Steady-state first-pass perfusion (SSFPP): A new approach to 3D first-pass myocardial perfusion imaging

Purpose To describe and characterize a new approach to first‐pass myocardial perfusion utilizing balanced steady‐state free precession acquisition without the use of saturation recovery or other magnetization preparation. Theory The balanced steady‐state free precession sequence is inherently sensit...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 71; no. 1; pp. 133 - 144
Main Authors Giri, Shivraman, Xue, Hui, Maiseyeu, Andrei, Kroeker, Randall, Rajagopalan, Sanjay, White, Richard D., Zuehlsdorff, Sven, Raman, Subha V., Simonetti, Orlando P.
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.01.2014
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0740-3194
1522-2594
1522-2594
DOI10.1002/mrm.24638

Cover

Abstract Purpose To describe and characterize a new approach to first‐pass myocardial perfusion utilizing balanced steady‐state free precession acquisition without the use of saturation recovery or other magnetization preparation. Theory The balanced steady‐state free precession sequence is inherently sensitive to contrast agent enhancement of the myocardium. This sensitivity can be used to advantage in first‐pass myocardial perfusion imaging by eliminating the need for magnetization preparation. Methods Bloch equation simulations, phantom experiments, and in vivo 2D imaging studies were run comparing the proposed technique with three other methods: saturation recovery spoiled gradient echo, saturation recovery steady‐state free precession, and steady‐state spoiled gradient echo without magnetization preparation. Additionally, an acquisition‐reconstruction strategy for 3D perfusion imaging is proposed and initial experience with this approach is demonstrated in healthy subjects and one patient. Results Phantom experiments verified simulation results showing the sensitivity of the balanced steady‐state free precession sequence to contrast agent enhancement in solid tissue is similar to that of magnetization‐prepared acquisitions. Images acquired in normal volunteers showed the proposed technique provided superior signal and signal‐to‐noise ratio compared with all other sequences at baseline as well as postcontrast. Conclusions A new approach to first‐pass myocardial perfusion is presented that obviates the need for magnetization preparation and provides high signal‐to‐noise ratio. Magn Reson Med 71:133–144, 2014. © 2013 Wiley Periodicals, Inc.
AbstractList To describe and characterize a new approach to first-pass myocardial perfusion utilizing balanced steady-state free precession acquisition without the use of saturation recovery or other magnetization preparation.PURPOSETo describe and characterize a new approach to first-pass myocardial perfusion utilizing balanced steady-state free precession acquisition without the use of saturation recovery or other magnetization preparation.The balanced steady-state free precession sequence is inherently sensitive to contrast agent enhancement of the myocardium. This sensitivity can be used to advantage in first-pass myocardial perfusion imaging by eliminating the need for magnetization preparation.THEORYThe balanced steady-state free precession sequence is inherently sensitive to contrast agent enhancement of the myocardium. This sensitivity can be used to advantage in first-pass myocardial perfusion imaging by eliminating the need for magnetization preparation.Bloch equation simulations, phantom experiments, and in vivo 2D imaging studies were run comparing the proposed technique with three other methods: saturation recovery spoiled gradient echo, saturation recovery steady-state free precession, and steady-state spoiled gradient echo without magnetization preparation. Additionally, an acquisition-reconstruction strategy for 3D perfusion imaging is proposed and initial experience with this approach is demonstrated in healthy subjects and one patient.METHODSBloch equation simulations, phantom experiments, and in vivo 2D imaging studies were run comparing the proposed technique with three other methods: saturation recovery spoiled gradient echo, saturation recovery steady-state free precession, and steady-state spoiled gradient echo without magnetization preparation. Additionally, an acquisition-reconstruction strategy for 3D perfusion imaging is proposed and initial experience with this approach is demonstrated in healthy subjects and one patient.Phantom experiments verified simulation results showing the sensitivity of the balanced steady-state free precession sequence to contrast agent enhancement in solid tissue is similar to that of magnetization-prepared acquisitions. Images acquired in normal volunteers showed the proposed technique provided superior signal and signal-to-noise ratio compared with all other sequences at baseline as well as postcontrast.RESULTSPhantom experiments verified simulation results showing the sensitivity of the balanced steady-state free precession sequence to contrast agent enhancement in solid tissue is similar to that of magnetization-prepared acquisitions. Images acquired in normal volunteers showed the proposed technique provided superior signal and signal-to-noise ratio compared with all other sequences at baseline as well as postcontrast.A new approach to first-pass myocardial perfusion is presented that obviates the need for magnetization preparation and provides high signal-to-noise ratio.CONCLUSIONSA new approach to first-pass myocardial perfusion is presented that obviates the need for magnetization preparation and provides high signal-to-noise ratio.
Purpose To describe and characterize a new approach to first‐pass myocardial perfusion utilizing balanced steady‐state free precession acquisition without the use of saturation recovery or other magnetization preparation. Theory The balanced steady‐state free precession sequence is inherently sensitive to contrast agent enhancement of the myocardium. This sensitivity can be used to advantage in first‐pass myocardial perfusion imaging by eliminating the need for magnetization preparation. Methods Bloch equation simulations, phantom experiments, and in vivo 2D imaging studies were run comparing the proposed technique with three other methods: saturation recovery spoiled gradient echo, saturation recovery steady‐state free precession, and steady‐state spoiled gradient echo without magnetization preparation. Additionally, an acquisition‐reconstruction strategy for 3D perfusion imaging is proposed and initial experience with this approach is demonstrated in healthy subjects and one patient. Results Phantom experiments verified simulation results showing the sensitivity of the balanced steady‐state free precession sequence to contrast agent enhancement in solid tissue is similar to that of magnetization‐prepared acquisitions. Images acquired in normal volunteers showed the proposed technique provided superior signal and signal‐to‐noise ratio compared with all other sequences at baseline as well as postcontrast. Conclusions A new approach to first‐pass myocardial perfusion is presented that obviates the need for magnetization preparation and provides high signal‐to‐noise ratio. Magn Reson Med 71:133–144, 2014. © 2013 Wiley Periodicals, Inc.
Purpose To describe and characterize a new approach to first-pass myocardial perfusion utilizing balanced steady-state free precession acquisition without the use of saturation recovery or other magnetization preparation. Theory The balanced steady-state free precession sequence is inherently sensitive to contrast agent enhancement of the myocardium. This sensitivity can be used to advantage in first-pass myocardial perfusion imaging by eliminating the need for magnetization preparation. Methods Bloch equation simulations, phantom experiments, and in vivo 2D imaging studies were run comparing the proposed technique with three other methods: saturation recovery spoiled gradient echo, saturation recovery steady-state free precession, and steady-state spoiled gradient echo without magnetization preparation. Additionally, an acquisition-reconstruction strategy for 3D perfusion imaging is proposed and initial experience with this approach is demonstrated in healthy subjects and one patient. Results Phantom experiments verified simulation results showing the sensitivity of the balanced steady-state free precession sequence to contrast agent enhancement in solid tissue is similar to that of magnetization-prepared acquisitions. Images acquired in normal volunteers showed the proposed technique provided superior signal and signal-to-noise ratio compared with all other sequences at baseline as well as postcontrast. Conclusions A new approach to first-pass myocardial perfusion is presented that obviates the need for magnetization preparation and provides high signal-to-noise ratio. Magn Reson Med 71:133-144, 2014. copyright 2013 Wiley Periodicals, Inc.
To describe and characterize a new approach to first-pass myocardial perfusion utilizing balanced steady-state free precession acquisition without the use of saturation recovery or other magnetization preparation. The balanced steady-state free precession sequence is inherently sensitive to contrast agent enhancement of the myocardium. This sensitivity can be used to advantage in first-pass myocardial perfusion imaging by eliminating the need for magnetization preparation. Bloch equation simulations, phantom experiments, and in vivo 2D imaging studies were run comparing the proposed technique with three other methods: saturation recovery spoiled gradient echo, saturation recovery steady-state free precession, and steady-state spoiled gradient echo without magnetization preparation. Additionally, an acquisition-reconstruction strategy for 3D perfusion imaging is proposed and initial experience with this approach is demonstrated in healthy subjects and one patient. Phantom experiments verified simulation results showing the sensitivity of the balanced steady-state free precession sequence to contrast agent enhancement in solid tissue is similar to that of magnetization-prepared acquisitions. Images acquired in normal volunteers showed the proposed technique provided superior signal and signal-to-noise ratio compared with all other sequences at baseline as well as postcontrast. A new approach to first-pass myocardial perfusion is presented that obviates the need for magnetization preparation and provides high signal-to-noise ratio.
Purpose To describe and characterize a new approach to first-pass myocardial perfusion utilizing balanced steady-state free precession acquisition without the use of saturation recovery or other magnetization preparation. Theory The balanced steady-state free precession sequence is inherently sensitive to contrast agent enhancement of the myocardium. This sensitivity can be used to advantage in first-pass myocardial perfusion imaging by eliminating the need for magnetization preparation. Methods Bloch equation simulations, phantom experiments, and in vivo 2D imaging studies were run comparing the proposed technique with three other methods: saturation recovery spoiled gradient echo, saturation recovery steady-state free precession, and steady-state spoiled gradient echo without magnetization preparation. Additionally, an acquisition-reconstruction strategy for 3D perfusion imaging is proposed and initial experience with this approach is demonstrated in healthy subjects and one patient. Results Phantom experiments verified simulation results showing the sensitivity of the balanced steady-state free precession sequence to contrast agent enhancement in solid tissue is similar to that of magnetization-prepared acquisitions. Images acquired in normal volunteers showed the proposed technique provided superior signal and signal-to-noise ratio compared with all other sequences at baseline as well as postcontrast. Conclusions A new approach to first-pass myocardial perfusion is presented that obviates the need for magnetization preparation and provides high signal-to-noise ratio. Magn Reson Med 71:133-144, 2014. © 2013 Wiley Periodicals, Inc. [PUBLICATION ABSTRACT]
Author Giri, Shivraman
Simonetti, Orlando P.
Xue, Hui
Raman, Subha V.
Rajagopalan, Sanjay
White, Richard D.
Zuehlsdorff, Sven
Kroeker, Randall
Maiseyeu, Andrei
AuthorAffiliation 2 Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
1 Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
4 Siemens Corporate Research, Princeton, New Jersey, USA
6 Siemens Healthcare, Winnipeg, Manitoba, Canada
5 Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, Ohio, USA
7 Department of Radiology, The Ohio State University, Columbus, Ohio, USA
3 Siemens Healthcare, Chicago, IL, USA
AuthorAffiliation_xml – name: 3 Siemens Healthcare, Chicago, IL, USA
– name: 6 Siemens Healthcare, Winnipeg, Manitoba, Canada
– name: 4 Siemens Corporate Research, Princeton, New Jersey, USA
– name: 5 Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, Ohio, USA
– name: 1 Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
– name: 7 Department of Radiology, The Ohio State University, Columbus, Ohio, USA
– name: 2 Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
Author_xml – sequence: 1
  givenname: Shivraman
  surname: Giri
  fullname: Giri, Shivraman
  organization: Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
– sequence: 2
  givenname: Hui
  surname: Xue
  fullname: Xue, Hui
  organization: Siemens Corporate Research, New Jersey, Princeton, USA
– sequence: 3
  givenname: Andrei
  surname: Maiseyeu
  fullname: Maiseyeu, Andrei
  organization: Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
– sequence: 4
  givenname: Randall
  surname: Kroeker
  fullname: Kroeker, Randall
  organization: Siemens Healthcare, Manitoba, Winnipeg, Canada
– sequence: 5
  givenname: Sanjay
  surname: Rajagopalan
  fullname: Rajagopalan, Sanjay
  organization: Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
– sequence: 6
  givenname: Richard D.
  surname: White
  fullname: White, Richard D.
  organization: Department of Radiology, The Ohio State University, Ohio, Columbus, USA
– sequence: 7
  givenname: Sven
  surname: Zuehlsdorff
  fullname: Zuehlsdorff, Sven
  organization: Siemens Healthcare, Illinois, Chicago, USA
– sequence: 8
  givenname: Subha V.
  surname: Raman
  fullname: Raman, Subha V.
  organization: Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
– sequence: 9
  givenname: Orlando P.
  surname: Simonetti
  fullname: Simonetti, Orlando P.
  email: Orlando.Simonetti@osumc.edu
  organization: Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23440705$$D View this record in MEDLINE/PubMed
BookMark eNqNks9PFDEcxRsDkQU9-A-YSbzAYaC_pp16MEEQMGF1YTUem26nXYoz07GdAfe_p7CwWUk0poce-nmvr33fbbDR-tYA8AbBfQQhPmhCs48pI-ULMEIFxjkuBN0AI8gpzAkSdAtsx3gNIRSC05dgCxNKIYfFCMynvVHVIo-96k1mXYh93qkYs84EO0Tn22x3Oj2ZTPbeZ4dZa24z1XXBK32V9T4jx-uSZuG1CpVT9ZraNWru2vkrsGlVHc3rx30HfD_59O3oLD__evr56PA815SLMsfMlkZjbrgljJWqLCuEK0UpKQiHUGNVUKUJ5tzaGbeotAhDVswERjNjSkJ2wIelbzfMGlNp0_ZB1bILKUdYSK-c_POkdVdy7m9kuo6mlQx2Hw2C_zWY2MvGRW3qWrXGD1EiKjBjiMLiP1AmGOUI4YS-e4Ze-yG06SfuqZIhgQhP1Nv18KvUT3UlYG8J6OBjDMauEATl_SjINAryYRQSe_CM1S6VnDpJ73b1vxS3rjaLv1vL8eX4SZEvFS725vdKocJPyTjhhfzx5VSSjxfw8mJM5YTcATJN0vA
CODEN MRMEEN
CitedBy_id crossref_primary_10_1002_mrm_25478
crossref_primary_10_1186_s12968_015_0162_9
crossref_primary_10_1002_mrm_25752
crossref_primary_10_1002_mrm_28765
crossref_primary_10_1177_2058460117729186
crossref_primary_10_1002_mrm_25074
crossref_primary_10_1002_mrm_29453
Cites_doi 10.1002/jmri.20050
10.1002/mrm.1910340220
10.1021/cr00081a003
10.1002/jmri.21167
10.1080/10976640601187604
10.1016/0730-725X(93)90420-I
10.1002/mrm.1910100209
10.1118/1.4738965
10.1097/00004424-199809000-00012
10.1016/j.jacc.2010.05.067
10.1161/01.CIR.0000080915.35024.A9
10.1002/mrm.1910350513
10.1016/j.jacc.2004.11.069
10.1148/radiology.174.3.2305058
10.1002/mrm.1170
10.1161/01.CIR.96.9.2859
10.1148/radiology.219.1.r01ap12264
10.1023/A:1020830525823
10.1002/jmri.20054
10.1186/1532-429X-13-S1-O8
10.1002/mrm.10314
10.1148/radiol.2323030573
10.1186/1532-429X-10-18
10.1002/jmri.21286
10.1097/01.rli.0000197668.44926.f7
10.1007/s00330-003-1957-x
10.1186/1532-429X-10-57
10.1148/radiology.219.3.r01jn44828
10.1002/mrm.10085
10.1002/mrm.23318
10.1002/mrm.20666
ContentType Journal Article
Copyright Copyright © 2013 Wiley Periodicals, Inc.
Copyright_xml – notice: Copyright © 2013 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
7QO
5PM
DOI 10.1002/mrm.24638
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList MEDLINE - Academic

Engineering Research Database
MEDLINE
Biochemistry Abstracts 1
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 144
ExternalDocumentID PMC3664646
3158308571
23440705
10_1002_mrm_24638
MRM24638
ark_67375_WNG_3BQ0RQM4_P
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Heart, Lung, and Blood Institute
  funderid: R01HL102450
– fundername: NHLBI NIH HHS
  grantid: R01 HL102450
– fundername: NHLBI NIH HHS
  grantid: R01HL102450
– fundername: National Heart, Lung, and Blood Institute : NHLBI
  grantid: R01 HL102450 || HL
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
24P
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RGB
RWI
WRC
WUP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
7QO
5PM
ID FETCH-LOGICAL-c4798-26f8ec27e7f3668a88d12da44353700c2a54ac3277ffb7f18f12065b921bee833
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Thu Aug 21 18:13:22 EDT 2025
Fri Jul 11 15:36:20 EDT 2025
Fri Jul 11 13:56:08 EDT 2025
Fri Jul 25 12:20:46 EDT 2025
Thu Apr 03 06:58:39 EDT 2025
Tue Jul 01 01:20:52 EDT 2025
Thu Apr 24 23:03:25 EDT 2025
Wed Jan 22 16:33:44 EST 2025
Tue Sep 09 05:22:59 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords steady state
cardiac MRI
first-pass myocardial perfusion
Language English
License Copyright © 2013 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4798-26f8ec27e7f3668a88d12da44353700c2a54ac3277ffb7f18f12065b921bee833
Notes ArticleID:MRM24638
istex:802688CECD248C1C9CB3EEB8DC669AD60583C00F
National Heart, Lung, and Blood Institute - No. R01HL102450
ark:/67375/WNG-3BQ0RQM4-P
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 23440705
PQID 1468619137
PQPubID 1016391
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3664646
proquest_miscellaneous_1492661405
proquest_miscellaneous_1469647112
proquest_journals_1468619137
pubmed_primary_23440705
crossref_primary_10_1002_mrm_24638
crossref_citationtrail_10_1002_mrm_24638
wiley_primary_10_1002_mrm_24638_MRM24638
istex_primary_ark_67375_WNG_3BQ0RQM4_P
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2014
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: January 2014
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn. Reson. Med
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Tofts PS, Shuter B, Pope JM. Ni-DTPA doped agarose-gel-a phantom material for Gd-DTPA enhancement measurements. Magn Reson Imaging 1993;11:125-133.
Abdel-Aty H, Boye P, Zagrosek A, Wassmuth R, Kumar A, Messroghli D, Bock P, Dietz R, Friedrich MG, Schulz-Menger J. Diagnostic performance of cardiovascular magnetic resonance in patients with suspected acute myocarditis: comparison of different approaches. J Am Coll Cardiol 2005;45:1815-1822.
Bernstein MA, King KF. Handbook of MRI pulse sequences. Amsterdam; Oxford: Academic Press; 2004. xxii,1017 p.
Lauerma K, Virtanen KS, Sipila LM, Hekali P, Aronen HJ. Multislice MRI in assessment of myocardial perfusion in patients with single-vessel proximal left anterior descending coronary artery disease before and after revascularization. Circulation 1997;96:2859-2867.
Hsu L-Y, Kellman P, Gatehouse P, Zuehlsdorff S, Glielmi C, Groves D, Aletras A, Bandettini P, Arai A. Comparison of arterial input function measured from dual-bolus and dual-sequence dynamic contrast-enhanced cardiac magnetic resonance imaging. J Cardiovasc Magn Reson 13 (Suppl 1):O8.
Pintaske J, Martirosian P, Graf H, Erb G, Lodemann KP, Claussen CD, Schick F. Relaxivity of gadopentetate dimeglumine (Magnevist), gadobutrol (Gadovist), and gadobenate dimeglumine (MultiHance) in human blood plasma at 0.2, 1.5, and 3 Tesla. Invest Radiol 2006;41:213-221.
Scheffler K, Lehnhardt S. Principles and applications of balanced SSFP techniques. Eur Radiol 2003;13:2409-2418.
Hargreaves BA, Vasanawala SS, Pauly JM, Nishimura DG. Characterization and reduction of the transient response in steady-state MR imaging. Magn Reson Med 2001;46:149-158.
Lauffer RB. Paramagnetic metal-complexes as water proton relaxation agents for NMR imaging-theory and design. Chem Rev 1987;87:901-927.
Hermosillo G, Chefdhotel C, Faugeras O. Variational methods for multimodal image matching. Int J Comp Vis 2002;50:329-343.
Xue H, Zuehlsdorff S, Kellman P, Arai A, Nielles-Vallespin S, Chefdhotel C, Lorenz CH, Guehring J. Unsupervised inline analysis of cardiac perfusion MRI. Med Image Comput Comput Assist Interv 2009;12(Pt 2):741-749.
Fenchel M, Helber U, Simonetti OP, Stauder NI, Kramer U, Nguyen CN, Finn JP, Claussen CD, Miller S. Multislice first-pass myocardial perfusion imaging: Comparison of saturation recovery (SR)-TrueFISP-two-dimensional (2D) and SR-TurboFLASH-2D pulse sequences. J Magn Reson Imaging 2004;19:555-563.
Eitel I, von Knobelsdorff-Brenkenhoff F, Bernhardt P, Carbone I, Muellerleile K, Aldrovandi A, Francone M, Desch S, Gutberlet M, Strohm O, Schuler G, Schulz-Menger J, Thiele H, Friedrich MG. Clinical characteristics and cardiovascular magnetic resonance findings in stress (takotsubo) cardiomyopathy. JAMA 306:277-286.
Larsson HBW, FritzHansen T, Rostrup E, Sondergaard L, Ring P, Henriksen O. Myocardial perfusion modeling using MRI. Magn Reson Med 1996;35:716-726.
Nagel E, Klein C, Paetsch I, Hettwer S, Schnackenburg B, Wegscheider K, Fleck E. Magnetic resonance perfusion measurements for the noninvasive detection of coronary artery disease. Circulation 2003;108:432-437.
Kellman P, Arai AE. Imaging sequences for first pass perfusion-a review. J Cardiovasc Magn Reson 2007;9:525-537.
Gerber BL, Raman SV, Nayak K, Epstein FH, Ferreira P, Axel L, Kraitchman DL. Myocardial first-pass perfusion cardiovascular magnetic resonance: history, theory, and current state of the art. J Cardiovasc Magn Reson 2008;10:18.
DiBella EV, Chen L, Schabel MC, Adluru G, McGann CJ. Myocardial perfusion acquisition without magnetization preparation or gating. Magn Reson Med 67:609-613.
Storey P, Chen Q, Li W, Edelman RR, Prasad PV. Band artifacts due to bulk motion. Magn Reson Med 2002;48:1028-1036.
Barkhausen J, Ruehm SG, Goyen M, Buck T, Laub G, Debatin JF. MR evaluation of ventricular function: True fast imaging with steady-state precession versus fast low-angle shot cine MR imaging: feasibility study. Radiology 2001;219:264-269.
Chen L, Adluru G, Schabel MC, McGann CJ, Dibella EV. Myocardial perfusion MRI with an undersampled 3D stack-of-stars sequence. Med Phys 2012;39:5204-5211.
Xue H, Guehring J, Srinivasan L, Zuehlsdorff S, Saddi K, Chefdhotel C, Hajnal JV, Rueckert D. Evaluation of rigid and non-rigid motion compensation of cardiac perfusion MRI. Med Image Comput Comput Assist Interv Int Conf Med Image Comput Comput Assist Interv 2008;11(Pt 2):35-43.
Carr JC, Simonetti O, Bundy J, Li DB, Pereles S, Finn JP. Cine MR angiography of the heart with segmented true fast imaging with steady-state precession. Radiology 2001;219:828-834.
Epstein FH, London JF, Peters DC, Goncalves LM, Agyeman K, Taylor J, Balaban RS, Arai AE. Multislice first-pass cardiac perfusion MRI: validation in a model of myocardial infarction. Magn Reson Med 2002;47:482-491.
Lyne JC, Gatehouse PD, Assomull RG, Smith GC, Kellman P, Firmin DN, Pennell DJ. Direct comparison of myocardial perfusion cardiovascular magnetic resonance sequences with parallel acquisition. J Magn Reson Imaging 2007;26:1444-1451.
Laub G, Kroeker R. syngo TWIST for dynamic time-resolved MR angiography. MAGNETOM Flash 2006;34:92-95.
Christian TF, Rettmann DW, Aletras AH, Liao SL, Taylor JL, Balaban RS, Arai AE. Absolute myocardial perfusion in canines measured by using dual-bolus first-pass MR imaging. Radiology 2004;232:677-684.
Hsu LY, Kellman P, Arai AE. Nonlinear myocardial signal intensity correction improves quantification of contrast-enhanced first-pass MR perfusion in humans. J Magn Reson Imaging 2008;27:793-801.
Atkinson DJ, Burstein D, Edelman RR. First-pass cardiac perfusion: evaluation with ultrafast MR imaging. Radiology 1990;174(3 Pt 1):757-762.
Miller DD, Holmvang G, Gill JB, Dragotakes D, Kantor HL, Okada RD, Brady TJ. MRI detection of myocardial perfusion changes by gadolinium-DTPA infusion during dipyridamole hyperemia. Magn Reson Med 1989;10:246-255.
Di Bella EV, Parker DL, Sinusas AJ. On the dark rim artifact in dynamic contrast-enhanced MRI myocardial perfusion studies. Magn Reson Med 2005;54:1295-1299.
Gatehouse PD, Elkington AG, Ablitt NA, Yang GZ, Pennell DJ, Firmin DN. Accurate assessment of the arterial input function during high-dose myocardial perfusion cardiovascular magnetic resonance. J Magn Reson Imaging 2004;20:39-45.
Judd RM, Reeder SB, Atalar E, Mcveigh ER, Zerhouni EA. A magnetization-driven gradient-echo pulse sequence for the study of myocardial perfusion. Magn Reson Med 1995;34:276-282.
Parker DL, Tsuruda JS, Goodrich KC, Alexander AL, Buswell HR. Contrast-enhanced magnetic resonance angiography of cerebral arteries. A review. Invest Radiol 1998;33:560-572.
Manka R, Jahnke C, Kozerke S, Vitanis V, Crelier G, Gebker R, Schnackenburg B, Boesiger P, Fleck E, Paetsch I. Dynamic 3-dimensional stress cardiac magnetic resonance perfusion imaging: detection of coronary artery disease and volumetry of myocardial hypoenhancement before and after coronary stenting. J Am Coll Cardiol 2011;57:437-444.
Barth M, Moser E. Proton NMR relaxation times of human blood samples at 1.5 T and implications for functional MRI. Cell Mol Biol (Noisy-le-grand) 1997;43:783-791.
Shin T, Hu HH, Pohost GM, Nayak KS. Three dimensional first-pass myocardial perfusion imaging at 3T: feasibility study. J Cardiovasc Magn Reson 2008;10:57.
67
2004; 20
2006; 34
1997; 43
2002; 50
1995; 34
2003; 13
2008; 10
2011; 57
2012; 39
2008; 11
1996; 35
2001; 46
2005; 45
2009; 12
2004; 232
2002; 47
13
2002; 48
2003; 108
2006; 41
1987; 87
1989; 10
2004; 19
1997; 96
1993; 11
2008; 27
2007; 9
2005; 54
2004; xxii
306
2001; 219
1990; 174
1998; 33
2007; 26
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
Xue H (e_1_2_8_27_1) 2009; 12
e_1_2_8_26_1
Laub G (e_1_2_8_25_1) 2006; 34
Eitel I (e_1_2_8_37_1); 306
Bernstein MA (e_1_2_8_21_1) 2004
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
Barth M (e_1_2_8_18_1) 1997; 43
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
Xue H (e_1_2_8_22_1) 2008; 11
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_32_1
DiBella EV (e_1_2_8_6_1); 67
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
12465113 - Magn Reson Med. 2002 Dec;48(6):1028-36
19077220 - J Cardiovasc Magn Reson. 2008;10:57
21771988 - JAMA. 2011 Jul 20;306(3):277-86
2305058 - Radiology. 1990 Mar;174(3 Pt 1):757-62
9298600 - Cell Mol Biol (Noisy-le-grand). 1997 Jul;43(5):783-91
11274568 - Radiology. 2001 Apr;219(1):264-9
9766041 - Invest Radiol. 1998 Sep;33(9):560-72
11376278 - Radiology. 2001 Jun;219(3):828-34
22190332 - Magn Reson Med. 2012 Mar;67(3):609-13
11870835 - Magn Reson Med. 2002 Mar;47(3):482-91
17968886 - J Magn Reson Imaging. 2007 Dec;26(6):1444-51
18442372 - J Cardiovasc Magn Reson. 2008;10:18
2761383 - Magn Reson Med. 1989 May;10(2):246-55
9386150 - Circulation. 1997 Nov 4;96(9):2859-67
16200553 - Magn Reson Med. 2005 Nov;54(5):1295-9
20426178 - Med Image Comput Comput Assist Interv. 2009;12(Pt 2):741-9
12928954 - Eur Radiol. 2003 Nov;13(11):2409-18
8423715 - Magn Reson Imaging. 1993;11(1):125-33
21251584 - J Am Coll Cardiol. 2011 Jan 25;57(4):437-44
17365232 - J Cardiovasc Magn Reson. 2007;9(3):525-37
22894445 - Med Phys. 2012 Aug;39(8):5204-11
18302205 - J Magn Reson Imaging. 2008 Apr;27(4):793-801
16481903 - Invest Radiol. 2006 Mar;41(3):213-21
8722823 - Magn Reson Med. 1996 May;35(5):716-26
18982587 - Med Image Comput Comput Assist Interv. 2008;11(Pt 2):35-43
15284436 - Radiology. 2004 Sep;232(3):677-84
11443721 - Magn Reson Med. 2001 Jul;46(1):149-58
15112304 - J Magn Reson Imaging. 2004 May;19(5):555-63
7476088 - Magn Reson Med. 1995 Aug;34(2):276-82
12860910 - Circulation. 2003 Jul 29;108(4):432-7
15936612 - J Am Coll Cardiol. 2005 Jun 7;45(11):1815-22
15221807 - J Magn Reson Imaging. 2004 Jul;20(1):39-45
References_xml – reference: Laub G, Kroeker R. syngo TWIST for dynamic time-resolved MR angiography. MAGNETOM Flash 2006;34:92-95.
– reference: Di Bella EV, Parker DL, Sinusas AJ. On the dark rim artifact in dynamic contrast-enhanced MRI myocardial perfusion studies. Magn Reson Med 2005;54:1295-1299.
– reference: Abdel-Aty H, Boye P, Zagrosek A, Wassmuth R, Kumar A, Messroghli D, Bock P, Dietz R, Friedrich MG, Schulz-Menger J. Diagnostic performance of cardiovascular magnetic resonance in patients with suspected acute myocarditis: comparison of different approaches. J Am Coll Cardiol 2005;45:1815-1822.
– reference: Parker DL, Tsuruda JS, Goodrich KC, Alexander AL, Buswell HR. Contrast-enhanced magnetic resonance angiography of cerebral arteries. A review. Invest Radiol 1998;33:560-572.
– reference: Hargreaves BA, Vasanawala SS, Pauly JM, Nishimura DG. Characterization and reduction of the transient response in steady-state MR imaging. Magn Reson Med 2001;46:149-158.
– reference: Chen L, Adluru G, Schabel MC, McGann CJ, Dibella EV. Myocardial perfusion MRI with an undersampled 3D stack-of-stars sequence. Med Phys 2012;39:5204-5211.
– reference: Larsson HBW, FritzHansen T, Rostrup E, Sondergaard L, Ring P, Henriksen O. Myocardial perfusion modeling using MRI. Magn Reson Med 1996;35:716-726.
– reference: Lauffer RB. Paramagnetic metal-complexes as water proton relaxation agents for NMR imaging-theory and design. Chem Rev 1987;87:901-927.
– reference: Bernstein MA, King KF. Handbook of MRI pulse sequences. Amsterdam; Oxford: Academic Press; 2004. xxii,1017 p.
– reference: Pintaske J, Martirosian P, Graf H, Erb G, Lodemann KP, Claussen CD, Schick F. Relaxivity of gadopentetate dimeglumine (Magnevist), gadobutrol (Gadovist), and gadobenate dimeglumine (MultiHance) in human blood plasma at 0.2, 1.5, and 3 Tesla. Invest Radiol 2006;41:213-221.
– reference: Hsu LY, Kellman P, Arai AE. Nonlinear myocardial signal intensity correction improves quantification of contrast-enhanced first-pass MR perfusion in humans. J Magn Reson Imaging 2008;27:793-801.
– reference: Tofts PS, Shuter B, Pope JM. Ni-DTPA doped agarose-gel-a phantom material for Gd-DTPA enhancement measurements. Magn Reson Imaging 1993;11:125-133.
– reference: Storey P, Chen Q, Li W, Edelman RR, Prasad PV. Band artifacts due to bulk motion. Magn Reson Med 2002;48:1028-1036.
– reference: Epstein FH, London JF, Peters DC, Goncalves LM, Agyeman K, Taylor J, Balaban RS, Arai AE. Multislice first-pass cardiac perfusion MRI: validation in a model of myocardial infarction. Magn Reson Med 2002;47:482-491.
– reference: Barkhausen J, Ruehm SG, Goyen M, Buck T, Laub G, Debatin JF. MR evaluation of ventricular function: True fast imaging with steady-state precession versus fast low-angle shot cine MR imaging: feasibility study. Radiology 2001;219:264-269.
– reference: Hsu L-Y, Kellman P, Gatehouse P, Zuehlsdorff S, Glielmi C, Groves D, Aletras A, Bandettini P, Arai A. Comparison of arterial input function measured from dual-bolus and dual-sequence dynamic contrast-enhanced cardiac magnetic resonance imaging. J Cardiovasc Magn Reson 13 (Suppl 1):O8.
– reference: Hermosillo G, Chefdhotel C, Faugeras O. Variational methods for multimodal image matching. Int J Comp Vis 2002;50:329-343.
– reference: Eitel I, von Knobelsdorff-Brenkenhoff F, Bernhardt P, Carbone I, Muellerleile K, Aldrovandi A, Francone M, Desch S, Gutberlet M, Strohm O, Schuler G, Schulz-Menger J, Thiele H, Friedrich MG. Clinical characteristics and cardiovascular magnetic resonance findings in stress (takotsubo) cardiomyopathy. JAMA 306:277-286.
– reference: Miller DD, Holmvang G, Gill JB, Dragotakes D, Kantor HL, Okada RD, Brady TJ. MRI detection of myocardial perfusion changes by gadolinium-DTPA infusion during dipyridamole hyperemia. Magn Reson Med 1989;10:246-255.
– reference: Judd RM, Reeder SB, Atalar E, Mcveigh ER, Zerhouni EA. A magnetization-driven gradient-echo pulse sequence for the study of myocardial perfusion. Magn Reson Med 1995;34:276-282.
– reference: Carr JC, Simonetti O, Bundy J, Li DB, Pereles S, Finn JP. Cine MR angiography of the heart with segmented true fast imaging with steady-state precession. Radiology 2001;219:828-834.
– reference: Barth M, Moser E. Proton NMR relaxation times of human blood samples at 1.5 T and implications for functional MRI. Cell Mol Biol (Noisy-le-grand) 1997;43:783-791.
– reference: Lauerma K, Virtanen KS, Sipila LM, Hekali P, Aronen HJ. Multislice MRI in assessment of myocardial perfusion in patients with single-vessel proximal left anterior descending coronary artery disease before and after revascularization. Circulation 1997;96:2859-2867.
– reference: Gatehouse PD, Elkington AG, Ablitt NA, Yang GZ, Pennell DJ, Firmin DN. Accurate assessment of the arterial input function during high-dose myocardial perfusion cardiovascular magnetic resonance. J Magn Reson Imaging 2004;20:39-45.
– reference: Atkinson DJ, Burstein D, Edelman RR. First-pass cardiac perfusion: evaluation with ultrafast MR imaging. Radiology 1990;174(3 Pt 1):757-762.
– reference: Xue H, Zuehlsdorff S, Kellman P, Arai A, Nielles-Vallespin S, Chefdhotel C, Lorenz CH, Guehring J. Unsupervised inline analysis of cardiac perfusion MRI. Med Image Comput Comput Assist Interv 2009;12(Pt 2):741-749.
– reference: Shin T, Hu HH, Pohost GM, Nayak KS. Three dimensional first-pass myocardial perfusion imaging at 3T: feasibility study. J Cardiovasc Magn Reson 2008;10:57.
– reference: Lyne JC, Gatehouse PD, Assomull RG, Smith GC, Kellman P, Firmin DN, Pennell DJ. Direct comparison of myocardial perfusion cardiovascular magnetic resonance sequences with parallel acquisition. J Magn Reson Imaging 2007;26:1444-1451.
– reference: Kellman P, Arai AE. Imaging sequences for first pass perfusion-a review. J Cardiovasc Magn Reson 2007;9:525-537.
– reference: DiBella EV, Chen L, Schabel MC, Adluru G, McGann CJ. Myocardial perfusion acquisition without magnetization preparation or gating. Magn Reson Med 67:609-613.
– reference: Nagel E, Klein C, Paetsch I, Hettwer S, Schnackenburg B, Wegscheider K, Fleck E. Magnetic resonance perfusion measurements for the noninvasive detection of coronary artery disease. Circulation 2003;108:432-437.
– reference: Gerber BL, Raman SV, Nayak K, Epstein FH, Ferreira P, Axel L, Kraitchman DL. Myocardial first-pass perfusion cardiovascular magnetic resonance: history, theory, and current state of the art. J Cardiovasc Magn Reson 2008;10:18.
– reference: Manka R, Jahnke C, Kozerke S, Vitanis V, Crelier G, Gebker R, Schnackenburg B, Boesiger P, Fleck E, Paetsch I. Dynamic 3-dimensional stress cardiac magnetic resonance perfusion imaging: detection of coronary artery disease and volumetry of myocardial hypoenhancement before and after coronary stenting. J Am Coll Cardiol 2011;57:437-444.
– reference: Christian TF, Rettmann DW, Aletras AH, Liao SL, Taylor JL, Balaban RS, Arai AE. Absolute myocardial perfusion in canines measured by using dual-bolus first-pass MR imaging. Radiology 2004;232:677-684.
– reference: Fenchel M, Helber U, Simonetti OP, Stauder NI, Kramer U, Nguyen CN, Finn JP, Claussen CD, Miller S. Multislice first-pass myocardial perfusion imaging: Comparison of saturation recovery (SR)-TrueFISP-two-dimensional (2D) and SR-TurboFLASH-2D pulse sequences. J Magn Reson Imaging 2004;19:555-563.
– reference: Scheffler K, Lehnhardt S. Principles and applications of balanced SSFP techniques. Eur Radiol 2003;13:2409-2418.
– reference: Xue H, Guehring J, Srinivasan L, Zuehlsdorff S, Saddi K, Chefdhotel C, Hajnal JV, Rueckert D. Evaluation of rigid and non-rigid motion compensation of cardiac perfusion MRI. Med Image Comput Comput Assist Interv Int Conf Med Image Comput Comput Assist Interv 2008;11(Pt 2):35-43.
– volume: 10
  start-page: 57
  year: 2008
  article-title: Three dimensional first‐pass myocardial perfusion imaging at 3T: feasibility study
  publication-title: J Cardiovasc Magn Reson
– volume: xxii
  start-page: 1017
  year: 2004
– volume: 46
  start-page: 149
  year: 2001
  end-page: 158
  article-title: Characterization and reduction of the transient response in steady‐state MR imaging
  publication-title: Magn Reson Med
– volume: 13
  start-page: O8
  issue: Suppl 1
  article-title: Comparison of arterial input function measured from dual‐bolus and dual‐sequence dynamic contrast‐enhanced cardiac magnetic resonance imaging
  publication-title: J Cardiovasc Magn Reson
– volume: 26
  start-page: 1444
  year: 2007
  end-page: 1451
  article-title: Direct comparison of myocardial perfusion cardiovascular magnetic resonance sequences with parallel acquisition
  publication-title: J Magn Reson Imaging
– volume: 12
  start-page: 741
  issue: Pt 2
  year: 2009
  end-page: 749
  article-title: Unsupervised inline analysis of cardiac perfusion MRI
  publication-title: Med Image Comput Comput Assist Interv
– volume: 219
  start-page: 828
  year: 2001
  end-page: 834
  article-title: Cine MR angiography of the heart with segmented true fast imaging with steady‐state precession
  publication-title: Radiology
– volume: 34
  start-page: 92
  year: 2006
  end-page: 95
  article-title: syngo TWIST for dynamic time‐resolved MR angiography
  publication-title: MAGNETOM Flash
– volume: 45
  start-page: 1815
  year: 2005
  end-page: 1822
  article-title: Diagnostic performance of cardiovascular magnetic resonance in patients with suspected acute myocarditis: comparison of different approaches
  publication-title: J Am Coll Cardiol
– volume: 67
  start-page: 609
  end-page: 613
  article-title: Myocardial perfusion acquisition without magnetization preparation or gating
  publication-title: Magn Reson Med
– volume: 34
  start-page: 276
  year: 1995
  end-page: 282
  article-title: A magnetization‐driven gradient‐echo pulse sequence for the study of myocardial perfusion
  publication-title: Magn Reson Med
– volume: 232
  start-page: 677
  year: 2004
  end-page: 684
  article-title: Absolute myocardial perfusion in canines measured by using dual‐bolus first‐pass MR imaging
  publication-title: Radiology
– volume: 41
  start-page: 213
  year: 2006
  end-page: 221
  article-title: Relaxivity of gadopentetate dimeglumine (Magnevist), gadobutrol (Gadovist), and gadobenate dimeglumine (MultiHance) in human blood plasma at 0.2, 1.5, and 3 Tesla
  publication-title: Invest Radiol
– volume: 19
  start-page: 555
  year: 2004
  end-page: 563
  article-title: Multislice first‐pass myocardial perfusion imaging: Comparison of saturation recovery (SR)‐TrueFISP‐two‐dimensional (2D) and SR‐TurboFLASH‐2D pulse sequences
  publication-title: J Magn Reson Imaging
– volume: 33
  start-page: 560
  year: 1998
  end-page: 572
  article-title: Contrast‐enhanced magnetic resonance angiography of cerebral arteries
  publication-title: A review. Invest Radiol
– volume: 306
  start-page: 277
  end-page: 286
  article-title: Clinical characteristics and cardiovascular magnetic resonance findings in stress (takotsubo) cardiomyopathy
  publication-title: JAMA
– volume: 57
  start-page: 437
  year: 2011
  end-page: 444
  article-title: Dynamic 3‐dimensional stress cardiac magnetic resonance perfusion imaging: detection of coronary artery disease and volumetry of myocardial hypoenhancement before and after coronary stenting
  publication-title: J Am Coll Cardiol
– volume: 108
  start-page: 432
  year: 2003
  end-page: 437
  article-title: Magnetic resonance perfusion measurements for the noninvasive detection of coronary artery disease
  publication-title: Circulation
– volume: 10
  start-page: 246
  year: 1989
  end-page: 255
  article-title: MRI detection of myocardial perfusion changes by gadolinium‐DTPA infusion during dipyridamole hyperemia
  publication-title: Magn Reson Med
– volume: 9
  start-page: 525
  year: 2007
  end-page: 537
  article-title: Imaging sequences for first pass perfusion—a review
  publication-title: J Cardiovasc Magn Reson
– volume: 50
  start-page: 329
  year: 2002
  end-page: 343
  article-title: Variational methods for multimodal image matching
  publication-title: Int J Comp Vis
– volume: 48
  start-page: 1028
  year: 2002
  end-page: 1036
  article-title: Band artifacts due to bulk motion
  publication-title: Magn Reson Med
– volume: 27
  start-page: 793
  year: 2008
  end-page: 801
  article-title: Nonlinear myocardial signal intensity correction improves quantification of contrast‐enhanced first‐pass MR perfusion in humans
  publication-title: J Magn Reson Imaging
– volume: 43
  start-page: 783
  year: 1997
  end-page: 791
  article-title: Proton NMR relaxation times of human blood samples at 1.5 T and implications for functional MRI
  publication-title: Cell Mol Biol (Noisy‐le‐grand)
– volume: 11
  start-page: 125
  year: 1993
  end-page: 133
  article-title: Ni‐DTPA doped agarose‐gel—a phantom material for Gd‐DTPA enhancement measurements
  publication-title: Magn Reson Imaging
– volume: 219
  start-page: 264
  year: 2001
  end-page: 269
  article-title: MR evaluation of ventricular function: True fast imaging with steady‐state precession versus fast low‐angle shot cine MR imaging: feasibility study
  publication-title: Radiology
– volume: 174
  start-page: 757
  issue: 3 Pt 1
  year: 1990
  end-page: 762
  article-title: First‐pass cardiac perfusion: evaluation with ultrafast MR imaging
  publication-title: Radiology
– volume: 54
  start-page: 1295
  year: 2005
  end-page: 1299
  article-title: On the dark rim artifact in dynamic contrast‐enhanced MRI myocardial perfusion studies
  publication-title: Magn Reson Med
– volume: 35
  start-page: 716
  year: 1996
  end-page: 726
  article-title: Myocardial perfusion modeling using MRI
  publication-title: Magn Reson Med
– volume: 10
  start-page: 18
  year: 2008
  article-title: Myocardial first‐pass perfusion cardiovascular magnetic resonance: history, theory, and current state of the art
  publication-title: J Cardiovasc Magn Reson
– volume: 11
  start-page: 35
  issue: Pt 2
  year: 2008
  end-page: 43
  article-title: Evaluation of rigid and non‐rigid motion compensation of cardiac perfusion MRI
  publication-title: Med Image Comput Comput Assist Interv Int Conf Med Image Comput Comput Assist Interv
– volume: 47
  start-page: 482
  year: 2002
  end-page: 491
  article-title: Multislice first‐pass cardiac perfusion MRI: validation in a model of myocardial infarction
  publication-title: Magn Reson Med
– volume: 96
  start-page: 2859
  year: 1997
  end-page: 2867
  article-title: Multislice MRI in assessment of myocardial perfusion in patients with single‐vessel proximal left anterior descending coronary artery disease before and after revascularization
  publication-title: Circulation
– volume: 87
  start-page: 901
  year: 1987
  end-page: 927
  article-title: Paramagnetic metal‐complexes as water proton relaxation agents for NMR imaging—theory and design
  publication-title: Chem Rev
– volume: 20
  start-page: 39
  year: 2004
  end-page: 45
  article-title: Accurate assessment of the arterial input function during high‐dose myocardial perfusion cardiovascular magnetic resonance
  publication-title: J Magn Reson Imaging
– volume: 39
  start-page: 5204
  year: 2012
  end-page: 5211
  article-title: Myocardial perfusion MRI with an undersampled 3D stack‐of‐stars sequence
  publication-title: Med Phys
– volume: 13
  start-page: 2409
  year: 2003
  end-page: 2418
  article-title: Principles and applications of balanced SSFP techniques
  publication-title: Eur Radiol
– ident: e_1_2_8_24_1
  doi: 10.1002/jmri.20050
– volume: 11
  start-page: 35
  issue: 2
  year: 2008
  ident: e_1_2_8_22_1
  article-title: Evaluation of rigid and non‐rigid motion compensation of cardiac perfusion MRI
  publication-title: Med Image Comput Comput Assist Interv Int Conf Med Image Comput Comput Assist Interv
– volume: 306
  start-page: 277
  ident: e_1_2_8_37_1
  article-title: Clinical characteristics and cardiovascular magnetic resonance findings in stress (takotsubo) cardiomyopathy
  publication-title: JAMA
– ident: e_1_2_8_5_1
  doi: 10.1002/mrm.1910340220
– ident: e_1_2_8_15_1
  doi: 10.1021/cr00081a003
– ident: e_1_2_8_34_1
  doi: 10.1002/jmri.21167
– volume: 12
  start-page: 741
  issue: 2
  year: 2009
  ident: e_1_2_8_27_1
  article-title: Unsupervised inline analysis of cardiac perfusion MRI
  publication-title: Med Image Comput Comput Assist Interv
– ident: e_1_2_8_4_1
  doi: 10.1080/10976640601187604
– ident: e_1_2_8_20_1
  doi: 10.1016/0730-725X(93)90420-I
– ident: e_1_2_8_2_1
  doi: 10.1002/mrm.1910100209
– ident: e_1_2_8_8_1
  doi: 10.1118/1.4738965
– ident: e_1_2_8_17_1
  doi: 10.1097/00004424-199809000-00012
– ident: e_1_2_8_9_1
  doi: 10.1016/j.jacc.2010.05.067
– ident: e_1_2_8_13_1
  doi: 10.1161/01.CIR.0000080915.35024.A9
– ident: e_1_2_8_32_1
  doi: 10.1002/mrm.1910350513
– ident: e_1_2_8_38_1
  doi: 10.1016/j.jacc.2004.11.069
– ident: e_1_2_8_3_1
  doi: 10.1148/radiology.174.3.2305058
– start-page: 1017
  volume-title: Handbook of MRI pulse sequences
  year: 2004
  ident: e_1_2_8_21_1
– ident: e_1_2_8_19_1
  doi: 10.1002/mrm.1170
– ident: e_1_2_8_23_1
  doi: 10.1161/01.CIR.96.9.2859
– ident: e_1_2_8_35_1
  doi: 10.1148/radiology.219.1.r01ap12264
– ident: e_1_2_8_26_1
  doi: 10.1023/A:1020830525823
– ident: e_1_2_8_31_1
  doi: 10.1002/jmri.20054
– ident: e_1_2_8_29_1
  doi: 10.1186/1532-429X-13-S1-O8
– ident: e_1_2_8_12_1
  doi: 10.1002/mrm.10314
– ident: e_1_2_8_30_1
  doi: 10.1148/radiol.2323030573
– ident: e_1_2_8_7_1
  doi: 10.1186/1532-429X-10-18
– volume: 43
  start-page: 783
  year: 1997
  ident: e_1_2_8_18_1
  article-title: Proton NMR relaxation times of human blood samples at 1.5 T and implications for functional MRI
  publication-title: Cell Mol Biol (Noisy‐le‐grand)
– ident: e_1_2_8_33_1
  doi: 10.1002/jmri.21286
– ident: e_1_2_8_16_1
  doi: 10.1097/01.rli.0000197668.44926.f7
– ident: e_1_2_8_14_1
  doi: 10.1007/s00330-003-1957-x
– ident: e_1_2_8_10_1
  doi: 10.1186/1532-429X-10-57
– ident: e_1_2_8_36_1
  doi: 10.1148/radiology.219.3.r01jn44828
– volume: 34
  start-page: 92
  year: 2006
  ident: e_1_2_8_25_1
  article-title: syngo TWIST for dynamic time‐resolved MR angiography
  publication-title: MAGNETOM Flash
– ident: e_1_2_8_28_1
  doi: 10.1002/mrm.10085
– volume: 67
  start-page: 609
  ident: e_1_2_8_6_1
  article-title: Myocardial perfusion acquisition without magnetization preparation or gating
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.23318
– ident: e_1_2_8_11_1
  doi: 10.1002/mrm.20666
– reference: 15936612 - J Am Coll Cardiol. 2005 Jun 7;45(11):1815-22
– reference: 16481903 - Invest Radiol. 2006 Mar;41(3):213-21
– reference: 8722823 - Magn Reson Med. 1996 May;35(5):716-26
– reference: 17968886 - J Magn Reson Imaging. 2007 Dec;26(6):1444-51
– reference: 11376278 - Radiology. 2001 Jun;219(3):828-34
– reference: 11443721 - Magn Reson Med. 2001 Jul;46(1):149-58
– reference: 12465113 - Magn Reson Med. 2002 Dec;48(6):1028-36
– reference: 2761383 - Magn Reson Med. 1989 May;10(2):246-55
– reference: 9766041 - Invest Radiol. 1998 Sep;33(9):560-72
– reference: 9298600 - Cell Mol Biol (Noisy-le-grand). 1997 Jul;43(5):783-91
– reference: 15221807 - J Magn Reson Imaging. 2004 Jul;20(1):39-45
– reference: 8423715 - Magn Reson Imaging. 1993;11(1):125-33
– reference: 12928954 - Eur Radiol. 2003 Nov;13(11):2409-18
– reference: 22894445 - Med Phys. 2012 Aug;39(8):5204-11
– reference: 15112304 - J Magn Reson Imaging. 2004 May;19(5):555-63
– reference: 19077220 - J Cardiovasc Magn Reson. 2008;10:57
– reference: 15284436 - Radiology. 2004 Sep;232(3):677-84
– reference: 17365232 - J Cardiovasc Magn Reson. 2007;9(3):525-37
– reference: 12860910 - Circulation. 2003 Jul 29;108(4):432-7
– reference: 16200553 - Magn Reson Med. 2005 Nov;54(5):1295-9
– reference: 21251584 - J Am Coll Cardiol. 2011 Jan 25;57(4):437-44
– reference: 22190332 - Magn Reson Med. 2012 Mar;67(3):609-13
– reference: 7476088 - Magn Reson Med. 1995 Aug;34(2):276-82
– reference: 21771988 - JAMA. 2011 Jul 20;306(3):277-86
– reference: 18442372 - J Cardiovasc Magn Reson. 2008;10:18
– reference: 20426178 - Med Image Comput Comput Assist Interv. 2009;12(Pt 2):741-9
– reference: 18982587 - Med Image Comput Comput Assist Interv. 2008;11(Pt 2):35-43
– reference: 18302205 - J Magn Reson Imaging. 2008 Apr;27(4):793-801
– reference: 2305058 - Radiology. 1990 Mar;174(3 Pt 1):757-62
– reference: 9386150 - Circulation. 1997 Nov 4;96(9):2859-67
– reference: 11274568 - Radiology. 2001 Apr;219(1):264-9
– reference: 11870835 - Magn Reson Med. 2002 Mar;47(3):482-91
SSID ssj0009974
Score 2.1437135
Snippet Purpose To describe and characterize a new approach to first‐pass myocardial perfusion utilizing balanced steady‐state free precession acquisition without the...
To describe and characterize a new approach to first-pass myocardial perfusion utilizing balanced steady-state free precession acquisition without the use of...
Purpose To describe and characterize a new approach to first-pass myocardial perfusion utilizing balanced steady-state free precession acquisition without the...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 133
SubjectTerms Algorithms
cardiac MRI
Contrast media
Coronary Vessels - anatomy & histology
first-pass myocardial perfusion
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Imaging, Three-Dimensional - methods
Magnetic Resonance Angiography - methods
Myocardial Perfusion Imaging - methods
Reference Values
Reproducibility of Results
Sensitivity and Specificity
steady state
Title Steady-state first-pass perfusion (SSFPP): A new approach to 3D first-pass myocardial perfusion imaging
URI https://api.istex.fr/ark:/67375/WNG-3BQ0RQM4-P/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.24638
https://www.ncbi.nlm.nih.gov/pubmed/23440705
https://www.proquest.com/docview/1468619137
https://www.proquest.com/docview/1469647112
https://www.proquest.com/docview/1492661405
https://pubmed.ncbi.nlm.nih.gov/PMC3664646
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIhAXCuWVUpBBCJVDtontxAmcCmWpkFJtt1T0UCly_BCrNtnVPiTKiZ_Ab-SXMHYe7UJBCOWSyGMpHs_Yn8fjzwg9j4xixiSRD9OdjVZJ5QsdcJ-EWioBPc5Sexo524_3jtiH4-h4Bb1uz8LU_BBdwM16hhuvrYOLYrZ9QRpaTsseYWA-MP6GNLa8-bvDC-qoNK0ZmDmz40zKWlahgGx3NZfmomtWrV-uApq_50texrFuIuqvoZO2CXX-yWlvMS968usv7I7_2cbb6FYDUPFObVF30Iqu1tGNrNmCX0fXXc6onN1Fpc0FVuc_vn13p5KwGQGShK8J4HE80VOzsJE4vHV42B8MXr7COxggPG5JzPF8jOnucqXyHGZWa7Fnl-qPSneR0j101H_38e2e39ze4EvGU3C_2CRaEq65oXGciCRRIVGCAT6jPAgkERETkhLOjSm4CRMTEsBDRUrCQuuE0vtotRpX-iHClrStMJFQaaRZrE2iJI0VEQUzccSU8tBW24-5bKjN7Q0bZ3lNykxyUGTuFOmhZ53opObzuErohTOGTkJMT20CHI_yT_vvc_rmIBgeZCwfeGiztZa88f2ZXUwlsCwNKffQ064YvNZuxYhKjxdOxh4BBrD7N5nUoacg8tCD2gC7HyKUwUrclvAl0-wELGv4ckk1-uzYw6EzGDygM2d5f9ZCng0z97Lx76KP0E1AlKyOUW2i1fl0oR8DapsXT5x7_gRmHUFn
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVjwuPMorUMAghMoh28Rx4gRxKZRlgWa13baiFxQlsS1WbbKr7a5EOfET-I38EsbOo10oCKFcEnksxeMZ-_N4_Bngqa8EUyr0bZzudLQqF3YqHW5TV-YixR5nkT6NHPeD3j57f-AfLMHL5ixMxQ_RBty0Z5jxWju4DkhvnLKGFtOiQxnazwVYYQg09NJra3hKHhVFFQczZ3qkiVjDK-TQjbbqwmy0ohX75Tyo-XvG5Fkka6ai7jX41DSiykA57MxnWSf_-gu_4_-28jpcrTEq2ayM6gYsyXIVLsX1LvwqXDRpo_nxTSh0OrA4-fHtuzmYRNQIwSR-TRCSk4mcqrkOxpH13d3uYPD8BdkkiOJJw2NOZmPibS1WKk5wctVGe3Sm_qgwdyndgv3um73XPbu-wMHOGY_QAwMVypxyyZUXBGEahsKlImUI0TzuODlNfZbmHuVcqYwrN1QuRUiURdTNpAw97zYsl-NS3gWiedsy5aci8iULpApF7gWCphlTgc-EsGC96cgkr9nN9SUbR0nFy0wTVGRiFGnBk1Z0UlF6nCf0zFhDK5FOD3UOHPeTj_23ifdqxxnuxCwZWLDWmEtSu_-xXk-FuDJ1PW7B47YYHVfvxqSlHM-NjD4FjHj3bzKRAVCOb8GdygLbH6Iew8W4LuELttkKaOLwxZJy9NkQiGNnMHxQZ8b0_qyFJB7G5uXev4s-gsu9vXg72X7X_3AfriDAZFXIag2WZ9O5fIAgbpY9NL76E1OPRYY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVlRceJRXoEBACJVDtonjxAmcCmUpj11tt1T0gBQ5fohVm-xquytRTvwEfiO_hLHzaBcKQiiXRB5L8XjG_jwefwZ4HGlJtU4iD6c7E60S0uPKZx4JlJAce5ym5jRyrx_v7NO3B9HBEjxvzsJU_BBtwM14hh2vjYNPpN48JQ0tpkWHUDSfC7BCY0QSBhENT7mj0rSiYGbUDDQpbWiFfLLZVl2YjFaMXr-chzR_T5g8C2TtTNS9Ap-aNlQJKIed-SzviK-_0Dv-ZyOvwuUaobpblUldgyVVrsFqr96DX4OLNmlUHF-HwiQDy5Mf377bY0muHiGUxK8JAnJ3oqZ6bkJx7sbeXncwePrM3XIRw7sNi7k7G7vh9mKl4gSnVmOyR2fqjwp7k9IN2O---vByx6uvb_AEZSn6X6wTJQhTTIdxnPAkkQGRnCJAC5nvC8IjykVIGNM6ZzpIdEAQEOUpCXKlkjC8CcvluFS3wTWsbbmOuEwjRWOlEynCWBKeUx1HVEoHNpp-zETNbW6u2DjKKlZmkqEiM6tIBx61opOK0OM8oSfWGFoJPj00GXAsyj72X2fhi11_uNuj2cCB9cZastr5j81qKsF1aRAyBx62xei2Zi-Gl2o8tzLmDDCi3b_JpBY--ZEDtyoDbH-IhBSX4qaELZhmK2BowxdLytFnSx-OnUHxQZ1Zy_uzFrLesGdf7vy76ANYHWx3s_dv-u_uwiVEl7SKV63D8mw6V_cQwc3y-9ZTfwJaeUQ1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Steady%E2%80%90state+first%E2%80%90pass+perfusion+%28SSFPP%29%3A+A+new+approach+to+3D+first%E2%80%90pass+myocardial+perfusion+imaging&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Giri%2C+Shivraman&rft.au=Xue%2C+Hui&rft.au=Maiseyeu%2C+Andrei&rft.au=Kroeker%2C+Randall&rft.date=2014-01-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=71&rft.issue=1&rft.spage=133&rft.epage=144&rft_id=info:doi/10.1002%2Fmrm.24638&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mrm_24638
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon