High‐Performance Thermally Conductive Phase Change Composites by Large‐Size Oriented Graphite Sheets for Scalable Thermal Energy Harvesting

Efficient thermal energy harvesting using phase‐change materials (PCMs) has great potential for cost‐effective thermal management and energy storage applications. However, the low thermal conductivity of PCMs (KPCM) is a long‐standing bottleneck for high‐power‐density energy harvesting. Although PCM...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 31; no. 49; pp. e1905099 - n/a
Main Authors Wu, Si, Li, Tingxian, Tong, Zhen, Chao, Jingwei, Zhai, Tianyao, Xu, Jiaxing, Yan, Taisen, Wu, Minqiang, Xu, Zhenyuan, Bao, Hua, Deng, Tao, Wang, Ruzhu
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.12.2019
Subjects
Online AccessGet full text
ISSN0935-9648
1521-4095
1521-4095
DOI10.1002/adma.201905099

Cover

Loading…
Abstract Efficient thermal energy harvesting using phase‐change materials (PCMs) has great potential for cost‐effective thermal management and energy storage applications. However, the low thermal conductivity of PCMs (KPCM) is a long‐standing bottleneck for high‐power‐density energy harvesting. Although PCM‐based nanocomposites with an enhanced thermal conductivity can address this issue, achieving a higher K (>10 W m−1 K−1) at filler loadings below 50 wt% remains challenging. A strategy for synthesizing highly thermally conductive phase‐change composites (PCCs) by compression‐induced construction of large aligned graphite sheets inside PCCs is demonstrated. The millimeter‐sized graphite sheet consists of lateral van‐der‐Waals‐bonded and oriented graphite nanoplatelets at the micro/nanoscale, which together with a thin PCM layer between the sheets synergistically enhance KPCM in the range of 4.4–35.0 W m−1 K−1 at graphite loadings below 40.0 wt%. The resulting PCCs also demonstrate homogeneity, no leakage, and superior phase change behavior, which can be easily engineered into devices for efficient thermal energy harvesting by coordinating the sheet orientation with the thermal transport direction. This method offers a promising route to high‐power‐density and low‐cost applications of PCMs in large‐scale thermal energy storage, thermal management of electronics, etc. A method for synthesizing high‐performance thermally conductive phase‐ change composites is demonstrated. Large aligned graphite sheets inside the composite are generated from worm‐like expanded graphite. The aligned and interconnected graphite framework enhances KPCM up to 4.4–35.0 W m−1 K−1 at graphite loadings below 40.0 wt%, which may accelerate the high‐power‐density, low‐cost, and large‐scale applications of phase‐change materials.
AbstractList Efficient thermal energy harvesting using phase‐change materials (PCMs) has great potential for cost‐effective thermal management and energy storage applications. However, the low thermal conductivity of PCMs ( K PCM ) is a long‐standing bottleneck for high‐power‐density energy harvesting. Although PCM‐based nanocomposites with an enhanced thermal conductivity can address this issue, achieving a higher K (>10 W m −1 K −1 ) at filler loadings below 50 wt% remains challenging. A strategy for synthesizing highly thermally conductive phase‐change composites (PCCs) by compression‐induced construction of large aligned graphite sheets inside PCCs is demonstrated. The millimeter‐sized graphite sheet consists of lateral van‐der‐Waals‐bonded and oriented graphite nanoplatelets at the micro/nanoscale, which together with a thin PCM layer between the sheets synergistically enhance K PCM in the range of 4.4–35.0 W m −1 K −1 at graphite loadings below 40.0 wt%. The resulting PCCs also demonstrate homogeneity, no leakage, and superior phase change behavior, which can be easily engineered into devices for efficient thermal energy harvesting by coordinating the sheet orientation with the thermal transport direction. This method offers a promising route to high‐power‐density and low‐cost applications of PCMs in large‐scale thermal energy storage, thermal management of electronics, etc.
Efficient thermal energy harvesting using phase‐change materials (PCMs) has great potential for cost‐effective thermal management and energy storage applications. However, the low thermal conductivity of PCMs (KPCM) is a long‐standing bottleneck for high‐power‐density energy harvesting. Although PCM‐based nanocomposites with an enhanced thermal conductivity can address this issue, achieving a higher K (>10 W m−1 K−1) at filler loadings below 50 wt% remains challenging. A strategy for synthesizing highly thermally conductive phase‐change composites (PCCs) by compression‐induced construction of large aligned graphite sheets inside PCCs is demonstrated. The millimeter‐sized graphite sheet consists of lateral van‐der‐Waals‐bonded and oriented graphite nanoplatelets at the micro/nanoscale, which together with a thin PCM layer between the sheets synergistically enhance KPCM in the range of 4.4–35.0 W m−1 K−1 at graphite loadings below 40.0 wt%. The resulting PCCs also demonstrate homogeneity, no leakage, and superior phase change behavior, which can be easily engineered into devices for efficient thermal energy harvesting by coordinating the sheet orientation with the thermal transport direction. This method offers a promising route to high‐power‐density and low‐cost applications of PCMs in large‐scale thermal energy storage, thermal management of electronics, etc.
Efficient thermal energy harvesting using phase-change materials (PCMs) has great potential for cost-effective thermal management and energy storage applications. However, the low thermal conductivity of PCMs (K ) is a long-standing bottleneck for high-power-density energy harvesting. Although PCM-based nanocomposites with an enhanced thermal conductivity can address this issue, achieving a higher K (>10 W m K ) at filler loadings below 50 wt% remains challenging. A strategy for synthesizing highly thermally conductive phase-change composites (PCCs) by compression-induced construction of large aligned graphite sheets inside PCCs is demonstrated. The millimeter-sized graphite sheet consists of lateral van-der-Waals-bonded and oriented graphite nanoplatelets at the micro/nanoscale, which together with a thin PCM layer between the sheets synergistically enhance K in the range of 4.4-35.0 W m K at graphite loadings below 40.0 wt%. The resulting PCCs also demonstrate homogeneity, no leakage, and superior phase change behavior, which can be easily engineered into devices for efficient thermal energy harvesting by coordinating the sheet orientation with the thermal transport direction. This method offers a promising route to high-power-density and low-cost applications of PCMs in large-scale thermal energy storage, thermal management of electronics, etc.
Efficient thermal energy harvesting using phase‐change materials (PCMs) has great potential for cost‐effective thermal management and energy storage applications. However, the low thermal conductivity of PCMs (KPCM) is a long‐standing bottleneck for high‐power‐density energy harvesting. Although PCM‐based nanocomposites with an enhanced thermal conductivity can address this issue, achieving a higher K (>10 W m−1 K−1) at filler loadings below 50 wt% remains challenging. A strategy for synthesizing highly thermally conductive phase‐change composites (PCCs) by compression‐induced construction of large aligned graphite sheets inside PCCs is demonstrated. The millimeter‐sized graphite sheet consists of lateral van‐der‐Waals‐bonded and oriented graphite nanoplatelets at the micro/nanoscale, which together with a thin PCM layer between the sheets synergistically enhance KPCM in the range of 4.4–35.0 W m−1 K−1 at graphite loadings below 40.0 wt%. The resulting PCCs also demonstrate homogeneity, no leakage, and superior phase change behavior, which can be easily engineered into devices for efficient thermal energy harvesting by coordinating the sheet orientation with the thermal transport direction. This method offers a promising route to high‐power‐density and low‐cost applications of PCMs in large‐scale thermal energy storage, thermal management of electronics, etc. A method for synthesizing high‐performance thermally conductive phase‐ change composites is demonstrated. Large aligned graphite sheets inside the composite are generated from worm‐like expanded graphite. The aligned and interconnected graphite framework enhances KPCM up to 4.4–35.0 W m−1 K−1 at graphite loadings below 40.0 wt%, which may accelerate the high‐power‐density, low‐cost, and large‐scale applications of phase‐change materials.
Efficient thermal energy harvesting using phase-change materials (PCMs) has great potential for cost-effective thermal management and energy storage applications. However, the low thermal conductivity of PCMs (KPCM ) is a long-standing bottleneck for high-power-density energy harvesting. Although PCM-based nanocomposites with an enhanced thermal conductivity can address this issue, achieving a higher K (>10 W m-1 K-1 ) at filler loadings below 50 wt% remains challenging. A strategy for synthesizing highly thermally conductive phase-change composites (PCCs) by compression-induced construction of large aligned graphite sheets inside PCCs is demonstrated. The millimeter-sized graphite sheet consists of lateral van-der-Waals-bonded and oriented graphite nanoplatelets at the micro/nanoscale, which together with a thin PCM layer between the sheets synergistically enhance KPCM in the range of 4.4-35.0 W m-1 K-1 at graphite loadings below 40.0 wt%. The resulting PCCs also demonstrate homogeneity, no leakage, and superior phase change behavior, which can be easily engineered into devices for efficient thermal energy harvesting by coordinating the sheet orientation with the thermal transport direction. This method offers a promising route to high-power-density and low-cost applications of PCMs in large-scale thermal energy storage, thermal management of electronics, etc.Efficient thermal energy harvesting using phase-change materials (PCMs) has great potential for cost-effective thermal management and energy storage applications. However, the low thermal conductivity of PCMs (KPCM ) is a long-standing bottleneck for high-power-density energy harvesting. Although PCM-based nanocomposites with an enhanced thermal conductivity can address this issue, achieving a higher K (>10 W m-1 K-1 ) at filler loadings below 50 wt% remains challenging. A strategy for synthesizing highly thermally conductive phase-change composites (PCCs) by compression-induced construction of large aligned graphite sheets inside PCCs is demonstrated. The millimeter-sized graphite sheet consists of lateral van-der-Waals-bonded and oriented graphite nanoplatelets at the micro/nanoscale, which together with a thin PCM layer between the sheets synergistically enhance KPCM in the range of 4.4-35.0 W m-1 K-1 at graphite loadings below 40.0 wt%. The resulting PCCs also demonstrate homogeneity, no leakage, and superior phase change behavior, which can be easily engineered into devices for efficient thermal energy harvesting by coordinating the sheet orientation with the thermal transport direction. This method offers a promising route to high-power-density and low-cost applications of PCMs in large-scale thermal energy storage, thermal management of electronics, etc.
Author Wu, Si
Yan, Taisen
Tong, Zhen
Xu, Jiaxing
Deng, Tao
Zhai, Tianyao
Xu, Zhenyuan
Wang, Ruzhu
Chao, Jingwei
Wu, Minqiang
Li, Tingxian
Bao, Hua
Author_xml – sequence: 1
  givenname: Si
  surname: Wu
  fullname: Wu, Si
  organization: Shanghai Jiao Tong University
– sequence: 2
  givenname: Tingxian
  orcidid: 0000-0003-4618-8144
  surname: Li
  fullname: Li, Tingxian
  email: Litx@sjtu.edu.cn
  organization: Shanghai Jiao Tong University
– sequence: 3
  givenname: Zhen
  surname: Tong
  fullname: Tong, Zhen
  organization: Shanghai Jiao Tong University
– sequence: 4
  givenname: Jingwei
  surname: Chao
  fullname: Chao, Jingwei
  organization: Shanghai Jiao Tong University
– sequence: 5
  givenname: Tianyao
  surname: Zhai
  fullname: Zhai, Tianyao
  organization: Shanghai Jiao Tong University
– sequence: 6
  givenname: Jiaxing
  surname: Xu
  fullname: Xu, Jiaxing
  organization: Shanghai Jiao Tong University
– sequence: 7
  givenname: Taisen
  surname: Yan
  fullname: Yan, Taisen
  organization: Shanghai Jiao Tong University
– sequence: 8
  givenname: Minqiang
  surname: Wu
  fullname: Wu, Minqiang
  organization: Shanghai Jiao Tong University
– sequence: 9
  givenname: Zhenyuan
  surname: Xu
  fullname: Xu, Zhenyuan
  organization: Shanghai Jiao Tong University
– sequence: 10
  givenname: Hua
  surname: Bao
  fullname: Bao, Hua
  organization: Shanghai Jiao Tong University
– sequence: 11
  givenname: Tao
  surname: Deng
  fullname: Deng, Tao
  email: Dengtao@sjtu.edu.cn
  organization: Shanghai Jiao Tong University
– sequence: 12
  givenname: Ruzhu
  surname: Wang
  fullname: Wang, Ruzhu
  email: Rzwang@sjtu.edu.cn
  organization: Shanghai Jiao Tong University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31621971$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1uEzEUhS1URNPAliWyxIbNBNvj-fEySkuDFNRKyd7yeO7MuJqxgz0pGla8ATwjT4KjtEWqhFhY14vvnHt1zgU6s84CQm8pWVBC2EdVD2rBCBUkI0K8QDOaMZpwIrIzNCMizRKR8_IcXYRwRwgROclfofOU5oyKgs7Qz7Vpu98_ft2Cb5wflNWAdx3EX99PeOVsfdCjuQd826kAeNUp28bhhr0LZoSAqwlvlG8hemzNd8A33oAdocbXXu27iOBtBzAGHO3xVqteVf3TCnxlwbcTXit_D2E0tn2NXjaqD_DmYc7R7tPVbrVONjfXn1fLTaJ5IUTCec3zEvJSZ6ygNOUAUJes4ErFRypaqmMeTdXUKWuUBi2KItc81YSVJaRz9OFku_fu6yGuloMJGvpeWXCHIFlKci5IUaYRff8MvXMHb-NxkWKUEUFjznP07oE6VAPUcu_NoPwkH5OOAD8B2rsQPDRSm1GNxtnRK9NLSuSxUHksVD4VGmWLZ7JH538KxEnwzfQw_YeWy8svy7_aPwOwtf0
CitedBy_id crossref_primary_10_1021_acs_chemrev_2c00572
crossref_primary_10_1016_j_solmat_2022_111718
crossref_primary_10_1016_j_carbon_2024_119763
crossref_primary_10_1002_smtd_202300139
crossref_primary_10_1002_adma_202314130
crossref_primary_10_1016_j_pmatsci_2024_101380
crossref_primary_10_1016_j_compscitech_2025_111120
crossref_primary_10_1021_acsanm_2c01462
crossref_primary_10_1080_15435075_2025_2459124
crossref_primary_10_1016_j_matt_2022_07_013
crossref_primary_10_1016_j_nanoen_2024_109400
crossref_primary_10_1016_j_est_2022_105358
crossref_primary_10_1016_j_energy_2020_118852
crossref_primary_10_1016_j_cej_2023_144720
crossref_primary_10_1016_j_cej_2023_145814
crossref_primary_10_1016_j_apenergy_2023_121462
crossref_primary_10_1016_j_ensm_2021_04_033
crossref_primary_10_1007_s43538_023_00217_2
crossref_primary_10_1016_j_compositesa_2023_107979
crossref_primary_10_1016_j_cej_2022_134549
crossref_primary_10_1016_j_mtcomm_2025_111529
crossref_primary_10_1016_j_energy_2025_135202
crossref_primary_10_1039_D0TA05247G
crossref_primary_10_1039_D0EE01355B
crossref_primary_10_1016_j_jclepro_2021_130014
crossref_primary_10_1021_acsnano_1c11097
crossref_primary_10_1016_j_ensm_2023_102814
crossref_primary_10_1021_acsnano_2c05067
crossref_primary_10_1002_smll_202105647
crossref_primary_10_1016_j_decarb_2024_100051
crossref_primary_10_1016_j_compositesa_2022_107309
crossref_primary_10_1016_j_cej_2024_149203
crossref_primary_10_1016_j_apsusc_2023_156404
crossref_primary_10_1021_acssuschemeng_4c09386
crossref_primary_10_1016_j_cej_2023_142402
crossref_primary_10_1016_j_isci_2020_101606
crossref_primary_10_1021_acsapm_5c00340
crossref_primary_10_1016_j_cej_2023_145916
crossref_primary_10_1021_acsami_1c21778
crossref_primary_10_1016_j_matt_2023_09_011
crossref_primary_10_1016_j_gee_2022_02_007
crossref_primary_10_1002_adma_202211100
crossref_primary_10_1016_j_apenergy_2021_117991
crossref_primary_10_1021_acsami_3c13298
crossref_primary_10_1021_acsnano_0c10768
crossref_primary_10_1021_acssuschemeng_4c00638
crossref_primary_10_1002_smll_202303933
crossref_primary_10_1016_j_renene_2024_121805
crossref_primary_10_1016_j_est_2023_110056
crossref_primary_10_3390_nano14020154
crossref_primary_10_1016_j_compscitech_2022_109756
crossref_primary_10_1007_s40820_022_00878_6
crossref_primary_10_1016_j_cep_2022_108791
crossref_primary_10_1016_j_coco_2023_101764
crossref_primary_10_1016_j_compositesa_2022_107128
crossref_primary_10_3390_pr11040999
crossref_primary_10_1002_smll_202402575
crossref_primary_10_1016_j_est_2024_113974
crossref_primary_10_1016_j_cej_2022_135675
crossref_primary_10_1016_j_cej_2022_137733
crossref_primary_10_1016_j_jallcom_2024_174449
crossref_primary_10_1016_j_mtnano_2022_100198
crossref_primary_10_1016_j_etran_2025_100396
crossref_primary_10_1016_j_actamat_2023_118852
crossref_primary_10_1016_j_progpolymsci_2020_101289
crossref_primary_10_1080_1536383X_2022_2066654
crossref_primary_10_1016_j_rser_2023_113373
crossref_primary_10_3390_en16083348
crossref_primary_10_1016_j_solmat_2022_111938
crossref_primary_10_1016_j_cej_2023_141882
crossref_primary_10_1016_j_cej_2024_151960
crossref_primary_10_1016_j_cej_2024_158482
crossref_primary_10_1002_smll_202105567
crossref_primary_10_1016_j_energy_2023_129637
crossref_primary_10_1038_s41467_024_49333_7
crossref_primary_10_1039_D1TA10037H
crossref_primary_10_1016_j_energy_2020_118756
crossref_primary_10_1016_j_ast_2023_108576
crossref_primary_10_1016_j_est_2022_105890
crossref_primary_10_1021_acsaenm_3c00352
crossref_primary_10_1002_mame_202300036
crossref_primary_10_1016_j_cej_2021_129609
crossref_primary_10_1016_j_ensm_2023_102901
crossref_primary_10_1021_acssuschemeng_3c02154
crossref_primary_10_1016_j_est_2024_112660
crossref_primary_10_1016_j_molliq_2023_123292
crossref_primary_10_1016_j_mtadv_2022_100270
crossref_primary_10_1039_D4MH00793J
crossref_primary_10_1021_acsami_2c15602
crossref_primary_10_1016_j_est_2023_110180
crossref_primary_10_1016_j_est_2022_105414
crossref_primary_10_1016_j_compscitech_2021_109223
crossref_primary_10_1016_j_compositesb_2021_108666
crossref_primary_10_1016_j_scib_2024_08_028
crossref_primary_10_12677_japc_2025_141011
crossref_primary_10_1021_acs_langmuir_4c00830
crossref_primary_10_3390_nano14242047
crossref_primary_10_1002_smll_202101093
crossref_primary_10_1016_j_matt_2022_05_006
crossref_primary_10_1016_S1872_5805_24_60887_5
crossref_primary_10_1016_j_cej_2024_154305
crossref_primary_10_1016_j_compositesb_2024_112092
crossref_primary_10_1016_j_ijthermalsci_2024_109493
crossref_primary_10_1016_j_compositesb_2024_112093
crossref_primary_10_1016_j_compositesa_2022_107047
crossref_primary_10_1021_acssuschemeng_2c05538
crossref_primary_10_1016_j_enbuild_2021_111167
crossref_primary_10_1016_j_indcrop_2023_117483
crossref_primary_10_1016_j_mtcomm_2022_104549
crossref_primary_10_1016_j_xcrp_2024_102046
crossref_primary_10_1016_j_enbuild_2023_112933
crossref_primary_10_1039_D2TA06457J
crossref_primary_10_1039_D4MH00792A
crossref_primary_10_1021_acs_chemrev_2c00618
crossref_primary_10_1002_adfm_202109255
crossref_primary_10_1021_acsami_0c22814
crossref_primary_10_1016_j_carbon_2022_07_009
crossref_primary_10_1007_s40820_021_00702_7
crossref_primary_10_1016_j_cej_2021_130180
crossref_primary_10_1021_acsnano_3c08467
crossref_primary_10_1007_s40820_022_00947_w
crossref_primary_10_1002_adfm_202405625
crossref_primary_10_1002_admt_202100970
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126301
crossref_primary_10_1016_j_est_2024_110447
crossref_primary_10_1016_j_rser_2021_111088
crossref_primary_10_1002_solr_202300039
crossref_primary_10_1016_j_compositesa_2023_107563
crossref_primary_10_1016_j_solmat_2023_112338
crossref_primary_10_1016_j_est_2024_110566
crossref_primary_10_1016_j_est_2023_109273
crossref_primary_10_1016_j_enconman_2021_115079
crossref_primary_10_1016_j_enconman_2021_115078
crossref_primary_10_1016_j_ijheatmasstransfer_2021_122127
crossref_primary_10_1021_accountsmr_2c00251
crossref_primary_10_1016_j_energy_2020_117711
crossref_primary_10_1002_sus2_147
crossref_primary_10_1016_j_carbon_2023_03_041
crossref_primary_10_1016_j_colsurfa_2022_129516
crossref_primary_10_1016_j_compositesb_2025_112205
crossref_primary_10_3390_polym13081312
crossref_primary_10_1007_s12274_022_4824_2
crossref_primary_10_1016_j_compscitech_2024_110592
crossref_primary_10_1016_j_nanoen_2021_106338
crossref_primary_10_1016_j_enconman_2023_116948
crossref_primary_10_1016_j_cej_2024_156922
crossref_primary_10_1002_smll_202407626
crossref_primary_10_1021_acsmaterialslett_3c00351
crossref_primary_10_1016_j_cej_2021_133007
crossref_primary_10_1021_acs_chemmater_1c03275
crossref_primary_10_1016_j_est_2023_107169
crossref_primary_10_1016_j_cej_2020_125330
crossref_primary_10_1002_pc_28943
crossref_primary_10_1016_j_cej_2023_142583
crossref_primary_10_1002_advs_202207652
crossref_primary_10_1016_j_apmt_2024_102574
crossref_primary_10_1021_acsapm_3c02638
crossref_primary_10_1021_acsami_0c18603
crossref_primary_10_1016_j_fuel_2022_125771
crossref_primary_10_1016_j_cej_2024_155940
crossref_primary_10_1002_macp_202300260
crossref_primary_10_1016_j_solmat_2023_112277
crossref_primary_10_1021_acsapm_3c01679
crossref_primary_10_1016_j_mtcomm_2024_108420
crossref_primary_10_1039_D2SE01084D
crossref_primary_10_1126_sciadv_adr8445
crossref_primary_10_1016_j_apenergy_2022_119509
crossref_primary_10_1016_j_energy_2023_129001
crossref_primary_10_1016_j_est_2024_110638
crossref_primary_10_1021_acsami_3c04429
crossref_primary_10_1016_j_cej_2024_149009
crossref_primary_10_1016_j_rser_2022_112283
crossref_primary_10_1007_s10854_021_07371_7
crossref_primary_10_1016_j_envres_2021_110853
crossref_primary_10_1016_j_cej_2024_149240
crossref_primary_10_1016_j_est_2024_110992
crossref_primary_10_1016_j_solener_2023_111926
crossref_primary_10_1016_j_est_2022_104836
crossref_primary_10_1021_acsapm_2c00105
crossref_primary_10_1016_j_cej_2020_127764
crossref_primary_10_1016_j_polymer_2022_125204
crossref_primary_10_1016_j_ensm_2024_103466
crossref_primary_10_1039_D0TA07289C
crossref_primary_10_1016_j_est_2023_110349
crossref_primary_10_1016_j_solener_2022_02_042
crossref_primary_10_1016_j_coco_2024_102053
crossref_primary_10_1016_j_nanoms_2023_09_003
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121115
crossref_primary_10_1007_s10853_022_07872_8
crossref_primary_10_1016_j_jclepro_2024_142864
crossref_primary_10_1016_j_ensm_2021_07_019
crossref_primary_10_1016_j_energy_2023_126746
crossref_primary_10_1039_D3QM01174G
crossref_primary_10_1016_j_cej_2024_155235
crossref_primary_10_1016_j_compositesa_2021_106638
crossref_primary_10_1002_aenm_202402667
crossref_primary_10_1021_acsaem_1c00235
crossref_primary_10_1016_j_ensm_2024_103602
crossref_primary_10_1016_j_cej_2021_132997
crossref_primary_10_1016_j_est_2023_108338
crossref_primary_10_1080_09506608_2022_2053774
crossref_primary_10_1021_acssuschemeng_3c00345
crossref_primary_10_1016_j_est_2022_104931
crossref_primary_10_3390_en18030569
crossref_primary_10_1016_j_apenergy_2020_114886
crossref_primary_10_1002_admi_202100807
crossref_primary_10_1016_j_cej_2021_131665
crossref_primary_10_1016_j_enchem_2022_100071
crossref_primary_10_1016_j_enconman_2021_114957
crossref_primary_10_1016_j_est_2025_115687
crossref_primary_10_1039_D0MH02069A
crossref_primary_10_1016_j_fuel_2024_133909
crossref_primary_10_1002_adma_202308494
crossref_primary_10_1016_j_est_2023_109892
crossref_primary_10_1016_j_cej_2021_132741
crossref_primary_10_1016_j_est_2022_104707
crossref_primary_10_1016_j_compositesb_2023_110584
crossref_primary_10_1002_adfm_202008705
crossref_primary_10_1016_j_est_2021_103556
crossref_primary_10_3390_polym16142028
crossref_primary_10_1016_j_est_2024_110719
crossref_primary_10_1002_aesr_202200164
crossref_primary_10_1021_acsami_3c00546
crossref_primary_10_1016_j_est_2023_110310
crossref_primary_10_1016_j_cej_2024_153271
crossref_primary_10_1016_j_solmat_2022_112027
crossref_primary_10_1016_j_solmat_2022_112142
crossref_primary_10_1016_j_cej_2021_133983
crossref_primary_10_1016_j_energy_2020_117067
crossref_primary_10_1002_adma_202402897
crossref_primary_10_1002_smll_202312134
crossref_primary_10_1016_j_compscitech_2024_110469
crossref_primary_10_1016_j_est_2024_110725
crossref_primary_10_1016_j_solener_2021_08_039
crossref_primary_10_1016_j_ensm_2022_01_003
crossref_primary_10_1016_j_compscitech_2020_108558
crossref_primary_10_1039_D0TA01320J
crossref_primary_10_1016_j_energy_2022_124198
crossref_primary_10_1021_acsami_2c11843
crossref_primary_10_1002_adfm_202200792
crossref_primary_10_1038_s41560_021_00778_w
crossref_primary_10_1039_D2TA08748K
crossref_primary_10_1016_j_icheatmasstransfer_2024_108318
crossref_primary_10_1016_j_aets_2024_12_005
crossref_primary_10_1038_s41467_022_29090_1
crossref_primary_10_1016_j_applthermaleng_2020_115560
crossref_primary_10_1016_j_carbon_2022_09_064
crossref_primary_10_1002_smll_202404184
crossref_primary_10_1002_adma_202307071
crossref_primary_10_1007_s10853_021_06147_y
crossref_primary_10_1016_j_cej_2025_161033
crossref_primary_10_1016_j_ensm_2021_08_022
crossref_primary_10_1016_j_ensm_2024_103640
crossref_primary_10_1007_s12598_023_02483_x
crossref_primary_10_1016_j_cej_2021_131466
crossref_primary_10_1002_advs_202003734
crossref_primary_10_1007_s40820_022_01003_3
crossref_primary_10_1016_j_seta_2023_103505
crossref_primary_10_1007_s10853_022_07551_8
crossref_primary_10_1016_j_pmatsci_2022_101054
crossref_primary_10_1016_j_compositesa_2024_108331
crossref_primary_10_1002_adma_202311335
crossref_primary_10_1016_j_compscitech_2021_108832
crossref_primary_10_1016_j_decarb_2023_100005
crossref_primary_10_1016_j_compscitech_2021_108835
crossref_primary_10_1002_adfm_202401295
crossref_primary_10_1016_j_cej_2021_133519
crossref_primary_10_1016_j_ccr_2024_215920
crossref_primary_10_1016_j_surfin_2024_104437
crossref_primary_10_1016_j_seta_2020_100957
crossref_primary_10_1016_j_rser_2022_112321
crossref_primary_10_1002_elt2_56
crossref_primary_10_1016_j_fuel_2023_128499
crossref_primary_10_1016_j_cej_2024_154562
crossref_primary_10_1021_acscentsci_0c00570
crossref_primary_10_1016_j_cej_2024_153235
crossref_primary_10_1016_j_est_2024_114155
crossref_primary_10_1016_j_est_2023_108791
crossref_primary_10_1016_j_est_2023_109761
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121405
crossref_primary_10_1016_j_matt_2021_09_017
crossref_primary_10_1016_j_compscitech_2024_110664
crossref_primary_10_1021_acsnano_2c02557
crossref_primary_10_1016_j_enbenv_2022_02_004
crossref_primary_10_1039_D0TA05904H
crossref_primary_10_1016_j_cej_2024_151170
crossref_primary_10_1177_26349833241301420
crossref_primary_10_1016_j_cej_2024_152259
crossref_primary_10_1016_j_apenergy_2022_119116
crossref_primary_10_1016_j_cej_2024_158915
crossref_primary_10_1016_j_est_2023_109876
crossref_primary_10_1016_j_est_2023_109877
crossref_primary_10_1002_app_51218
crossref_primary_10_1021_acsami_4c17131
crossref_primary_10_1016_j_isci_2025_111743
crossref_primary_10_1039_D2TA00818A
crossref_primary_10_1016_j_colsurfa_2023_133138
crossref_primary_10_1016_j_cej_2021_128887
crossref_primary_10_1002_idm2_12092
crossref_primary_10_1073_pnas_2200223119
crossref_primary_10_1016_j_ensm_2025_104142
crossref_primary_10_1177_09540083221106057
crossref_primary_10_1002_smtd_202200246
crossref_primary_10_1016_j_cis_2024_103118
crossref_primary_10_1016_j_compositesb_2020_107965
crossref_primary_10_1007_s11630_023_1827_6
crossref_primary_10_1021_acsanm_4c03797
crossref_primary_10_1021_acsapm_5c00162
crossref_primary_10_1016_j_ijbiomac_2022_10_075
crossref_primary_10_1016_j_rser_2023_113921
crossref_primary_10_1016_j_matpr_2022_09_029
crossref_primary_10_1016_j_carbon_2022_11_010
crossref_primary_10_1002_adma_202412528
crossref_primary_10_1016_j_ensm_2022_12_037
crossref_primary_10_1016_j_solmat_2021_111140
crossref_primary_10_1021_acs_energyfuels_0c03739
crossref_primary_10_1088_1361_6528_abb04f
crossref_primary_10_1002_adem_202400249
crossref_primary_10_1016_j_compscitech_2020_108610
crossref_primary_10_1016_j_pecs_2023_101109
crossref_primary_10_1016_j_ensm_2025_104003
crossref_primary_10_1016_j_compositesb_2022_110367
crossref_primary_10_1142_S2810922822300070
crossref_primary_10_3390_nano15020110
crossref_primary_10_1007_s10973_022_11806_6
crossref_primary_10_1016_j_cej_2022_137423
crossref_primary_10_1016_j_compositesb_2024_111780
crossref_primary_10_1016_j_isci_2022_104226
crossref_primary_10_1039_D3TA03184E
crossref_primary_10_1002_smtd_202401383
crossref_primary_10_1016_j_cej_2024_149858
crossref_primary_10_3390_ma14040777
crossref_primary_10_1016_j_nanoen_2021_105948
crossref_primary_10_1016_j_enconman_2022_115804
crossref_primary_10_1016_j_cej_2022_135496
crossref_primary_10_1016_j_est_2025_115866
crossref_primary_10_1007_s10854_023_11207_x
crossref_primary_10_1016_j_progpolymsci_2022_101505
crossref_primary_10_1016_j_energy_2021_121938
crossref_primary_10_1002_pssr_202000394
crossref_primary_10_1016_j_cej_2023_141940
crossref_primary_10_1038_s41467_023_43772_4
crossref_primary_10_1016_j_solmat_2022_111873
crossref_primary_10_1016_j_compositesa_2023_107803
crossref_primary_10_1016_j_compositesa_2023_107925
crossref_primary_10_1016_j_compositesa_2023_107809
crossref_primary_10_1002_advs_202001274
crossref_primary_10_1007_s40820_020_00548_5
crossref_primary_10_1016_j_carbon_2024_119174
crossref_primary_10_1016_j_carbon_2024_119052
crossref_primary_10_1016_j_est_2021_102952
crossref_primary_10_3390_jcs8110466
crossref_primary_10_1039_D5MH00070J
crossref_primary_10_1002_adma_202001105
crossref_primary_10_1021_acsami_1c23972
crossref_primary_10_1016_j_apenergy_2023_121300
crossref_primary_10_1016_j_cej_2022_139999
crossref_primary_10_1002_smll_202006752
crossref_primary_10_1016_j_est_2020_101997
crossref_primary_10_1016_j_est_2022_106008
crossref_primary_10_1002_adfm_202209345
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124430
crossref_primary_10_1021_acsaem_2c03383
crossref_primary_10_1016_j_mattod_2022_08_015
crossref_primary_10_1021_acsnano_0c06680
crossref_primary_10_1016_j_cej_2022_137463
crossref_primary_10_3390_nano11113011
crossref_primary_10_1016_j_solmat_2022_111896
crossref_primary_10_1016_j_est_2021_102936
crossref_primary_10_1016_j_compositesa_2024_108081
crossref_primary_10_1051_e3sconf_202456411017
crossref_primary_10_1021_acsami_3c10677
crossref_primary_10_1016_j_est_2021_103902
crossref_primary_10_1039_D1EE00527H
crossref_primary_10_1002_adma_202008088
crossref_primary_10_1002_cjoc_202100656
crossref_primary_10_1002_adma_202300077
crossref_primary_10_1016_j_est_2022_106225
crossref_primary_10_1016_j_mtphys_2022_100811
crossref_primary_10_1016_j_mtsust_2024_101026
crossref_primary_10_1016_j_ensm_2021_05_018
crossref_primary_10_1016_j_nanoen_2022_108009
crossref_primary_10_1016_j_matt_2020_05_016
crossref_primary_10_1038_s41467_020_20299_6
crossref_primary_10_1016_j_carbpol_2022_119578
Cites_doi 10.1016/j.carbon.2016.01.088
10.1126/science.aac9439
10.1038/nmat3064
10.1021/acsami.8b16616
10.1016/j.compositesa.2017.04.001
10.1021/nl501996v
10.1016/j.nanoen.2018.03.075
10.1016/S0017-9310(00)00309-4
10.1021/cm501473t
10.1002/adma.200800401
10.1039/C7NR04686C
10.1039/C7RA08181B
10.1016/j.pmatsci.2004.01.001
10.1039/C5TC02194D
10.1021/nn304310n
10.1021/acsnano.5b02917
10.1039/C7GC03595K
10.1039/C6TA08454K
10.1002/adem.201500451
10.1126/science.1218761
10.1002/adem.201800237
10.1002/adma.201401449
10.1021/am503619a
10.1016/j.rser.2016.06.071
10.1093/nsr/nwu072
10.1038/srep26825
10.1002/adma.201900199
10.1038/nnano.2011.216
10.1016/j.energy.2010.09.046
10.1021/acsami.5b02681
10.1038/ncomms14486
10.1016/j.applthermaleng.2005.11.022
10.1039/C3EE42573H
10.1021/nn1015506
10.1021/nl203906r
10.1039/C6NR03921A
10.1016/j.matlet.2009.02.045
10.1016/j.solmat.2017.07.023
10.1038/s41467-018-03029-x
10.1021/acs.nanolett.6b00722
10.1016/S0008-6223(01)00032-X
10.1021/acsami.6b13207
10.1038/ncomms4689
10.1021/cm504550e
10.1038/ncomms1288
10.1021/acs.chemmater.6b01595
10.1039/C8TA00078F
10.1002/adfm.201202638
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201905099
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
Materials Research Database
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 31621971
10_1002_adma_201905099
ADMA201905099
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51876117
– fundername: National Key Research and Development Program of China
  funderid: 2018YFE0100300
– fundername: Innovative Research Group Project of the National Natural Science Foundation of China
  funderid: 51521004
– fundername: Innovative Research Group Project of the National Natural Science Foundation of China
  grantid: 51521004
– fundername: National Natural Science Foundation of China
  grantid: 51876117
– fundername: National Key Research and Development Program of China
  grantid: 2018YFE0100300
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4799-44d468e68c5271134eeed8274aa74a0b18a5099fbfd32facec9776c43c0288e3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 11:01:46 EDT 2025
Fri Jul 25 03:07:39 EDT 2025
Thu Apr 03 07:09:15 EDT 2025
Tue Jul 01 02:32:41 EDT 2025
Thu Apr 24 23:03:54 EDT 2025
Wed Jan 22 16:36:31 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 49
Keywords graphite sheets
phase change composites
expanded graphite
thermal conductivity
thermal energy harvesting
Language English
License 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4799-44d468e68c5271134eeed8274aa74a0b18a5099fbfd32facec9776c43c0288e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4618-8144
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adma.201905099
PMID 31621971
PQID 2321209109
PQPubID 2045203
PageCount 9
ParticipantIDs proquest_miscellaneous_2306490783
proquest_journals_2321209109
pubmed_primary_31621971
crossref_citationtrail_10_1002_adma_201905099
crossref_primary_10_1002_adma_201905099
wiley_primary_10_1002_adma_201905099_ADMA201905099
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 2
2017; 7
2017; 8
2009; 63
2011; 2
2010; 35
2019; 31
2013; 23
2014; 26
2016; 101
2017; 172
2011; 10
2001; 44
2016; 18
2015; 9
2016; 16
2012; 12
2018; 20
2015; 7
2017; 9
2018; 49
2016; 4
2018; 6
2016; 6
2018; 9
2014; 5
2015; 27
2017; 99
2006; 26
2016; 65
2016; 353
2014; 14
2001; 39
2008; 20
2005; 50
2012; 6
2012; 335
2016; 28
2012; 7
2018; 10
2014; 7
2014; 6
2010; 4
2016; 8
e_1_2_5_27_1
e_1_2_5_25_1
e_1_2_5_48_1
e_1_2_5_23_1
e_1_2_5_46_1
e_1_2_5_21_1
e_1_2_5_44_1
e_1_2_5_29_1
e_1_2_5_42_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_1_1
e_1_2_5_19_1
e_1_2_5_30_1
e_1_2_5_28_1
e_1_2_5_49_1
e_1_2_5_26_1
e_1_2_5_47_1
e_1_2_5_24_1
e_1_2_5_45_1
e_1_2_5_22_1
e_1_2_5_43_1
Wang Z. (e_1_2_5_3_1) 2017; 8
Han G. G. D. (e_1_2_5_2_1) 2017; 8
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_8_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_18_1
e_1_2_5_31_1
e_1_2_5_50_1
References_xml – volume: 65
  start-page: 81
  year: 2016
  publication-title: Renewable Sustainable Energy Rev.
– volume: 4
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 23
  start-page: 2263
  year: 2013
  publication-title: Adv. Funct. Mater.
– volume: 2
  start-page: 289
  year: 2011
  publication-title: Nat. Commun.
– volume: 50
  start-page: 93
  year: 2005
  publication-title: Prog. Mater. Sci.
– volume: 10
  start-page: 569
  year: 2011
  publication-title: Nat. Mater.
– volume: 9
  year: 2015
  publication-title: ACS Nano
– volume: 16
  start-page: 3585
  year: 2016
  publication-title: Nano Lett.
– volume: 44
  start-page: 2727
  year: 2001
  publication-title: Int. J. Heat Mass Transfer
– volume: 335
  start-page: 1454
  year: 2012
  publication-title: Science
– volume: 63
  start-page: 1213
  year: 2009
  publication-title: Mater. Lett.
– volume: 35
  start-page: 4622
  year: 2010
  publication-title: Energy
– volume: 8
  year: 2016
  publication-title: Nanoscale
– volume: 27
  start-page: 2100
  year: 2015
  publication-title: Chem. Mater.
– volume: 18
  start-page: 1127
  year: 2016
  publication-title: Adv. Eng. Mater.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 101
  start-page: 120
  year: 2016
  publication-title: Carbon
– volume: 172
  start-page: 82
  year: 2017
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 4
  start-page: 305
  year: 2016
  publication-title: J. Mater. Chem. C
– volume: 20
  year: 2018
  publication-title: Adv. Eng. Mater.
– volume: 28
  start-page: 6096
  year: 2016
  publication-title: Chem. Mater.
– volume: 99
  start-page: 32
  year: 2017
  publication-title: Composites, Part A
– volume: 26
  start-page: 1652
  year: 2006
  publication-title: Appl. Therm. Eng.
– volume: 9
  start-page: 919
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 12
  start-page: 861
  year: 2012
  publication-title: Nano Lett.
– volume: 39
  start-page: 2151
  year: 2001
  publication-title: Carbon
– volume: 20
  start-page: 4740
  year: 2008
  publication-title: Adv. Mater.
– volume: 353
  year: 2016
  publication-title: Science
– volume: 26
  start-page: 4459
  year: 2014
  publication-title: Chem. Mater.
– volume: 49
  start-page: 86
  year: 2018
  publication-title: Nano Energy
– volume: 7
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 14
  start-page: 5155
  year: 2014
  publication-title: Nano Lett.
– volume: 4
  start-page: 5245
  year: 2010
  publication-title: ACS Nano
– volume: 6
  year: 2016
  publication-title: Sci. Rep.
– volume: 6
  start-page: 5880
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 664
  year: 2018
  publication-title: Nat. Commun.
– volume: 6
  year: 2012
  publication-title: ACS Nano
– volume: 9
  year: 2017
  publication-title: Nanoscale
– volume: 7
  year: 2017
  publication-title: RSC Adv.
– volume: 5
  start-page: 3689
  year: 2014
  publication-title: Nat. Commun.
– volume: 7
  start-page: 91
  year: 2012
  publication-title: Nat. Nanotechnol.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 1185
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 27
  start-page: 428
  year: 2015
  publication-title: Adv. Mater.
– volume: 20
  start-page: 1858
  year: 2018
  publication-title: Green Chem.
– volume: 2
  start-page: 40
  year: 2015
  publication-title: Natl. Sci. Rev.
– ident: e_1_2_5_25_1
  doi: 10.1016/j.carbon.2016.01.088
– ident: e_1_2_5_15_1
  doi: 10.1126/science.aac9439
– ident: e_1_2_5_14_1
  doi: 10.1038/nmat3064
– ident: e_1_2_5_20_1
  doi: 10.1021/acsami.8b16616
– ident: e_1_2_5_44_1
  doi: 10.1016/j.compositesa.2017.04.001
– ident: e_1_2_5_42_1
  doi: 10.1021/nl501996v
– ident: e_1_2_5_49_1
  doi: 10.1016/j.nanoen.2018.03.075
– ident: e_1_2_5_36_1
  doi: 10.1016/S0017-9310(00)00309-4
– ident: e_1_2_5_24_1
  doi: 10.1021/cm501473t
– ident: e_1_2_5_11_1
  doi: 10.1002/adma.200800401
– ident: e_1_2_5_26_1
  doi: 10.1039/C7NR04686C
– ident: e_1_2_5_45_1
  doi: 10.1039/C7RA08181B
– ident: e_1_2_5_35_1
  doi: 10.1016/j.pmatsci.2004.01.001
– ident: e_1_2_5_23_1
  doi: 10.1039/C5TC02194D
– ident: e_1_2_5_10_1
  doi: 10.1021/nn304310n
– ident: e_1_2_5_48_1
  doi: 10.1021/acsnano.5b02917
– ident: e_1_2_5_9_1
  doi: 10.1039/C7GC03595K
– ident: e_1_2_5_28_1
  doi: 10.1039/C6TA08454K
– ident: e_1_2_5_46_1
  doi: 10.1002/adem.201500451
– ident: e_1_2_5_1_1
  doi: 10.1126/science.1218761
– ident: e_1_2_5_43_1
  doi: 10.1002/adem.201800237
– ident: e_1_2_5_4_1
  doi: 10.1002/adma.201401449
– ident: e_1_2_5_13_1
  doi: 10.1021/am503619a
– volume: 8
  year: 2017
  ident: e_1_2_5_2_1
  publication-title: Nat. Commun.
– ident: e_1_2_5_6_1
  doi: 10.1016/j.rser.2016.06.071
– ident: e_1_2_5_32_1
  doi: 10.1093/nsr/nwu072
– ident: e_1_2_5_18_1
  doi: 10.1038/srep26825
– ident: e_1_2_5_40_1
  doi: 10.1002/adma.201900199
– ident: e_1_2_5_34_1
  doi: 10.1038/nnano.2011.216
– ident: e_1_2_5_38_1
  doi: 10.1016/j.energy.2010.09.046
– ident: e_1_2_5_22_1
  doi: 10.1021/acsami.5b02681
– ident: e_1_2_5_17_1
  doi: 10.1038/ncomms14486
– ident: e_1_2_5_37_1
  doi: 10.1016/j.applthermaleng.2005.11.022
– ident: e_1_2_5_47_1
  doi: 10.1039/C3EE42573H
– ident: e_1_2_5_31_1
  doi: 10.1021/nn1015506
– ident: e_1_2_5_41_1
  doi: 10.1021/nl203906r
– ident: e_1_2_5_39_1
  doi: 10.1039/C6NR03921A
– ident: e_1_2_5_7_1
  doi: 10.1016/j.matlet.2009.02.045
– ident: e_1_2_5_5_1
  doi: 10.1016/j.solmat.2017.07.023
– ident: e_1_2_5_33_1
  doi: 10.1038/s41467-018-03029-x
– ident: e_1_2_5_12_1
  doi: 10.1021/acs.nanolett.6b00722
– ident: e_1_2_5_50_1
  doi: 10.1016/S0008-6223(01)00032-X
– ident: e_1_2_5_27_1
  doi: 10.1021/acsami.6b13207
– ident: e_1_2_5_16_1
  doi: 10.1038/ncomms4689
– volume: 8
  year: 2017
  ident: e_1_2_5_3_1
  publication-title: Nat. Commun.
– ident: e_1_2_5_19_1
  doi: 10.1021/cm504550e
– ident: e_1_2_5_21_1
  doi: 10.1038/ncomms1288
– ident: e_1_2_5_29_1
  doi: 10.1021/acs.chemmater.6b01595
– ident: e_1_2_5_30_1
  doi: 10.1039/C8TA00078F
– ident: e_1_2_5_8_1
  doi: 10.1002/adfm.201202638
SSID ssj0009606
Score 2.6951232
Snippet Efficient thermal energy harvesting using phase‐change materials (PCMs) has great potential for cost‐effective thermal management and energy storage...
Efficient thermal energy harvesting using phase-change materials (PCMs) has great potential for cost-effective thermal management and energy storage...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1905099
SubjectTerms Density
Energy harvesting
Energy management
Energy storage
expanded graphite
Graphite
graphite sheets
Heat conductivity
Heat transfer
Materials science
Nanocomposites
Phase change
phase change composites
Sheets
Thermal conductivity
Thermal energy
thermal energy harvesting
Thermal management
Title High‐Performance Thermally Conductive Phase Change Composites by Large‐Size Oriented Graphite Sheets for Scalable Thermal Energy Harvesting
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201905099
https://www.ncbi.nlm.nih.gov/pubmed/31621971
https://www.proquest.com/docview/2321209109
https://www.proquest.com/docview/2306490783
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQJziwL4WCjITEKW2TONuxKi0VYqlokXqLHMehiCpFJD20J_4AvpEvYSZbWxBCgkMkR7bjJTOel3jmmZDTgAMOdXyhIH5VmBHoCuBkqeiMWyIwE0iL3hY3ZvueXfaN_lwUf8oPUfxwQ81I1mtUcO5F1RlpKPcT3iAwaGDzMIIPHbYQFd3N-KMQnidke7oBXWB2ztpY06qL1Ret0jeouYhcE9PTWic873TqcfJUGcdeRUy_8Dn-Z1QbZC3DpbSeCtImWZLhFlmdYyvcJm_oE_Lx-t6ZxRpQkDJIDYcT2hiFSB0LiyftDMA00jRugeKCg45hMqLehF6h4zk8o_s4lfQWOZYB8dILZM2GIrQ7kDKOKDyedkF4MKwrb4I2kyhFiocZITNI-LBDeq1mr9FWsvMcFMEsx1EY85lpS9MWhmapqs4kGGgbPos5h6vmqTbHQQde4OtawIUUAE5NwXQBIMiW-i5ZDkeh3CfUd7yaJpm0TMtjquVzW-OOKkyp-cjvr5aIkr9OV2Rc53jkxtBNWZo1F-fZLea5RM6K8s8py8ePJcu5dLiZtkcuoFIMQVZrkH1SZIOe4uYLD-VojGUA_Dm4aVoie6lUFU3pqgmGw4Jua4ls_NIHt35-XS_uDv5S6ZCsYDr1yymT5fhlLI8AXcXecaJBn-hfHaY
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xHIAD-1JWIyFxCm0SN8uxYitQFtEicYscxwFElSLaHuDEH8A38iXMOE1KQQgJDpGyOPYkmfE8OzPPAFuxQBzqR9Ig_GrwcmwbiJOVYXPhytjRkJaiLc6c6hU_vi5n0YSUC5PyQ-QTbmQZur8mA6cJ6WKfNVREmjgIPRo6PX8YRmlZbz2quuwzSBFA13R7dhmF4F7G21iyioP3D_qlb2BzELtq53MwBWEmdhpzcr_T7YQ78vkLo-O_nmsaJnvQlFVSXZqBIZXMwsQnwsI5eKWwkPeXt4t-ugFDRcO9ZvOJ7bYSYo_F_pNd3KJ3ZGnqAqM-h2LDVJuFT6xGsedYR_3uWbFzollG0MsOiTgbi7D6rVKdNsPqWR31hzK7sibYvk5UZLSeEZGDJDfz0DjYb-xWjd6SDobkru8bnEfc8ZTjybLlmqbNFfpoD0fGQuBWCk1P0EPHYRzZViykkohPHcltiTjIU_YCjCStRC0Bi_ywZCmuXMcNuelGwrOEb0pHWRFR_JsFMLLvGcge3TmtutEMUqJmK6D3HOTvuQDbefmHlOjjx5KrmXoEPYNvBwhMKQvZLOHlzfwymir9fxGJanWpDOI_n_6bFmAxVau8Kdt00He4KLalleMXGYLK3mklP1r-y00bMFZtnNaC2tHZyQqM0_k0TGcVRjqPXbWGYKsTrmtz-gCvuCHB
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BkBA90PJoG5rCIiFxcurHZm0fozxaIISIBCk3a71eN1UjJyLJITnxD9rf2F_SGTt2kiKEBAdLtne9L8_sfPbOfAvwIZaIQ_1IGYRfDV6LHQNxsjYcLl0VixTSkrdFV1z84J-HteFWFH_GD1H8cCPNSOdrUvBpFJ9tSENllPIGoUFDm-c_hidcmB7JdfP7hkCK8HnKtufUsA3cy2kbTfts9_lds_Qb1tyFrqntae-DzFuduZxcVxfzsKpWDwgd_6dbB_B8DUxZPZOkF_BIJy9hb4uu8BXckFPI3a_b3ibYgKGY4dl4vGSNSULcsTh7st4IbSPLAhcYzTjkGaZnLFyyDnmeYxn9q5Vm34hkGSEvOyfabMzC-iOt5zOGxbM-Sg_FdeVVsFYapshoNyOiBkkuX8Og3Ro0Loz1hg6G4q7vG5xHXHhaeKpmu5blcI0W2sPvYinxMEPLk9TpOIwjx46l0grRqVDcUYiCPO0cQimZJPoYWOSHpq25doUbcsuNpGdL31JC2xER_FtlMPLXGag12TntuTEOMppmO6BxDopxLsPHIv80o_n4Y85KLh3BWt1nAcJSikG2TEx-XySjotLqi0z0ZEF5EP35tGpahqNMqoqqHEug5XCx2XYqG39pQ1Bvfq0XV2_-5aF38LTXbAedT90vJ_CMbmc-OhUozX8u9CkirXn4NlWme00fIHk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High%E2%80%90Performance+Thermally+Conductive+Phase+Change+Composites+by+Large%E2%80%90Size+Oriented+Graphite+Sheets+for+Scalable+Thermal+Energy+Harvesting&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Wu%2C+Si&rft.au=Li%2C+Tingxian&rft.au=Tong%2C+Zhen&rft.au=Chao%2C+Jingwei&rft.date=2019-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=31&rft.issue=49&rft_id=info:doi/10.1002%2Fadma.201905099&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon