High‐Performance Thermally Conductive Phase Change Composites by Large‐Size Oriented Graphite Sheets for Scalable Thermal Energy Harvesting
Efficient thermal energy harvesting using phase‐change materials (PCMs) has great potential for cost‐effective thermal management and energy storage applications. However, the low thermal conductivity of PCMs (KPCM) is a long‐standing bottleneck for high‐power‐density energy harvesting. Although PCM...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 31; no. 49; pp. e1905099 - n/a |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.12.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0935-9648 1521-4095 1521-4095 |
DOI | 10.1002/adma.201905099 |
Cover
Loading…
Abstract | Efficient thermal energy harvesting using phase‐change materials (PCMs) has great potential for cost‐effective thermal management and energy storage applications. However, the low thermal conductivity of PCMs (KPCM) is a long‐standing bottleneck for high‐power‐density energy harvesting. Although PCM‐based nanocomposites with an enhanced thermal conductivity can address this issue, achieving a higher K (>10 W m−1 K−1) at filler loadings below 50 wt% remains challenging. A strategy for synthesizing highly thermally conductive phase‐change composites (PCCs) by compression‐induced construction of large aligned graphite sheets inside PCCs is demonstrated. The millimeter‐sized graphite sheet consists of lateral van‐der‐Waals‐bonded and oriented graphite nanoplatelets at the micro/nanoscale, which together with a thin PCM layer between the sheets synergistically enhance KPCM in the range of 4.4–35.0 W m−1 K−1 at graphite loadings below 40.0 wt%. The resulting PCCs also demonstrate homogeneity, no leakage, and superior phase change behavior, which can be easily engineered into devices for efficient thermal energy harvesting by coordinating the sheet orientation with the thermal transport direction. This method offers a promising route to high‐power‐density and low‐cost applications of PCMs in large‐scale thermal energy storage, thermal management of electronics, etc.
A method for synthesizing high‐performance thermally conductive phase‐ change composites is demonstrated. Large aligned graphite sheets inside the composite are generated from worm‐like expanded graphite. The aligned and interconnected graphite framework enhances KPCM up to 4.4–35.0 W m−1 K−1 at graphite loadings below 40.0 wt%, which may accelerate the high‐power‐density, low‐cost, and large‐scale applications of phase‐change materials. |
---|---|
AbstractList | Efficient thermal energy harvesting using phase‐change materials (PCMs) has great potential for cost‐effective thermal management and energy storage applications. However, the low thermal conductivity of PCMs (
K
PCM
) is a long‐standing bottleneck for high‐power‐density energy harvesting. Although PCM‐based nanocomposites with an enhanced thermal conductivity can address this issue, achieving a higher
K
(>10 W m
−1
K
−1
) at filler loadings below 50 wt% remains challenging. A strategy for synthesizing highly thermally conductive phase‐change composites (PCCs) by compression‐induced construction of large aligned graphite sheets inside PCCs is demonstrated. The millimeter‐sized graphite sheet consists of lateral van‐der‐Waals‐bonded and oriented graphite nanoplatelets at the micro/nanoscale, which together with a thin PCM layer between the sheets synergistically enhance
K
PCM
in the range of 4.4–35.0 W m
−1
K
−1
at graphite loadings below 40.0 wt%. The resulting PCCs also demonstrate homogeneity, no leakage, and superior phase change behavior, which can be easily engineered into devices for efficient thermal energy harvesting by coordinating the sheet orientation with the thermal transport direction. This method offers a promising route to high‐power‐density and low‐cost applications of PCMs in large‐scale thermal energy storage, thermal management of electronics, etc. Efficient thermal energy harvesting using phase‐change materials (PCMs) has great potential for cost‐effective thermal management and energy storage applications. However, the low thermal conductivity of PCMs (KPCM) is a long‐standing bottleneck for high‐power‐density energy harvesting. Although PCM‐based nanocomposites with an enhanced thermal conductivity can address this issue, achieving a higher K (>10 W m−1 K−1) at filler loadings below 50 wt% remains challenging. A strategy for synthesizing highly thermally conductive phase‐change composites (PCCs) by compression‐induced construction of large aligned graphite sheets inside PCCs is demonstrated. The millimeter‐sized graphite sheet consists of lateral van‐der‐Waals‐bonded and oriented graphite nanoplatelets at the micro/nanoscale, which together with a thin PCM layer between the sheets synergistically enhance KPCM in the range of 4.4–35.0 W m−1 K−1 at graphite loadings below 40.0 wt%. The resulting PCCs also demonstrate homogeneity, no leakage, and superior phase change behavior, which can be easily engineered into devices for efficient thermal energy harvesting by coordinating the sheet orientation with the thermal transport direction. This method offers a promising route to high‐power‐density and low‐cost applications of PCMs in large‐scale thermal energy storage, thermal management of electronics, etc. Efficient thermal energy harvesting using phase-change materials (PCMs) has great potential for cost-effective thermal management and energy storage applications. However, the low thermal conductivity of PCMs (K ) is a long-standing bottleneck for high-power-density energy harvesting. Although PCM-based nanocomposites with an enhanced thermal conductivity can address this issue, achieving a higher K (>10 W m K ) at filler loadings below 50 wt% remains challenging. A strategy for synthesizing highly thermally conductive phase-change composites (PCCs) by compression-induced construction of large aligned graphite sheets inside PCCs is demonstrated. The millimeter-sized graphite sheet consists of lateral van-der-Waals-bonded and oriented graphite nanoplatelets at the micro/nanoscale, which together with a thin PCM layer between the sheets synergistically enhance K in the range of 4.4-35.0 W m K at graphite loadings below 40.0 wt%. The resulting PCCs also demonstrate homogeneity, no leakage, and superior phase change behavior, which can be easily engineered into devices for efficient thermal energy harvesting by coordinating the sheet orientation with the thermal transport direction. This method offers a promising route to high-power-density and low-cost applications of PCMs in large-scale thermal energy storage, thermal management of electronics, etc. Efficient thermal energy harvesting using phase‐change materials (PCMs) has great potential for cost‐effective thermal management and energy storage applications. However, the low thermal conductivity of PCMs (KPCM) is a long‐standing bottleneck for high‐power‐density energy harvesting. Although PCM‐based nanocomposites with an enhanced thermal conductivity can address this issue, achieving a higher K (>10 W m−1 K−1) at filler loadings below 50 wt% remains challenging. A strategy for synthesizing highly thermally conductive phase‐change composites (PCCs) by compression‐induced construction of large aligned graphite sheets inside PCCs is demonstrated. The millimeter‐sized graphite sheet consists of lateral van‐der‐Waals‐bonded and oriented graphite nanoplatelets at the micro/nanoscale, which together with a thin PCM layer between the sheets synergistically enhance KPCM in the range of 4.4–35.0 W m−1 K−1 at graphite loadings below 40.0 wt%. The resulting PCCs also demonstrate homogeneity, no leakage, and superior phase change behavior, which can be easily engineered into devices for efficient thermal energy harvesting by coordinating the sheet orientation with the thermal transport direction. This method offers a promising route to high‐power‐density and low‐cost applications of PCMs in large‐scale thermal energy storage, thermal management of electronics, etc. A method for synthesizing high‐performance thermally conductive phase‐ change composites is demonstrated. Large aligned graphite sheets inside the composite are generated from worm‐like expanded graphite. The aligned and interconnected graphite framework enhances KPCM up to 4.4–35.0 W m−1 K−1 at graphite loadings below 40.0 wt%, which may accelerate the high‐power‐density, low‐cost, and large‐scale applications of phase‐change materials. Efficient thermal energy harvesting using phase-change materials (PCMs) has great potential for cost-effective thermal management and energy storage applications. However, the low thermal conductivity of PCMs (KPCM ) is a long-standing bottleneck for high-power-density energy harvesting. Although PCM-based nanocomposites with an enhanced thermal conductivity can address this issue, achieving a higher K (>10 W m-1 K-1 ) at filler loadings below 50 wt% remains challenging. A strategy for synthesizing highly thermally conductive phase-change composites (PCCs) by compression-induced construction of large aligned graphite sheets inside PCCs is demonstrated. The millimeter-sized graphite sheet consists of lateral van-der-Waals-bonded and oriented graphite nanoplatelets at the micro/nanoscale, which together with a thin PCM layer between the sheets synergistically enhance KPCM in the range of 4.4-35.0 W m-1 K-1 at graphite loadings below 40.0 wt%. The resulting PCCs also demonstrate homogeneity, no leakage, and superior phase change behavior, which can be easily engineered into devices for efficient thermal energy harvesting by coordinating the sheet orientation with the thermal transport direction. This method offers a promising route to high-power-density and low-cost applications of PCMs in large-scale thermal energy storage, thermal management of electronics, etc.Efficient thermal energy harvesting using phase-change materials (PCMs) has great potential for cost-effective thermal management and energy storage applications. However, the low thermal conductivity of PCMs (KPCM ) is a long-standing bottleneck for high-power-density energy harvesting. Although PCM-based nanocomposites with an enhanced thermal conductivity can address this issue, achieving a higher K (>10 W m-1 K-1 ) at filler loadings below 50 wt% remains challenging. A strategy for synthesizing highly thermally conductive phase-change composites (PCCs) by compression-induced construction of large aligned graphite sheets inside PCCs is demonstrated. The millimeter-sized graphite sheet consists of lateral van-der-Waals-bonded and oriented graphite nanoplatelets at the micro/nanoscale, which together with a thin PCM layer between the sheets synergistically enhance KPCM in the range of 4.4-35.0 W m-1 K-1 at graphite loadings below 40.0 wt%. The resulting PCCs also demonstrate homogeneity, no leakage, and superior phase change behavior, which can be easily engineered into devices for efficient thermal energy harvesting by coordinating the sheet orientation with the thermal transport direction. This method offers a promising route to high-power-density and low-cost applications of PCMs in large-scale thermal energy storage, thermal management of electronics, etc. |
Author | Wu, Si Yan, Taisen Tong, Zhen Xu, Jiaxing Deng, Tao Zhai, Tianyao Xu, Zhenyuan Wang, Ruzhu Chao, Jingwei Wu, Minqiang Li, Tingxian Bao, Hua |
Author_xml | – sequence: 1 givenname: Si surname: Wu fullname: Wu, Si organization: Shanghai Jiao Tong University – sequence: 2 givenname: Tingxian orcidid: 0000-0003-4618-8144 surname: Li fullname: Li, Tingxian email: Litx@sjtu.edu.cn organization: Shanghai Jiao Tong University – sequence: 3 givenname: Zhen surname: Tong fullname: Tong, Zhen organization: Shanghai Jiao Tong University – sequence: 4 givenname: Jingwei surname: Chao fullname: Chao, Jingwei organization: Shanghai Jiao Tong University – sequence: 5 givenname: Tianyao surname: Zhai fullname: Zhai, Tianyao organization: Shanghai Jiao Tong University – sequence: 6 givenname: Jiaxing surname: Xu fullname: Xu, Jiaxing organization: Shanghai Jiao Tong University – sequence: 7 givenname: Taisen surname: Yan fullname: Yan, Taisen organization: Shanghai Jiao Tong University – sequence: 8 givenname: Minqiang surname: Wu fullname: Wu, Minqiang organization: Shanghai Jiao Tong University – sequence: 9 givenname: Zhenyuan surname: Xu fullname: Xu, Zhenyuan organization: Shanghai Jiao Tong University – sequence: 10 givenname: Hua surname: Bao fullname: Bao, Hua organization: Shanghai Jiao Tong University – sequence: 11 givenname: Tao surname: Deng fullname: Deng, Tao email: Dengtao@sjtu.edu.cn organization: Shanghai Jiao Tong University – sequence: 12 givenname: Ruzhu surname: Wang fullname: Wang, Ruzhu email: Rzwang@sjtu.edu.cn organization: Shanghai Jiao Tong University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31621971$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1uEzEUhS1URNPAliWyxIbNBNvj-fEySkuDFNRKyd7yeO7MuJqxgz0pGla8ATwjT4KjtEWqhFhY14vvnHt1zgU6s84CQm8pWVBC2EdVD2rBCBUkI0K8QDOaMZpwIrIzNCMizRKR8_IcXYRwRwgROclfofOU5oyKgs7Qz7Vpu98_ft2Cb5wflNWAdx3EX99PeOVsfdCjuQd826kAeNUp28bhhr0LZoSAqwlvlG8hemzNd8A33oAdocbXXu27iOBtBzAGHO3xVqteVf3TCnxlwbcTXit_D2E0tn2NXjaqD_DmYc7R7tPVbrVONjfXn1fLTaJ5IUTCec3zEvJSZ6ygNOUAUJes4ErFRypaqmMeTdXUKWuUBi2KItc81YSVJaRz9OFku_fu6yGuloMJGvpeWXCHIFlKci5IUaYRff8MvXMHb-NxkWKUEUFjznP07oE6VAPUcu_NoPwkH5OOAD8B2rsQPDRSm1GNxtnRK9NLSuSxUHksVD4VGmWLZ7JH538KxEnwzfQw_YeWy8svy7_aPwOwtf0 |
CitedBy_id | crossref_primary_10_1021_acs_chemrev_2c00572 crossref_primary_10_1016_j_solmat_2022_111718 crossref_primary_10_1016_j_carbon_2024_119763 crossref_primary_10_1002_smtd_202300139 crossref_primary_10_1002_adma_202314130 crossref_primary_10_1016_j_pmatsci_2024_101380 crossref_primary_10_1016_j_compscitech_2025_111120 crossref_primary_10_1021_acsanm_2c01462 crossref_primary_10_1080_15435075_2025_2459124 crossref_primary_10_1016_j_matt_2022_07_013 crossref_primary_10_1016_j_nanoen_2024_109400 crossref_primary_10_1016_j_est_2022_105358 crossref_primary_10_1016_j_energy_2020_118852 crossref_primary_10_1016_j_cej_2023_144720 crossref_primary_10_1016_j_cej_2023_145814 crossref_primary_10_1016_j_apenergy_2023_121462 crossref_primary_10_1016_j_ensm_2021_04_033 crossref_primary_10_1007_s43538_023_00217_2 crossref_primary_10_1016_j_compositesa_2023_107979 crossref_primary_10_1016_j_cej_2022_134549 crossref_primary_10_1016_j_mtcomm_2025_111529 crossref_primary_10_1016_j_energy_2025_135202 crossref_primary_10_1039_D0TA05247G crossref_primary_10_1039_D0EE01355B crossref_primary_10_1016_j_jclepro_2021_130014 crossref_primary_10_1021_acsnano_1c11097 crossref_primary_10_1016_j_ensm_2023_102814 crossref_primary_10_1021_acsnano_2c05067 crossref_primary_10_1002_smll_202105647 crossref_primary_10_1016_j_decarb_2024_100051 crossref_primary_10_1016_j_compositesa_2022_107309 crossref_primary_10_1016_j_cej_2024_149203 crossref_primary_10_1016_j_apsusc_2023_156404 crossref_primary_10_1021_acssuschemeng_4c09386 crossref_primary_10_1016_j_cej_2023_142402 crossref_primary_10_1016_j_isci_2020_101606 crossref_primary_10_1021_acsapm_5c00340 crossref_primary_10_1016_j_cej_2023_145916 crossref_primary_10_1021_acsami_1c21778 crossref_primary_10_1016_j_matt_2023_09_011 crossref_primary_10_1016_j_gee_2022_02_007 crossref_primary_10_1002_adma_202211100 crossref_primary_10_1016_j_apenergy_2021_117991 crossref_primary_10_1021_acsami_3c13298 crossref_primary_10_1021_acsnano_0c10768 crossref_primary_10_1021_acssuschemeng_4c00638 crossref_primary_10_1002_smll_202303933 crossref_primary_10_1016_j_renene_2024_121805 crossref_primary_10_1016_j_est_2023_110056 crossref_primary_10_3390_nano14020154 crossref_primary_10_1016_j_compscitech_2022_109756 crossref_primary_10_1007_s40820_022_00878_6 crossref_primary_10_1016_j_cep_2022_108791 crossref_primary_10_1016_j_coco_2023_101764 crossref_primary_10_1016_j_compositesa_2022_107128 crossref_primary_10_3390_pr11040999 crossref_primary_10_1002_smll_202402575 crossref_primary_10_1016_j_est_2024_113974 crossref_primary_10_1016_j_cej_2022_135675 crossref_primary_10_1016_j_cej_2022_137733 crossref_primary_10_1016_j_jallcom_2024_174449 crossref_primary_10_1016_j_mtnano_2022_100198 crossref_primary_10_1016_j_etran_2025_100396 crossref_primary_10_1016_j_actamat_2023_118852 crossref_primary_10_1016_j_progpolymsci_2020_101289 crossref_primary_10_1080_1536383X_2022_2066654 crossref_primary_10_1016_j_rser_2023_113373 crossref_primary_10_3390_en16083348 crossref_primary_10_1016_j_solmat_2022_111938 crossref_primary_10_1016_j_cej_2023_141882 crossref_primary_10_1016_j_cej_2024_151960 crossref_primary_10_1016_j_cej_2024_158482 crossref_primary_10_1002_smll_202105567 crossref_primary_10_1016_j_energy_2023_129637 crossref_primary_10_1038_s41467_024_49333_7 crossref_primary_10_1039_D1TA10037H crossref_primary_10_1016_j_energy_2020_118756 crossref_primary_10_1016_j_ast_2023_108576 crossref_primary_10_1016_j_est_2022_105890 crossref_primary_10_1021_acsaenm_3c00352 crossref_primary_10_1002_mame_202300036 crossref_primary_10_1016_j_cej_2021_129609 crossref_primary_10_1016_j_ensm_2023_102901 crossref_primary_10_1021_acssuschemeng_3c02154 crossref_primary_10_1016_j_est_2024_112660 crossref_primary_10_1016_j_molliq_2023_123292 crossref_primary_10_1016_j_mtadv_2022_100270 crossref_primary_10_1039_D4MH00793J crossref_primary_10_1021_acsami_2c15602 crossref_primary_10_1016_j_est_2023_110180 crossref_primary_10_1016_j_est_2022_105414 crossref_primary_10_1016_j_compscitech_2021_109223 crossref_primary_10_1016_j_compositesb_2021_108666 crossref_primary_10_1016_j_scib_2024_08_028 crossref_primary_10_12677_japc_2025_141011 crossref_primary_10_1021_acs_langmuir_4c00830 crossref_primary_10_3390_nano14242047 crossref_primary_10_1002_smll_202101093 crossref_primary_10_1016_j_matt_2022_05_006 crossref_primary_10_1016_S1872_5805_24_60887_5 crossref_primary_10_1016_j_cej_2024_154305 crossref_primary_10_1016_j_compositesb_2024_112092 crossref_primary_10_1016_j_ijthermalsci_2024_109493 crossref_primary_10_1016_j_compositesb_2024_112093 crossref_primary_10_1016_j_compositesa_2022_107047 crossref_primary_10_1021_acssuschemeng_2c05538 crossref_primary_10_1016_j_enbuild_2021_111167 crossref_primary_10_1016_j_indcrop_2023_117483 crossref_primary_10_1016_j_mtcomm_2022_104549 crossref_primary_10_1016_j_xcrp_2024_102046 crossref_primary_10_1016_j_enbuild_2023_112933 crossref_primary_10_1039_D2TA06457J crossref_primary_10_1039_D4MH00792A crossref_primary_10_1021_acs_chemrev_2c00618 crossref_primary_10_1002_adfm_202109255 crossref_primary_10_1021_acsami_0c22814 crossref_primary_10_1016_j_carbon_2022_07_009 crossref_primary_10_1007_s40820_021_00702_7 crossref_primary_10_1016_j_cej_2021_130180 crossref_primary_10_1021_acsnano_3c08467 crossref_primary_10_1007_s40820_022_00947_w crossref_primary_10_1002_adfm_202405625 crossref_primary_10_1002_admt_202100970 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126301 crossref_primary_10_1016_j_est_2024_110447 crossref_primary_10_1016_j_rser_2021_111088 crossref_primary_10_1002_solr_202300039 crossref_primary_10_1016_j_compositesa_2023_107563 crossref_primary_10_1016_j_solmat_2023_112338 crossref_primary_10_1016_j_est_2024_110566 crossref_primary_10_1016_j_est_2023_109273 crossref_primary_10_1016_j_enconman_2021_115079 crossref_primary_10_1016_j_enconman_2021_115078 crossref_primary_10_1016_j_ijheatmasstransfer_2021_122127 crossref_primary_10_1021_accountsmr_2c00251 crossref_primary_10_1016_j_energy_2020_117711 crossref_primary_10_1002_sus2_147 crossref_primary_10_1016_j_carbon_2023_03_041 crossref_primary_10_1016_j_colsurfa_2022_129516 crossref_primary_10_1016_j_compositesb_2025_112205 crossref_primary_10_3390_polym13081312 crossref_primary_10_1007_s12274_022_4824_2 crossref_primary_10_1016_j_compscitech_2024_110592 crossref_primary_10_1016_j_nanoen_2021_106338 crossref_primary_10_1016_j_enconman_2023_116948 crossref_primary_10_1016_j_cej_2024_156922 crossref_primary_10_1002_smll_202407626 crossref_primary_10_1021_acsmaterialslett_3c00351 crossref_primary_10_1016_j_cej_2021_133007 crossref_primary_10_1021_acs_chemmater_1c03275 crossref_primary_10_1016_j_est_2023_107169 crossref_primary_10_1016_j_cej_2020_125330 crossref_primary_10_1002_pc_28943 crossref_primary_10_1016_j_cej_2023_142583 crossref_primary_10_1002_advs_202207652 crossref_primary_10_1016_j_apmt_2024_102574 crossref_primary_10_1021_acsapm_3c02638 crossref_primary_10_1021_acsami_0c18603 crossref_primary_10_1016_j_fuel_2022_125771 crossref_primary_10_1016_j_cej_2024_155940 crossref_primary_10_1002_macp_202300260 crossref_primary_10_1016_j_solmat_2023_112277 crossref_primary_10_1021_acsapm_3c01679 crossref_primary_10_1016_j_mtcomm_2024_108420 crossref_primary_10_1039_D2SE01084D crossref_primary_10_1126_sciadv_adr8445 crossref_primary_10_1016_j_apenergy_2022_119509 crossref_primary_10_1016_j_energy_2023_129001 crossref_primary_10_1016_j_est_2024_110638 crossref_primary_10_1021_acsami_3c04429 crossref_primary_10_1016_j_cej_2024_149009 crossref_primary_10_1016_j_rser_2022_112283 crossref_primary_10_1007_s10854_021_07371_7 crossref_primary_10_1016_j_envres_2021_110853 crossref_primary_10_1016_j_cej_2024_149240 crossref_primary_10_1016_j_est_2024_110992 crossref_primary_10_1016_j_solener_2023_111926 crossref_primary_10_1016_j_est_2022_104836 crossref_primary_10_1021_acsapm_2c00105 crossref_primary_10_1016_j_cej_2020_127764 crossref_primary_10_1016_j_polymer_2022_125204 crossref_primary_10_1016_j_ensm_2024_103466 crossref_primary_10_1039_D0TA07289C crossref_primary_10_1016_j_est_2023_110349 crossref_primary_10_1016_j_solener_2022_02_042 crossref_primary_10_1016_j_coco_2024_102053 crossref_primary_10_1016_j_nanoms_2023_09_003 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121115 crossref_primary_10_1007_s10853_022_07872_8 crossref_primary_10_1016_j_jclepro_2024_142864 crossref_primary_10_1016_j_ensm_2021_07_019 crossref_primary_10_1016_j_energy_2023_126746 crossref_primary_10_1039_D3QM01174G crossref_primary_10_1016_j_cej_2024_155235 crossref_primary_10_1016_j_compositesa_2021_106638 crossref_primary_10_1002_aenm_202402667 crossref_primary_10_1021_acsaem_1c00235 crossref_primary_10_1016_j_ensm_2024_103602 crossref_primary_10_1016_j_cej_2021_132997 crossref_primary_10_1016_j_est_2023_108338 crossref_primary_10_1080_09506608_2022_2053774 crossref_primary_10_1021_acssuschemeng_3c00345 crossref_primary_10_1016_j_est_2022_104931 crossref_primary_10_3390_en18030569 crossref_primary_10_1016_j_apenergy_2020_114886 crossref_primary_10_1002_admi_202100807 crossref_primary_10_1016_j_cej_2021_131665 crossref_primary_10_1016_j_enchem_2022_100071 crossref_primary_10_1016_j_enconman_2021_114957 crossref_primary_10_1016_j_est_2025_115687 crossref_primary_10_1039_D0MH02069A crossref_primary_10_1016_j_fuel_2024_133909 crossref_primary_10_1002_adma_202308494 crossref_primary_10_1016_j_est_2023_109892 crossref_primary_10_1016_j_cej_2021_132741 crossref_primary_10_1016_j_est_2022_104707 crossref_primary_10_1016_j_compositesb_2023_110584 crossref_primary_10_1002_adfm_202008705 crossref_primary_10_1016_j_est_2021_103556 crossref_primary_10_3390_polym16142028 crossref_primary_10_1016_j_est_2024_110719 crossref_primary_10_1002_aesr_202200164 crossref_primary_10_1021_acsami_3c00546 crossref_primary_10_1016_j_est_2023_110310 crossref_primary_10_1016_j_cej_2024_153271 crossref_primary_10_1016_j_solmat_2022_112027 crossref_primary_10_1016_j_solmat_2022_112142 crossref_primary_10_1016_j_cej_2021_133983 crossref_primary_10_1016_j_energy_2020_117067 crossref_primary_10_1002_adma_202402897 crossref_primary_10_1002_smll_202312134 crossref_primary_10_1016_j_compscitech_2024_110469 crossref_primary_10_1016_j_est_2024_110725 crossref_primary_10_1016_j_solener_2021_08_039 crossref_primary_10_1016_j_ensm_2022_01_003 crossref_primary_10_1016_j_compscitech_2020_108558 crossref_primary_10_1039_D0TA01320J crossref_primary_10_1016_j_energy_2022_124198 crossref_primary_10_1021_acsami_2c11843 crossref_primary_10_1002_adfm_202200792 crossref_primary_10_1038_s41560_021_00778_w crossref_primary_10_1039_D2TA08748K crossref_primary_10_1016_j_icheatmasstransfer_2024_108318 crossref_primary_10_1016_j_aets_2024_12_005 crossref_primary_10_1038_s41467_022_29090_1 crossref_primary_10_1016_j_applthermaleng_2020_115560 crossref_primary_10_1016_j_carbon_2022_09_064 crossref_primary_10_1002_smll_202404184 crossref_primary_10_1002_adma_202307071 crossref_primary_10_1007_s10853_021_06147_y crossref_primary_10_1016_j_cej_2025_161033 crossref_primary_10_1016_j_ensm_2021_08_022 crossref_primary_10_1016_j_ensm_2024_103640 crossref_primary_10_1007_s12598_023_02483_x crossref_primary_10_1016_j_cej_2021_131466 crossref_primary_10_1002_advs_202003734 crossref_primary_10_1007_s40820_022_01003_3 crossref_primary_10_1016_j_seta_2023_103505 crossref_primary_10_1007_s10853_022_07551_8 crossref_primary_10_1016_j_pmatsci_2022_101054 crossref_primary_10_1016_j_compositesa_2024_108331 crossref_primary_10_1002_adma_202311335 crossref_primary_10_1016_j_compscitech_2021_108832 crossref_primary_10_1016_j_decarb_2023_100005 crossref_primary_10_1016_j_compscitech_2021_108835 crossref_primary_10_1002_adfm_202401295 crossref_primary_10_1016_j_cej_2021_133519 crossref_primary_10_1016_j_ccr_2024_215920 crossref_primary_10_1016_j_surfin_2024_104437 crossref_primary_10_1016_j_seta_2020_100957 crossref_primary_10_1016_j_rser_2022_112321 crossref_primary_10_1002_elt2_56 crossref_primary_10_1016_j_fuel_2023_128499 crossref_primary_10_1016_j_cej_2024_154562 crossref_primary_10_1021_acscentsci_0c00570 crossref_primary_10_1016_j_cej_2024_153235 crossref_primary_10_1016_j_est_2024_114155 crossref_primary_10_1016_j_est_2023_108791 crossref_primary_10_1016_j_est_2023_109761 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121405 crossref_primary_10_1016_j_matt_2021_09_017 crossref_primary_10_1016_j_compscitech_2024_110664 crossref_primary_10_1021_acsnano_2c02557 crossref_primary_10_1016_j_enbenv_2022_02_004 crossref_primary_10_1039_D0TA05904H crossref_primary_10_1016_j_cej_2024_151170 crossref_primary_10_1177_26349833241301420 crossref_primary_10_1016_j_cej_2024_152259 crossref_primary_10_1016_j_apenergy_2022_119116 crossref_primary_10_1016_j_cej_2024_158915 crossref_primary_10_1016_j_est_2023_109876 crossref_primary_10_1016_j_est_2023_109877 crossref_primary_10_1002_app_51218 crossref_primary_10_1021_acsami_4c17131 crossref_primary_10_1016_j_isci_2025_111743 crossref_primary_10_1039_D2TA00818A crossref_primary_10_1016_j_colsurfa_2023_133138 crossref_primary_10_1016_j_cej_2021_128887 crossref_primary_10_1002_idm2_12092 crossref_primary_10_1073_pnas_2200223119 crossref_primary_10_1016_j_ensm_2025_104142 crossref_primary_10_1177_09540083221106057 crossref_primary_10_1002_smtd_202200246 crossref_primary_10_1016_j_cis_2024_103118 crossref_primary_10_1016_j_compositesb_2020_107965 crossref_primary_10_1007_s11630_023_1827_6 crossref_primary_10_1021_acsanm_4c03797 crossref_primary_10_1021_acsapm_5c00162 crossref_primary_10_1016_j_ijbiomac_2022_10_075 crossref_primary_10_1016_j_rser_2023_113921 crossref_primary_10_1016_j_matpr_2022_09_029 crossref_primary_10_1016_j_carbon_2022_11_010 crossref_primary_10_1002_adma_202412528 crossref_primary_10_1016_j_ensm_2022_12_037 crossref_primary_10_1016_j_solmat_2021_111140 crossref_primary_10_1021_acs_energyfuels_0c03739 crossref_primary_10_1088_1361_6528_abb04f crossref_primary_10_1002_adem_202400249 crossref_primary_10_1016_j_compscitech_2020_108610 crossref_primary_10_1016_j_pecs_2023_101109 crossref_primary_10_1016_j_ensm_2025_104003 crossref_primary_10_1016_j_compositesb_2022_110367 crossref_primary_10_1142_S2810922822300070 crossref_primary_10_3390_nano15020110 crossref_primary_10_1007_s10973_022_11806_6 crossref_primary_10_1016_j_cej_2022_137423 crossref_primary_10_1016_j_compositesb_2024_111780 crossref_primary_10_1016_j_isci_2022_104226 crossref_primary_10_1039_D3TA03184E crossref_primary_10_1002_smtd_202401383 crossref_primary_10_1016_j_cej_2024_149858 crossref_primary_10_3390_ma14040777 crossref_primary_10_1016_j_nanoen_2021_105948 crossref_primary_10_1016_j_enconman_2022_115804 crossref_primary_10_1016_j_cej_2022_135496 crossref_primary_10_1016_j_est_2025_115866 crossref_primary_10_1007_s10854_023_11207_x crossref_primary_10_1016_j_progpolymsci_2022_101505 crossref_primary_10_1016_j_energy_2021_121938 crossref_primary_10_1002_pssr_202000394 crossref_primary_10_1016_j_cej_2023_141940 crossref_primary_10_1038_s41467_023_43772_4 crossref_primary_10_1016_j_solmat_2022_111873 crossref_primary_10_1016_j_compositesa_2023_107803 crossref_primary_10_1016_j_compositesa_2023_107925 crossref_primary_10_1016_j_compositesa_2023_107809 crossref_primary_10_1002_advs_202001274 crossref_primary_10_1007_s40820_020_00548_5 crossref_primary_10_1016_j_carbon_2024_119174 crossref_primary_10_1016_j_carbon_2024_119052 crossref_primary_10_1016_j_est_2021_102952 crossref_primary_10_3390_jcs8110466 crossref_primary_10_1039_D5MH00070J crossref_primary_10_1002_adma_202001105 crossref_primary_10_1021_acsami_1c23972 crossref_primary_10_1016_j_apenergy_2023_121300 crossref_primary_10_1016_j_cej_2022_139999 crossref_primary_10_1002_smll_202006752 crossref_primary_10_1016_j_est_2020_101997 crossref_primary_10_1016_j_est_2022_106008 crossref_primary_10_1002_adfm_202209345 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124430 crossref_primary_10_1021_acsaem_2c03383 crossref_primary_10_1016_j_mattod_2022_08_015 crossref_primary_10_1021_acsnano_0c06680 crossref_primary_10_1016_j_cej_2022_137463 crossref_primary_10_3390_nano11113011 crossref_primary_10_1016_j_solmat_2022_111896 crossref_primary_10_1016_j_est_2021_102936 crossref_primary_10_1016_j_compositesa_2024_108081 crossref_primary_10_1051_e3sconf_202456411017 crossref_primary_10_1021_acsami_3c10677 crossref_primary_10_1016_j_est_2021_103902 crossref_primary_10_1039_D1EE00527H crossref_primary_10_1002_adma_202008088 crossref_primary_10_1002_cjoc_202100656 crossref_primary_10_1002_adma_202300077 crossref_primary_10_1016_j_est_2022_106225 crossref_primary_10_1016_j_mtphys_2022_100811 crossref_primary_10_1016_j_mtsust_2024_101026 crossref_primary_10_1016_j_ensm_2021_05_018 crossref_primary_10_1016_j_nanoen_2022_108009 crossref_primary_10_1016_j_matt_2020_05_016 crossref_primary_10_1038_s41467_020_20299_6 crossref_primary_10_1016_j_carbpol_2022_119578 |
Cites_doi | 10.1016/j.carbon.2016.01.088 10.1126/science.aac9439 10.1038/nmat3064 10.1021/acsami.8b16616 10.1016/j.compositesa.2017.04.001 10.1021/nl501996v 10.1016/j.nanoen.2018.03.075 10.1016/S0017-9310(00)00309-4 10.1021/cm501473t 10.1002/adma.200800401 10.1039/C7NR04686C 10.1039/C7RA08181B 10.1016/j.pmatsci.2004.01.001 10.1039/C5TC02194D 10.1021/nn304310n 10.1021/acsnano.5b02917 10.1039/C7GC03595K 10.1039/C6TA08454K 10.1002/adem.201500451 10.1126/science.1218761 10.1002/adem.201800237 10.1002/adma.201401449 10.1021/am503619a 10.1016/j.rser.2016.06.071 10.1093/nsr/nwu072 10.1038/srep26825 10.1002/adma.201900199 10.1038/nnano.2011.216 10.1016/j.energy.2010.09.046 10.1021/acsami.5b02681 10.1038/ncomms14486 10.1016/j.applthermaleng.2005.11.022 10.1039/C3EE42573H 10.1021/nn1015506 10.1021/nl203906r 10.1039/C6NR03921A 10.1016/j.matlet.2009.02.045 10.1016/j.solmat.2017.07.023 10.1038/s41467-018-03029-x 10.1021/acs.nanolett.6b00722 10.1016/S0008-6223(01)00032-X 10.1021/acsami.6b13207 10.1038/ncomms4689 10.1021/cm504550e 10.1038/ncomms1288 10.1021/acs.chemmater.6b01595 10.1039/C8TA00078F 10.1002/adfm.201202638 |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201905099 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 31621971 10_1002_adma_201905099 ADMA201905099 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51876117 – fundername: National Key Research and Development Program of China funderid: 2018YFE0100300 – fundername: Innovative Research Group Project of the National Natural Science Foundation of China funderid: 51521004 – fundername: Innovative Research Group Project of the National Natural Science Foundation of China grantid: 51521004 – fundername: National Natural Science Foundation of China grantid: 51876117 – fundername: National Key Research and Development Program of China grantid: 2018YFE0100300 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4799-44d468e68c5271134eeed8274aa74a0b18a5099fbfd32facec9776c43c0288e3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 11:01:46 EDT 2025 Fri Jul 25 03:07:39 EDT 2025 Thu Apr 03 07:09:15 EDT 2025 Tue Jul 01 02:32:41 EDT 2025 Thu Apr 24 23:03:54 EDT 2025 Wed Jan 22 16:36:31 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 49 |
Keywords | graphite sheets phase change composites expanded graphite thermal conductivity thermal energy harvesting |
Language | English |
License | 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4799-44d468e68c5271134eeed8274aa74a0b18a5099fbfd32facec9776c43c0288e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4618-8144 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adma.201905099 |
PMID | 31621971 |
PQID | 2321209109 |
PQPubID | 2045203 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2306490783 proquest_journals_2321209109 pubmed_primary_31621971 crossref_citationtrail_10_1002_adma_201905099 crossref_primary_10_1002_adma_201905099 wiley_primary_10_1002_adma_201905099_ADMA201905099 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-12-01 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 2 2017; 7 2017; 8 2009; 63 2011; 2 2010; 35 2019; 31 2013; 23 2014; 26 2016; 101 2017; 172 2011; 10 2001; 44 2016; 18 2015; 9 2016; 16 2012; 12 2018; 20 2015; 7 2017; 9 2018; 49 2016; 4 2018; 6 2016; 6 2018; 9 2014; 5 2015; 27 2017; 99 2006; 26 2016; 65 2016; 353 2014; 14 2001; 39 2008; 20 2005; 50 2012; 6 2012; 335 2016; 28 2012; 7 2018; 10 2014; 7 2014; 6 2010; 4 2016; 8 e_1_2_5_27_1 e_1_2_5_25_1 e_1_2_5_48_1 e_1_2_5_23_1 e_1_2_5_46_1 e_1_2_5_21_1 e_1_2_5_44_1 e_1_2_5_29_1 e_1_2_5_42_1 e_1_2_5_40_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_5_1 e_1_2_5_1_1 e_1_2_5_19_1 e_1_2_5_30_1 e_1_2_5_28_1 e_1_2_5_49_1 e_1_2_5_26_1 e_1_2_5_47_1 e_1_2_5_24_1 e_1_2_5_45_1 e_1_2_5_22_1 e_1_2_5_43_1 Wang Z. (e_1_2_5_3_1) 2017; 8 Han G. G. D. (e_1_2_5_2_1) 2017; 8 e_1_2_5_20_1 e_1_2_5_41_1 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_8_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_4_1 e_1_2_5_18_1 e_1_2_5_31_1 e_1_2_5_50_1 |
References_xml | – volume: 65 start-page: 81 year: 2016 publication-title: Renewable Sustainable Energy Rev. – volume: 4 year: 2016 publication-title: J. Mater. Chem. A – volume: 23 start-page: 2263 year: 2013 publication-title: Adv. Funct. Mater. – volume: 2 start-page: 289 year: 2011 publication-title: Nat. Commun. – volume: 50 start-page: 93 year: 2005 publication-title: Prog. Mater. Sci. – volume: 10 start-page: 569 year: 2011 publication-title: Nat. Mater. – volume: 9 year: 2015 publication-title: ACS Nano – volume: 16 start-page: 3585 year: 2016 publication-title: Nano Lett. – volume: 44 start-page: 2727 year: 2001 publication-title: Int. J. Heat Mass Transfer – volume: 335 start-page: 1454 year: 2012 publication-title: Science – volume: 63 start-page: 1213 year: 2009 publication-title: Mater. Lett. – volume: 35 start-page: 4622 year: 2010 publication-title: Energy – volume: 8 year: 2016 publication-title: Nanoscale – volume: 27 start-page: 2100 year: 2015 publication-title: Chem. Mater. – volume: 18 start-page: 1127 year: 2016 publication-title: Adv. Eng. Mater. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 101 start-page: 120 year: 2016 publication-title: Carbon – volume: 172 start-page: 82 year: 2017 publication-title: Sol. Energy Mater. Sol. Cells – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 4 start-page: 305 year: 2016 publication-title: J. Mater. Chem. C – volume: 20 year: 2018 publication-title: Adv. Eng. Mater. – volume: 28 start-page: 6096 year: 2016 publication-title: Chem. Mater. – volume: 99 start-page: 32 year: 2017 publication-title: Composites, Part A – volume: 26 start-page: 1652 year: 2006 publication-title: Appl. Therm. Eng. – volume: 9 start-page: 919 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 12 start-page: 861 year: 2012 publication-title: Nano Lett. – volume: 39 start-page: 2151 year: 2001 publication-title: Carbon – volume: 20 start-page: 4740 year: 2008 publication-title: Adv. Mater. – volume: 353 year: 2016 publication-title: Science – volume: 26 start-page: 4459 year: 2014 publication-title: Chem. Mater. – volume: 49 start-page: 86 year: 2018 publication-title: Nano Energy – volume: 7 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 14 start-page: 5155 year: 2014 publication-title: Nano Lett. – volume: 4 start-page: 5245 year: 2010 publication-title: ACS Nano – volume: 6 year: 2016 publication-title: Sci. Rep. – volume: 6 start-page: 5880 year: 2018 publication-title: J. Mater. Chem. A – volume: 9 start-page: 664 year: 2018 publication-title: Nat. Commun. – volume: 6 year: 2012 publication-title: ACS Nano – volume: 9 year: 2017 publication-title: Nanoscale – volume: 7 year: 2017 publication-title: RSC Adv. – volume: 5 start-page: 3689 year: 2014 publication-title: Nat. Commun. – volume: 7 start-page: 91 year: 2012 publication-title: Nat. Nanotechnol. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 6 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 1185 year: 2014 publication-title: Energy Environ. Sci. – volume: 27 start-page: 428 year: 2015 publication-title: Adv. Mater. – volume: 20 start-page: 1858 year: 2018 publication-title: Green Chem. – volume: 2 start-page: 40 year: 2015 publication-title: Natl. Sci. Rev. – ident: e_1_2_5_25_1 doi: 10.1016/j.carbon.2016.01.088 – ident: e_1_2_5_15_1 doi: 10.1126/science.aac9439 – ident: e_1_2_5_14_1 doi: 10.1038/nmat3064 – ident: e_1_2_5_20_1 doi: 10.1021/acsami.8b16616 – ident: e_1_2_5_44_1 doi: 10.1016/j.compositesa.2017.04.001 – ident: e_1_2_5_42_1 doi: 10.1021/nl501996v – ident: e_1_2_5_49_1 doi: 10.1016/j.nanoen.2018.03.075 – ident: e_1_2_5_36_1 doi: 10.1016/S0017-9310(00)00309-4 – ident: e_1_2_5_24_1 doi: 10.1021/cm501473t – ident: e_1_2_5_11_1 doi: 10.1002/adma.200800401 – ident: e_1_2_5_26_1 doi: 10.1039/C7NR04686C – ident: e_1_2_5_45_1 doi: 10.1039/C7RA08181B – ident: e_1_2_5_35_1 doi: 10.1016/j.pmatsci.2004.01.001 – ident: e_1_2_5_23_1 doi: 10.1039/C5TC02194D – ident: e_1_2_5_10_1 doi: 10.1021/nn304310n – ident: e_1_2_5_48_1 doi: 10.1021/acsnano.5b02917 – ident: e_1_2_5_9_1 doi: 10.1039/C7GC03595K – ident: e_1_2_5_28_1 doi: 10.1039/C6TA08454K – ident: e_1_2_5_46_1 doi: 10.1002/adem.201500451 – ident: e_1_2_5_1_1 doi: 10.1126/science.1218761 – ident: e_1_2_5_43_1 doi: 10.1002/adem.201800237 – ident: e_1_2_5_4_1 doi: 10.1002/adma.201401449 – ident: e_1_2_5_13_1 doi: 10.1021/am503619a – volume: 8 year: 2017 ident: e_1_2_5_2_1 publication-title: Nat. Commun. – ident: e_1_2_5_6_1 doi: 10.1016/j.rser.2016.06.071 – ident: e_1_2_5_32_1 doi: 10.1093/nsr/nwu072 – ident: e_1_2_5_18_1 doi: 10.1038/srep26825 – ident: e_1_2_5_40_1 doi: 10.1002/adma.201900199 – ident: e_1_2_5_34_1 doi: 10.1038/nnano.2011.216 – ident: e_1_2_5_38_1 doi: 10.1016/j.energy.2010.09.046 – ident: e_1_2_5_22_1 doi: 10.1021/acsami.5b02681 – ident: e_1_2_5_17_1 doi: 10.1038/ncomms14486 – ident: e_1_2_5_37_1 doi: 10.1016/j.applthermaleng.2005.11.022 – ident: e_1_2_5_47_1 doi: 10.1039/C3EE42573H – ident: e_1_2_5_31_1 doi: 10.1021/nn1015506 – ident: e_1_2_5_41_1 doi: 10.1021/nl203906r – ident: e_1_2_5_39_1 doi: 10.1039/C6NR03921A – ident: e_1_2_5_7_1 doi: 10.1016/j.matlet.2009.02.045 – ident: e_1_2_5_5_1 doi: 10.1016/j.solmat.2017.07.023 – ident: e_1_2_5_33_1 doi: 10.1038/s41467-018-03029-x – ident: e_1_2_5_12_1 doi: 10.1021/acs.nanolett.6b00722 – ident: e_1_2_5_50_1 doi: 10.1016/S0008-6223(01)00032-X – ident: e_1_2_5_27_1 doi: 10.1021/acsami.6b13207 – ident: e_1_2_5_16_1 doi: 10.1038/ncomms4689 – volume: 8 year: 2017 ident: e_1_2_5_3_1 publication-title: Nat. Commun. – ident: e_1_2_5_19_1 doi: 10.1021/cm504550e – ident: e_1_2_5_21_1 doi: 10.1038/ncomms1288 – ident: e_1_2_5_29_1 doi: 10.1021/acs.chemmater.6b01595 – ident: e_1_2_5_30_1 doi: 10.1039/C8TA00078F – ident: e_1_2_5_8_1 doi: 10.1002/adfm.201202638 |
SSID | ssj0009606 |
Score | 2.6951232 |
Snippet | Efficient thermal energy harvesting using phase‐change materials (PCMs) has great potential for cost‐effective thermal management and energy storage... Efficient thermal energy harvesting using phase-change materials (PCMs) has great potential for cost-effective thermal management and energy storage... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1905099 |
SubjectTerms | Density Energy harvesting Energy management Energy storage expanded graphite Graphite graphite sheets Heat conductivity Heat transfer Materials science Nanocomposites Phase change phase change composites Sheets Thermal conductivity Thermal energy thermal energy harvesting Thermal management |
Title | High‐Performance Thermally Conductive Phase Change Composites by Large‐Size Oriented Graphite Sheets for Scalable Thermal Energy Harvesting |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201905099 https://www.ncbi.nlm.nih.gov/pubmed/31621971 https://www.proquest.com/docview/2321209109 https://www.proquest.com/docview/2306490783 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQJziwL4WCjITEKW2TONuxKi0VYqlokXqLHMehiCpFJD20J_4AvpEvYSZbWxBCgkMkR7bjJTOel3jmmZDTgAMOdXyhIH5VmBHoCuBkqeiMWyIwE0iL3hY3ZvueXfaN_lwUf8oPUfxwQ81I1mtUcO5F1RlpKPcT3iAwaGDzMIIPHbYQFd3N-KMQnidke7oBXWB2ztpY06qL1Ret0jeouYhcE9PTWic873TqcfJUGcdeRUy_8Dn-Z1QbZC3DpbSeCtImWZLhFlmdYyvcJm_oE_Lx-t6ZxRpQkDJIDYcT2hiFSB0LiyftDMA00jRugeKCg45hMqLehF6h4zk8o_s4lfQWOZYB8dILZM2GIrQ7kDKOKDyedkF4MKwrb4I2kyhFiocZITNI-LBDeq1mr9FWsvMcFMEsx1EY85lpS9MWhmapqs4kGGgbPos5h6vmqTbHQQde4OtawIUUAE5NwXQBIMiW-i5ZDkeh3CfUd7yaJpm0TMtjquVzW-OOKkyp-cjvr5aIkr9OV2Rc53jkxtBNWZo1F-fZLea5RM6K8s8py8ePJcu5dLiZtkcuoFIMQVZrkH1SZIOe4uYLD-VojGUA_Dm4aVoie6lUFU3pqgmGw4Jua4ls_NIHt35-XS_uDv5S6ZCsYDr1yymT5fhlLI8AXcXecaJBn-hfHaY |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xHIAD-1JWIyFxCm0SN8uxYitQFtEicYscxwFElSLaHuDEH8A38iXMOE1KQQgJDpGyOPYkmfE8OzPPAFuxQBzqR9Ig_GrwcmwbiJOVYXPhytjRkJaiLc6c6hU_vi5n0YSUC5PyQ-QTbmQZur8mA6cJ6WKfNVREmjgIPRo6PX8YRmlZbz2quuwzSBFA13R7dhmF4F7G21iyioP3D_qlb2BzELtq53MwBWEmdhpzcr_T7YQ78vkLo-O_nmsaJnvQlFVSXZqBIZXMwsQnwsI5eKWwkPeXt4t-ugFDRcO9ZvOJ7bYSYo_F_pNd3KJ3ZGnqAqM-h2LDVJuFT6xGsedYR_3uWbFzollG0MsOiTgbi7D6rVKdNsPqWR31hzK7sibYvk5UZLSeEZGDJDfz0DjYb-xWjd6SDobkru8bnEfc8ZTjybLlmqbNFfpoD0fGQuBWCk1P0EPHYRzZViykkohPHcltiTjIU_YCjCStRC0Bi_ywZCmuXMcNuelGwrOEb0pHWRFR_JsFMLLvGcge3TmtutEMUqJmK6D3HOTvuQDbefmHlOjjx5KrmXoEPYNvBwhMKQvZLOHlzfwymir9fxGJanWpDOI_n_6bFmAxVau8Kdt00He4KLalleMXGYLK3mklP1r-y00bMFZtnNaC2tHZyQqM0_k0TGcVRjqPXbWGYKsTrmtz-gCvuCHB |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BkBA90PJoG5rCIiFxcurHZm0fozxaIISIBCk3a71eN1UjJyLJITnxD9rf2F_SGTt2kiKEBAdLtne9L8_sfPbOfAvwIZaIQ_1IGYRfDV6LHQNxsjYcLl0VixTSkrdFV1z84J-HteFWFH_GD1H8cCPNSOdrUvBpFJ9tSENllPIGoUFDm-c_hidcmB7JdfP7hkCK8HnKtufUsA3cy2kbTfts9_lds_Qb1tyFrqntae-DzFuduZxcVxfzsKpWDwgd_6dbB_B8DUxZPZOkF_BIJy9hb4uu8BXckFPI3a_b3ibYgKGY4dl4vGSNSULcsTh7st4IbSPLAhcYzTjkGaZnLFyyDnmeYxn9q5Vm34hkGSEvOyfabMzC-iOt5zOGxbM-Sg_FdeVVsFYapshoNyOiBkkuX8Og3Ro0Loz1hg6G4q7vG5xHXHhaeKpmu5blcI0W2sPvYinxMEPLk9TpOIwjx46l0grRqVDcUYiCPO0cQimZJPoYWOSHpq25doUbcsuNpGdL31JC2xER_FtlMPLXGag12TntuTEOMppmO6BxDopxLsPHIv80o_n4Y85KLh3BWt1nAcJSikG2TEx-XySjotLqi0z0ZEF5EP35tGpahqNMqoqqHEug5XCx2XYqG39pQ1Bvfq0XV2_-5aF38LTXbAedT90vJ_CMbmc-OhUozX8u9CkirXn4NlWme00fIHk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High%E2%80%90Performance+Thermally+Conductive+Phase+Change+Composites+by+Large%E2%80%90Size+Oriented+Graphite+Sheets+for+Scalable+Thermal+Energy+Harvesting&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Wu%2C+Si&rft.au=Li%2C+Tingxian&rft.au=Tong%2C+Zhen&rft.au=Chao%2C+Jingwei&rft.date=2019-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=31&rft.issue=49&rft_id=info:doi/10.1002%2Fadma.201905099&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |