2NRVEqe2UzH_vg4wqHTT1ZXuPece6TsHYLd3vQbgGMEFKjD59P3q5P72er1cLYqKohyhBYYI74BZuvIcU4h2wQxiBvOSMroPDkL4CSFkELE9sI8xKVhVshl4WAVnnO_y9aCVNVZld-7JKhs3mTPZpVYDzmyf3bgQOxtdTIIrPXrXh8_ZehwGr0Owrp_Ez_u4ddeb7NQ9naFD8MHINuij1zkH96cnd8vz_OL6bLX8dpErynjMCaZcK2pqQqUxRSNLxerCME0Vb1SlEGxYWdQSVpKRSmKuYAM15DVvCNMVI3Pw9eXvMNadbpTuo5etGLztpN8IJ614f-ntD_HofgtCIWEJ6Rx8fH3g3a9Rhyg6G5RuW9lrNwbBJ2YFh2VSHv8d9ZaxpZoEX14EyrsQvDYiIZExcUrJthUIiqlE8VaimEoUCImpxGQv_7FvE_5j_AM28aQ6 |
CitedBy_id | crossref_primary_10_1038_ejhg_2012_208 crossref_primary_10_1038_emm_2013_76 crossref_primary_10_3892_mmr_2017_7186 crossref_primary_10_1007_s40142_016_0107_0 crossref_primary_10_1016_j_neuropharm_2012_11_015 crossref_primary_10_1111_jnc_15331 crossref_primary_10_1016_j_jmb_2019_10_004 crossref_primary_10_1016_j_pnpbp_2015_09_008 crossref_primary_10_1371_journal_pone_0090645 crossref_primary_10_1016_j_ijdevneu_2014_03_006 crossref_primary_10_1177_15353702231209419 crossref_primary_10_1093_hmg_ddaa154 crossref_primary_10_1016_j_jpeds_2017_12_029 crossref_primary_10_5213_inj_1938196_098 crossref_primary_10_21307_ane_2018_007 crossref_primary_10_1007_s12264_014_1452_6 crossref_primary_10_1016_j_neuroscience_2016_03_027 crossref_primary_10_1186_s40348_016_0065_3 crossref_primary_10_1371_journal_pone_0091742 crossref_primary_10_3390_cancers15102683 crossref_primary_10_3390_cells10040860 crossref_primary_10_3390_ijms22179610 crossref_primary_10_3390_cells11091442 crossref_primary_10_1016_j_toxlet_2017_11_009 crossref_primary_10_3389_fnmol_2024_1483901 crossref_primary_10_1007_s12017_014_8295_9 crossref_primary_10_3389_fncel_2015_00481 crossref_primary_10_12688_f1000research_2_204_v1 crossref_primary_10_1371_journal_pone_0159632 crossref_primary_10_3390_ijms251910846 crossref_primary_10_1002_dneu_22114 crossref_primary_10_1074_jbc_M116_723015 crossref_primary_10_1016_j_lfs_2019_02_033 crossref_primary_10_1016_j_neuropharm_2012_08_010 crossref_primary_10_1016_j_neuint_2021_105076 crossref_primary_10_3390_ijms18061254 crossref_primary_10_1016_j_nbd_2014_03_009 crossref_primary_10_1007_s12035_014_9074_1 crossref_primary_10_1016_j_ejcb_2022_151237 crossref_primary_10_1111_dgd_12367 crossref_primary_10_1212_WNL_0000000000002585 crossref_primary_10_3389_fped_2014_00086 crossref_primary_10_1016_j_neubiorev_2023_105330 crossref_primary_10_1210_me_2013_1079 crossref_primary_10_1007_s13311_013_0227_0 crossref_primary_10_3390_ijms24043796 crossref_primary_10_1038_ejhg_2013_86 crossref_primary_10_1007_s12031_023_02177_0 crossref_primary_10_3233_JAD_215144 crossref_primary_10_1038_s41467_021_23987_z crossref_primary_10_1186_2040_2392_4_46 crossref_primary_10_3389_fcell_2020_614954 crossref_primary_10_3390_ijms22105308 crossref_primary_10_1016_j_mcn_2017_10_006 |
Cites_doi | 10.1136/jmg.2004.023804 10.1523/JNEUROSCI.2897-10.2011 10.1016/j.mcn.2004.07.006 10.1007/s10048-009-0220-2 10.1002/humu.9338 10.1111/j.1460-9568.2008.06491.x 10.1074/jbc.M110.146860 10.1016/S0092-8674(00)81369-0 10.1136/jmg.2009.067884 10.1038/ng1327 10.1007/s00431-010-1144-4 10.1002/jnr.22506 10.1073/pnas.0812394106 10.1126/science.1153252 10.1002/cne.21264 10.1007/s11920-010-0097-7 10.1073/pnas.90.23.10989 10.1111/j.1471-4159.2004.02530.x 10.1093/nar/gkh349 10.1136/jmg.2009.067355 10.1016/0896-6273(92)90210-5 10.1016/j.neuron.2007.10.001 10.1602/neurorx.2.3.447 10.1073/pnas.0437870100 10.1111/j.1471-4159.2007.04450.x 10.1002/jnr.22352 10.1258/ebm.2010.010261 10.1093/hmg/ddh282 10.1523/JNEUROSCI.23-28-09418.2003 10.1007/s10048-010-0255-4 10.1523/JNEUROSCI.13-10-04181.1993 10.1073/pnas.0707442104 10.1016/j.ajhg.2008.05.015 10.1016/j.neuroscience.2007.09.076 10.1523/JNEUROSCI.22-15-06526.2002 10.1093/cercor/bhm209 10.1006/dbio.2000.9732 10.1523/JNEUROSCI.5704-10.2011 10.1038/ejhg.2009.95 10.1074/jbc.M707744200 10.1073/pnas.0401626101 10.1016/0896-6273(95)90262-7 10.1016/j.neulet.2007.08.031 10.1126/science.1090674 10.1002/neu.10201 |
ContentType | Journal Article |
Copyright | Copyright © 2012 the authors 0270-6474/12/322846-10$15.00/0 2012 |
Copyright_xml | – notice: Copyright © 2012 the authors 0270-6474/12/322846-10$15.00/0 2012 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1523/JNEUROSCI.5841-11.2012 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1529-2401 |
EndPage | 2855 |
ExternalDocumentID | PMC3403752 22357867 10_1523_JNEUROSCI_5841_11_2012 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R01 NS040408 – fundername: NINDS NIH HHS grantid: NS058462 – fundername: NINDS NIH HHS grantid: R21 NS058462 – fundername: NINDS NIH HHS grantid: R21 NS066404 – fundername: NINDS NIH HHS grantid: NS040408 – fundername: NINDS NIH HHS grantid: R21 NS078771 |
GroupedDBID | --- -DZ -~X .55 18M 2WC 34G 39C 3O- 53G 5GY 5RE 5VS AAFWJ AAJMC AAYXX ABBAR ABIVO ACGUR ACNCT ADBBV ADCOW ADHGD AENEX AETEA AFCFT AFOSN AFSQR AHWXS ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW CITATION CS3 DIK DU5 E3Z EBS EJD F5P GX1 H13 HYE H~9 KQ8 L7B MVM OK1 P0W P2P QZG R.V RHI RPM TFN TR2 W8F WH7 WOQ X7M XJT YBU YHG YKV YNH YSK CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c479t-3249ec4fb34aff5da6c7b5f7e4c9dc8c10d765ba08a738a29c0d0e09b9d37e873 |
ISSN | 0270-6474 1529-2401 |
IngestDate | Thu Aug 21 13:59:38 EDT 2025 Fri Jul 11 03:05:29 EDT 2025 Sat May 31 02:13:52 EDT 2025 Tue Jul 01 03:46:48 EDT 2025 Thu Apr 24 22:52:38 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://creativecommons.org/licenses/by-nc-sa/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c479t-3249ec4fb34aff5da6c7b5f7e4c9dc8c10d765ba08a738a29c0d0e09b9d37e873 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Author contributions: S.G.D. and S.R.D. designed research; S.G.D., F.H.B., C.M., V.P., V.R., and P.V. performed research; V.N. contributed unpublished reagents/analytic tools; S.G.D., F.H.B., C.M., and S.R.D. analyzed data; S.G.D. and S.R.D. wrote the paper. |
OpenAccessLink | https://www.jneurosci.org/content/jneuro/32/8/2846.full.pdf |
PMID | 22357867 |
PQID | 923575906 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3403752 proquest_miscellaneous_923575906 pubmed_primary_22357867 crossref_citationtrail_10_1523_JNEUROSCI_5841_11_2012 crossref_primary_10_1523_JNEUROSCI_5841_11_2012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-02-22 2012-Feb-22 20120222 |
PublicationDateYYYYMMDD | 2012-02-22 |
PublicationDate_xml | – month: 02 year: 2012 text: 2012-02-22 day: 22 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of neuroscience |
PublicationTitleAlternate | J Neurosci |
PublicationYear | 2012 |
Publisher | Society for Neuroscience |
Publisher_xml | – name: Society for Neuroscience |
References | Beal (2023041303550700000_32.8.2846.4) 1993; 13 2023041303550700000_32.8.2846.27 2023041303550700000_32.8.2846.28 2023041303550700000_32.8.2846.29 2023041303550700000_32.8.2846.23 2023041303550700000_32.8.2846.45 2023041303550700000_32.8.2846.24 2023041303550700000_32.8.2846.25 2023041303550700000_32.8.2846.26 2023041303550700000_32.8.2846.1 2023041303550700000_32.8.2846.2 2023041303550700000_32.8.2846.5 2023041303550700000_32.8.2846.6 2023041303550700000_32.8.2846.3 2023041303550700000_32.8.2846.9 2023041303550700000_32.8.2846.30 2023041303550700000_32.8.2846.31 2023041303550700000_32.8.2846.7 2023041303550700000_32.8.2846.10 2023041303550700000_32.8.2846.32 2023041303550700000_32.8.2846.8 2023041303550700000_32.8.2846.11 2023041303550700000_32.8.2846.33 Ferrante (2023041303550700000_32.8.2846.18) 2003; 23 2023041303550700000_32.8.2846.16 2023041303550700000_32.8.2846.38 2023041303550700000_32.8.2846.17 2023041303550700000_32.8.2846.19 2023041303550700000_32.8.2846.12 2023041303550700000_32.8.2846.34 Shi (2023041303550700000_32.8.2846.39) 2005; 25 2023041303550700000_32.8.2846.13 2023041303550700000_32.8.2846.35 2023041303550700000_32.8.2846.14 2023041303550700000_32.8.2846.36 2023041303550700000_32.8.2846.15 2023041303550700000_32.8.2846.37 Hanashima (2023041303550700000_32.8.2846.20) 2002; 22 2023041303550700000_32.8.2846.41 2023041303550700000_32.8.2846.42 2023041303550700000_32.8.2846.21 2023041303550700000_32.8.2846.43 2023041303550700000_32.8.2846.22 2023041303550700000_32.8.2846.44 2023041303550700000_32.8.2846.40 22787029 - J Neurosci. 2012 Jul 11;32(28):9451-3. doi: 10.1523/JNEUROSCI.2043-12.2012. |
References_xml | – ident: 2023041303550700000_32.8.2846.33 doi: 10.1136/jmg.2004.023804 – ident: 2023041303550700000_32.8.2846.13 doi: 10.1523/JNEUROSCI.2897-10.2011 – ident: 2023041303550700000_32.8.2846.26 doi: 10.1016/j.mcn.2004.07.006 – ident: 2023041303550700000_32.8.2846.2 doi: 10.1007/s10048-009-0220-2 – volume: 25 start-page: 505 year: 2005 ident: 2023041303550700000_32.8.2846.39 article-title: Detection of heterozygous deletions and duplications in the MECP2 gene in rett syndrome by robust dosage PCR (RD-PCR) publication-title: Hum Mutat doi: 10.1002/humu.9338 – ident: 2023041303550700000_32.8.2846.10 doi: 10.1111/j.1460-9568.2008.06491.x – ident: 2023041303550700000_32.8.2846.31 doi: 10.1074/jbc.M110.146860 – ident: 2023041303550700000_32.8.2846.32 doi: 10.1016/S0092-8674(00)81369-0 – ident: 2023041303550700000_32.8.2846.34 doi: 10.1136/jmg.2009.067884 – ident: 2023041303550700000_32.8.2846.35 doi: 10.1038/ng1327 – ident: 2023041303550700000_32.8.2846.37 doi: 10.1007/s00431-010-1144-4 – ident: 2023041303550700000_32.8.2846.9 doi: 10.1002/jnr.22506 – ident: 2023041303550700000_32.8.2846.42 doi: 10.1073/pnas.0812394106 – ident: 2023041303550700000_32.8.2846.8 doi: 10.1126/science.1153252 – ident: 2023041303550700000_32.8.2846.16 doi: 10.1002/cne.21264 – ident: 2023041303550700000_32.8.2846.19 doi: 10.1007/s11920-010-0097-7 – ident: 2023041303550700000_32.8.2846.15 doi: 10.1073/pnas.90.23.10989 – ident: 2023041303550700000_32.8.2846.11 doi: 10.1111/j.1471-4159.2004.02530.x – ident: 2023041303550700000_32.8.2846.27 doi: 10.1093/nar/gkh349 – ident: 2023041303550700000_32.8.2846.36 doi: 10.1136/jmg.2009.067355 – ident: 2023041303550700000_32.8.2846.41 doi: 10.1016/0896-6273(92)90210-5 – ident: 2023041303550700000_32.8.2846.7 doi: 10.1016/j.neuron.2007.10.001 – ident: 2023041303550700000_32.8.2846.29 doi: 10.1602/neurorx.2.3.447 – ident: 2023041303550700000_32.8.2846.23 doi: 10.1073/pnas.0437870100 – ident: 2023041303550700000_32.8.2846.14 doi: 10.1111/j.1471-4159.2007.04450.x – ident: 2023041303550700000_32.8.2846.43 doi: 10.1002/jnr.22352 – ident: 2023041303550700000_32.8.2846.6 doi: 10.1258/ebm.2010.010261 – ident: 2023041303550700000_32.8.2846.12 doi: 10.1093/hmg/ddh282 – volume: 23 start-page: 9418 year: 2003 ident: 2023041303550700000_32.8.2846.18 article-title: Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington's disease mice publication-title: J Neurosci doi: 10.1523/JNEUROSCI.23-28-09418.2003 – ident: 2023041303550700000_32.8.2846.28 doi: 10.1007/s10048-010-0255-4 – volume: 13 start-page: 4181 year: 1993 ident: 2023041303550700000_32.8.2846.4 article-title: Neurochemical and histological characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-Nitropropionic acid publication-title: J Neurosci doi: 10.1523/JNEUROSCI.13-10-04181.1993 – ident: 2023041303550700000_32.8.2846.45 doi: 10.1073/pnas.0707442104 – ident: 2023041303550700000_32.8.2846.1 doi: 10.1016/j.ajhg.2008.05.015 – ident: 2023041303550700000_32.8.2846.38 doi: 10.1016/j.neuroscience.2007.09.076 – volume: 22 start-page: 6526 year: 2002 ident: 2023041303550700000_32.8.2846.20 article-title: Brain factor-1 controls the proliferation and differentiation of neocortical progenitor cells through independent mechanisms publication-title: J Neurosci doi: 10.1523/JNEUROSCI.22-15-06526.2002 – ident: 2023041303550700000_32.8.2846.40 doi: 10.1093/cercor/bhm209 – ident: 2023041303550700000_32.8.2846.22 doi: 10.1006/dbio.2000.9732 – ident: 2023041303550700000_32.8.2846.3 doi: 10.1523/JNEUROSCI.5704-10.2011 – ident: 2023041303550700000_32.8.2846.24 doi: 10.1038/ejhg.2009.95 – ident: 2023041303550700000_32.8.2846.5 doi: 10.1074/jbc.M707744200 – ident: 2023041303550700000_32.8.2846.30 doi: 10.1073/pnas.0401626101 – ident: 2023041303550700000_32.8.2846.44 doi: 10.1016/0896-6273(95)90262-7 – ident: 2023041303550700000_32.8.2846.17 doi: 10.1016/j.neulet.2007.08.031 – ident: 2023041303550700000_32.8.2846.21 doi: 10.1126/science.1090674 – ident: 2023041303550700000_32.8.2846.25 doi: 10.1002/neu.10201 – reference: 22787029 - J Neurosci. 2012 Jul 11;32(28):9451-3. doi: 10.1523/JNEUROSCI.2043-12.2012. |
SSID | ssj0007017 |
Score | 2.3264463 |
Snippet | The methyl-CpG binding protein 2 (MeCP2) is a widely expressed protein, the mutations of which cause Rett syndrome. The level of MeCP2 is highest in the brain... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2846 |
SubjectTerms | Animals Animals, Newborn Apoptosis - drug effects Apoptosis - genetics Apoptosis - physiology Cells, Cultured Cerebellum - cytology Disease Models, Animal Female Forkhead Transcription Factors Gene Expression Regulation - drug effects Gene Expression Regulation - genetics Huntingtin Protein Huntington Disease - metabolism Huntington Disease - pathology Immunoprecipitation Insulin-Like Growth Factor I - metabolism Male Methyl-CpG-Binding Protein 2 - genetics Methyl-CpG-Binding Protein 2 - metabolism Mice Mice, Inbred C57BL Mice, Transgenic Mitosis Mutation - genetics Nerve Tissue Proteins - genetics Neurons - drug effects Neurons - metabolism Neurons - physiology Neurotoxicity Syndromes - etiology Neurotoxicity Syndromes - metabolism Nitro Compounds - toxicity Nuclear Proteins - genetics Potassium - pharmacology Propionates - toxicity Protein Isoforms - genetics Protein Isoforms - metabolism RNA, Messenger - metabolism RNA, Small Interfering - genetics RNA, Small Interfering - metabolism RNA, Small Interfering - pharmacology Signal Transduction - drug effects Signal Transduction - physiology Transfection |
Title | Isoform-Specific Toxicity of Mecp2 in Postmitotic Neurons: Suppression of Neurotoxicity by FoxG1 |
URI | https://www.ncbi.nlm.nih.gov/pubmed/22357867 https://www.proquest.com/docview/923575906 https://pubmed.ncbi.nlm.nih.gov/PMC3403752 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgvPCCgHEpN_kB8ZYtcS6OeRvTugtrEVqL9hYc29EqbUm1phLj13OO4ybpVmnAS1QlcRz1Oz45tr_zHUI--lz6qYKRFkUaU3JU7smUc89XKS8U0yqw2wWjcXI0jU7O4_OOOmSzS-p8R_3emFfyP6jCOcAVs2T_Adn2oXACfgO-cASE4fhXGB8vKow5PUyXRMoPBJK_ZsqRLEZGzZkliVeL-goGLkqzWvnK0tLgFsu5I8HaiNFeadtDUArfpcOgH7t2WWSXbQP3Ae3Wu8Fj6IazfYbMI9RLOryoFu2i8xewyKYC9hDXorvciJFsdv9nrbNeFaT_Ad-w65npr08g0YN5jPVdKrN7OM0bmw3nnB_u1jmXKx6vc6pps0p5x9vHVnXiZIykx7P94x0IpgIvwFm_o2avyWuPv2XD6elpNjk4nzwkjxjMK7Dkxdfvnbw8922J5vb1XEo59LO7uZf1aObOFOU207YXukyekicOM7rXGNAz8sCUz8n2Xinr6uqGfqKWBWy3V7bJz9s2RVc2QauCWpuis5L2bIo6m_pMexaFN69ZFM1vqLWoF2Q6PJjsH3muCoenIi5qDyJuYVRU5GEkiyLWMlE8jwtuIiW0SlXga57EOQx5ycNUMqF87Rtf5EKH3KQ8fEm2yqo0rwlVQulEJykWGUApg5zHXASaFakojJThgMSrfzNTTqIeK6VcZjhVBRSyFoUMUYDpa4YoDMhu227eiLTc24KuwMrAn-ImmSxNtVxkAvWfYuEnA_Kqwa59JLPSUAkfEL6GansDSrWvXylnF1ayPYyw1jR7c3-3b8njbhS9I1v19dK8h7i3zj9YW_0DLsGwZw |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Isoform-specific+toxicity+of+Mecp2+in+postmitotic+neurons%3A+suppression+of+neurotoxicity+by+FoxG1&rft.jtitle=The+Journal+of+neuroscience&rft.au=Dastidar%2C+Somasish+Ghosh&rft.au=Bardai%2C+Farah+H&rft.au=Ma%2C+Chi&rft.au=Price%2C+Valerie&rft.date=2012-02-22&rft.issn=1529-2401&rft.eissn=1529-2401&rft.volume=32&rft.issue=8&rft.spage=2846&rft_id=info:doi/10.1523%2FJNEUROSCI.5841-11.2012&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon |