Recent progress in the development of catalysts for steam reforming of biomass tar model reaction
This review describes recent advances in development of catalysts for steam reforming of biomass tar model reactions, using toluene, benzene and naphthalene as tar model compounds. Catalytic systems have been categorized based on their catalytic properties. The material properties such as oxygen mob...
Saved in:
Published in | Fuel processing technology Vol. 199; p. 106252 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.03.2020
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0378-3820 1873-7188 |
DOI | 10.1016/j.fuproc.2019.106252 |
Cover
Abstract | This review describes recent advances in development of catalysts for steam reforming of biomass tar model reactions, using toluene, benzene and naphthalene as tar model compounds. Catalytic systems have been categorized based on their catalytic properties. The material properties such as oxygen mobility and basicity of catalysts showed great influence in their effectiveness in tar reforming. Changes in the properties such as oxygen mobility and basicity with various metal and/or support modifications and their influence on catalytic behavior with respect to reactant conversion and coke inhibition is comprehensively discussed. The activity of the catalysts derived from various synthesis methods is also introduced. The changes induced in the pathways of steam reforming reactions by catalyst modification is also highlighted together with changes in catalytic properties. Reaction pathways for steam reforming of toluene by experimental studies together with insights gained from computational DFT studies is also presented.
[Display omitted]
•Recent developments in the catalyst technology for tar model reforming were reviewed.•Catalytic systems have been categorized based on their catalytic properties.•Modified Ni-based catalysts are much explored for tar model reforming reactions.•Biochar or minerals as catalyst supports are overlooked and provide good support for tar reforming. |
---|---|
AbstractList | This review describes recent advances in development of catalysts for steam reforming of biomass tar model reactions, using toluene, benzene and naphthalene as tar model compounds. Catalytic systems have been categorized based on their catalytic properties. The material properties such as oxygen mobility and basicity of catalysts showed great influence in their effectiveness in tar reforming. Changes in the properties such as oxygen mobility and basicity with various metal and/or support modifications and their influence on catalytic behavior with respect to reactant conversion and coke inhibition is comprehensively discussed. The activity of the catalysts derived from various synthesis methods is also introduced. The changes induced in the pathways of steam reforming reactions by catalyst modification is also highlighted together with changes in catalytic properties. Reaction pathways for steam reforming of toluene by experimental studies together with insights gained from computational DFT studies is also presented. This review describes recent advances in development of catalysts for steam reforming of biomass tar model reactions, using toluene, benzene and naphthalene as tar model compounds. Catalytic systems have been categorized based on their catalytic properties. The material properties such as oxygen mobility and basicity of catalysts showed great influence in their effectiveness in tar reforming. Changes in the properties such as oxygen mobility and basicity with various metal and/or support modifications and their influence on catalytic behavior with respect to reactant conversion and coke inhibition is comprehensively discussed. The activity of the catalysts derived from various synthesis methods is also introduced. The changes induced in the pathways of steam reforming reactions by catalyst modification is also highlighted together with changes in catalytic properties. Reaction pathways for steam reforming of toluene by experimental studies together with insights gained from computational DFT studies is also presented. [Display omitted] •Recent developments in the catalyst technology for tar model reforming were reviewed.•Catalytic systems have been categorized based on their catalytic properties.•Modified Ni-based catalysts are much explored for tar model reforming reactions.•Biochar or minerals as catalyst supports are overlooked and provide good support for tar reforming. |
ArticleNumber | 106252 |
Author | Das, Sonali Dewangan, Nikita Hongmanorom, Plaifa Ashok, Jangam Kawi, Sibudjing Wai, Ming Hui Tomishige, Keiichi |
Author_xml | – sequence: 1 givenname: Jangam surname: Ashok fullname: Ashok, Jangam organization: Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 119260, Republic of Singapore – sequence: 2 givenname: Nikita surname: Dewangan fullname: Dewangan, Nikita organization: Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 119260, Republic of Singapore – sequence: 3 givenname: Sonali surname: Das fullname: Das, Sonali organization: Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 119260, Republic of Singapore – sequence: 4 givenname: Plaifa surname: Hongmanorom fullname: Hongmanorom, Plaifa organization: Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 119260, Republic of Singapore – sequence: 5 givenname: Ming Hui surname: Wai fullname: Wai, Ming Hui organization: Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 119260, Republic of Singapore – sequence: 6 givenname: Keiichi surname: Tomishige fullname: Tomishige, Keiichi organization: Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07, Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan – sequence: 7 givenname: Sibudjing surname: Kawi fullname: Kawi, Sibudjing email: chekawis@nus.edu.sg organization: Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 119260, Republic of Singapore |
BookMark | eNqFkMFqHSEUhiWkkJu0b9CF0E02c3PU8Tp2EQghSQuBQmnX4jhnUi8zeqPeQN6-DtNVFs1K8Xzfwf8_J6chBiTkM4MtA7a72m_H4yFFt-XAdH3acclPyIZ1SjSKdd0p2YBQXSM6DmfkPOc9AEip1YbYn-gwFFr1p4Q5Ux9o-YN0wBec4mFeZnGkzhY7veaS6RgTzQXtTBPW--zD0wL0Ps626sUmOscBpzq2rvgYPpIPo50yfvp3XpDf93e_br81jz8evt_ePDauVbo0DHrdQi-1VJ0C20qGWrMR5KB7Ltod7lyNgsICtDBo6NANWnHeC94JwaS4IJfr3hrl-Yi5mNlnh9NkA8ZjNlwIyXirgFX0yxt0H48p1N9VSmrRCqagUl9XyqWYc01rnC92iVSS9ZNhYJb2zd6s7ZulfbO2X-X2jXxIfrbp9T3tetWwNvXiMZnsPAaHg0_oihmi__-Cv3_ToeE |
CitedBy_id | crossref_primary_10_1016_j_fuel_2021_121878 crossref_primary_10_1016_j_fuel_2024_132776 crossref_primary_10_1016_j_fuproc_2021_107077 crossref_primary_10_48103_jjeci592022 crossref_primary_10_1016_j_fuel_2022_123382 crossref_primary_10_1016_S1872_5813_24_60475_5 crossref_primary_10_1016_j_apcata_2022_118711 crossref_primary_10_1016_j_cep_2021_108407 crossref_primary_10_1016_j_fuel_2022_126810 crossref_primary_10_1016_j_cej_2021_133201 crossref_primary_10_1021_acssuschemeng_1c07483 crossref_primary_10_1007_s12649_022_02012_4 crossref_primary_10_3390_en16052334 crossref_primary_10_1002_slct_202200864 crossref_primary_10_1016_j_fuproc_2021_107104 crossref_primary_10_1016_j_ijhydene_2022_05_286 crossref_primary_10_1016_j_cscee_2023_100439 crossref_primary_10_1016_j_wasman_2024_03_006 crossref_primary_10_1016_j_jiec_2023_11_005 crossref_primary_10_1016_j_ijhydene_2020_04_235 crossref_primary_10_1016_j_ijhydene_2022_07_274 crossref_primary_10_1016_j_fuproc_2021_107061 crossref_primary_10_1007_s13399_024_05318_6 crossref_primary_10_1016_j_fuel_2021_121240 crossref_primary_10_1002_cplu_202300376 crossref_primary_10_1007_s13399_021_01981_1 crossref_primary_10_2139_ssrn_4007214 crossref_primary_10_1016_j_ijhydene_2024_01_254 crossref_primary_10_1016_j_ijhydene_2024_01_250 crossref_primary_10_1016_j_apcata_2024_120074 crossref_primary_10_1016_j_fuel_2023_127736 crossref_primary_10_1021_acsaem_2c01242 crossref_primary_10_1007_s11244_022_01659_6 crossref_primary_10_1007_s11244_022_01713_3 crossref_primary_10_1016_j_ijhydene_2021_06_011 crossref_primary_10_1021_acs_iecr_3c02292 crossref_primary_10_1016_j_cesx_2020_100065 crossref_primary_10_1016_j_fuproc_2020_106546 crossref_primary_10_1016_j_apcatb_2024_124555 crossref_primary_10_1016_j_ces_2024_119716 crossref_primary_10_1016_j_fuel_2022_124929 crossref_primary_10_1016_j_fuproc_2020_106545 crossref_primary_10_1016_j_cej_2023_148237 crossref_primary_10_1016_j_energy_2024_132335 crossref_primary_10_1016_j_apcata_2021_118013 crossref_primary_10_1016_j_surfin_2023_102859 crossref_primary_10_1016_j_biombioe_2021_105982 crossref_primary_10_1016_j_energy_2022_123410 crossref_primary_10_1002_cctc_202300581 crossref_primary_10_3390_en13040813 crossref_primary_10_1016_j_fuproc_2021_106837 crossref_primary_10_1016_j_fuproc_2024_108158 crossref_primary_10_1016_j_ijhydene_2024_04_096 crossref_primary_10_1016_j_fuproc_2020_106359 crossref_primary_10_1016_j_fuproc_2023_107942 crossref_primary_10_1016_j_ijhydene_2022_10_045 crossref_primary_10_1016_j_ijhydene_2021_03_013 crossref_primary_10_1016_j_biombioe_2020_105829 crossref_primary_10_1016_j_fuproc_2023_107708 crossref_primary_10_1007_s11244_022_01621_6 crossref_primary_10_1016_j_powtec_2023_118933 crossref_primary_10_1016_j_ijhydene_2022_03_030 crossref_primary_10_1021_acs_est_3c08857 crossref_primary_10_1016_j_fuel_2023_129011 crossref_primary_10_1038_s43586_022_00097_8 crossref_primary_10_1016_j_fuel_2022_123253 crossref_primary_10_1016_j_wasman_2024_04_026 crossref_primary_10_1016_j_jece_2023_109556 crossref_primary_10_1016_j_ijhydene_2021_04_047 crossref_primary_10_1007_s10311_021_01190_2 crossref_primary_10_1007_s10311_022_01410_3 crossref_primary_10_1016_j_joei_2024_101563 crossref_primary_10_1016_j_hazl_2020_100008 crossref_primary_10_1016_j_indcrop_2024_119984 crossref_primary_10_1007_s13399_023_04614_x crossref_primary_10_1002_cjce_24592 crossref_primary_10_1002_ep_14566 crossref_primary_10_1016_j_cej_2023_147649 crossref_primary_10_1016_j_joei_2025_102017 crossref_primary_10_1016_j_fuproc_2021_107033 crossref_primary_10_1016_j_ijhydene_2022_05_112 crossref_primary_10_2139_ssrn_3950213 crossref_primary_10_1007_s13399_023_03876_9 crossref_primary_10_1016_j_ecmx_2024_100819 crossref_primary_10_1016_j_ces_2022_118370 crossref_primary_10_1016_j_enconman_2021_114802 crossref_primary_10_1021_acs_iecr_2c00018 crossref_primary_10_1016_j_fuel_2022_123625 crossref_primary_10_1016_j_jaap_2022_105846 crossref_primary_10_1016_j_cej_2021_132316 crossref_primary_10_1016_j_jaap_2020_104999 crossref_primary_10_1016_j_jechem_2022_09_014 crossref_primary_10_1007_s12649_021_01446_6 crossref_primary_10_1016_j_fuel_2025_134862 crossref_primary_10_1007_s42768_023_00154_2 crossref_primary_10_1016_j_wasman_2020_11_044 crossref_primary_10_1016_j_jics_2022_100854 crossref_primary_10_1016_j_fuel_2023_129838 crossref_primary_10_1016_j_fuel_2021_120194 crossref_primary_10_1016_j_cherd_2023_11_063 crossref_primary_10_1016_j_ijhydene_2024_04_322 crossref_primary_10_1016_j_fuel_2023_127934 crossref_primary_10_1016_j_fuproc_2022_107275 crossref_primary_10_1039_D0NJ01468K crossref_primary_10_1016_j_chemosphere_2021_132224 crossref_primary_10_1016_j_ijhydene_2023_10_099 crossref_primary_10_1016_j_fuproc_2020_106622 crossref_primary_10_1016_j_fuel_2024_131141 crossref_primary_10_1016_j_jece_2020_104528 crossref_primary_10_1016_j_fuel_2021_121779 crossref_primary_10_1246_cl_200733 crossref_primary_10_1016_j_jaecs_2021_100053 crossref_primary_10_1021_acsomega_2c01538 crossref_primary_10_3390_en16124783 crossref_primary_10_1016_j_ijhydene_2023_04_178 crossref_primary_10_1016_j_cattod_2021_06_009 crossref_primary_10_1016_j_fuproc_2022_107344 crossref_primary_10_1016_j_apcatb_2021_120743 crossref_primary_10_1016_j_ijhydene_2023_05_127 crossref_primary_10_1016_j_fuel_2024_132195 crossref_primary_10_1021_acssuschemeng_4c04571 crossref_primary_10_1016_j_fuel_2020_118116 crossref_primary_10_3390_fuels5030025 crossref_primary_10_1016_j_fuel_2021_120859 crossref_primary_10_1039_D2EE02695C crossref_primary_10_1016_j_fuproc_2021_106871 crossref_primary_10_1016_j_cej_2024_149778 crossref_primary_10_1016_j_cej_2021_131522 crossref_primary_10_1016_j_apcata_2021_118446 crossref_primary_10_1021_acs_energyfuels_1c01253 crossref_primary_10_2139_ssrn_3972775 crossref_primary_10_3390_catal10030335 crossref_primary_10_1016_j_fuel_2023_128245 crossref_primary_10_1016_j_ijhydene_2020_02_228 crossref_primary_10_1007_s10562_021_03584_x crossref_primary_10_1016_j_cej_2022_138968 crossref_primary_10_1016_j_ijhydene_2023_10_315 crossref_primary_10_1016_j_ijhydene_2020_04_185 crossref_primary_10_1016_j_enconman_2020_113471 crossref_primary_10_1016_j_fuel_2022_123457 crossref_primary_10_1016_j_ijhydene_2020_09_114 crossref_primary_10_1021_acssuschemeng_0c01267 crossref_primary_10_1002_cjce_24535 crossref_primary_10_1016_j_apcatb_2021_120479 crossref_primary_10_1016_j_ceja_2023_100521 crossref_primary_10_1016_j_renene_2023_06_010 crossref_primary_10_1016_j_jaap_2022_105832 crossref_primary_10_1002_cctc_202201491 crossref_primary_10_1016_j_fuproc_2020_106721 |
Cites_doi | 10.1016/j.apcata.2015.06.032 10.1002/cssc.201200507 10.1016/j.cattod.2015.09.057 10.1016/j.jcou.2016.12.014 10.1016/S0378-3820(01)00214-4 10.1016/j.apcata.2013.05.023 10.1021/ja00394a007 10.1039/C7RA06219B 10.1016/j.chemosphere.2013.10.087 10.1002/aic.690350110 10.1016/j.apcata.2009.11.008 10.1016/j.fuel.2017.02.085 10.1016/j.enconman.2015.05.003 10.1016/j.ijhydene.2015.01.065 10.1039/C5CY01910A 10.1016/j.jcou.2016.05.007 10.1016/j.apcatb.2014.06.021 10.1016/j.fuproc.2018.03.007 10.1039/C2CC37109J 10.1016/j.cattod.2016.07.013 10.1021/ar9500980 10.1039/C6CY00635C 10.1016/j.enconman.2018.04.094 10.1016/j.fuproc.2010.08.015 10.1016/j.apcatb.2014.12.009 10.1021/cr200024w 10.1016/j.fuel.2015.03.002 10.1039/C8CY00622A 10.1016/j.ijhydene.2013.02.083 10.1016/j.pecs.2011.12.001 10.1016/j.jcat.2015.04.031 10.1038/nchem.121 10.1039/C5CY00650C 10.1021/acssuschemeng.8b04872 10.1039/C5CY01885D 10.1016/j.joei.2018.12.004 10.1016/j.biortech.2014.10.010 10.1016/j.cattod.2010.11.067 10.1016/j.apcatb.2016.01.067 10.1016/j.apcata.2017.11.025 10.1021/cs500915p 10.1016/j.rser.2018.07.010 10.1016/j.enconman.2018.11.034 10.1016/j.jcat.2016.11.008 10.1016/j.fuel.2016.09.043 10.1016/j.apcata.2011.09.018 10.1039/C7CY01300K 10.1016/j.cap.2012.02.025 10.1016/j.apcatb.2015.02.017 10.1016/j.catcom.2017.08.013 10.1016/j.apcatb.2018.02.041 10.1016/j.energy.2019.04.163 10.1016/j.apcata.2014.10.014 10.1080/15435075.2019.1566729 10.1016/j.ijhydene.2017.09.030 10.1016/j.fuproc.2019.04.001 10.1016/j.fuel.2017.07.084 10.1016/j.biombioe.2017.12.002 10.1016/j.apcata.2015.03.038 10.1021/ie051211l 10.1021/ie00067a012 10.1021/ja02242a004 10.1021/cs400621p 10.1016/j.apcatb.2019.03.039 10.1039/C7CY02475D 10.1016/j.apcata.2018.03.026 10.1016/j.catcom.2015.08.013 10.1016/j.apcatb.2013.01.016 10.1016/j.jcou.2018.07.017 10.1016/j.ijhydene.2017.11.037 10.1002/cctc.201501284 10.1016/j.apcata.2017.03.026 10.1016/j.ijhydene.2016.10.053 10.1016/j.apcatb.2013.10.001 10.1021/sc300081q 10.1016/j.rser.2018.10.016 10.1016/j.cattod.2004.12.011 10.1016/0021-9517(73)90326-6 10.1007/s10562-014-1405-3 10.1039/C5CC05226B 10.1021/acs.energyfuels.7b03201 10.1016/j.apcatb.2013.11.037 10.1016/j.ijhydene.2014.05.062 10.1016/j.micromeso.2019.04.027 10.1016/j.apcata.2019.01.011 10.1016/j.apcatb.2010.12.035 10.1039/c3cy00869j 10.1021/ie0498403 10.1002/cctc.201403067 10.1016/j.renene.2018.01.096 10.1021/cs300596q 10.1039/C4CS00223G 10.1016/j.apcatb.2012.03.025 10.1016/j.apcatb.2010.09.011 10.1016/j.fuel.2012.02.039 10.1016/j.fuproc.2015.07.024 10.1021/acs.jpcc.8b03155 10.1007/s11244-015-0443-4 10.1016/j.fuel.2018.03.081 10.1016/j.susc.2018.02.014 10.1002/cctc.201701024 10.1016/j.ijhydene.2016.10.055 10.1016/j.fuproc.2018.03.032 10.1039/C8CY00767E 10.1016/j.cattod.2018.01.004 10.1016/j.micromeso.2012.03.009 10.1016/j.ijhydene.2018.06.135 10.1016/j.jaap.2017.08.020 10.1021/ef800830n 10.1016/j.fuel.2012.01.073 10.1021/ef0340918 10.3390/ma6062229 10.1016/j.cej.2018.12.112 10.1016/j.enconman.2018.04.112 10.1021/jp037532x 10.1016/j.powtec.2007.03.008 10.1016/j.fuel.2017.12.121 10.1016/j.renene.2007.08.014 10.1039/C4RA02886D 10.1016/j.ijhydene.2013.08.029 10.1016/j.enconman.2009.11.038 10.1016/j.fuproc.2015.09.026 10.1016/j.fuel.2019.05.037 10.1016/j.seppur.2018.02.046 10.1016/j.apcata.2013.11.032 10.1016/j.ijhydene.2008.03.028 10.1016/j.apcatb.2013.12.002 10.1039/c3ta14592a 10.1016/j.ijhydene.2016.07.271 10.1016/j.apcatb.2016.03.007 10.1016/j.rser.2015.12.316 10.1016/j.apenergy.2013.04.082 10.1016/S0961-9534(03)00084-9 10.1039/C5CY01932J 10.1016/j.apcatb.2016.05.001 10.1016/j.cattod.2019.02.033 10.1016/j.cattod.2015.08.059 10.1039/C5CY00412H 10.1016/j.apcatb.2015.05.042 10.1016/j.apcata.2013.06.052 10.1016/j.apcata.2015.09.007 10.1016/j.apcata.2016.11.026 10.1016/j.biortech.2014.04.111 10.1016/j.wasman.2018.10.035 10.1016/j.jechem.2019.01.024 10.1016/j.ecmx.2019.100003 10.1016/j.rser.2014.06.011 10.1016/j.enconman.2015.04.007 10.1016/j.fuproc.2009.08.003 10.1016/j.crci.2010.03.022 10.1016/j.apcata.2014.03.004 10.1039/C7SE00553A 10.1039/C6CY00358C 10.1016/j.enconman.2016.12.092 10.1016/j.apcata.2014.10.057 10.1063/1.4811803 10.1021/acs.energyfuels.5b02551 10.1039/C8CY00024G 10.1016/j.jnoncrysol.2007.04.016 10.1016/j.apcatb.2007.01.017 10.1007/s13369-014-1188-2 10.1016/j.rser.2012.12.062 10.1016/j.renene.2014.08.001 10.1039/C4RA16983B 10.1002/cssc.201500390 10.1016/j.rser.2015.12.143 10.1016/j.cattod.2009.02.023 10.1016/j.cattod.2017.05.067 10.1016/j.fuproc.2010.03.020 10.1016/j.apcata.2012.11.040 10.1016/j.ijhydene.2017.01.060 10.1039/C6EE00935B 10.1021/la503340s 10.1016/j.biortech.2009.03.043 10.1016/j.apcatb.2015.10.028 10.1016/j.apcatb.2016.10.024 10.1016/j.apcatb.2016.03.052 10.1073/pnas.1605742113 10.1016/j.cej.2016.07.065 10.1039/c0gc00924e 10.1002/cctc.201000345 10.1016/j.apcata.2012.11.005 10.1002/cctc.201500481 10.1016/j.fuproc.2014.01.007 10.1039/c2ee21166a 10.1016/j.fuproc.2014.06.015 10.1016/j.memsci.2016.03.014 10.1002/aic.690350109 10.1002/cphc.201700529 10.1021/ef980221e 10.1002/cctc.201500482 10.1002/cctc.201800031 10.1021/cs4000427 10.1002/cssc.201300855 10.1016/j.fuel.2018.02.096 10.1016/j.cattod.2016.07.020 10.1007/s10934-015-0101-z 10.1016/j.apcatb.2015.11.022 10.1016/j.cattod.2014.07.009 10.1021/acs.energyfuels.7b01301 10.1002/aic.14573 10.1016/j.apcata.2014.04.019 10.1016/j.apcatb.2013.04.065 10.1039/C8GC00433A 10.1016/j.apcatb.2009.02.006 10.1016/j.fuel.2011.04.009 10.1016/j.jcis.2004.04.055 10.1021/ef900534n 10.1021/sc300042e |
ContentType | Journal Article |
Copyright | 2020 The Authors Copyright Elsevier Science Ltd. Mar 2020 |
Copyright_xml | – notice: 2020 The Authors – notice: Copyright Elsevier Science Ltd. Mar 2020 |
DBID | 6I. AAFTH AAYXX CITATION 7TB 8FD FR3 H8D L7M 7S9 L.6 |
DOI | 10.1016/j.fuproc.2019.106252 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Aerospace Database Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Aerospace Database AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-7188 |
ExternalDocumentID | 10_1016_j_fuproc_2019_106252 S0378382019311208 |
GroupedDBID | --K --M .~1 0R~ 0SF 1B1 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 8WZ 9JN A6W AABNK AACTN AAEDT AAEDW AAFTH AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AARLI AAXUO ABFNM ABJNI ABMAC ABNUV ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADECG ADEWK ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SCB SDF SDG SES SEW SPC SPCBC SSG SSK SSR SSZ T5K TWZ UHS WUQ ZY4 ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION GROUPED_DOAJ SSH 7TB 8FD EFKBS FR3 H8D L7M 7S9 L.6 |
ID | FETCH-LOGICAL-c479t-10b940b5957870a451e991f05d9b2346e6c718e3a0040d908ecd9722b32833153 |
IEDL.DBID | AIKHN |
ISSN | 0378-3820 |
IngestDate | Fri Sep 05 04:44:23 EDT 2025 Sun Jul 13 05:41:34 EDT 2025 Thu Apr 24 23:00:01 EDT 2025 Tue Jul 01 03:04:38 EDT 2025 Fri Feb 23 02:48:34 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | O2 mobility Basicity Steam reforming of biomass tar model Bi-metallic catalysts |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c479t-10b940b5957870a451e991f05d9b2346e6c718e3a0040d908ecd9722b32833153 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0378382019311208 |
PQID | 2359343170 |
PQPubID | 2047467 |
ParticipantIDs | proquest_miscellaneous_2335124701 proquest_journals_2359343170 crossref_citationtrail_10_1016_j_fuproc_2019_106252 crossref_primary_10_1016_j_fuproc_2019_106252 elsevier_sciencedirect_doi_10_1016_j_fuproc_2019_106252 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2020 2020-03-00 20200301 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: March 2020 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Fuel processing technology |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier Science Ltd |
Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
References | Li, Wang, Jiang, Kawi (bb0395) 2018; 8 Chen, Tamura, Nakagawa, Okumura, Tomishige (bb1025) 2015; 179 Saw, Oemar, Ang, Kus, Kawi (bb0640) 2016; 6 Wang, Li, Koike, Watanabe, Xu, Nakagawa, Tomishige (bb0960) 2013; 112 Baker, Mudge, Brown (bb1040) 1987; 26 Bian, Suryawinata, Kawi (bb0415) 2016; 195 Ashok, Kathiraser, Ang, Kawi (bb0995) 2015; 5 Xie, Lu, Shekhar, Elam, Delgass, Ribeiro, Weitz, Poeppelmeier (bb0975) 2013; 3 Takise, Imori, Mukai, Ogo, Sugiura, Sekine (bb0475) 2015; 489 Zhang, Liu, Shen, Wu (bb0915) 2018; 94 Iida, Onuki, Numa, Igarashi (bb0865) 2016; 142 Claude, Mahy, Geens, Courson, Lambert (bb0265) 2019; 284 Mukai, Murai, Higo, Ogo, Sugiura, Sekine (bb1020) 2014; 471 Yung, Jablonski, Magrini-Bair (bb0085) 2009; 23 Andersson, Skov-Skjøth Rasmussen, Højlund Nielsen (bb0025) 2017; 203 Motagamwala, Dumesic (bb0135) 2016; 113 Wang, Li, Watanabe, Tamura, Nakagawa, Tomishige (bb0310) 2014; 150–151 Blanquet, Nahil, Williams (bb1080) 2019; 337 Situmorang, Zhao, Yoshida, Kasai, Abudula, Guan (bb0035) 2019; 179 de Castro, Silveira, Rabelo-Neto, Borges, Noronha (bb0275) 2018; 299 de Castro, Peguin, Neto, Borges, Noronha (bb0280) 2015; 59 Zhang, Xu, Champagne (bb0045) 2010; 51 Nichele, Signoretto, Pinna, Menegazzo, Rossetti, Cruciani, Cerrato, Di Michele (bb0295) 2014; 150–151 Li, Jiang, Wang, Kawi (bb0550) 2018; 27 Oemar, Ang, Hee, Hidajat, Kawi (bb0630) 2014; 148–149 Ashok, Das, Dewangan, Kawi (bb0720) 2019; 1 Yaakob, Bshish, Ebshish, Tasirin, Alhasan (bb0545) 2013; 6 Feng, Zhao, Zhang, Sun, Meng, Guo, Huang (bb0765) 2016; 306 Dagle, Dagle, Kovarik, Genc, Wang, Bowden, Wan, Flake, Glezakou, King, Rousseau (bb1010) 2016; 184 Bian, Kawi (bb0430) 2018; 10 Ashok, Kawi (bb0645) 2013; 38 Mo, Kawi (bb0370) 2014; 2 Zamboni, Zimmermann, Kiennemann, Courson (bb0820) 2015; 40 Takise, Higo, Mukai, Ogo, Sugiura, Sekine (bb0470) 2016; 265 Ang, Miller, Cui, Mo, Kawi (bb0930) 2016; 6 Li, Lin, Luo, Yuan, Wang (bb0380) 2018; 176 Cao, Ren, Zhao, Wei, Takarada (bb0500) 2018; 217 Pérez Zurita, Bartolini, Righi, Vitale, Pereira Almao (bb0810) 2015; 154 Tomishige, Li, Tamura, Nakagawa (bb0945) 2017; 7 Oemar, Ang, Hidajat, Kawi (bb0940) 2013; 38 Mukai, Murai, Higo, Tochiya, Hashimoto, Sugiura, Sekine (bb0180) 2013; 466 Ashok, Wai, Kawi (bb0775) 2018; 10 Liu, Zhang, Das, Kawi (bb0100) 2019; 250 Norskov, Bligaard, Rossmeisl, Christensen (bb0145) 2009; 1 Laobuthee, Veranitisagul, Wattanathana, Koonsaeng, Laosiripojana (bb0655) 2015; 74 Baidya, Cattolica (bb0830) 2015; 503 Langmuir (bb0110) 1918; 40 Blanco, Wu, Onwudili, Williams (bb0335) 2013; 134–135 Zhang, Yue, Huang, Li, Wu, Ma, Gong (bb0385) 2012; 1 Li, Gong (bb0200) 2014; 43 Koike, Li, Nakagawa, Tomishige (bb0935) 2012; 5 Lertwittayanon, Youravong, Lau (bb0325) 2017; 42 Yeo, Ashok, Kawi (bb1055) 2019; 100 Gao, Tan, Hidajat, Kawi (bb0925) 2017; 281 Gao, Hidajat, Kawi (bb0365) 2016; 15 Ashok, Kawi (bb0815) 2015; 490 Quitete, Bittencourt, Souza (bb0290) 2015; 145 Bian, Li, Ashok, Kawi (bb0360) 2015; 51 Mardkhe, Huang, Bartholomew, Alam, Woodfield (bb0260) 2015; 23 Li, Hirabayashi, Suzuki (bb0605) 2010; 101 Parsland, Larsson, Benito, Fornasari, Brandin (bb0880) 2015; 140 Cao, Liu, Ren, Zhao, Wu, Wang, Ren, Wei (bb0520) 2017; 127 Mei, Lebarbier, Rousseau, Glezakou, Albrecht, Kovarik, Flake, Dagle (bb0165) 2013; 3 Oemar, Ming Li, Hidajat, Kawi (bb0190) 2014; 60 Friend, Stein, Muetterties (bb0185) 1981; 103 Li, Koike, Wang, Nakagawa, Xu, Tomishige (bb0305) 2014; 7 Oemar, Bian, Hidajat, Kawi (bb0450) 2016; 6 Sekine, Mukai, Murai, Tochiya, Izutsu, Sekiguchi, Hosomura, Arai, Kikuchi, Sugiura (bb0690) 2013; 451 Trinh, Nguyen, Huynh, Pham, Mushrif (bb0175) 2016; 6 Bian, Das, Wai, Hongmanorom, Kawi (bb0670) 2017; 18 Koike, Hisada, Wang, Li, Watanabe, Nakagawa, Tomishige (bb0985) 2013; 140–141 Oemar, Ang, Chin, Hidajat, Kawi (bb0480) 2015; 5 Abu El-Rub, Bramer, Brem (bb0080) 2004; 43 Heo, Lee, Hwang, Sohn (bb0750) 2016; 265 Kawi, Kathiraser, Ni, Oemar, Li, Saw (bb0215) 2015; 8 Ashok, Kathiraser, Ang, Kawi (bb0320) 2015; 172–173 Soongprasit, Aht-Ong, Sricharoenchaikul, Atong (bb0715) 2012; 12 Li, Morishita, Mogi, Yamasaki, Takarada (bb0495) 2010; 91 Virginie, Courson, Kiennemann (bb0590) 2010; 13 Yip, Tian, Hayashi, Wu (bb0760) 2010; 24 Josuinkas, Quitete, Ribeiro, Souza (bb0595) 2014; 121 Moud, Andersson, Lanza, Engvall (bb0755) 2016; 190 Pfeifer, Hofbauer (bb1030) 2008; 180 Li, Grace, Lim, Watkinson, Chen, Kim (bb1045) 2004; 26 Wang, Oemar, Ang, Kawi (bb1060) 2016; 510 Ang, Oemar, Saw, Mo, Kathiraser, Chia, Kawi (bb0770) 2014; 4 Ashok, Bian, Wang, Kawi (bb0255) 2018; 8 Guo, Li, Liu, Peng, Guo, Rao (bb0490) 2018; 167 Wang, Dewangan, Das, Wai, Kawi (bb1065) 2018; 201 Higo, Saito, Ogo, Sugiura, Sekine (bb0875) 2017; 530 Ail, Dasappa (bb0020) 2016; 58 Font Palma (bb0075) 2013; 111 Xu, Froment (bb0130) 1989; 35 Du, Zhang, Xu, Wang, Li (bb0195) 2018; 7 Rostrup-Nielsen (bb0205) 1973; 31 Quitete, Bittencourt, Souza (bb0285) 2014; 478 Meng, Zhao, Wang, Zheng, Zhang, Huang, Zhao, Wei, Li (bb0950) 2018; 168 Li, Li, Bian, Kathiraser, Kawi (bb0210) 2016; 188 Valderrama Rios, González, Lora, Almazán del Olmo (bb0015) 2018; 108 Mitsuoka, Hayashi, Amano, Kayahara, Sasaoaka, Uddin (bb0740) 2011; 92 Li, Wang, Dai, Suzuki (bb0860) 2013; 5 Hinshelwood (bb0115) 1927; 113 Carey, Zhao, Campbell (bb0160) 2018; 676 Rossetti, Lasso, Finocchio, Ramis, Nichele, Signoretto, Di Michele (bb0540) 2014; 477 Takise, Manabe, Muraguchi, Higo, Ogo, Sekine (bb0465) 2017; 538 Cui, Galvita, Rihko-Struckmann, Lorenz, Sundmacher (bb0710) 2009; 90 Liu, Okolie, Ravenelle, Crittenden, Sievers, Bruijnincx, Weckhuysen (bb0245) 2018; 551 Zamboni, Courson, Kiennemann (bb0825) 2017; 203 Li, Lu, Aragaki, Koike, Nakagawa, Tomishige (bb1005) 2016; 192 Bhave, Vyas, Patel (bb0055) 2008; 33 Oh, Park, Seo, Ra, Mun, Lee, Yoon (bb0795) 2019; 16 Quitete, Bittencourt, Souza (bb0885) 2015; 71 Saw, Oemar, Ang, Hidajat, Kawi (bb0910) 2015; 7 Meng, Zhao, Wang, Chen, Zheng, Huang, Wei, Li (bb0955) 2019; 92 Gai, Zhang, Yang, Liu, Jiao, Peng, Liu, Lang, Xia (bb0535) 2018; 20 Shukla, Seal (bb0970) 2004; 108 Meng, Zhao, Wang, Wu, Zheng, Huang, Zhao, Li (bb0575) 2018; 43 de Castro, Peguin, Neto, Borges, Noronha (bb0665) 2016; 59 Zhang, Hu, Zhang, Yang, Li, Fan, Liu, Wei, Li (bb0445) 2019; 191 Kathiraser, Ashok, Kawi (bb0920) 2016; 6 Corella, Orío, Toledo (bb1035) 1999; 13 Hognon, Dupont, Grateau, Delrue (bb0745) 2014; 164 Ashok, Kawi (bb0680) 2014; 4 Li, Wang, Koike, Nakagawa, Tomishige (bb0315) 2011; 102 Chen, Wu, Dong, Vassallo, Williams, Huang (bb0840) 2016; 183 Guan, Kaewpanha, Hao, Abudula (bb0090) 2016; 58 Zhao, Xue, Lu, Huang, Guo, Yan (bb0620) 2017; 101 Li, Cai, Huang (bb0900) 2006; 45 Qian, Kumar (bb0510) 2017; 187 Artetxe, Alvarez, Nahil, Olazar, Williams (bb0240) 2017; 136 Abou Rached, El Hayek, Dahdah, Gennequin, Aouad, Tidahy, Estephane, Nsouli, Aboukaïs, Abi-Aad (bb0890) 2017; 42 Coll, Salvadó, Farriol, Montané (bb0060) 2001; 74 Corella, Toledo, Padilla (bb0570) 2004; 18 Sarvaramini, Larachi (bb0330) 2012; 97 Laosiripojana, Sutthisripok, Charojrochkul, Assabumrungrat (bb0460) 2014; 127 Ashok, Subrahmanyam, Venugopal (bb0300) 2008; 33 Łamacz, Krztoń, Djéga-Mariadassou (bb0615) 2011; 176 He, Hu, Jiang, Liao, Chen, Han, Xiao, Ren, Wang, Su, Xiang (bb0220) 2018; 176 Hu, Gholizadeh (bb0105) 2019; 39 James, Maity, Mesubi, Ogunniran, Siyanbola, Sahu, Chaubey (bb0730) 2011; 13 Li, Nakagawa, Tomishige (bb1015) 2011; 408 Tao, Lu, Dong, Du, Dahlquist (bb1070) 2015; 100 Ashok, Ang, Kawi (bb0635) 2017; 281 Koike, Ishikawa, Li, Wang, Nakagawa, Tomishige (bb0735) 2013; 103 Chen, He (bb0005) 2011; 3 Mukai, Tochiya, Murai, Imori, Sugiura, Sekine (bb0455) 2013; 464–465 Daorattanachai, Laosiripojana, Laobuthee, Laosiripojana (bb0525) 2018; 121 Mukai, Tochiya, Murai, Imori, Hashimoto, Sugiura, Sekine (bb0695) 2013; 453 Ang, Oemar, Kathiraser, Saw, Lew, Du, Borgna, Kawi (bb0780) 2015; 329 Carey, Zhao, Mao, Campbell (bb0170) 2018; 123 Du, Zhang, Xu, Wang, Li (bb0515) 2019; 7 Hu, He, Wang, Su, Jiang, Chen, Liu, Chi, Xiang, Sun (bb0685) 2016; 41 Wang, Chen, Watanabe, Xu, Tamura, Nakagawa, Tomishige (bb0990) 2014; 160–161 Virginie, Courson, Niznansky, Chaoui, Kiennemann (bb0585) 2010; 101 Rownaghi, Huhnke (bb0610) 2013; 1 Nabgan, Tuan Abdullah, Mat, Nabgan, Gambo, Triwahyono (bb0965) 2016; 41 Wang, Hisada, Koike, Li, Watanabe, Nakagawa, Tomishige (bb0980) 2012; 121–122 Ashok, Das, Yeo, Dewangan, Kawi (bb0625) 2018; 82 Chan, Tanksale (bb1050) 2014; 38 Li, Kathiraser, Ashok, Oemar, Kawi (bb0410) 2014; 30 Titirici, White, Falco, Sevilla (bb0530) 2012; 5 Zhang, Wang, Hou (bb0870) 2014; 97 Ashok, Kathiraser, Ang, Kawi (bb0850) 2015; 172 Das, Ashok, Bian, Dewangan, Wai, Du, Borgna, Hidajat, Kawi (bb0390) 2018; 230 Liu, Paskevicius, Wang, Parkinson, Veder, Hu, Li (bb0505) 2019; 253 Bampenrat, Meeyoo, Kitiyanan, Rangsunvigit, Rirksomboon (bb0660) 2010; 373 Yue, Wang, Ai, Yang, Li, Lu, Ding (bb0600) 2010; 91 Li, Das, Hongmanorom, Dewangan, Wai, Kawi (bb0340) 2018; 8 Mo, Leong, Kawi (bb0375) 2014; 4 Capel-Sanchez, Barrio, Campos-Martin, Fierro (bb0235) 2004; 277 Oemar, Kathiraser, Ang, Hidajat, Kawi (bb0440) 2015; 7 Osaki, Nagashima, Watari, Tajiri (bb0250) 2007; 353 Spivey (bb0725) 2005; 100 Karnjanakom, Guan, Asep, Du, Hao, Samart, Abudula (bb0350) 2015; 98 Li, Kawi (bb0345) 2018; 8 Qian, Zhang, Ma, Zhao, Han, Lu (bb0560) 2014; 39 Mo, Saw, Kathiraser, Ang, Kawi (bb0355) 2018; 43 Savuto, Navarro, Mota, Di Carlo, Bocci, Carlini, Fierro (bb0905) 2018; 224 Li, Li, Ashok, Kawi (bb0435) 2019; 180 Zhao, Li, Cui, Zhu, Schneider, Delgass, Ribeiro, Greeley (bb0140) 2017; 345 Baidya, Cattolica, Seiser (bb0805) 2018; 558 Fidalgo, Ilharco (bb0230) 2012; 158 Pati, Jangam, Wang, Dewangan, Hui, Kawi (bb0425) 2019; 362 Xu, Froment (bb0125) 1989; 35 de Lasa, Salaices, Mazumder, Lucky (bb0070) 2011; 111 Morin, Nitsch, Pécate, Hémati (bb0565) 2017; 209 Weinburg (bb0120) 1996; 29 Adnan, Muraza, Razzak, Hossain, de Lasa (bb0270) 2017; 31 Shen, Yoshikawa (bb0050) 2013; 21 Li, Tamura, Nakagawa, Tomishige (bb0065) 2015; 178 Takise, Sato, Muraguchi, Ogo, Sekine (bb1075) 2019; 573 Oemar, Ang, Hidajat, Kawi (bb0855) 2015; 5 Van Santen, Tranca, Hensen (bb0150) 2015; 244 Xie, Zhang, Yu, Zuo, Liu, Qin Zhang (10.1016/j.fuproc.2019.106252_bb0385) 2012; 1 Jin (10.1016/j.fuproc.2019.106252_bb0845) 2018; 309 Hu (10.1016/j.fuproc.2019.106252_bb0685) 2016; 41 Savuto (10.1016/j.fuproc.2019.106252_bb0905) 2018; 224 Zhao (10.1016/j.fuproc.2019.106252_bb0620) 2017; 101 Ashok (10.1016/j.fuproc.2019.106252_bb0850) 2015; 172 Ashok (10.1016/j.fuproc.2019.106252_bb0815) 2015; 490 Li (10.1016/j.fuproc.2019.106252_bb1045) 2004; 26 Virginie (10.1016/j.fuproc.2019.106252_bb0585) 2010; 101 de Castro (10.1016/j.fuproc.2019.106252_bb0280) 2015; 59 Wang (10.1016/j.fuproc.2019.106252_bb1065) 2018; 201 Bhave (10.1016/j.fuproc.2019.106252_bb0055) 2008; 33 Bian (10.1016/j.fuproc.2019.106252_bb0430) 2018; 10 Abou Rached (10.1016/j.fuproc.2019.106252_bb0890) 2017; 42 Trinh (10.1016/j.fuproc.2019.106252_bb0175) 2016; 6 Gao (10.1016/j.fuproc.2019.106252_bb0365) 2016; 15 Li (10.1016/j.fuproc.2019.106252_bb0435) 2019; 180 Situmorang (10.1016/j.fuproc.2019.106252_bb0035) 2019; 179 Oh (10.1016/j.fuproc.2019.106252_bb0795) 2019; 16 de Lasa (10.1016/j.fuproc.2019.106252_bb0070) 2011; 111 He (10.1016/j.fuproc.2019.106252_bb0225) 2018; 176 Langmuir (10.1016/j.fuproc.2019.106252_bb0110) 1918; 40 Rownaghi (10.1016/j.fuproc.2019.106252_bb0610) 2013; 1 Pati (10.1016/j.fuproc.2019.106252_bb0425) 2019; 362 Friend (10.1016/j.fuproc.2019.106252_bb0185) 1981; 103 Yaakob (10.1016/j.fuproc.2019.106252_bb0545) 2013; 6 Łamacz (10.1016/j.fuproc.2019.106252_bb0615) 2011; 176 Xie (10.1016/j.fuproc.2019.106252_bb0975) 2013; 3 Zhang (10.1016/j.fuproc.2019.106252_bb0915) 2018; 94 Cao (10.1016/j.fuproc.2019.106252_bb0500) 2018; 217 Gao (10.1016/j.fuproc.2019.106252_bb0925) 2017; 281 Oemar (10.1016/j.fuproc.2019.106252_bb0190) 2014; 60 Guan (10.1016/j.fuproc.2019.106252_bb0090) 2016; 58 Li (10.1016/j.fuproc.2019.106252_bb0315) 2011; 102 Feng (10.1016/j.fuproc.2019.106252_bb0765) 2016; 306 Ang (10.1016/j.fuproc.2019.106252_bb0770) 2014; 4 Bian (10.1016/j.fuproc.2019.106252_bb0415) 2016; 195 Mukai (10.1016/j.fuproc.2019.106252_bb0455) 2013; 464–465 Saw (10.1016/j.fuproc.2019.106252_bb0910) 2015; 7 Sarvaramini (10.1016/j.fuproc.2019.106252_bb0330) 2012; 97 Yung (10.1016/j.fuproc.2019.106252_bb0085) 2009; 23 Cui (10.1016/j.fuproc.2019.106252_bb0710) 2009; 90 Font Palma (10.1016/j.fuproc.2019.106252_bb0075) 2013; 111 Choi (10.1016/j.fuproc.2019.106252_bb0705) 2009; 146 Meng (10.1016/j.fuproc.2019.106252_bb0575) 2018; 43 Li (10.1016/j.fuproc.2019.106252_bb0345) 2018; 8 Qian (10.1016/j.fuproc.2019.106252_bb0510) 2017; 187 Nichele (10.1016/j.fuproc.2019.106252_bb0295) 2014; 150–151 Hognon (10.1016/j.fuproc.2019.106252_bb0745) 2014; 164 Morin (10.1016/j.fuproc.2019.106252_bb0565) 2017; 209 Mitsuoka (10.1016/j.fuproc.2019.106252_bb0740) 2011; 92 Blanquet (10.1016/j.fuproc.2019.106252_bb1080) 2019; 337 Yip (10.1016/j.fuproc.2019.106252_bb0760) 2010; 24 Liu (10.1016/j.fuproc.2019.106252_bb0505) 2019; 253 Abu El-Rub (10.1016/j.fuproc.2019.106252_bb0080) 2004; 43 Ang (10.1016/j.fuproc.2019.106252_bb0780) 2015; 329 Quitete (10.1016/j.fuproc.2019.106252_bb0885) 2015; 71 Ashok (10.1016/j.fuproc.2019.106252_bb0645) 2013; 38 Sikarwar (10.1016/j.fuproc.2019.106252_bb0030) 2016; 9 Quitete (10.1016/j.fuproc.2019.106252_bb0290) 2015; 145 Cao (10.1016/j.fuproc.2019.106252_bb0520) 2017; 127 Zamboni (10.1016/j.fuproc.2019.106252_bb0820) 2015; 40 He (10.1016/j.fuproc.2019.106252_bb0220) 2018; 176 Rostrup-Nielsen (10.1016/j.fuproc.2019.106252_bb0205) 1973; 31 Li (10.1016/j.fuproc.2019.106252_bb0210) 2016; 188 Li (10.1016/j.fuproc.2019.106252_bb0555) 2013; 49 Dagle (10.1016/j.fuproc.2019.106252_bb1010) 2016; 184 Gai (10.1016/j.fuproc.2019.106252_bb0535) 2018; 20 Baidya (10.1016/j.fuproc.2019.106252_bb0805) 2018; 558 Carey (10.1016/j.fuproc.2019.106252_bb0160) 2018; 676 Pérez Zurita (10.1016/j.fuproc.2019.106252_bb0810) 2015; 154 Du (10.1016/j.fuproc.2019.106252_bb0195) 2018; 7 Parsland (10.1016/j.fuproc.2019.106252_bb0880) 2015; 140 Xiong (10.1016/j.fuproc.2019.106252_bb0095) 2015; 7 Oemar (10.1016/j.fuproc.2019.106252_bb0940) 2013; 38 Laosiripojana (10.1016/j.fuproc.2019.106252_bb0460) 2014; 127 Xu (10.1016/j.fuproc.2019.106252_bb0130) 1989; 35 Mo (10.1016/j.fuproc.2019.106252_bb0375) 2014; 4 Mukai (10.1016/j.fuproc.2019.106252_bb1020) 2014; 471 Karnjanakom (10.1016/j.fuproc.2019.106252_bb0350) 2015; 98 Jiang (10.1016/j.fuproc.2019.106252_bb0400) 2018; 222 Yue (10.1016/j.fuproc.2019.106252_bb0600) 2010; 91 Blanco (10.1016/j.fuproc.2019.106252_bb0335) 2013; 134–135 Ashok (10.1016/j.fuproc.2019.106252_bb0625) 2018; 82 Meng (10.1016/j.fuproc.2019.106252_bb0950) 2018; 168 Chan (10.1016/j.fuproc.2019.106252_bb1050) 2014; 38 Maneerung (10.1016/j.fuproc.2019.106252_bb0785) 2017; 42 Van Santen (10.1016/j.fuproc.2019.106252_bb0150) 2015; 244 Meng (10.1016/j.fuproc.2019.106252_bb0580) 2017; 7 Wang (10.1016/j.fuproc.2019.106252_bb1060) 2016; 510 Baidya (10.1016/j.fuproc.2019.106252_bb0830) 2015; 503 Higo (10.1016/j.fuproc.2019.106252_bb0875) 2017; 530 Koike (10.1016/j.fuproc.2019.106252_bb0985) 2013; 140–141 de Castro (10.1016/j.fuproc.2019.106252_bb0665) 2016; 59 Bian (10.1016/j.fuproc.2019.106252_bb0670) 2017; 18 Takise (10.1016/j.fuproc.2019.106252_bb0700) 2017; 538 Das (10.1016/j.fuproc.2019.106252_bb0390) 2018; 230 Liu (10.1016/j.fuproc.2019.106252_bb0245) 2018; 551 Pfeifer (10.1016/j.fuproc.2019.106252_bb1030) 2008; 180 Takise (10.1016/j.fuproc.2019.106252_bb0475) 2015; 489 Heo (10.1016/j.fuproc.2019.106252_bb0750) 2016; 265 Maia (10.1016/j.fuproc.2019.106252_bb0650) 2014; 4 Mei (10.1016/j.fuproc.2019.106252_bb0165) 2013; 3 Li (10.1016/j.fuproc.2019.106252_bb0860) 2013; 5 Ashok (10.1016/j.fuproc.2019.106252_bb0635) 2017; 281 Ashok (10.1016/j.fuproc.2019.106252_bb0720) 2019; 1 Shukla (10.1016/j.fuproc.2019.106252_bb0970) 2004; 108 Bampenrat (10.1016/j.fuproc.2019.106252_bb0660) 2010; 373 Weinburg (10.1016/j.fuproc.2019.106252_bb0120) 1996; 29 Chen (10.1016/j.fuproc.2019.106252_bb0005) 2011; 3 Kawi (10.1016/j.fuproc.2019.106252_bb0215) 2015; 8 Sekine (10.1016/j.fuproc.2019.106252_bb0690) 2013; 451 Shen (10.1016/j.fuproc.2019.106252_bb0050) 2013; 21 Lertwittayanon (10.1016/j.fuproc.2019.106252_bb0325) 2017; 42 Zhang (10.1016/j.fuproc.2019.106252_bb0445) 2019; 191 Baker (10.1016/j.fuproc.2019.106252_bb1040) 1987; 26 Moud (10.1016/j.fuproc.2019.106252_bb0755) 2016; 190 Li (10.1016/j.fuproc.2019.106252_bb1000) 2014; 39 Josuinkas (10.1016/j.fuproc.2019.106252_bb0595) 2014; 121 Meng (10.1016/j.fuproc.2019.106252_bb0955) 2019; 92 Carey (10.1016/j.fuproc.2019.106252_bb0170) 2018; 123 Świerczyński (10.1016/j.fuproc.2019.106252_bb0155) 2007; 74 Zhang (10.1016/j.fuproc.2019.106252_bb0045) 2010; 51 Artetxe (10.1016/j.fuproc.2019.106252_bb0240) 2017; 136 Guo (10.1016/j.fuproc.2019.106252_bb0490) 2018; 167 Li (10.1016/j.fuproc.2019.106252_bb1005) 2016; 192 Bian (10.1016/j.fuproc.2019.106252_bb0360) 2015; 51 Claude (10.1016/j.fuproc.2019.106252_bb0265) 2019; 284 Hu (10.1016/j.fuproc.2019.106252_bb0105) 2019; 39 Saw (10.1016/j.fuproc.2019.106252_bb0640) 2016; 6 Chen (10.1016/j.fuproc.2019.106252_bb0840) 2016; 183 Li (10.1016/j.fuproc.2019.106252_bb0380) 2018; 176 Zhang (10.1016/j.fuproc.2019.106252_bb0870) 2014; 97 Adnan (10.1016/j.fuproc.2019.106252_bb0270) 2017; 31 Liu (10.1016/j.fuproc.2019.106252_bb0100) 2019; 250 Li (10.1016/j.fuproc.2019.106252_bb0305) 2014; 7 Ail (10.1016/j.fuproc.2019.106252_bb0020) 2016; 58 Zhao (10.1016/j.fuproc.2019.106252_bb0140) 2017; 345 Virginie (10.1016/j.fuproc.2019.106252_bb0590) 2010; 13 Koike (10.1016/j.fuproc.2019.106252_bb0935) 2012; 5 Spivey (10.1016/j.fuproc.2019.106252_bb0725) 2005; 100 Ashok (10.1016/j.fuproc.2019.106252_bb0255) 2018; 8 Oemar (10.1016/j.fuproc.2019.106252_bb0855) 2015; 5 Kathiraser (10.1016/j.fuproc.2019.106252_bb0920) 2016; 6 Mukai (10.1016/j.fuproc.2019.106252_bb0180) 2013; 466 Li (10.1016/j.fuproc.2019.106252_bb0900) 2006; 45 Coll (10.1016/j.fuproc.2019.106252_bb0060) 2001; 74 Quitete (10.1016/j.fuproc.2019.106252_bb0285) 2014; 478 Oemar (10.1016/j.fuproc.2019.106252_bb0440) 2015; 7 Tomishige (10.1016/j.fuproc.2019.106252_bb0945) 2017; 7 Chen (10.1016/j.fuproc.2019.106252_bb1025) 2015; 179 Wang (10.1016/j.fuproc.2019.106252_bb0960) 2013; 112 Oemar (10.1016/j.fuproc.2019.106252_bb0450) 2016; 6 Li (10.1016/j.fuproc.2019.106252_bb0395) 2018; 8 Li (10.1016/j.fuproc.2019.106252_bb0065) 2015; 178 Li (10.1016/j.fuproc.2019.106252_bb0410) 2014; 30 Titirici (10.1016/j.fuproc.2019.106252_bb0530) 2012; 5 Bian (10.1016/j.fuproc.2019.106252_bb0420) 2017; 18 Shen (10.1016/j.fuproc.2019.106252_bb0485) 2018; 2 Hinshelwood (10.1016/j.fuproc.2019.106252_bb0115) 1927; 113 Li (10.1016/j.fuproc.2019.106252_bb0200) 2014; 43 Valderrama Rios (10.1016/j.fuproc.2019.106252_bb0015) 2018; 108 Richardson (10.1016/j.fuproc.2019.106252_bb0040) 2012; 38 Ashok (10.1016/j.fuproc.2019.106252_bb0405) 2016; 8 Baidya (10.1016/j.fuproc.2019.106252_bb0835) 2015; 498 Yeo (10.1016/j.fuproc.2019.106252_bb1055) 2019; 100 Li (10.1016/j.fuproc.2019.106252_bb1015) 2011; 408 Zamboni (10.1016/j.fuproc.2019.106252_bb0825) 2017; 203 Ang (10.1016/j.fuproc.2019.106252_bb0930) 2016; 6 Norskov (10.1016/j.fuproc.2019.106252_bb0145) 2009; 1 Li (10.1016/j.fuproc.2019.106252_bb0495) 2010; 91 Takise (10.1016/j.fuproc.2019.106252_bb0470) 2016; 265 Xie (10.1016/j.fuproc.2019.106252_bb0800) 2016; 30 Tao (10.1016/j.fuproc.2019.106252_bb1070) 2015; 100 Takise (10.1016/j.fuproc.2019.106252_bb1075) 2019; 573 Wang (10.1016/j.fuproc.2019.106252_bb0990) 2014; 160–161 Ashok (10.1016/j.fuproc.2019.106252_bb0300) 2008; 33 Du (10.1016/j.fuproc.2019.106252_bb0515) 2019; 7 Li (10.1016/j.fuproc.2019.106252_bb0605) 2010; 101 Qian (10.1016/j.fuproc.2019.106252_bb0560) 2014; 39 Li (10.1016/j.fuproc.2019.106252_bb0340) 2018; 8 Motagamwala (10.1016/j.fuproc.2019.106252_bb0135) 2016; 113 Subramani (10.1016/j.fuproc.2019.106252_bb0010) 2009 Fidalgo (10.1016/j.fuproc.2019.106252_bb0230) 2012; 158 Corella (10.1016/j.fuproc.2019.106252_bb1035) 1999; 13 Mo (10.1016/j.fuproc.2019.106252_bb0370) 2014; 2 Oemar (10.1016/j.fuproc.2019.106252_bb0630) 2014; 148–149 de Castro (10.1016/j.fuproc.2019.106252_bb0275) 2018; 299 Ashok (10.1016/j.fuproc.2019.106252_bb0995) 2015; 5 Mardkhe (10.1016/j.fuproc.2019.106252_bb0260) 2015; 23 Koike |
References_xml | – volume: 676 start-page: 9 year: 2018 end-page: 16 ident: bb0160 article-title: Energetics of adsorbed benzene on Ni(111) and Pt(111) by calorimetry publication-title: Surf. Sci. – volume: 168 start-page: 60 year: 2018 end-page: 73 ident: bb0950 article-title: Comparative study on phenol and naphthalene steam reforming over Ni-Fe alloy catalysts supported on olivine synthesized by different methods publication-title: Energy Convers. Manag. – volume: 3 start-page: 1133 year: 2013 end-page: 1143 ident: bb0165 article-title: Comparative investigation of benzene steam reforming over spinel supported Rh and Ir catalysts publication-title: ACS Catal. – volume: 477 start-page: 42 year: 2014 end-page: 53 ident: bb0540 article-title: TiO2-supported catalysts for the steam reforming of ethanol publication-title: Appl. Catal. A Gen. – volume: 172–173 start-page: 116 year: 2015 end-page: 128 ident: bb0320 article-title: Bi-functional hydrotalcite-derived NiO–CaO–Al2O3 catalysts for steam reforming of biomass and/or tar model compound at low steam-to-carbon conditions publication-title: Appl. Catal. B Environ. – volume: 192 start-page: 171 year: 2016 end-page: 181 ident: bb1005 article-title: Characterization and catalytic performance of hydrotalcite-derived Ni-Cu alloy nanoparticles catalysts for steam reforming of 1-methylnaphthalene publication-title: Appl. Catal. B Environ. – volume: 329 start-page: 130 year: 2015 end-page: 143 ident: bb0780 article-title: High-temperature water-gas shift reaction over Ni/xK/CeO2 catalysts: suppression of methanation via formation of bridging carbonyls publication-title: J. Catal. – volume: 58 start-page: 450 year: 2016 end-page: 461 ident: bb0090 article-title: Catalytic steam reforming of biomass tar: prospects and challenges publication-title: Renew. Sust. Energ. Rev. – volume: 23 start-page: 475 year: 2015 end-page: 487 ident: bb0260 article-title: Synthesis and characterization of silica doped alumina catalyst support with superior thermal stability and unique pore properties publication-title: J. Porous. Mater. – volume: 113 start-page: 230 year: 1927 end-page: 233 ident: bb0115 article-title: On the theory of unimolecular reactions publication-title: Proceedings of the Royal Society A – volume: 451 start-page: 160 year: 2013 end-page: 167 ident: bb0690 article-title: Steam reforming of toluene over perovskite-supported Ni catalysts publication-title: Appl. Catal. A Gen. – volume: 498 start-page: 150 year: 2015 end-page: 158 ident: bb0835 article-title: Improved catalytic performance of CaO and CeO2 promoted Ni catalyst on gasifier bed material for tar removal from producer gas publication-title: Appl. Catal. A Gen. – volume: 464–465 start-page: 78 year: 2013 end-page: 86 ident: bb0455 article-title: Structure and activity of Ni/La0.7Sr0.3AlO3−δ catalyst for hydrogen production by steam reforming of toluene publication-title: Appl. Catal. A Gen. – volume: 179 start-page: 19 year: 2019 end-page: 29 ident: bb0035 article-title: Potential power generation on a small-scale separated-type biomass gasification system publication-title: Energy – volume: 2 start-page: 326 year: 2018 end-page: 344 ident: bb0485 article-title: Advances in in situ and ex situ tar reforming with biochar catalysts for clean energy production publication-title: Sustainable Energy & Fuels – volume: 101 start-page: S97 year: 2010 end-page: S100 ident: bb0605 article-title: Steam reforming of biomass tar producing H 2-rich gases over Ni/MgOx/CaO 1− x catalyst publication-title: Bioresour. Technol. – volume: 4 start-page: 31142 year: 2014 end-page: 31154 ident: bb0650 article-title: Catalytic features of Ni supported on CeO2–ZrO2 solid solution in the steam reforming of glycerol for syngas production publication-title: RSC Adv. – volume: 8 start-page: 2763 year: 2018 end-page: 2778 ident: bb0340 article-title: Silica-based micro- and mesoporous catalysts for dry reforming of methane publication-title: Catalysis Science & Technology – volume: 191 start-page: 138 year: 2019 end-page: 151 ident: bb0445 article-title: Steam reforming of guaiacol over Ni/Al2O3 and Ni/SBA-15: impacts of support on catalytic behaviors of nickel and properties of coke publication-title: Fuel Process. Technol. – volume: 8 start-page: 1730 year: 2018 end-page: 1742 ident: bb0255 article-title: Ni-phyllosilicate structure derived Ni–SiO2–MgO catalysts for bi-reforming applications: acidity, basicity and thermal stability publication-title: Catalysis Science & Technology – volume: 299 start-page: 251 year: 2018 end-page: 262 ident: bb0275 article-title: Study of the performance of Pt/Al 2 O 3 and Pt/CeO 2/Al 2 O 3 catalysts for steam reforming of toluene, methane and mixtures publication-title: Catal. Today – volume: 111 start-page: 129 year: 2013 end-page: 141 ident: bb0075 article-title: Modelling of tar formation and evolution for biomass gasification: a review publication-title: Appl. Energy – volume: 127 start-page: 26 year: 2014 end-page: 32 ident: bb0460 article-title: Development of Ni–Fe bimetallic based catalysts for biomass tar cracking/reforming: effects of catalyst support and co-fed reactants on tar conversion characteristics publication-title: Fuel Process. Technol. – volume: 108 start-page: 3395 year: 2004 end-page: 3399 ident: bb0970 article-title: Thermodynamic tetragonal phase stability in sol−gel derived nanodomains of pure zirconia publication-title: J. Phys. Chem. B – volume: 51 start-page: 16324 year: 2015 end-page: 16326 ident: bb0360 article-title: A highly active and stable Ni-Mg phyllosilicate nanotubular catalyst for ultrahigh temperature water-gas shift reaction publication-title: Chem. Commun. – volume: 281 start-page: 250 year: 2017 end-page: 258 ident: bb0925 article-title: Highly reactive Ni-Co/SiO2 bimetallic catalyst via complexation with oleylamine/oleic acid organic pair for dry reforming of methane publication-title: Catal. Today – volume: 1 start-page: 37 year: 2009 end-page: 46 ident: bb0145 article-title: Towards the computational design of solid catalysts publication-title: Nat. Chem. – volume: 176 start-page: 7 year: 2018 end-page: 14 ident: bb0220 article-title: Carbon nanotubes formation and its influence on steam reforming of toluene over Ni/Al2O3 catalysts: roles of catalyst supports publication-title: Fuel Process. Technol. – volume: 40 start-page: 5297 year: 2015 end-page: 5304 ident: bb0820 article-title: Improvement of steam reforming of toluene by CO2 capture using Fe/CaO–Ca12Al14O33 bi-functional materials publication-title: Int. J. Hydrog. Energy – volume: 42 start-page: 9840 year: 2017 end-page: 9857 ident: bb0785 article-title: K-doped LaNiO3 perovskite for high-temperature water-gas shift of reformate gas: role of potassium on suppressing methanation publication-title: Int. J. Hydrog. Energy – volume: 18 start-page: 3117 year: 2017 end-page: 3134 ident: bb0670 article-title: A review on bimetallic nickel-based catalysts for CO2 reforming of methane publication-title: Chemphyschem – volume: 35 start-page: 97 year: 1989 end-page: 103 ident: bb0130 article-title: Methane steam limitations and reforming: II. Diffusional limitations and reactor simulation publication-title: AICHE J. – volume: 203 start-page: 1026 year: 2017 end-page: 1030 ident: bb0025 article-title: Industrial-scale gas conditioning including Topsoe tar reforming and purification downstream biomass gasifiers: an overview and recent examples publication-title: Fuel – volume: 3 start-page: 490 year: 2011 end-page: 511 ident: bb0005 article-title: Towards an efficient hydrogen production from biomass: a review of processes and materials publication-title: ChemCatChem – volume: 111 start-page: 5404 year: 2011 end-page: 5433 ident: bb0070 article-title: Catalytic steam gasification of biomass: catalysts, thermodynamics and kinetics publication-title: Chem. Rev. – volume: 373 start-page: 154 year: 2010 end-page: 159 ident: bb0660 article-title: Naphthalene steam reforming over Mn-doped CeO2–ZrO2 supported nickel catalysts publication-title: Appl. Catal. A Gen. – volume: 490 start-page: 24 year: 2015 end-page: 35 ident: bb0815 article-title: Steam reforming of biomass tar model compound at relatively low steam-to-carbon condition over CaO-doped nickel–iron alloy supported over iron–alumina catalysts publication-title: Appl. Catal. A Gen. – volume: 39 start-page: 10959 year: 2014 end-page: 10970 ident: bb1000 article-title: Preparation of Ni–Cu/Mg/Al catalysts from hydrotalcite-like compounds for hydrogen production by steam reforming of biomass tar publication-title: Int. J. Hydrog. Energy – volume: 123 start-page: 7627 year: 2018 end-page: 7632 ident: bb0170 article-title: Energetics of adsorbed phenol on Ni(111) and Pt(111) by calorimetry publication-title: J. Phys. Chem. C – volume: 179 start-page: 412 year: 2015 end-page: 421 ident: bb1025 article-title: Promoting effect of trace Pd on hydrotalcite-derived Ni/Mg/Al catalyst in oxidative steam reforming of biomass tar publication-title: Appl. Catal. B Environ. – volume: 6 start-page: 3394 year: 2016 end-page: 3409 ident: bb0930 article-title: Bimetallic Ni-Cu alloy nanoparticles supported on silica for the water-gas shift reaction: activating surface hydroxyls via enhanced CO adsorption publication-title: Catalysis Science & Technology – volume: 71 start-page: 79 year: 2015 end-page: 83 ident: bb0885 article-title: Coking resistance evaluation of tar removal catalysts publication-title: Catal. Commun. – volume: 7 start-page: 3952 year: 2017 end-page: 3979 ident: bb0945 article-title: Nickel–iron alloy catalysts for reforming of hydrocarbons: preparation, structure, and catalytic properties publication-title: Catalysis Science & Technology – volume: 168–169 start-page: 250 year: 2015 end-page: 265 ident: bb0895 article-title: Fluidizable La2O3 promoted Ni/γ-Al2O3 catalyst for steam gasification of biomass: effect of catalyst preparation conditions publication-title: Appl. Catal. B Environ. – volume: 471 start-page: 157 year: 2014 end-page: 164 ident: bb1020 article-title: Effect of Pt addition to Ni/La0.7Sr0.3AlO3−δ catalyst on steam reforming of toluene for hydrogen production publication-title: Appl. Catal. A Gen. – volume: 24 start-page: 173 year: 2010 end-page: 181 ident: bb0760 article-title: Effect of alkali and alkaline earth metallic species on biochar reactivity and syngas compositions during steam gasification† publication-title: Energy Fuel – volume: 100 start-page: 52 year: 2019 end-page: 70 ident: bb1055 article-title: Recent developments in sulphur-resilient catalytic systems for syngas production publication-title: Renew. Sustain. Energy Rev. – volume: 178 start-page: 53 year: 2015 end-page: 64 ident: bb0065 article-title: Metal catalysts for steam reforming of tar derived from the gasification of lignocellulosic biomass publication-title: Bioresour. Technol. – volume: 21 start-page: 371 year: 2013 end-page: 392 ident: bb0050 article-title: Recent progresses in catalytic tar elimination during biomass gasification or pyrolysis—a review publication-title: Renew. Sust. Energ. Rev. – volume: 244 start-page: 63 year: 2015 end-page: 84 ident: bb0150 article-title: Theory of surface chemistry and reactivity of reducible oxides publication-title: Catal. Today – volume: 8 start-page: 1308 year: 2016 end-page: 1318 ident: bb0405 article-title: Promotion of the water-gas-shift reaction by nickel hydroxyl species in partially reduced nickel-containing phyllosilicate catalysts publication-title: Chemcatchem – volume: 176 start-page: 347 year: 2011 end-page: 351 ident: bb0615 article-title: Steam reforming of model gasification tars compounds on nickel based ceria-zirconia catalysts publication-title: Catal. Today – volume: 97 start-page: 40 year: 2014 end-page: 46 ident: bb0870 article-title: Catalytic reforming of toluene as tar model compound: effect of Ce and Ce–Mg promoter using Ni/olivine catalyst publication-title: Chemosphere – volume: 43 start-page: 15891 year: 2018 end-page: 15897 ident: bb0355 article-title: Preparation of highly dispersed Cu/SiO2 doped with CeO2 and its application for high temperature water gas shift reaction publication-title: Int. J. Hydrog. Energy – volume: 136 start-page: 119 year: 2017 end-page: 126 ident: bb0240 article-title: Steam reforming of different biomass tar model compounds over Ni/Al2O3 catalysts publication-title: Energy Convers. Manag. – volume: 5 start-page: 4398 year: 2015 end-page: 4409 ident: bb0995 article-title: Ni and/or Ni–Cu alloys supported over SiO2 catalysts synthesized via phyllosilicate structures for steam reforming of biomass tar reaction publication-title: Catalysis Science & Technology – volume: 31 start-page: 173 year: 1973 end-page: 199 ident: bb0205 article-title: Activity of nickel catalysts for steam reforming of hydrocarbons publication-title: J. Catal. – volume: 6 start-page: 2229 year: 2013 end-page: 2239 ident: bb0545 article-title: Hydrogen production by steam reforming of ethanol over nickel catalysts supported on sol gel made alumina: influence of calcination temperature on supports publication-title: Materials – volume: 1 start-page: 80 year: 2013 end-page: 86 ident: bb0610 article-title: Producing hydrogen-rich gases by steam reforming of syngas tar over CaO/MgO/NiO catalysts publication-title: ACS Sustain. Chem. Eng. – volume: 8 start-page: 1915 year: 2018 end-page: 1922 ident: bb0345 article-title: Multi-Ni@Ni phyllosilicate hollow sphere for CO2 reforming of CH4: influence of Ni precursors on structure, sintering, and carbon resistance publication-title: Catalysis Science & Technology – start-page: 14 year: 2009 end-page: 126 ident: bb0010 article-title: Catalytic steam reforming technology for the production of hydrogen and syngas publication-title: Hydrogen and Syngas Production and Purification Technologies – volume: 195 start-page: 1 year: 2016 end-page: 8 ident: bb0415 article-title: Highly carbon resistant multicore-shell catalyst derived from Ni-Mg phyllosilicate nanotubes@silica for dry reforming of methane publication-title: Appl. Catal. B Environ. – volume: 7 start-page: 3111 year: 2018 end-page: 3119 ident: bb0195 article-title: Low-temperature steam reforming of toluene and biomass tar over biochar-supported Ni nanoparticles publication-title: ACS Sustain. Chem. Eng. – volume: 453 start-page: 60 year: 2013 end-page: 70 ident: bb0695 article-title: Role of support lattice oxygen on steam reforming of toluene for hydrogen production over Ni/La0.7Sr0.3AlO3−δ catalyst publication-title: Appl. Catal. A Gen. – volume: 59 start-page: 292 year: 2016 end-page: 302 ident: bb0665 article-title: Steam reforming of toluene over Pt/CexZr1−xO2/Al2O3 catalysts publication-title: Top. Catal. – volume: 7 start-page: 39160 year: 2017 end-page: 39171 ident: bb0580 article-title: A highly carbon-resistant olivine thermally fused with metallic nickel catalyst for steam reforming of biomass tar model compound publication-title: RSC Adv. – volume: 5 start-page: 3585 year: 2015 end-page: 3597 ident: bb0480 article-title: Role of lattice oxygen in oxidative steam reforming of toluene as a tar model compound over Ni/La0.8Sr0.2AlO3 catalyst publication-title: Catalysis Science & Technology – volume: 112 start-page: 654 year: 2013 end-page: 661 ident: bb0960 article-title: Catalytic performance and characterization of Ni–Co catalysts for the steam reforming of biomass tar to synthesis gas publication-title: Fuel – volume: 6 start-page: 6569 year: 2016 end-page: 6580 ident: bb0450 article-title: Sulfur resistant LaxCe1-xNi0.5Cu0.5O3 catalysts for an ultra-high temperature water gas shift reaction publication-title: Catalysis Science & Technology – volume: 113 start-page: E2879 year: 2016 end-page: E2888 ident: bb0135 article-title: Analysis of reaction schemes using maximum rates of constituent steps publication-title: Proc. Natl. Acad. Sci. – volume: 42 start-page: 28254 year: 2017 end-page: 28265 ident: bb0325 article-title: Enhanced catalytic performance of Ni/α-Al 2 O 3 catalyst modified with CaZrO 3 nanoparticles in steam-methane reforming publication-title: Int. J. Hydrog. Energy – volume: 362 start-page: 116 year: 2019 end-page: 125 ident: bb0425 article-title: Catalytic Pd0.77Ag0.23 alloy membrane reactor for high temperature water-gas shift reaction: methane suppression publication-title: Chem. Eng. J. – volume: 250 start-page: 250 year: 2019 end-page: 272 ident: bb0100 article-title: Reforming of tar from biomass gasification in a hybrid catalysis-plasma system: a review publication-title: Appl. Catal. B Environ. – volume: 98 start-page: 359 year: 2015 end-page: 368 ident: bb0350 article-title: Catalytic steam reforming of tar derived from steam gasification of sunflower stalk over ethylene glycol assisting prepared Ni/MCM-41 publication-title: Energy Convers. Manag. – volume: 20 start-page: 2788 year: 2018 end-page: 2800 ident: bb0535 article-title: Hydrochar supported bimetallic Ni–Fe nanocatalysts with tailored composition, size and shape for improved biomass steam reforming performance publication-title: Green Chem. – volume: 230 start-page: 220 year: 2018 end-page: 236 ident: bb0390 article-title: Silica-Ceria sandwiched Ni core-shell catalyst for low temperature dry reforming of biogas: coke resistance and mechanistic insights publication-title: Appl. Catal. B-Environ. – volume: 30 start-page: 14694 year: 2014 end-page: 14705 ident: bb0410 article-title: Simultaneous tuning porosity and basicity of nickel@nickel-magnesium phyllosilicate core-shell catalysts for CO(2) reforming of CH(4) publication-title: Langmuir – volume: 39 start-page: 109 year: 2019 end-page: 143 ident: bb0105 article-title: Biomass pyrolysis: a review of the process development and challenges from initial researches up to the commercialisation stage publication-title: Journal of Energy Chemistry – volume: 92 start-page: 26 year: 2011 end-page: 31 ident: bb0740 article-title: Gasification of woody biomass char with CO2: the catalytic effects of K and Ca species on char gasification reactivity publication-title: Fuel Process. Technol. – volume: 39 start-page: 6671 year: 2014 end-page: 6678 ident: bb0560 article-title: Core–shell Al2O3-supported Ni for high-performance catalytic reforming of toluene as a model compound of tar publication-title: Arab. J. Sci. Eng. – volume: 265 start-page: 95 year: 2016 end-page: 102 ident: bb0750 article-title: The effect of addition of Ca, K and Mn over Ni-based catalyst on steam reforming of toluene as model tar compound publication-title: Catal. Today – volume: 4 start-page: 2107 year: 2014 end-page: 2114 ident: bb0375 article-title: A highly dispersed and anti-coking Ni-La2O3/SiO2 catalyst for syngas production from dry carbon dioxide reforming of methane publication-title: Catalysis Science & Technology – volume: 2 start-page: 7837 year: 2014 end-page: 7844 ident: bb0370 article-title: An in situ self-assembled core-shell precursor route to prepare ultrasmall copper nanoparticles on silica catalysts publication-title: J. Mater. Chem. A – volume: 180 start-page: 822 year: 2019 end-page: 830 ident: bb0435 article-title: NiCo@NiCo phyllosilicate@CeO2 hollow core shell catalysts for steam reforming of toluene as biomass tar model compound publication-title: Energy Convers. Manag. – volume: 58 start-page: 267 year: 2016 end-page: 286 ident: bb0020 article-title: Biomass to liquid transportation fuel via Fischer Tropsch synthesis - technology review and current scenario publication-title: Renew. Sust. Energ. Rev. – volume: 91 start-page: 889 year: 2010 end-page: 894 ident: bb0495 article-title: Low-temperature gasification of a woody biomass under a nickel-loaded brown coal char publication-title: Fuel Process. Technol. – volume: 30 start-page: 2336 year: 2016 end-page: 2344 ident: bb0800 article-title: Study on steam reforming of tar in hot coke oven gas for hydrogen production publication-title: Energy Fuel – volume: 100 start-page: 56 year: 2015 end-page: 63 ident: bb1070 article-title: Effects of electric current upon catalytic steam reforming of biomass gasification tar model compounds to syngas publication-title: Energy Convers. Manag. – volume: 97 start-page: 741 year: 2012 end-page: 750 ident: bb0330 article-title: Catalytic oxygenless steam cracking of syngas-containing benzene model tar compound over natural Fe-bearing silicate minerals publication-title: Fuel – volume: 121 start-page: 76 year: 2014 end-page: 82 ident: bb0595 article-title: Steam reforming of model gasification tar compounds over nickel catalysts prepared from hydrotalcite precursors publication-title: Fuel Process. Technol. – volume: 7 start-page: 3358 year: 2015 end-page: 3367 ident: bb0910 article-title: Highly active and stable bimetallic nickel-copper core-ceria shell catalyst for high-temperature water-gas shift reaction publication-title: Chemcatchem – volume: 15 start-page: 146 year: 2016 end-page: 153 ident: bb0365 article-title: Facile synthesis of Ni/SiO2 catalyst by sequential hydrogen/air treatment: a superior anti-coking catalyst for dry reforming of methane publication-title: Journal of Co2 Utilization – volume: 5 year: 2012 ident: bb0530 article-title: Black perspectives for a green future: hydrothermal carbons for environment protection and energy storage publication-title: Energy Environ. Sci. – volume: 40 start-page: 1361 year: 1918 end-page: 1403 ident: bb0110 article-title: the adsorption of gases on plane surfaces of glass, mica and platinum publication-title: J. Am. Chem. Soc. – volume: 33 start-page: 1716 year: 2008 end-page: 1720 ident: bb0055 article-title: A wet packed bed scrubber-based producer gas cooling–cleaning system publication-title: Renew. Energy – volume: 503 start-page: 43 year: 2015 end-page: 50 ident: bb0830 article-title: Fe and CaO promoted Ni catalyst on gasifier bed material for tar removal from producer gas publication-title: Appl. Catal. A Gen. – volume: 103 start-page: 767 year: 1981 end-page: 772 ident: bb0185 article-title: Coordination chemistry of metal surfaces. 2. Chemistry of CH3CN and CH3NC on nickel surfaces publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 3556 year: 2015 end-page: 3575 ident: bb0215 article-title: Progress in synthesis of highly active and stable nickel-based catalysts for carbon dioxide reforming of methane publication-title: Chemsuschem – volume: 510 start-page: 417 year: 2016 end-page: 425 ident: bb1060 article-title: Oxidative steam reforming of biomass tar model compound via catalytic BaBi0.05Co0.8Nb0.15O3−δ hollow fiber membrane reactor publication-title: J. Membr. Sci. – volume: 6 start-page: 5871 year: 2016 end-page: 5883 ident: bb0175 article-title: Mechanistic insights into the catalytic elimination of tar and the promotional effect of boron on it: first-principles study using toluene as a model compound publication-title: Catalysis Science and Technology – volume: 150–151 start-page: 12 year: 2014 end-page: 20 ident: bb0295 article-title: Ni/ZrO2 catalysts in ethanol steam reforming: inhibition of coke formation by CaO-doping publication-title: Appl. Catal. B Environ. – volume: 43 start-page: 7245 year: 2014 end-page: 7256 ident: bb0200 article-title: Strategies for improving the performance and stability of Ni-based catalysts for reforming reactions publication-title: Chem. Soc. Rev. – volume: 4 start-page: 289 year: 2014 end-page: 301 ident: bb0680 article-title: Nickel–iron alloy supported over iron–alumina catalysts for steam reforming of biomass tar model compound publication-title: ACS Catal. – volume: 478 start-page: 234 year: 2014 end-page: 240 ident: bb0285 article-title: Steam reforming of tar using toluene as a model compound with nickel catalysts supported on hexaaluminates publication-title: Appl. Catal. A Gen. – volume: 154 start-page: 71 year: 2015 end-page: 79 ident: bb0810 article-title: Hydrotalcite type materials as catalyst precursors for the catalytic steam cracking of toluene publication-title: Fuel – volume: 82 start-page: 249 year: 2018 end-page: 257 ident: bb0625 article-title: Incinerator bottom ash derived from municipal solid waste as a potential catalytic support for biomass tar reforming publication-title: Waste Manag. – volume: 281 start-page: 304 year: 2017 end-page: 311 ident: bb0635 article-title: Enhanced activity of CO2 methanation over Ni/CeO2-ZrO2 catalysts: influence of preparation methods publication-title: Catal. Today – volume: 103 start-page: 122 year: 2013 end-page: 129 ident: bb0735 article-title: Catalytic performance of manganese-promoted nickel catalysts for the steam reforming of tar from biomass pyrolysis to synthesis gas publication-title: Fuel – volume: 90 start-page: 29 year: 2009 end-page: 37 ident: bb0710 article-title: Steam reforming of glycerol: the experimental activity of La 1− x Ce x NiO 3 catalyst in comparison to the thermodynamic reaction equilibrium publication-title: Appl. Catal. B: Env. – volume: 4 start-page: 3237 year: 2014 end-page: 3248 ident: bb0770 article-title: Highly active Ni/xNa/CeO2 catalyst for the water gas shift reaction: effect of sodium on methane suppression publication-title: ACS Catal. – volume: 108 start-page: 345 year: 2018 end-page: 370 ident: bb0015 article-title: Reduction of tar generated during biomass gasification: a review publication-title: Biomass Bioenergy – volume: 167 start-page: 81 year: 2018 end-page: 90 ident: bb0490 article-title: Catalytic cracking of biomass pyrolysis tar over char-supported catalysts publication-title: Energy Convers. Manag. – volume: 35 start-page: 88 year: 1989 end-page: 96 ident: bb0125 article-title: Methane steam reforming, methanation and water-gas shift: I. Intrinsic kinetics publication-title: AICHE J. – volume: 345 start-page: 157 year: 2017 end-page: 169 ident: bb0140 article-title: Importance of metal-oxide interfaces in heterogeneous catalysis: a combined DFT, microkinetic, and experimental study of water-gas shift on Au/MgO publication-title: J. Catal. – volume: 183 start-page: 168 year: 2016 end-page: 175 ident: bb0840 article-title: Characteristics and catalytic properties of Ni/CaAlOx catalyst for hydrogen-enriched syngas production from pyrolysis-steam reforming of biomass sawdust publication-title: Appl. Catal. B Environ. – volume: 9 start-page: 2939 year: 2016 end-page: 2977 ident: bb0030 article-title: An overview of advances in biomass gasification publication-title: Energy Environ. Sci. – volume: 10 start-page: 3927 year: 2018 end-page: 3942 ident: bb0775 article-title: Nickel-based catalysts for high-temperature water gas shift reaction-methane suppression publication-title: Chemcatchem – volume: 466 start-page: 190 year: 2013 end-page: 197 ident: bb0180 article-title: In situ IR study for elucidating reaction mechanism of toluene steam reforming over Ni/La0.7Sr0.3AlO3-δcatalyst publication-title: Appl. Catal. A Gen. – volume: 187 start-page: 128 year: 2017 end-page: 136 ident: bb0510 article-title: Catalytic reforming of toluene and naphthalene (model tar) by char supported nickel catalyst publication-title: Fuel – volume: 176 start-page: 153 year: 2018 end-page: 166 ident: bb0380 article-title: Design of active and stable bimodal nickel catalysts for methane reforming with CO2 publication-title: Fuel Process. Technol. – volume: 6 start-page: 4327 year: 2016 end-page: 4336 ident: bb0920 article-title: Synthesis and evaluation of highly dispersed SBA-15 supported Ni–Fe bimetallic catalysts for steam reforming of biomass derived tar reaction publication-title: Catalysis Science & Technology – volume: 18 start-page: 713 year: 2004 end-page: 720 ident: bb0570 article-title: Olivine or dolomite as in-bed additive in biomass gasification with air in a fluidized bed: which is better? publication-title: Energy Fuel – volume: 101 start-page: 90 year: 2010 end-page: 100 ident: bb0585 article-title: Characterization and reactivity in toluene reforming of a Fe/olivine catalyst designed for gas cleanup in biomass gasification publication-title: Appl. Catal. B Environ. – volume: 26 start-page: 1335 year: 1987 end-page: 1339 ident: bb1040 article-title: Steam gasification of biomass with nickel secondary catalysts publication-title: Ind. Eng. Chem. Res. – volume: 18 start-page: 345 year: 2017 end-page: 352 ident: bb0420 article-title: Highly carbon-resistant Ni–Co/SiO 2 catalysts derived from phyllosilicates for dry reforming of methane publication-title: Journal of CO2 Utilization – volume: 6 start-page: 5336 year: 2016 end-page: 5349 ident: bb0640 article-title: High-temperature water gas shift reaction on Ni-Cu/CeO2 catalysts: effect of ceria nanocrystal size on carboxylate formation publication-title: Catalysis Science & Technology – volume: 5 start-page: 043106 year: 2013 ident: bb0860 article-title: New nickel-based material (Sr12Al14O33) for biomass tar steam reforming for syngas production publication-title: J. Renew. Sustain. Energ. – volume: 42 start-page: 12829 year: 2017 end-page: 12840 ident: bb0890 article-title: Ni based catalysts promoted with cerium used in the steam reforming of toluene for hydrogen production publication-title: Int. J. Hydrog. Energy – volume: 209 start-page: 25 year: 2017 end-page: 34 ident: bb0565 article-title: Tar conversion over olivine and sand in a fluidized bed reactor using toluene as model compound publication-title: Fuel – volume: 12 start-page: S80 year: 2012 end-page: S88 ident: bb0715 article-title: Synthesis and catalytic activity of sol-gel derived La–Ce–Ni perovskite mixed oxide on steam reforming of toluene publication-title: Curr. Appl. Phys. – volume: 140–141 start-page: 652 year: 2013 end-page: 662 ident: bb0985 article-title: High catalytic activity of Co-Fe/α-Al2O3 in the steam reforming of toluene in the presence of hydrogen publication-title: Appl. Catal. B Environ. – volume: 41 start-page: 17967 year: 2016 end-page: 17975 ident: bb0685 article-title: Effects of oxygen species from Fe addition on promoting steam reforming of toluene over Fe–Ni/Al2O3 catalysts publication-title: Int. J. Hydrog. Energy – volume: 253 start-page: 441 year: 2019 end-page: 448 ident: bb0505 article-title: Role of O-containing functional groups in biochar during the catalytic steam reforming of tar using the biochar as a catalyst publication-title: Fuel – volume: 306 start-page: 422 year: 2016 end-page: 432 ident: bb0765 article-title: Effects of K and Ca on reforming of model tar compounds with pyrolysis biochars under H2O or CO2 publication-title: Chem. Eng. J. – volume: 558 start-page: 131 year: 2018 end-page: 139 ident: bb0805 article-title: High performance Ni-Fe-Mg catalyst for tar removal in producer gas publication-title: Appl. Catal. A Gen. – volume: 8 start-page: 3363 year: 2018 end-page: 3371 ident: bb0395 article-title: Sintering resistant Ni nanoparticles exclusively confined within SiO2 nanotubes for CH4 dry reforming publication-title: Catalysis Science & Technology – volume: 27 start-page: 238 year: 2018 end-page: 246 ident: bb0550 article-title: High carbon resistant Ni@Ni phyllosilicate@SiO2 core shell hollow sphere catalysts for low temperature CH4 dry reforming publication-title: Journal of Co2 Utilization – volume: 31 start-page: 7471 year: 2017 end-page: 7481 ident: bb0270 article-title: Iron oxide over silica-doped alumina catalyst for catalytic steam reforming of toluene as a surrogate tar biomass species publication-title: Energy Fuel – volume: 13 start-page: 1319 year: 2010 end-page: 1325 ident: bb0590 article-title: Toluene steam reforming as tar model molecule produced during biomass gasification with an iron/olivine catalyst publication-title: Comp. Rend. Chim. – volume: 172 start-page: 116 year: 2015 end-page: 128 ident: bb0850 article-title: Bi-functional hydrotalcite-derived NiO–CaO–Al 2 O 3 catalysts for steam reforming of biomass and/or tar model compound at low steam-to-carbon conditions publication-title: Appl. Catal. B: Env. – volume: 7 start-page: 3111 year: 2019 end-page: 3119 ident: bb0515 article-title: Low-temperature steam reforming of toluene and biomass tar over biochar-supported Ni nanoparticles publication-title: ACS Sustain. Chem. Eng. – volume: 408 start-page: 1 year: 2011 end-page: 24 ident: bb1015 article-title: Methane reforming to synthesis gas over Ni catalysts modified with noble metals publication-title: Appl. Catal. A Gen. – volume: 353 start-page: 2436 year: 2007 end-page: 2442 ident: bb0250 article-title: Silica-doped alumina cryogels with high thermal stability publication-title: J. Non-Cryst. Solids – volume: 13 start-page: 2272 year: 2011 end-page: 2284 ident: bb0730 article-title: Towards reforming technologies for production of hydrogen exclusively from renewable resources publication-title: Green Chem. – volume: 101 start-page: 138 year: 2017 end-page: 141 ident: bb0620 article-title: Encapsulating Ni/CeO2-ZrO2 with SiO2 layer to improve it catalytic activity for steam reforming of toluene publication-title: Catal. Commun. – volume: 23 start-page: 1874 year: 2009 end-page: 1887 ident: bb0085 article-title: Review of catalytic conditioning of biomass-derived syngas publication-title: Energy Fuel – volume: 3 start-page: 61 year: 2013 end-page: 73 ident: bb0975 article-title: Synthesis of Na-stabilized nonporous t-ZrO2 supports and Pt/t-ZrO2 catalysts and application to water-gas-shift reaction publication-title: ACS Catal. – volume: 121 start-page: 644 year: 2018 end-page: 651 ident: bb0525 article-title: Type of contribution: research article catalytic activity of sewage sludge char supported Re-Ni bimetallic catalyst toward cracking/reforming of biomass tar publication-title: Renew. Energy – volume: 38 start-page: 765 year: 2012 end-page: 781 ident: bb0040 article-title: A short overview on purification and conditioning of syngas produced by biomass gasification: catalytic strategies, process intensification and new concepts publication-title: Prog. Energy Combust. Sci. – volume: 91 start-page: 1098 year: 2010 end-page: 1104 ident: bb0600 article-title: Catalytic reforming of model tar compounds from hot coke oven gas with low steam/carbon ratio over Ni/MgO–Al 2 O 3 catalysts publication-title: Fuel Process. Technol. – volume: 16 start-page: 333 year: 2019 end-page: 349 ident: bb0795 article-title: Combined steam-dry reforming of toluene in syngas over CaNiRu/Al2O3 catalysts publication-title: International Journal of Green Energy – volume: 102 start-page: 528 year: 2011 end-page: 538 ident: bb0315 article-title: Steam reforming of tar from pyrolysis of biomass over Ni/Mg/Al catalysts prepared from hydrotalcite-like precursors publication-title: Appl. Catal. B Environ. – volume: 1 start-page: 161 year: 2012 end-page: 173 ident: bb0385 article-title: Hydrogen production via steam reforming of ethanol on phyllosilicate-derived Ni/SiO2: enhanced metal–support interaction and catalytic stability publication-title: ACS Sustain. Chem. Eng. – volume: 222 start-page: 185 year: 2018 end-page: 192 ident: bb0400 article-title: Hydrogen generation from chemical looping reforming of glycerol by Ce-doped nickel phyllosilicate nanotube oxygen carriers publication-title: Fuel – volume: 43 start-page: 127 year: 2018 end-page: 138 ident: bb0575 article-title: Effects of catalyst preparation parameters and reaction operating conditions on the activity and stability of thermally fused Fe-olivine catalyst in the steam reforming of toluene publication-title: Int. J. Hydrog. Energy – volume: 100 start-page: 171 year: 2005 end-page: 180 ident: bb0725 article-title: Catalysis in the development of clean energy technologies publication-title: Catal. Today – volume: 94 start-page: 1086 year: 2018 end-page: 1109 ident: bb0915 article-title: Preparation, modification and development of Ni-based catalysts for catalytic reforming of tar produced from biomass gasification publication-title: Renew. Sust. Energ. Rev. – volume: 158 start-page: 39 year: 2012 end-page: 46 ident: bb0230 article-title: Tailoring the structure and hydrophobic properties of amorphous silica by silylation publication-title: Microporous Mesoporous Mater. – volume: 13 start-page: 702 year: 1999 end-page: 709 ident: bb1035 article-title: Biomass gasification with air in a fluidized bed: exhaustive tar elimination with commercial steam reforming catalysts publication-title: Energy Fuel – volume: 127 start-page: 82 year: 2017 end-page: 90 ident: bb0520 article-title: Preparation and characterization of nickel loaded on resin char as tar reforming catalyst for biomass gasification publication-title: J. Anal. Appl. Pyrolysis – volume: 145 start-page: 541 year: 2015 end-page: 548 ident: bb0290 article-title: Steam reforming of tar model compounds over nickel catalysts supported on barium hexaaluminate publication-title: Catal. Lett. – volume: 5 start-page: 17834 year: 2015 end-page: 17842 ident: bb0855 article-title: Enhancing performance of Ni/La2O3 catalyst by Sr-modification for steam reforming of toluene as model compound of biomass tar publication-title: RSC Adv. – volume: 51 start-page: 969 year: 2010 end-page: 982 ident: bb0045 article-title: Overview of recent advances in thermo-chemical conversion of biomass publication-title: Energy Convers. Manag. – volume: 49 start-page: 4226 year: 2013 end-page: 4228 ident: bb0555 article-title: A Ni@ZrO2 nanocomposite for ethanol steam reforming: enhanced stability via strong metal-oxide interaction publication-title: Chem. Comm. – volume: 538 start-page: 181 year: 2017 end-page: 189 ident: bb0465 article-title: Anchoring effect and oxygen redox property of Co/La 0.7 Sr 0.3 AlO 3-δ perovskite catalyst on toluene steam reforming reaction publication-title: Appl. Catal. A Gen. – volume: 164 start-page: 347 year: 2014 end-page: 353 ident: bb0745 article-title: Comparison of steam gasification reactivity of algal and lignocellulosic biomass: influence of inorganic elements publication-title: Bioresour. Technol. – volume: 38 start-page: 13938 year: 2013 end-page: 13949 ident: bb0645 article-title: Steam reforming of toluene as a biomass tar model compound over CeO2 promoted Ni/CaO–Al2O3 catalytic systems publication-title: Int. J. Hydrog. Energy – volume: 74 start-page: 133 year: 2015 end-page: 138 ident: bb0655 article-title: Activity of Fe supported by Ce1−xSmxO2−δ derived from metal complex decomposition toward the steam reforming of toluene as biomass tar model compound publication-title: Renew. Energy – volume: 121–122 start-page: 95 year: 2012 end-page: 104 ident: bb0980 article-title: Catalyst property of Co–Fe alloy particles in the steam reforming of biomass tar and toluene publication-title: Appl. Catal. B Environ. – volume: 188 start-page: 324 year: 2016 end-page: 341 ident: bb0210 article-title: Design of highly stable and selective core/yolk-shell nanocatalysts-a review publication-title: Appl. Catal. B-Environ. – volume: 489 start-page: 155 year: 2015 end-page: 161 ident: bb0475 article-title: Effect of catalyst structure on steam reforming of toluene over Ni/La0.7Sr0.3AlO3−δ catalyst publication-title: Appl. Catal. A Gen. – volume: 60 start-page: 4190 year: 2014 end-page: 4198 ident: bb0190 article-title: Mechanism and kinetic modeling for steam reforming of toluene on La0.8Sr0.2Ni0.8Fe0.2O3 catalyst publication-title: AICHE J. – volume: 530 start-page: 125 year: 2017 end-page: 131 ident: bb0875 article-title: Promotive effect of Ba addition on the catalytic performance of Ni/LaAlO3 catalysts for steam reforming of toluene publication-title: Appl. Catal. A Gen. – volume: 10 start-page: 320 year: 2018 end-page: 328 ident: bb0430 article-title: Sandwich-like Silica@Ni@Silica multicore-shell catalyst for the low-temperature dry reforming of methane: confinement effect against carbon formation publication-title: Chemcatchem – volume: 29 start-page: 479 year: 1996 end-page: 487 ident: bb0120 article-title: Eley-Rideal surface chemistry: direct reactivity of gas phase atomic hydrogen with adsorbed species publication-title: Acc. Chem. Res. – volume: 217 start-page: 515 year: 2018 end-page: 521 ident: bb0500 article-title: Effect of atmosphere on carbon deposition of Ni/Al2O3 and Ni-loaded on lignite char during reforming of toluene as a biomass tar model compound publication-title: Fuel – volume: 32 start-page: 4269 year: 2018 end-page: 4277 ident: bb0790 article-title: An Experimental Investigation of the catalytic activity of natural calcium-rich minerals and a novel dual-supported CaO–Ca12Al14O33/Al2O3 catalyst for Biotar steam reforming publication-title: Energy Fuel – volume: 506 start-page: 151 year: 2015 end-page: 162 ident: bb0675 article-title: Comparative study on steam reforming of model aromatic compounds of biomass tar over Ni and Ni–Fe alloy nanoparticles publication-title: Appl. Catal. A Gen. – volume: 573 start-page: 56 year: 2019 end-page: 63 ident: bb1075 article-title: Steam reforming of aromatic hydrocarbon at low temperature in electric field publication-title: Appl. Catal. A Gen. – volume: 201 start-page: 30 year: 2018 end-page: 40 ident: bb1065 article-title: High oxygen permeable and CO2-tolerant SrCoxFe0.9-xNb0.1O3-delta (x=0.1-0.8) perovskite membranes: behavior and mechanism publication-title: Sep. Purif. Technol. – volume: 284 start-page: 304 year: 2019 end-page: 315 ident: bb0265 article-title: Synthesis of Ni/γ-Al2O3SiO2 catalysts with different silicon precursors for the steam toluene reforming publication-title: Microporous Mesoporous Mater. – volume: 92 start-page: 1765 year: 2019 end-page: 1778 ident: bb0955 article-title: Steam reforming and carbon deposition evaluation of phenol and naphthalene used as tar model compounds over Ni and Fe olivine-supported catalysts publication-title: J. Energy Inst. – volume: 33 start-page: 2704 year: 2008 end-page: 2713 ident: bb0300 article-title: Hydrotalcite structure derived Ni–Cu–Al catalysts for the production of H2 by CH4 decomposition publication-title: Int. J. Hydrog. Energy – volume: 134–135 start-page: 238 year: 2013 end-page: 250 ident: bb0335 article-title: Characterization and evaluation of Ni/SiO2 catalysts for hydrogen production and tar reduction from catalytic steam pyrolysis-reforming of refuse derived fuel publication-title: Appl. Catal. B Environ. – volume: 265 start-page: 111 year: 2016 end-page: 117 ident: bb0470 article-title: Highly active and stable Co/La 0.7 Sr 0.3 AlO 3−δ catalyst for steam reforming of toluene publication-title: Catal. Today – volume: 551 start-page: 13 year: 2018 end-page: 22 ident: bb0245 article-title: Silica deposition as an approach for improving the hydrothermal stability of an alumina support during glycerol aqueous phase reforming publication-title: Appl. Catal. A Gen. – volume: 337 start-page: 216 year: 2019 end-page: 224 ident: bb1080 article-title: Enhanced hydrogen-rich gas production from waste biomass using pyrolysis with non-thermal plasma-catalysis publication-title: Catal. Today – volume: 5 start-page: 2312 year: 2012 end-page: 2314 ident: bb0935 article-title: A highly active and coke-resistant steam reforming catalyst comprising uniform nickel–iron alloy nanoparticles publication-title: ChemSusChem – volume: 43 start-page: 6911 year: 2004 end-page: 6919 ident: bb0080 article-title: Review of catalysts for tar elimination in biomass gasification processes publication-title: Ind. Eng. Chem. Res. – volume: 148–149 start-page: 231 year: 2014 end-page: 242 ident: bb0630 article-title: Perovskite LaxM1−xNi0.8Fe0.2O3 catalyst for steam reforming of toluene: crucial role of alkaline earth metal at low steam condition publication-title: Appl. Catal. B Environ. – volume: 180 start-page: 9 year: 2008 end-page: 16 ident: bb1030 article-title: Development of catalytic tar decomposition downstream from a dual fluidized bed biomass steam gasifier publication-title: Powder Technol. – volume: 142 start-page: 397 year: 2016 end-page: 402 ident: bb0865 article-title: Steam reforming of dodecane and toluene over Ru/12SrO–7Al2O3 (S12A7) catalysts publication-title: Fuel Process. Technol. – volume: 224 start-page: 676 year: 2018 end-page: 686 ident: bb0905 article-title: Steam reforming of tar model compounds over Ni/Mayenite catalysts: effect of Ce addition publication-title: Fuel – volume: 7 start-page: 1402 year: 2015 end-page: 1421 ident: bb0095 article-title: Reaction pathways of biomass-derived oxygenates over metals and carbides: from model surfaces to supported catalysts publication-title: ChemCatChem – volume: 146 start-page: 148 year: 2009 end-page: 153 ident: bb0705 article-title: Performance of La 1− x Ce x Fe 0.7 Ni 0.3 O 3 perovskite catalysts for methane steam reforming publication-title: Catal. Today – volume: 203 start-page: 154 year: 2017 end-page: 165 ident: bb0825 article-title: Fe-Ca interactions in Fe-based/CaO catalyst/sorbent for CO2 sorption and hydrogen production from toluene steam reforming publication-title: Appl. Catal. B Environ. – volume: 140 start-page: 1 year: 2015 end-page: 11 ident: bb0880 article-title: Nickel-substituted bariumhexaaluminates as novel catalysts in steam reforming of tars publication-title: Fuel Process. Technol. – volume: 1 start-page: 100003 year: 2019 ident: bb0720 article-title: H2S and NOx tolerance capability of CeO2 doped La1−xCexCo0.5Ti0.5O3−δ perovskites for steam reforming of biomass tar model reaction publication-title: Energy Conversion and Management: X – volume: 309 start-page: 2 year: 2018 end-page: 10 ident: bb0845 article-title: Effect of calcium addition on Mg-AlOx supported Ni catalysts for hydrogen production from pyrolysis-gasification of biomass publication-title: Catal. Today – volume: 59 start-page: 292 year: 2015 end-page: 302 ident: bb0280 article-title: Steam reforming of toluene over Pt/Ce x Zr1−x O2/Al2O3 catalysts publication-title: Top. Catal. – volume: 38 start-page: 428 year: 2014 end-page: 438 ident: bb1050 article-title: Review of recent developments in Ni-based catalysts for biomass gasification publication-title: Renew. Sust. Energ. Rev. – volume: 38 start-page: 5525 year: 2013 end-page: 5534 ident: bb0940 article-title: Promotional effect of Fe on perovskite LaNixFe1−xO3 catalyst for hydrogen production via steam reforming of toluene publication-title: Int. J. Hydrog. Energy – volume: 184 start-page: 142 year: 2016 end-page: 152 ident: bb1010 article-title: Steam reforming of hydrocarbons from biomass-derived syngas over MgAl2O4-supported transition metals and bimetallic IrNi catalysts publication-title: Appl. Catal. B Environ. – volume: 150–151 start-page: 82 year: 2014 end-page: 92 ident: bb0310 article-title: Catalytic performance and characterization of Co/Mg/Al catalysts prepared from hydrotalcite-like precursors for the steam gasification of biomass publication-title: Appl. Catal. B Environ. – volume: 41 start-page: 22922 year: 2016 end-page: 22931 ident: bb0965 article-title: Influence of Ni to Co ratio supported on ZrO2 catalysts in phenol steam reforming for hydrogen production publication-title: Int. J. Hydrog. Energy – volume: 160–161 start-page: 701 year: 2014 end-page: 715 ident: bb0990 article-title: Catalytic performance and characterization of Co–Fe bcc alloy nanoparticles prepared from hydrotalcite-like precursors in the steam gasification of biomass-derived tar publication-title: Appl. Catal. B Environ. – volume: 45 start-page: 1911 year: 2006 end-page: 1917 ident: bb0900 article-title: Effect of preparation temperature on cyclic CO2 capture and multiple carbonation−calcination cycles for a new Ca-based CO2 sorbent publication-title: Ind. Eng. Chem. Res. – volume: 74 start-page: 211 year: 2007 end-page: 222 ident: bb0155 article-title: Steam reforming of tar from a biomass gasification process over Ni/olivine catalyst using toluene as a model compound publication-title: Appl. Catal. B Environ. – volume: 538 start-page: 181 year: 2017 end-page: 189 ident: bb0700 article-title: Anchoring effect and oxygen redox property of Co/La0.7Sr0.3AlO3-δ perovskite catalyst on toluene steam reforming reaction publication-title: Appl. Catal. A Gen. – volume: 74 start-page: 19 year: 2001 end-page: 31 ident: bb0060 article-title: Steam reforming model compounds of biomass gasification tars: conversion at different operating conditions and tendency towards coke formation publication-title: Fuel Process. Technol. – volume: 176 start-page: 7 year: 2018 end-page: 14 ident: bb0225 article-title: Carbon nanotubes formation and its influence on steam reforming of toluene over Ni/Al 2 O 3 catalysts: roles of catalyst supports publication-title: Fuel Process. Technol. – volume: 190 start-page: 137 year: 2016 end-page: 146 ident: bb0755 article-title: Equilibrium potassium coverage and its effect on a Ni tar reforming catalyst in alkali- and sulfur-laden biomass gasification gases publication-title: Appl. Catal. B Environ. – volume: 7 start-page: 510 year: 2014 end-page: 522 ident: bb0305 article-title: Regenerability of hydrotalcite-derived nickel–iron alloy nanoparticles for syngas production from biomass tar publication-title: ChemSusChem – volume: 277 start-page: 146 year: 2004 end-page: 153 ident: bb0235 article-title: Silylation and surface properties of chemically grafted hydrophobic silica publication-title: J. Colloid Interface Sci. – volume: 7 start-page: 3376 year: 2015 end-page: 3385 ident: bb0440 article-title: catalytic biomass gasification to syngas over highly dispersed lanthanum-doped nickel on SBA-15 publication-title: ChemCatChem – volume: 26 start-page: 171 year: 2004 end-page: 193 ident: bb1045 article-title: Biomass gasification in a circulating fluidized bed publication-title: Biomass Bioenergy – volume: 503 start-page: 43 year: 2015 ident: 10.1016/j.fuproc.2019.106252_bb0830 article-title: Fe and CaO promoted Ni catalyst on gasifier bed material for tar removal from producer gas publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2015.06.032 – volume: 5 start-page: 2312 year: 2012 ident: 10.1016/j.fuproc.2019.106252_bb0935 article-title: A highly active and coke-resistant steam reforming catalyst comprising uniform nickel–iron alloy nanoparticles publication-title: ChemSusChem doi: 10.1002/cssc.201200507 – volume: 265 start-page: 95 year: 2016 ident: 10.1016/j.fuproc.2019.106252_bb0750 article-title: The effect of addition of Ca, K and Mn over Ni-based catalyst on steam reforming of toluene as model tar compound publication-title: Catal. Today doi: 10.1016/j.cattod.2015.09.057 – volume: 18 start-page: 345 year: 2017 ident: 10.1016/j.fuproc.2019.106252_bb0420 article-title: Highly carbon-resistant Ni–Co/SiO 2 catalysts derived from phyllosilicates for dry reforming of methane publication-title: Journal of CO2 Utilization doi: 10.1016/j.jcou.2016.12.014 – volume: 74 start-page: 19 year: 2001 ident: 10.1016/j.fuproc.2019.106252_bb0060 article-title: Steam reforming model compounds of biomass gasification tars: conversion at different operating conditions and tendency towards coke formation publication-title: Fuel Process. Technol. doi: 10.1016/S0378-3820(01)00214-4 – volume: 464–465 start-page: 78 year: 2013 ident: 10.1016/j.fuproc.2019.106252_bb0455 article-title: Structure and activity of Ni/La0.7Sr0.3AlO3−δ catalyst for hydrogen production by steam reforming of toluene publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2013.05.023 – volume: 103 start-page: 767 year: 1981 ident: 10.1016/j.fuproc.2019.106252_bb0185 article-title: Coordination chemistry of metal surfaces. 2. Chemistry of CH3CN and CH3NC on nickel surfaces publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00394a007 – volume: 7 start-page: 39160 year: 2017 ident: 10.1016/j.fuproc.2019.106252_bb0580 article-title: A highly carbon-resistant olivine thermally fused with metallic nickel catalyst for steam reforming of biomass tar model compound publication-title: RSC Adv. doi: 10.1039/C7RA06219B – volume: 97 start-page: 40 year: 2014 ident: 10.1016/j.fuproc.2019.106252_bb0870 article-title: Catalytic reforming of toluene as tar model compound: effect of Ce and Ce–Mg promoter using Ni/olivine catalyst publication-title: Chemosphere doi: 10.1016/j.chemosphere.2013.10.087 – volume: 35 start-page: 97 year: 1989 ident: 10.1016/j.fuproc.2019.106252_bb0130 article-title: Methane steam limitations and reforming: II. Diffusional limitations and reactor simulation publication-title: AICHE J. doi: 10.1002/aic.690350110 – volume: 373 start-page: 154 year: 2010 ident: 10.1016/j.fuproc.2019.106252_bb0660 article-title: Naphthalene steam reforming over Mn-doped CeO2–ZrO2 supported nickel catalysts publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2009.11.008 – volume: 203 start-page: 1026 year: 2017 ident: 10.1016/j.fuproc.2019.106252_bb0025 article-title: Industrial-scale gas conditioning including Topsoe tar reforming and purification downstream biomass gasifiers: an overview and recent examples publication-title: Fuel doi: 10.1016/j.fuel.2017.02.085 – volume: 100 start-page: 56 year: 2015 ident: 10.1016/j.fuproc.2019.106252_bb1070 article-title: Effects of electric current upon catalytic steam reforming of biomass gasification tar model compounds to syngas publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2015.05.003 – volume: 40 start-page: 5297 year: 2015 ident: 10.1016/j.fuproc.2019.106252_bb0820 article-title: Improvement of steam reforming of toluene by CO2 capture using Fe/CaO–Ca12Al14O33 bi-functional materials publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2015.01.065 – volume: 6 start-page: 4327 year: 2016 ident: 10.1016/j.fuproc.2019.106252_bb0920 article-title: Synthesis and evaluation of highly dispersed SBA-15 supported Ni–Fe bimetallic catalysts for steam reforming of biomass derived tar reaction publication-title: Catalysis Science & Technology doi: 10.1039/C5CY01910A – volume: 15 start-page: 146 year: 2016 ident: 10.1016/j.fuproc.2019.106252_bb0365 article-title: Facile synthesis of Ni/SiO2 catalyst by sequential hydrogen/air treatment: a superior anti-coking catalyst for dry reforming of methane publication-title: Journal of Co2 Utilization doi: 10.1016/j.jcou.2016.05.007 – volume: 160–161 start-page: 701 year: 2014 ident: 10.1016/j.fuproc.2019.106252_bb0990 article-title: Catalytic performance and characterization of Co–Fe bcc alloy nanoparticles prepared from hydrotalcite-like precursors in the steam gasification of biomass-derived tar publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2014.06.021 – volume: 176 start-page: 7 year: 2018 ident: 10.1016/j.fuproc.2019.106252_bb0225 article-title: Carbon nanotubes formation and its influence on steam reforming of toluene over Ni/Al 2 O 3 catalysts: roles of catalyst supports publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2018.03.007 – volume: 49 start-page: 4226 year: 2013 ident: 10.1016/j.fuproc.2019.106252_bb0555 article-title: A Ni@ZrO2 nanocomposite for ethanol steam reforming: enhanced stability via strong metal-oxide interaction publication-title: Chem. Comm. doi: 10.1039/C2CC37109J – volume: 281 start-page: 250 year: 2017 ident: 10.1016/j.fuproc.2019.106252_bb0925 article-title: Highly reactive Ni-Co/SiO2 bimetallic catalyst via complexation with oleylamine/oleic acid organic pair for dry reforming of methane publication-title: Catal. Today doi: 10.1016/j.cattod.2016.07.013 – volume: 29 start-page: 479 year: 1996 ident: 10.1016/j.fuproc.2019.106252_bb0120 article-title: Eley-Rideal surface chemistry: direct reactivity of gas phase atomic hydrogen with adsorbed species publication-title: Acc. Chem. Res. doi: 10.1021/ar9500980 – volume: 6 start-page: 6569 year: 2016 ident: 10.1016/j.fuproc.2019.106252_bb0450 article-title: Sulfur resistant LaxCe1-xNi0.5Cu0.5O3 catalysts for an ultra-high temperature water gas shift reaction publication-title: Catalysis Science & Technology doi: 10.1039/C6CY00635C – volume: 167 start-page: 81 year: 2018 ident: 10.1016/j.fuproc.2019.106252_bb0490 article-title: Catalytic cracking of biomass pyrolysis tar over char-supported catalysts publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2018.04.094 – volume: 92 start-page: 26 year: 2011 ident: 10.1016/j.fuproc.2019.106252_bb0740 article-title: Gasification of woody biomass char with CO2: the catalytic effects of K and Ca species on char gasification reactivity publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2010.08.015 – volume: 168–169 start-page: 250 year: 2015 ident: 10.1016/j.fuproc.2019.106252_bb0895 article-title: Fluidizable La2O3 promoted Ni/γ-Al2O3 catalyst for steam gasification of biomass: effect of catalyst preparation conditions publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2014.12.009 – volume: 111 start-page: 5404 year: 2011 ident: 10.1016/j.fuproc.2019.106252_bb0070 article-title: Catalytic steam gasification of biomass: catalysts, thermodynamics and kinetics publication-title: Chem. Rev. doi: 10.1021/cr200024w – volume: 154 start-page: 71 year: 2015 ident: 10.1016/j.fuproc.2019.106252_bb0810 article-title: Hydrotalcite type materials as catalyst precursors for the catalytic steam cracking of toluene publication-title: Fuel doi: 10.1016/j.fuel.2015.03.002 – volume: 8 start-page: 2763 year: 2018 ident: 10.1016/j.fuproc.2019.106252_bb0340 article-title: Silica-based micro- and mesoporous catalysts for dry reforming of methane publication-title: Catalysis Science & Technology doi: 10.1039/C8CY00622A – volume: 38 start-page: 5525 year: 2013 ident: 10.1016/j.fuproc.2019.106252_bb0940 article-title: Promotional effect of Fe on perovskite LaNixFe1−xO3 catalyst for hydrogen production via steam reforming of toluene publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2013.02.083 – volume: 38 start-page: 765 year: 2012 ident: 10.1016/j.fuproc.2019.106252_bb0040 article-title: A short overview on purification and conditioning of syngas produced by biomass gasification: catalytic strategies, process intensification and new concepts publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2011.12.001 – volume: 329 start-page: 130 year: 2015 ident: 10.1016/j.fuproc.2019.106252_bb0780 article-title: High-temperature water-gas shift reaction over Ni/xK/CeO2 catalysts: suppression of methanation via formation of bridging carbonyls publication-title: J. Catal. doi: 10.1016/j.jcat.2015.04.031 – volume: 1 start-page: 37 year: 2009 ident: 10.1016/j.fuproc.2019.106252_bb0145 article-title: Towards the computational design of solid catalysts publication-title: Nat. Chem. doi: 10.1038/nchem.121 – volume: 5 start-page: 4398 year: 2015 ident: 10.1016/j.fuproc.2019.106252_bb0995 article-title: Ni and/or Ni–Cu alloys supported over SiO2 catalysts synthesized via phyllosilicate structures for steam reforming of biomass tar reaction publication-title: Catalysis Science & Technology doi: 10.1039/C5CY00650C – volume: 7 start-page: 3111 year: 2018 ident: 10.1016/j.fuproc.2019.106252_bb0195 article-title: Low-temperature steam reforming of toluene and biomass tar over biochar-supported Ni nanoparticles publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b04872 – volume: 6 start-page: 3394 year: 2016 ident: 10.1016/j.fuproc.2019.106252_bb0930 article-title: Bimetallic Ni-Cu alloy nanoparticles supported on silica for the water-gas shift reaction: activating surface hydroxyls via enhanced CO adsorption publication-title: Catalysis Science & Technology doi: 10.1039/C5CY01885D – volume: 92 start-page: 1765 year: 2019 ident: 10.1016/j.fuproc.2019.106252_bb0955 article-title: Steam reforming and carbon deposition evaluation of phenol and naphthalene used as tar model compounds over Ni and Fe olivine-supported catalysts publication-title: J. Energy Inst. doi: 10.1016/j.joei.2018.12.004 – volume: 178 start-page: 53 year: 2015 ident: 10.1016/j.fuproc.2019.106252_bb0065 article-title: Metal catalysts for steam reforming of tar derived from the gasification of lignocellulosic biomass publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.10.010 – volume: 176 start-page: 347 year: 2011 ident: 10.1016/j.fuproc.2019.106252_bb0615 article-title: Steam reforming of model gasification tars compounds on nickel based ceria-zirconia catalysts publication-title: Catal. Today doi: 10.1016/j.cattod.2010.11.067 – volume: 188 start-page: 324 year: 2016 ident: 10.1016/j.fuproc.2019.106252_bb0210 article-title: Design of highly stable and selective core/yolk-shell nanocatalysts-a review publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2016.01.067 – volume: 551 start-page: 13 year: 2018 ident: 10.1016/j.fuproc.2019.106252_bb0245 article-title: Silica deposition as an approach for improving the hydrothermal stability of an alumina support during glycerol aqueous phase reforming publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2017.11.025 – volume: 4 start-page: 3237 year: 2014 ident: 10.1016/j.fuproc.2019.106252_bb0770 article-title: Highly active Ni/xNa/CeO2 catalyst for the water gas shift reaction: effect of sodium on methane suppression publication-title: ACS Catal. doi: 10.1021/cs500915p – volume: 94 start-page: 1086 year: 2018 ident: 10.1016/j.fuproc.2019.106252_bb0915 article-title: Preparation, modification and development of Ni-based catalysts for catalytic reforming of tar produced from biomass gasification publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2018.07.010 – volume: 180 start-page: 822 year: 2019 ident: 10.1016/j.fuproc.2019.106252_bb0435 article-title: NiCo@NiCo phyllosilicate@CeO2 hollow core shell catalysts for steam reforming of toluene as biomass tar model compound publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2018.11.034 – volume: 345 start-page: 157 year: 2017 ident: 10.1016/j.fuproc.2019.106252_bb0140 article-title: Importance of metal-oxide interfaces in heterogeneous catalysis: a combined DFT, microkinetic, and experimental study of water-gas shift on Au/MgO publication-title: J. Catal. doi: 10.1016/j.jcat.2016.11.008 – volume: 187 start-page: 128 year: 2017 ident: 10.1016/j.fuproc.2019.106252_bb0510 article-title: Catalytic reforming of toluene and naphthalene (model tar) by char supported nickel catalyst publication-title: Fuel doi: 10.1016/j.fuel.2016.09.043 – volume: 408 start-page: 1 year: 2011 ident: 10.1016/j.fuproc.2019.106252_bb1015 article-title: Methane reforming to synthesis gas over Ni catalysts modified with noble metals publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2011.09.018 – volume: 7 start-page: 3952 year: 2017 ident: 10.1016/j.fuproc.2019.106252_bb0945 article-title: Nickel–iron alloy catalysts for reforming of hydrocarbons: preparation, structure, and catalytic properties publication-title: Catalysis Science & Technology doi: 10.1039/C7CY01300K – volume: 12 start-page: S80 year: 2012 ident: 10.1016/j.fuproc.2019.106252_bb0715 article-title: Synthesis and catalytic activity of sol-gel derived La–Ce–Ni perovskite mixed oxide on steam reforming of toluene publication-title: Curr. Appl. Phys. doi: 10.1016/j.cap.2012.02.025 – volume: 172–173 start-page: 116 year: 2015 ident: 10.1016/j.fuproc.2019.106252_bb0320 article-title: Bi-functional hydrotalcite-derived NiO–CaO–Al2O3 catalysts for steam reforming of biomass and/or tar model compound at low steam-to-carbon conditions publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2015.02.017 – volume: 101 start-page: 138 year: 2017 ident: 10.1016/j.fuproc.2019.106252_bb0620 article-title: Encapsulating Ni/CeO2-ZrO2 with SiO2 layer to improve it catalytic activity for steam reforming of toluene publication-title: Catal. Commun. doi: 10.1016/j.catcom.2017.08.013 – volume: 230 start-page: 220 year: 2018 ident: 10.1016/j.fuproc.2019.106252_bb0390 article-title: Silica-Ceria sandwiched Ni core-shell catalyst for low temperature dry reforming of biogas: coke resistance and mechanistic insights publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2018.02.041 – volume: 179 start-page: 19 year: 2019 ident: 10.1016/j.fuproc.2019.106252_bb0035 article-title: Potential power generation on a small-scale separated-type biomass gasification system publication-title: Energy doi: 10.1016/j.energy.2019.04.163 – volume: 489 start-page: 155 year: 2015 ident: 10.1016/j.fuproc.2019.106252_bb0475 article-title: Effect of catalyst structure on steam reforming of toluene over Ni/La0.7Sr0.3AlO3−δ catalyst publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2014.10.014 – volume: 16 start-page: 333 year: 2019 ident: 10.1016/j.fuproc.2019.106252_bb0795 article-title: Combined steam-dry reforming of toluene in syngas over CaNiRu/Al2O3 catalysts publication-title: International Journal of Green Energy doi: 10.1080/15435075.2019.1566729 – volume: 42 start-page: 28254 year: 2017 ident: 10.1016/j.fuproc.2019.106252_bb0325 article-title: Enhanced catalytic performance of Ni/α-Al 2 O 3 catalyst modified with CaZrO 3 nanoparticles in steam-methane reforming publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2017.09.030 – volume: 191 start-page: 138 year: 2019 ident: 10.1016/j.fuproc.2019.106252_bb0445 article-title: Steam reforming of guaiacol over Ni/Al2O3 and Ni/SBA-15: impacts of support on catalytic behaviors of nickel and properties of coke publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2019.04.001 – volume: 209 start-page: 25 year: 2017 ident: 10.1016/j.fuproc.2019.106252_bb0565 article-title: Tar conversion over olivine and sand in a fluidized bed reactor using toluene as model compound publication-title: Fuel doi: 10.1016/j.fuel.2017.07.084 – volume: 108 start-page: 345 year: 2018 ident: 10.1016/j.fuproc.2019.106252_bb0015 article-title: Reduction of tar generated during biomass gasification: a review publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2017.12.002 – volume: 498 start-page: 150 year: 2015 ident: 10.1016/j.fuproc.2019.106252_bb0835 article-title: Improved catalytic performance of CaO and CeO2 promoted Ni catalyst on gasifier bed material for tar removal from producer gas publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2015.03.038 – volume: 45 start-page: 1911 year: 2006 ident: 10.1016/j.fuproc.2019.106252_bb0900 article-title: Effect of preparation temperature on cyclic CO2 capture and multiple carbonation−calcination cycles for a new Ca-based CO2 sorbent publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie051211l – volume: 26 start-page: 1335 year: 1987 ident: 10.1016/j.fuproc.2019.106252_bb1040 article-title: Steam gasification of biomass with nickel secondary catalysts publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie00067a012 – volume: 40 start-page: 1361 year: 1918 ident: 10.1016/j.fuproc.2019.106252_bb0110 article-title: the adsorption of gases on plane surfaces of glass, mica and platinum publication-title: J. Am. Chem. Soc. doi: 10.1021/ja02242a004 – volume: 4 start-page: 289 year: 2014 ident: 10.1016/j.fuproc.2019.106252_bb0680 article-title: Nickel–iron alloy supported over iron–alumina catalysts for steam reforming of biomass tar model compound publication-title: ACS Catal. doi: 10.1021/cs400621p – volume: 250 start-page: 250 year: 2019 ident: 10.1016/j.fuproc.2019.106252_bb0100 article-title: Reforming of tar from biomass gasification in a hybrid catalysis-plasma system: a review publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2019.03.039 – volume: 8 start-page: 1730 year: 2018 ident: 10.1016/j.fuproc.2019.106252_bb0255 article-title: Ni-phyllosilicate structure derived Ni–SiO2–MgO catalysts for bi-reforming applications: acidity, basicity and thermal stability publication-title: Catalysis Science & Technology doi: 10.1039/C7CY02475D – volume: 558 start-page: 131 year: 2018 ident: 10.1016/j.fuproc.2019.106252_bb0805 article-title: High performance Ni-Fe-Mg catalyst for tar removal in producer gas publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2018.03.026 – volume: 71 start-page: 79 year: 2015 ident: 10.1016/j.fuproc.2019.106252_bb0885 article-title: Coking resistance evaluation of tar removal catalysts publication-title: Catal. Commun. doi: 10.1016/j.catcom.2015.08.013 – volume: 134–135 start-page: 238 year: 2013 ident: 10.1016/j.fuproc.2019.106252_bb0335 article-title: Characterization and evaluation of Ni/SiO2 catalysts for hydrogen production and tar reduction from catalytic steam pyrolysis-reforming of refuse derived fuel publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2013.01.016 – volume: 27 start-page: 238 year: 2018 ident: 10.1016/j.fuproc.2019.106252_bb0550 article-title: High carbon resistant Ni@Ni phyllosilicate@SiO2 core shell hollow sphere catalysts for low temperature CH4 dry reforming publication-title: Journal of Co2 Utilization doi: 10.1016/j.jcou.2018.07.017 – volume: 43 start-page: 127 year: 2018 ident: 10.1016/j.fuproc.2019.106252_bb0575 article-title: Effects of catalyst preparation parameters and reaction operating conditions on the activity and stability of thermally fused Fe-olivine catalyst in the steam reforming of toluene publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2017.11.037 – volume: 8 start-page: 1308 year: 2016 ident: 10.1016/j.fuproc.2019.106252_bb0405 article-title: Promotion of the water-gas-shift reaction by nickel hydroxyl species in partially reduced nickel-containing phyllosilicate catalysts publication-title: Chemcatchem doi: 10.1002/cctc.201501284 – volume: 538 start-page: 181 year: 2017 ident: 10.1016/j.fuproc.2019.106252_bb0700 article-title: Anchoring effect and oxygen redox property of Co/La0.7Sr0.3AlO3-δ perovskite catalyst on toluene steam reforming reaction publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2017.03.026 – volume: 42 start-page: 12829 year: 2017 ident: 10.1016/j.fuproc.2019.106252_bb0890 article-title: Ni based catalysts promoted with cerium used in the steam reforming of toluene for hydrogen production publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2016.10.053 – volume: 148–149 start-page: 231 year: 2014 ident: 10.1016/j.fuproc.2019.106252_bb0630 article-title: Perovskite LaxM1−xNi0.8Fe0.2O3 catalyst for steam reforming of toluene: crucial role of alkaline earth metal at low steam condition publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2013.10.001 – volume: 1 start-page: 161 year: 2012 ident: 10.1016/j.fuproc.2019.106252_bb0385 article-title: Hydrogen production via steam reforming of ethanol on phyllosilicate-derived Ni/SiO2: enhanced metal–support interaction and catalytic stability publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/sc300081q – volume: 100 start-page: 52 year: 2019 ident: 10.1016/j.fuproc.2019.106252_bb1055 article-title: Recent developments in sulphur-resilient catalytic systems for syngas production publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2018.10.016 – volume: 100 start-page: 171 year: 2005 ident: 10.1016/j.fuproc.2019.106252_bb0725 article-title: Catalysis in the development of clean energy technologies publication-title: Catal. Today doi: 10.1016/j.cattod.2004.12.011 – volume: 31 start-page: 173 year: 1973 ident: 10.1016/j.fuproc.2019.106252_bb0205 article-title: Activity of nickel catalysts for steam reforming of hydrocarbons publication-title: J. Catal. doi: 10.1016/0021-9517(73)90326-6 – volume: 7 start-page: 3111 year: 2019 ident: 10.1016/j.fuproc.2019.106252_bb0515 article-title: Low-temperature steam reforming of toluene and biomass tar over biochar-supported Ni nanoparticles publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b04872 – volume: 145 start-page: 541 year: 2015 ident: 10.1016/j.fuproc.2019.106252_bb0290 article-title: Steam reforming of tar model compounds over nickel catalysts supported on barium hexaaluminate publication-title: Catal. Lett. doi: 10.1007/s10562-014-1405-3 – volume: 51 start-page: 16324 year: 2015 ident: 10.1016/j.fuproc.2019.106252_bb0360 article-title: A highly active and stable Ni-Mg phyllosilicate nanotubular catalyst for ultrahigh temperature water-gas shift reaction publication-title: Chem. Commun. doi: 10.1039/C5CC05226B – volume: 32 start-page: 4269 year: 2018 ident: 10.1016/j.fuproc.2019.106252_bb0790 article-title: An Experimental Investigation of the catalytic activity of natural calcium-rich minerals and a novel dual-supported CaO–Ca12Al14O33/Al2O3 catalyst for Biotar steam reforming publication-title: Energy Fuel doi: 10.1021/acs.energyfuels.7b03201 – volume: 150–151 start-page: 12 year: 2014 ident: 10.1016/j.fuproc.2019.106252_bb0295 article-title: Ni/ZrO2 catalysts in ethanol steam reforming: inhibition of coke formation by CaO-doping publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2013.11.037 – volume: 39 start-page: 10959 year: 2014 ident: 10.1016/j.fuproc.2019.106252_bb1000 article-title: Preparation of Ni–Cu/Mg/Al catalysts from hydrotalcite-like compounds for hydrogen production by steam reforming of biomass tar publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2014.05.062 – volume: 284 start-page: 304 year: 2019 ident: 10.1016/j.fuproc.2019.106252_bb0265 article-title: Synthesis of Ni/γ-Al2O3SiO2 catalysts with different silicon precursors for the steam toluene reforming publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2019.04.027 – volume: 573 start-page: 56 year: 2019 ident: 10.1016/j.fuproc.2019.106252_bb1075 article-title: Steam reforming of aromatic hydrocarbon at low temperature in electric field publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2019.01.011 – volume: 102 start-page: 528 year: 2011 ident: 10.1016/j.fuproc.2019.106252_bb0315 article-title: Steam reforming of tar from pyrolysis of biomass over Ni/Mg/Al catalysts prepared from hydrotalcite-like precursors publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2010.12.035 – volume: 4 start-page: 2107 year: 2014 ident: 10.1016/j.fuproc.2019.106252_bb0375 article-title: A highly dispersed and anti-coking Ni-La2O3/SiO2 catalyst for syngas production from dry carbon dioxide reforming of methane publication-title: Catalysis Science & Technology doi: 10.1039/c3cy00869j – volume: 43 start-page: 6911 year: 2004 ident: 10.1016/j.fuproc.2019.106252_bb0080 article-title: Review of catalysts for tar elimination in biomass gasification processes publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie0498403 – volume: 7 start-page: 1402 year: 2015 ident: 10.1016/j.fuproc.2019.106252_bb0095 article-title: Reaction pathways of biomass-derived oxygenates over metals and carbides: from model surfaces to supported catalysts publication-title: ChemCatChem doi: 10.1002/cctc.201403067 – volume: 172 start-page: 116 year: 2015 ident: 10.1016/j.fuproc.2019.106252_bb0850 article-title: Bi-functional hydrotalcite-derived NiO–CaO–Al 2 O 3 catalysts for steam reforming of biomass and/or tar model compound at low steam-to-carbon conditions publication-title: Appl. Catal. B: Env. doi: 10.1016/j.apcatb.2015.02.017 – volume: 121 start-page: 644 year: 2018 ident: 10.1016/j.fuproc.2019.106252_bb0525 article-title: Type of contribution: research article catalytic activity of sewage sludge char supported Re-Ni bimetallic catalyst toward cracking/reforming of biomass tar publication-title: Renew. Energy doi: 10.1016/j.renene.2018.01.096 – volume: 3 start-page: 61 year: 2013 ident: 10.1016/j.fuproc.2019.106252_bb0975 article-title: Synthesis of Na-stabilized nonporous t-ZrO2 supports and Pt/t-ZrO2 catalysts and application to water-gas-shift reaction publication-title: ACS Catal. doi: 10.1021/cs300596q – volume: 43 start-page: 7245 year: 2014 ident: 10.1016/j.fuproc.2019.106252_bb0200 article-title: Strategies for improving the performance and stability of Ni-based catalysts for reforming reactions publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00223G – volume: 121–122 start-page: 95 year: 2012 ident: 10.1016/j.fuproc.2019.106252_bb0980 article-title: Catalyst property of Co–Fe alloy particles in the steam reforming of biomass tar and toluene publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2012.03.025 – volume: 101 start-page: 90 year: 2010 ident: 10.1016/j.fuproc.2019.106252_bb0585 article-title: Characterization and reactivity in toluene reforming of a Fe/olivine catalyst designed for gas cleanup in biomass gasification publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2010.09.011 – volume: 97 start-page: 741 year: 2012 ident: 10.1016/j.fuproc.2019.106252_bb0330 article-title: Catalytic oxygenless steam cracking of syngas-containing benzene model tar compound over natural Fe-bearing silicate minerals publication-title: Fuel doi: 10.1016/j.fuel.2012.02.039 – volume: 140 start-page: 1 year: 2015 ident: 10.1016/j.fuproc.2019.106252_bb0880 article-title: Nickel-substituted bariumhexaaluminates as novel catalysts in steam reforming of tars publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2015.07.024 – volume: 123 start-page: 7627 year: 2018 ident: 10.1016/j.fuproc.2019.106252_bb0170 article-title: Energetics of adsorbed phenol on Ni(111) and Pt(111) by calorimetry publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b03155 – volume: 176 start-page: 7 year: 2018 ident: 10.1016/j.fuproc.2019.106252_bb0220 article-title: Carbon nanotubes formation and its influence on steam reforming of toluene over Ni/Al2O3 catalysts: roles of catalyst supports publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2018.03.007 – volume: 59 start-page: 292 year: 2015 ident: 10.1016/j.fuproc.2019.106252_bb0280 article-title: Steam reforming of toluene over Pt/Ce x Zr1−x O2/Al2O3 catalysts publication-title: Top. Catal. doi: 10.1007/s11244-015-0443-4 – volume: 224 start-page: 676 year: 2018 ident: 10.1016/j.fuproc.2019.106252_bb0905 article-title: Steam reforming of tar model compounds over Ni/Mayenite catalysts: effect of Ce addition publication-title: Fuel doi: 10.1016/j.fuel.2018.03.081 – volume: 676 start-page: 9 year: 2018 ident: 10.1016/j.fuproc.2019.106252_bb0160 article-title: Energetics of adsorbed benzene on Ni(111) and Pt(111) by calorimetry publication-title: Surf. Sci. doi: 10.1016/j.susc.2018.02.014 – volume: 10 start-page: 320 year: 2018 ident: 10.1016/j.fuproc.2019.106252_bb0430 article-title: Sandwich-like Silica@Ni@Silica multicore-shell catalyst for the low-temperature dry reforming of methane: confinement effect against carbon formation publication-title: Chemcatchem doi: 10.1002/cctc.201701024 – volume: 41 start-page: 22922 year: 2016 ident: 10.1016/j.fuproc.2019.106252_bb0965 article-title: Influence of Ni to Co ratio supported on ZrO2 catalysts in phenol steam reforming for hydrogen production publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2016.10.055 – volume: 176 start-page: 153 year: 2018 ident: 10.1016/j.fuproc.2019.106252_bb0380 article-title: Design of active and stable bimodal nickel catalysts for methane reforming with CO2 publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2018.03.032 – volume: 8 start-page: 3363 year: 2018 ident: 10.1016/j.fuproc.2019.106252_bb0395 article-title: Sintering resistant Ni nanoparticles exclusively confined within SiO2 nanotubes for CH4 dry reforming publication-title: Catalysis Science & Technology doi: 10.1039/C8CY00767E – volume: 309 start-page: 2 year: 2018 ident: 10.1016/j.fuproc.2019.106252_bb0845 article-title: Effect of calcium addition on Mg-AlOx supported Ni catalysts for hydrogen production from pyrolysis-gasification of biomass publication-title: Catal. Today doi: 10.1016/j.cattod.2018.01.004 – volume: 158 start-page: 39 year: 2012 ident: 10.1016/j.fuproc.2019.106252_bb0230 article-title: Tailoring the structure and hydrophobic properties of amorphous silica by silylation publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2012.03.009 – volume: 43 start-page: 15891 year: 2018 ident: 10.1016/j.fuproc.2019.106252_bb0355 article-title: Preparation of highly dispersed Cu/SiO2 doped with CeO2 and its application for high temperature water gas shift reaction publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2018.06.135 – volume: 127 start-page: 82 year: 2017 ident: 10.1016/j.fuproc.2019.106252_bb0520 article-title: Preparation and characterization of nickel loaded on resin char as tar reforming catalyst for biomass gasification publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2017.08.020 – volume: 23 start-page: 1874 year: 2009 ident: 10.1016/j.fuproc.2019.106252_bb0085 article-title: Review of catalytic conditioning of biomass-derived syngas publication-title: Energy Fuel doi: 10.1021/ef800830n – volume: 112 start-page: 654 year: 2013 ident: 10.1016/j.fuproc.2019.106252_bb0960 article-title: Catalytic performance and characterization of Ni–Co catalysts for the steam reforming of biomass tar to synthesis gas publication-title: Fuel doi: 10.1016/j.fuel.2012.01.073 – volume: 18 start-page: 713 year: 2004 ident: 10.1016/j.fuproc.2019.106252_bb0570 article-title: Olivine or dolomite as in-bed additive in biomass gasification with air in a fluidized bed: which is better? publication-title: Energy Fuel doi: 10.1021/ef0340918 – volume: 6 start-page: 2229 year: 2013 ident: 10.1016/j.fuproc.2019.106252_bb0545 article-title: Hydrogen production by steam reforming of ethanol over nickel catalysts supported on sol gel made alumina: influence of calcination temperature on supports publication-title: Materials doi: 10.3390/ma6062229 – volume: 362 start-page: 116 year: 2019 ident: 10.1016/j.fuproc.2019.106252_bb0425 article-title: Catalytic Pd0.77Ag0.23 alloy membrane reactor for high temperature water-gas shift reaction: methane suppression publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.12.112 – volume: 168 start-page: 60 year: 2018 ident: 10.1016/j.fuproc.2019.106252_bb0950 article-title: Comparative study on phenol and naphthalene steam reforming over Ni-Fe alloy catalysts supported on olivine synthesized by different methods publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2018.04.112 – volume: 108 start-page: 3395 year: 2004 ident: 10.1016/j.fuproc.2019.106252_bb0970 article-title: Thermodynamic tetragonal phase stability in sol−gel derived nanodomains of pure zirconia publication-title: J. Phys. Chem. B doi: 10.1021/jp037532x – volume: 180 start-page: 9 year: 2008 ident: 10.1016/j.fuproc.2019.106252_bb1030 article-title: Development of catalytic tar decomposition downstream from a dual fluidized bed biomass steam gasifier publication-title: Powder Technol. doi: 10.1016/j.powtec.2007.03.008 – volume: 217 start-page: 515 year: 2018 ident: 10.1016/j.fuproc.2019.106252_bb0500 article-title: Effect of atmosphere on carbon deposition of Ni/Al2O3 and Ni-loaded on lignite char during reforming of toluene as a biomass tar model compound publication-title: Fuel doi: 10.1016/j.fuel.2017.12.121 – volume: 33 start-page: 1716 year: 2008 ident: 10.1016/j.fuproc.2019.106252_bb0055 article-title: A wet packed bed scrubber-based producer gas cooling–cleaning system publication-title: Renew. Energy doi: 10.1016/j.renene.2007.08.014 – volume: 4 start-page: 31142 year: 2014 ident: 10.1016/j.fuproc.2019.106252_bb0650 article-title: Catalytic features of Ni supported on CeO2–ZrO2 solid solution in the steam reforming of glycerol for syngas production publication-title: RSC Adv. doi: 10.1039/C4RA02886D – volume: 38 start-page: 13938 year: 2013 ident: 10.1016/j.fuproc.2019.106252_bb0645 article-title: Steam reforming of toluene as a biomass tar model compound over CeO2 promoted Ni/CaO–Al2O3 catalytic systems publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2013.08.029 – volume: 51 start-page: 969 year: 2010 ident: 10.1016/j.fuproc.2019.106252_bb0045 article-title: Overview of recent advances in thermo-chemical conversion of biomass publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2009.11.038 – volume: 142 start-page: 397 year: 2016 ident: 10.1016/j.fuproc.2019.106252_bb0865 article-title: Steam reforming of dodecane and toluene over Ru/12SrO–7Al2O3 (S12A7) catalysts publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2015.09.026 – volume: 253 start-page: 441 year: 2019 ident: 10.1016/j.fuproc.2019.106252_bb0505 article-title: Role of O-containing functional groups in biochar during the catalytic steam reforming of tar using the biochar as a catalyst publication-title: Fuel doi: 10.1016/j.fuel.2019.05.037 – volume: 201 start-page: 30 year: 2018 ident: 10.1016/j.fuproc.2019.106252_bb1065 article-title: High oxygen permeable and CO2-tolerant SrCoxFe0.9-xNb0.1O3-delta (x=0.1-0.8) perovskite membranes: behavior and mechanism publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2018.02.046 – volume: 471 start-page: 157 year: 2014 ident: 10.1016/j.fuproc.2019.106252_bb1020 article-title: Effect of Pt addition to Ni/La0.7Sr0.3AlO3−δ catalyst on steam reforming of toluene for hydrogen production publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2013.11.032 – volume: 33 start-page: 2704 year: 2008 ident: 10.1016/j.fuproc.2019.106252_bb0300 article-title: Hydrotalcite structure derived Ni–Cu–Al catalysts for the production of H2 by CH4 decomposition publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2008.03.028 – volume: 150–151 start-page: 82 year: 2014 ident: 10.1016/j.fuproc.2019.106252_bb0310 article-title: Catalytic performance and characterization of Co/Mg/Al catalysts prepared from hydrotalcite-like precursors for the steam gasification of biomass publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2013.12.002 – volume: 2 start-page: 7837 year: 2014 ident: 10.1016/j.fuproc.2019.106252_bb0370 article-title: An in situ self-assembled core-shell precursor route to prepare ultrasmall copper nanoparticles on silica catalysts publication-title: J. Mater. Chem. A doi: 10.1039/c3ta14592a – volume: 41 start-page: 17967 year: 2016 ident: 10.1016/j.fuproc.2019.106252_bb0685 article-title: Effects of oxygen species from Fe addition on promoting steam reforming of toluene over Fe–Ni/Al2O3 catalysts publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2016.07.271 – volume: 190 start-page: 137 year: 2016 ident: 10.1016/j.fuproc.2019.106252_bb0755 article-title: Equilibrium potassium coverage and its effect on a Ni tar reforming catalyst in alkali- and sulfur-laden biomass gasification gases publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2016.03.007 – volume: 58 start-page: 450 year: 2016 ident: 10.1016/j.fuproc.2019.106252_bb0090 article-title: Catalytic steam reforming of biomass tar: prospects and challenges publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2015.12.316 – volume: 111 start-page: 129 year: 2013 ident: 10.1016/j.fuproc.2019.106252_bb0075 article-title: Modelling of tar formation and evolution for biomass gasification: a review publication-title: Appl. Energy doi: 10.1016/j.apenergy.2013.04.082 – volume: 26 start-page: 171 year: 2004 ident: 10.1016/j.fuproc.2019.106252_bb1045 article-title: Biomass gasification in a circulating fluidized bed publication-title: Biomass Bioenergy doi: 10.1016/S0961-9534(03)00084-9 – volume: 6 start-page: 5336 year: 2016 ident: 10.1016/j.fuproc.2019.106252_bb0640 article-title: High-temperature water gas shift reaction on Ni-Cu/CeO2 catalysts: effect of ceria nanocrystal size on carboxylate formation publication-title: Catalysis Science & Technology doi: 10.1039/C5CY01932J – volume: 195 start-page: 1 year: 2016 ident: 10.1016/j.fuproc.2019.106252_bb0415 article-title: Highly carbon resistant multicore-shell catalyst derived from Ni-Mg phyllosilicate nanotubes@silica for dry reforming of methane publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2016.05.001 – volume: 59 start-page: 292 year: 2016 ident: 10.1016/j.fuproc.2019.106252_bb0665 article-title: Steam reforming of toluene over Pt/CexZr1−xO2/Al2O3 catalysts publication-title: Top. Catal. doi: 10.1007/s11244-015-0443-4 – volume: 337 start-page: 216 year: 2019 ident: 10.1016/j.fuproc.2019.106252_bb1080 article-title: Enhanced hydrogen-rich gas production from waste biomass using pyrolysis with non-thermal plasma-catalysis publication-title: Catal. Today doi: 10.1016/j.cattod.2019.02.033 – volume: 265 start-page: 111 year: 2016 ident: 10.1016/j.fuproc.2019.106252_bb0470 article-title: Highly active and stable Co/La 0.7 Sr 0.3 AlO 3−δ catalyst for steam reforming of toluene publication-title: Catal. Today doi: 10.1016/j.cattod.2015.08.059 – volume: 5 start-page: 3585 year: 2015 ident: 10.1016/j.fuproc.2019.106252_bb0480 article-title: Role of lattice oxygen in oxidative steam reforming of toluene as a tar model compound over Ni/La0.8Sr0.2AlO3 catalyst publication-title: Catalysis Science & Technology doi: 10.1039/C5CY00412H – volume: 179 start-page: 412 year: 2015 ident: 10.1016/j.fuproc.2019.106252_bb1025 article-title: Promoting effect of trace Pd on hydrotalcite-derived Ni/Mg/Al catalyst in oxidative steam reforming of biomass tar publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2015.05.042 – volume: 466 start-page: 190 year: 2013 ident: 10.1016/j.fuproc.2019.106252_bb0180 article-title: In situ IR study for elucidating reaction mechanism of toluene steam reforming over Ni/La0.7Sr0.3AlO3-δcatalyst publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2013.06.052 – volume: 506 start-page: 151 year: 2015 ident: 10.1016/j.fuproc.2019.106252_bb0675 article-title: Comparative study on steam reforming of model aromatic compounds of biomass tar over Ni and Ni–Fe alloy nanoparticles publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2015.09.007 – volume: 530 start-page: 125 year: 2017 ident: 10.1016/j.fuproc.2019.106252_bb0875 article-title: Promotive effect of Ba addition on the catalytic performance of Ni/LaAlO3 catalysts for steam reforming of toluene publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2016.11.026 – volume: 164 start-page: 347 year: 2014 ident: 10.1016/j.fuproc.2019.106252_bb0745 article-title: Comparison of steam gasification reactivity of algal and lignocellulosic biomass: influence of inorganic elements publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.04.111 – volume: 82 start-page: 249 year: 2018 ident: 10.1016/j.fuproc.2019.106252_bb0625 article-title: Incinerator bottom ash derived from municipal solid waste as a potential catalytic support for biomass tar reforming publication-title: Waste Manag. doi: 10.1016/j.wasman.2018.10.035 – volume: 39 start-page: 109 year: 2019 ident: 10.1016/j.fuproc.2019.106252_bb0105 article-title: Biomass pyrolysis: a review of the process development and challenges from initial researches up to the commercialisation stage publication-title: Journal of Energy Chemistry doi: 10.1016/j.jechem.2019.01.024 – volume: 1 start-page: 100003 year: 2019 ident: 10.1016/j.fuproc.2019.106252_bb0720 article-title: H2S and NOx tolerance capability of CeO2 doped La1−xCexCo0.5Ti0.5O3−δ perovskites for steam reforming of biomass tar model reaction publication-title: Energy Conversion and Management: X doi: 10.1016/j.ecmx.2019.100003 – volume: 38 start-page: 428 year: 2014 ident: 10.1016/j.fuproc.2019.106252_bb1050 article-title: Review of recent developments in Ni-based catalysts for biomass gasification publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2014.06.011 – volume: 98 start-page: 359 year: 2015 ident: 10.1016/j.fuproc.2019.106252_bb0350 article-title: Catalytic steam reforming of tar derived from steam gasification of sunflower stalk over ethylene glycol assisting prepared Ni/MCM-41 publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2015.04.007 – volume: 91 start-page: 889 year: 2010 ident: 10.1016/j.fuproc.2019.106252_bb0495 article-title: Low-temperature gasification of a woody biomass under a nickel-loaded brown coal char publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2009.08.003 – volume: 13 start-page: 1319 year: 2010 ident: 10.1016/j.fuproc.2019.106252_bb0590 article-title: Toluene steam reforming as tar model molecule produced during biomass gasification with an iron/olivine catalyst publication-title: Comp. Rend. Chim. doi: 10.1016/j.crci.2010.03.022 – volume: 477 start-page: 42 year: 2014 ident: 10.1016/j.fuproc.2019.106252_bb0540 article-title: TiO2-supported catalysts for the steam reforming of ethanol publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2014.03.004 – volume: 2 start-page: 326 year: 2018 ident: 10.1016/j.fuproc.2019.106252_bb0485 article-title: Advances in in situ and ex situ tar reforming with biochar catalysts for clean energy production publication-title: Sustainable Energy & Fuels doi: 10.1039/C7SE00553A – volume: 6 start-page: 5871 year: 2016 ident: 10.1016/j.fuproc.2019.106252_bb0175 article-title: Mechanistic insights into the catalytic elimination of tar and the promotional effect of boron on it: first-principles study using toluene as a model compound publication-title: Catalysis Science and Technology doi: 10.1039/C6CY00358C – volume: 136 start-page: 119 year: 2017 ident: 10.1016/j.fuproc.2019.106252_bb0240 article-title: Steam reforming of different biomass tar model compounds over Ni/Al2O3 catalysts publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2016.12.092 – volume: 490 start-page: 24 year: 2015 ident: 10.1016/j.fuproc.2019.106252_bb0815 article-title: Steam reforming of biomass tar model compound at relatively low steam-to-carbon condition over CaO-doped nickel–iron alloy supported over iron–alumina catalysts publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2014.10.057 – volume: 5 start-page: 043106 year: 2013 ident: 10.1016/j.fuproc.2019.106252_bb0860 article-title: New nickel-based material (Sr12Al14O33) for biomass tar steam reforming for syngas production publication-title: J. Renew. Sustain. Energ. doi: 10.1063/1.4811803 – volume: 30 start-page: 2336 year: 2016 ident: 10.1016/j.fuproc.2019.106252_bb0800 article-title: Study on steam reforming of tar in hot coke oven gas for hydrogen production publication-title: Energy Fuel doi: 10.1021/acs.energyfuels.5b02551 – volume: 8 start-page: 1915 year: 2018 ident: 10.1016/j.fuproc.2019.106252_bb0345 article-title: Multi-Ni@Ni phyllosilicate hollow sphere for CO2 reforming of CH4: influence of Ni precursors on structure, sintering, and carbon resistance publication-title: Catalysis Science & Technology doi: 10.1039/C8CY00024G – volume: 353 start-page: 2436 year: 2007 ident: 10.1016/j.fuproc.2019.106252_bb0250 article-title: Silica-doped alumina cryogels with high thermal stability publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2007.04.016 – volume: 74 start-page: 211 year: 2007 ident: 10.1016/j.fuproc.2019.106252_bb0155 article-title: Steam reforming of tar from a biomass gasification process over Ni/olivine catalyst using toluene as a model compound publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2007.01.017 – volume: 39 start-page: 6671 year: 2014 ident: 10.1016/j.fuproc.2019.106252_bb0560 article-title: Core–shell Al2O3-supported Ni for high-performance catalytic reforming of toluene as a model compound of tar publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-014-1188-2 – volume: 21 start-page: 371 year: 2013 ident: 10.1016/j.fuproc.2019.106252_bb0050 article-title: Recent progresses in catalytic tar elimination during biomass gasification or pyrolysis—a review publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2012.12.062 – volume: 74 start-page: 133 year: 2015 ident: 10.1016/j.fuproc.2019.106252_bb0655 article-title: Activity of Fe supported by Ce1−xSmxO2−δ derived from metal complex decomposition toward the steam reforming of toluene as biomass tar model compound publication-title: Renew. Energy doi: 10.1016/j.renene.2014.08.001 – volume: 5 start-page: 17834 year: 2015 ident: 10.1016/j.fuproc.2019.106252_bb0855 article-title: Enhancing performance of Ni/La2O3 catalyst by Sr-modification for steam reforming of toluene as model compound of biomass tar publication-title: RSC Adv. doi: 10.1039/C4RA16983B – volume: 8 start-page: 3556 year: 2015 ident: 10.1016/j.fuproc.2019.106252_bb0215 article-title: Progress in synthesis of highly active and stable nickel-based catalysts for carbon dioxide reforming of methane publication-title: Chemsuschem doi: 10.1002/cssc.201500390 – volume: 58 start-page: 267 year: 2016 ident: 10.1016/j.fuproc.2019.106252_bb0020 article-title: Biomass to liquid transportation fuel via Fischer Tropsch synthesis - technology review and current scenario publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2015.12.143 – volume: 146 start-page: 148 year: 2009 ident: 10.1016/j.fuproc.2019.106252_bb0705 article-title: Performance of La 1− x Ce x Fe 0.7 Ni 0.3 O 3 perovskite catalysts for methane steam reforming publication-title: Catal. Today doi: 10.1016/j.cattod.2009.02.023 – volume: 113 start-page: 230 year: 1927 ident: 10.1016/j.fuproc.2019.106252_bb0115 article-title: On the theory of unimolecular reactions publication-title: Proceedings of the Royal Society A – volume: 299 start-page: 251 year: 2018 ident: 10.1016/j.fuproc.2019.106252_bb0275 article-title: Study of the performance of Pt/Al 2 O 3 and Pt/CeO 2/Al 2 O 3 catalysts for steam reforming of toluene, methane and mixtures publication-title: Catal. Today doi: 10.1016/j.cattod.2017.05.067 – volume: 91 start-page: 1098 year: 2010 ident: 10.1016/j.fuproc.2019.106252_bb0600 article-title: Catalytic reforming of model tar compounds from hot coke oven gas with low steam/carbon ratio over Ni/MgO–Al 2 O 3 catalysts publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2010.03.020 – volume: 453 start-page: 60 year: 2013 ident: 10.1016/j.fuproc.2019.106252_bb0695 article-title: Role of support lattice oxygen on steam reforming of toluene for hydrogen production over Ni/La0.7Sr0.3AlO3−δ catalyst publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2012.11.040 – volume: 42 start-page: 9840 year: 2017 ident: 10.1016/j.fuproc.2019.106252_bb0785 article-title: K-doped LaNiO3 perovskite for high-temperature water-gas shift of reformate gas: role of potassium on suppressing methanation publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2017.01.060 – volume: 9 start-page: 2939 year: 2016 ident: 10.1016/j.fuproc.2019.106252_bb0030 article-title: An overview of advances in biomass gasification publication-title: Energy Environ. Sci. doi: 10.1039/C6EE00935B – volume: 30 start-page: 14694 year: 2014 ident: 10.1016/j.fuproc.2019.106252_bb0410 article-title: Simultaneous tuning porosity and basicity of nickel@nickel-magnesium phyllosilicate core-shell catalysts for CO(2) reforming of CH(4) publication-title: Langmuir doi: 10.1021/la503340s – volume: 101 start-page: S97 year: 2010 ident: 10.1016/j.fuproc.2019.106252_bb0605 article-title: Steam reforming of biomass tar producing H 2-rich gases over Ni/MgOx/CaO 1− x catalyst publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2009.03.043 – volume: 183 start-page: 168 year: 2016 ident: 10.1016/j.fuproc.2019.106252_bb0840 article-title: Characteristics and catalytic properties of Ni/CaAlOx catalyst for hydrogen-enriched syngas production from pyrolysis-steam reforming of biomass sawdust publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2015.10.028 – start-page: 14 year: 2009 ident: 10.1016/j.fuproc.2019.106252_bb0010 article-title: Catalytic steam reforming technology for the production of hydrogen and syngas – volume: 203 start-page: 154 year: 2017 ident: 10.1016/j.fuproc.2019.106252_bb0825 article-title: Fe-Ca interactions in Fe-based/CaO catalyst/sorbent for CO2 sorption and hydrogen production from toluene steam reforming publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2016.10.024 – volume: 192 start-page: 171 year: 2016 ident: 10.1016/j.fuproc.2019.106252_bb1005 article-title: Characterization and catalytic performance of hydrotalcite-derived Ni-Cu alloy nanoparticles catalysts for steam reforming of 1-methylnaphthalene publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2016.03.052 – volume: 113 start-page: E2879 year: 2016 ident: 10.1016/j.fuproc.2019.106252_bb0135 article-title: Analysis of reaction schemes using maximum rates of constituent steps publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1605742113 – volume: 306 start-page: 422 year: 2016 ident: 10.1016/j.fuproc.2019.106252_bb0765 article-title: Effects of K and Ca on reforming of model tar compounds with pyrolysis biochars under H2O or CO2 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.07.065 – volume: 13 start-page: 2272 year: 2011 ident: 10.1016/j.fuproc.2019.106252_bb0730 article-title: Towards reforming technologies for production of hydrogen exclusively from renewable resources publication-title: Green Chem. doi: 10.1039/c0gc00924e – volume: 3 start-page: 490 year: 2011 ident: 10.1016/j.fuproc.2019.106252_bb0005 article-title: Towards an efficient hydrogen production from biomass: a review of processes and materials publication-title: ChemCatChem doi: 10.1002/cctc.201000345 – volume: 451 start-page: 160 year: 2013 ident: 10.1016/j.fuproc.2019.106252_bb0690 article-title: Steam reforming of toluene over perovskite-supported Ni catalysts publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2012.11.005 – volume: 7 start-page: 3358 year: 2015 ident: 10.1016/j.fuproc.2019.106252_bb0910 article-title: Highly active and stable bimetallic nickel-copper core-ceria shell catalyst for high-temperature water-gas shift reaction publication-title: Chemcatchem doi: 10.1002/cctc.201500481 – volume: 121 start-page: 76 year: 2014 ident: 10.1016/j.fuproc.2019.106252_bb0595 article-title: Steam reforming of model gasification tar compounds over nickel catalysts prepared from hydrotalcite precursors publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2014.01.007 – volume: 5 year: 2012 ident: 10.1016/j.fuproc.2019.106252_bb0530 article-title: Black perspectives for a green future: hydrothermal carbons for environment protection and energy storage publication-title: Energy Environ. Sci. doi: 10.1039/c2ee21166a – volume: 127 start-page: 26 year: 2014 ident: 10.1016/j.fuproc.2019.106252_bb0460 article-title: Development of Ni–Fe bimetallic based catalysts for biomass tar cracking/reforming: effects of catalyst support and co-fed reactants on tar conversion characteristics publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2014.06.015 – volume: 510 start-page: 417 year: 2016 ident: 10.1016/j.fuproc.2019.106252_bb1060 article-title: Oxidative steam reforming of biomass tar model compound via catalytic BaBi0.05Co0.8Nb0.15O3−δ hollow fiber membrane reactor publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2016.03.014 – volume: 35 start-page: 88 year: 1989 ident: 10.1016/j.fuproc.2019.106252_bb0125 article-title: Methane steam reforming, methanation and water-gas shift: I. Intrinsic kinetics publication-title: AICHE J. doi: 10.1002/aic.690350109 – volume: 18 start-page: 3117 year: 2017 ident: 10.1016/j.fuproc.2019.106252_bb0670 article-title: A review on bimetallic nickel-based catalysts for CO2 reforming of methane publication-title: Chemphyschem doi: 10.1002/cphc.201700529 – volume: 13 start-page: 702 year: 1999 ident: 10.1016/j.fuproc.2019.106252_bb1035 article-title: Biomass gasification with air in a fluidized bed: exhaustive tar elimination with commercial steam reforming catalysts publication-title: Energy Fuel doi: 10.1021/ef980221e – volume: 7 start-page: 3376 year: 2015 ident: 10.1016/j.fuproc.2019.106252_bb0440 article-title: catalytic biomass gasification to syngas over highly dispersed lanthanum-doped nickel on SBA-15 publication-title: ChemCatChem doi: 10.1002/cctc.201500482 – volume: 10 start-page: 3927 year: 2018 ident: 10.1016/j.fuproc.2019.106252_bb0775 article-title: Nickel-based catalysts for high-temperature water gas shift reaction-methane suppression publication-title: Chemcatchem doi: 10.1002/cctc.201800031 – volume: 3 start-page: 1133 year: 2013 ident: 10.1016/j.fuproc.2019.106252_bb0165 article-title: Comparative investigation of benzene steam reforming over spinel supported Rh and Ir catalysts publication-title: ACS Catal. doi: 10.1021/cs4000427 – volume: 7 start-page: 510 year: 2014 ident: 10.1016/j.fuproc.2019.106252_bb0305 article-title: Regenerability of hydrotalcite-derived nickel–iron alloy nanoparticles for syngas production from biomass tar publication-title: ChemSusChem doi: 10.1002/cssc.201300855 – volume: 222 start-page: 185 year: 2018 ident: 10.1016/j.fuproc.2019.106252_bb0400 article-title: Hydrogen generation from chemical looping reforming of glycerol by Ce-doped nickel phyllosilicate nanotube oxygen carriers publication-title: Fuel doi: 10.1016/j.fuel.2018.02.096 – volume: 281 start-page: 304 year: 2017 ident: 10.1016/j.fuproc.2019.106252_bb0635 article-title: Enhanced activity of CO2 methanation over Ni/CeO2-ZrO2 catalysts: influence of preparation methods publication-title: Catal. Today doi: 10.1016/j.cattod.2016.07.020 – volume: 23 start-page: 475 year: 2015 ident: 10.1016/j.fuproc.2019.106252_bb0260 article-title: Synthesis and characterization of silica doped alumina catalyst support with superior thermal stability and unique pore properties publication-title: J. Porous. Mater. doi: 10.1007/s10934-015-0101-z – volume: 184 start-page: 142 year: 2016 ident: 10.1016/j.fuproc.2019.106252_bb1010 article-title: Steam reforming of hydrocarbons from biomass-derived syngas over MgAl2O4-supported transition metals and bimetallic IrNi catalysts publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2015.11.022 – volume: 244 start-page: 63 year: 2015 ident: 10.1016/j.fuproc.2019.106252_bb0150 article-title: Theory of surface chemistry and reactivity of reducible oxides publication-title: Catal. Today doi: 10.1016/j.cattod.2014.07.009 – volume: 31 start-page: 7471 year: 2017 ident: 10.1016/j.fuproc.2019.106252_bb0270 article-title: Iron oxide over silica-doped alumina catalyst for catalytic steam reforming of toluene as a surrogate tar biomass species publication-title: Energy Fuel doi: 10.1021/acs.energyfuels.7b01301 – volume: 538 start-page: 181 year: 2017 ident: 10.1016/j.fuproc.2019.106252_bb0465 article-title: Anchoring effect and oxygen redox property of Co/La 0.7 Sr 0.3 AlO 3-δ perovskite catalyst on toluene steam reforming reaction publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2017.03.026 – volume: 60 start-page: 4190 year: 2014 ident: 10.1016/j.fuproc.2019.106252_bb0190 article-title: Mechanism and kinetic modeling for steam reforming of toluene on La0.8Sr0.2Ni0.8Fe0.2O3 catalyst publication-title: AICHE J. doi: 10.1002/aic.14573 – volume: 478 start-page: 234 year: 2014 ident: 10.1016/j.fuproc.2019.106252_bb0285 article-title: Steam reforming of tar using toluene as a model compound with nickel catalysts supported on hexaaluminates publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2014.04.019 – volume: 140–141 start-page: 652 year: 2013 ident: 10.1016/j.fuproc.2019.106252_bb0985 article-title: High catalytic activity of Co-Fe/α-Al2O3 in the steam reforming of toluene in the presence of hydrogen publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2013.04.065 – volume: 20 start-page: 2788 year: 2018 ident: 10.1016/j.fuproc.2019.106252_bb0535 article-title: Hydrochar supported bimetallic Ni–Fe nanocatalysts with tailored composition, size and shape for improved biomass steam reforming performance publication-title: Green Chem. doi: 10.1039/C8GC00433A – volume: 90 start-page: 29 year: 2009 ident: 10.1016/j.fuproc.2019.106252_bb0710 article-title: Steam reforming of glycerol: the experimental activity of La 1− x Ce x NiO 3 catalyst in comparison to the thermodynamic reaction equilibrium publication-title: Appl. Catal. B: Env. doi: 10.1016/j.apcatb.2009.02.006 – volume: 103 start-page: 122 year: 2013 ident: 10.1016/j.fuproc.2019.106252_bb0735 article-title: Catalytic performance of manganese-promoted nickel catalysts for the steam reforming of tar from biomass pyrolysis to synthesis gas publication-title: Fuel doi: 10.1016/j.fuel.2011.04.009 – volume: 277 start-page: 146 year: 2004 ident: 10.1016/j.fuproc.2019.106252_bb0235 article-title: Silylation and surface properties of chemically grafted hydrophobic silica publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2004.04.055 – volume: 24 start-page: 173 year: 2010 ident: 10.1016/j.fuproc.2019.106252_bb0760 article-title: Effect of alkali and alkaline earth metallic species on biochar reactivity and syngas compositions during steam gasification† publication-title: Energy Fuel doi: 10.1021/ef900534n – volume: 1 start-page: 80 year: 2013 ident: 10.1016/j.fuproc.2019.106252_bb0610 article-title: Producing hydrogen-rich gases by steam reforming of syngas tar over CaO/MgO/NiO catalysts publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/sc300042e |
SSID | ssj0005597 |
Score | 2.6177292 |
SecondaryResourceType | review_article |
Snippet | This review describes recent advances in development of catalysts for steam reforming of biomass tar model reactions, using toluene, benzene and naphthalene as... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 106252 |
SubjectTerms | Basicity Benzene Bi-metallic catalysts Biomass Catalysts catalytic activity Catalytic converters Chemical synthesis Material properties Naphthalene O2 mobility oxygen Reforming steam Steam reforming of biomass tar model Toluene |
Title | Recent progress in the development of catalysts for steam reforming of biomass tar model reaction |
URI | https://dx.doi.org/10.1016/j.fuproc.2019.106252 https://www.proquest.com/docview/2359343170 https://www.proquest.com/docview/2335124701 |
Volume | 199 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BWWBAPEV5VEZiDU3tOK5HhKgKCBZAYrPixEFFkFY0HVj47dw5SXlIqBJrbCvW2ffd5-Q7H8AJbgOBGKiDJNdZECnuAosYGPR7yjnHeWp9zcib23j4EF09ysclOG9yYUhWWWN_hekeresn3dqa3clo1L0LheoLCmBaIGmghN8VLnQsW7Bydnk9vP1SekhfY4X6BzSgyaDzMq98RpGCNF4aH-FpgP8VoX5htQ9Agw1Yr5kjO6smtwlLrtiCtW_3CW5DgiQQgwjzoiuEMDYqGBI8ln0pg9g4Z_6Tzfu0nDJkrIyW-ZXhNMYki3miDpSTj6Salckb86VysLlKgNiBh8HF_fkwqGsoBGmkdIkoa3UUWqm9ZyaR7DlkhHkoM225iGIXpxidnEjImzMd9l2aacW5Fcg7BMLhLrSKceH2gEndT7XNrFQqifDYkqTIVXieCZvncZqLNojGbiatLxinOhcvplGSPZvK2oasbSprtyGYj5pUF2ws6K-aJTE_NorBGLBg5GGzgqZ21KnhQmpBJCpsw_G8GV2M_pskhRvPqI9AWhSpsLf_75cfwCqnk7pXrx1Cq3ybuSOkM6XtwPLpR69Tb9pPCsTztA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQGYAB8RTlaSTW0NSPuh4RAhUoLFCpmxUnDiqCpGrTgYXfzp2TlIeEKrHGZ8U62999Tr7zEXIGy4ADBuogSnUSCMVcYAEDg25bOecYi62vGXn_0OkNxO1QDpfIZZ0Lg7LKCvtLTPdoXT1pVd5sjUej1mPIVZdjANMcSAMm_C4LyRXq-s4_vuk8pK-wgtYBmtf5c17klc4wTqDCS8MjOAuwv-LTL6T24ed6g6xXvJFelEPbJEsu2yJr324T3CYRUEAIIdRLrgDA6CijQO9o8qULonlK_Qeb92kxpcBXKU7yG4Vh5CiKeUYDzMgHSk2LaEJ9oRxoLtMfdsjg-urpshdUFRSCWChdAMZaLUIrtd-XkZBtB3wwDWWiLeOi4zoxxCbHI9zLiQ67Lk60YsxyYB0cwHCXNLI8c3uESt2NtU2sVCoScGiJYmAqLE24TdNOnPIm4bXfTFxdL45VLl5NrSN7MaW3DXrblN5ukmDea1xer7HAXtVTYn4sEwMRYEHPw3oGTbVNp4ZxqTlSqLBJTufNsMHwr0mUuXyGNhxIkVBhe__fLz8hK72n-77p3zzcHZBVhmd2r2M7JI1iMnNHQGwKe-wX7icaSvR_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+progress+in+the+development+of+catalysts+for+steam+reforming+of+biomass+tar+model+reaction&rft.jtitle=Fuel+processing+technology&rft.au=Ashok%2C+Jangam&rft.au=Dewangan%2C+Nikita&rft.au=Das%2C+Sonali&rft.au=Hongmanorom%2C+Plaifa&rft.date=2020-03-01&rft.issn=0378-3820&rft.volume=199+p.106252-&rft_id=info:doi/10.1016%2Fj.fuproc.2019.106252&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-3820&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-3820&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-3820&client=summon |