Steady-state first-pass perfusion (SSFPP): A new approach to 3D first-pass myocardial perfusion imaging
Purpose To describe and characterize a new approach to first‐pass myocardial perfusion utilizing balanced steady‐state free precession acquisition without the use of saturation recovery or other magnetization preparation. Theory The balanced steady‐state free precession sequence is inherently sensit...
Saved in:
Published in | Magnetic resonance in medicine Vol. 71; no. 1; pp. 133 - 144 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.01.2014
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0740-3194 1522-2594 1522-2594 |
DOI | 10.1002/mrm.24638 |
Cover
Abstract | Purpose
To describe and characterize a new approach to first‐pass myocardial perfusion utilizing balanced steady‐state free precession acquisition without the use of saturation recovery or other magnetization preparation.
Theory
The balanced steady‐state free precession sequence is inherently sensitive to contrast agent enhancement of the myocardium. This sensitivity can be used to advantage in first‐pass myocardial perfusion imaging by eliminating the need for magnetization preparation.
Methods
Bloch equation simulations, phantom experiments, and in vivo 2D imaging studies were run comparing the proposed technique with three other methods: saturation recovery spoiled gradient echo, saturation recovery steady‐state free precession, and steady‐state spoiled gradient echo without magnetization preparation. Additionally, an acquisition‐reconstruction strategy for 3D perfusion imaging is proposed and initial experience with this approach is demonstrated in healthy subjects and one patient.
Results
Phantom experiments verified simulation results showing the sensitivity of the balanced steady‐state free precession sequence to contrast agent enhancement in solid tissue is similar to that of magnetization‐prepared acquisitions. Images acquired in normal volunteers showed the proposed technique provided superior signal and signal‐to‐noise ratio compared with all other sequences at baseline as well as postcontrast.
Conclusions
A new approach to first‐pass myocardial perfusion is presented that obviates the need for magnetization preparation and provides high signal‐to‐noise ratio. Magn Reson Med 71:133–144, 2014. © 2013 Wiley Periodicals, Inc. |
---|---|
AbstractList | To describe and characterize a new approach to first-pass myocardial perfusion utilizing balanced steady-state free precession acquisition without the use of saturation recovery or other magnetization preparation.PURPOSETo describe and characterize a new approach to first-pass myocardial perfusion utilizing balanced steady-state free precession acquisition without the use of saturation recovery or other magnetization preparation.The balanced steady-state free precession sequence is inherently sensitive to contrast agent enhancement of the myocardium. This sensitivity can be used to advantage in first-pass myocardial perfusion imaging by eliminating the need for magnetization preparation.THEORYThe balanced steady-state free precession sequence is inherently sensitive to contrast agent enhancement of the myocardium. This sensitivity can be used to advantage in first-pass myocardial perfusion imaging by eliminating the need for magnetization preparation.Bloch equation simulations, phantom experiments, and in vivo 2D imaging studies were run comparing the proposed technique with three other methods: saturation recovery spoiled gradient echo, saturation recovery steady-state free precession, and steady-state spoiled gradient echo without magnetization preparation. Additionally, an acquisition-reconstruction strategy for 3D perfusion imaging is proposed and initial experience with this approach is demonstrated in healthy subjects and one patient.METHODSBloch equation simulations, phantom experiments, and in vivo 2D imaging studies were run comparing the proposed technique with three other methods: saturation recovery spoiled gradient echo, saturation recovery steady-state free precession, and steady-state spoiled gradient echo without magnetization preparation. Additionally, an acquisition-reconstruction strategy for 3D perfusion imaging is proposed and initial experience with this approach is demonstrated in healthy subjects and one patient.Phantom experiments verified simulation results showing the sensitivity of the balanced steady-state free precession sequence to contrast agent enhancement in solid tissue is similar to that of magnetization-prepared acquisitions. Images acquired in normal volunteers showed the proposed technique provided superior signal and signal-to-noise ratio compared with all other sequences at baseline as well as postcontrast.RESULTSPhantom experiments verified simulation results showing the sensitivity of the balanced steady-state free precession sequence to contrast agent enhancement in solid tissue is similar to that of magnetization-prepared acquisitions. Images acquired in normal volunteers showed the proposed technique provided superior signal and signal-to-noise ratio compared with all other sequences at baseline as well as postcontrast.A new approach to first-pass myocardial perfusion is presented that obviates the need for magnetization preparation and provides high signal-to-noise ratio.CONCLUSIONSA new approach to first-pass myocardial perfusion is presented that obviates the need for magnetization preparation and provides high signal-to-noise ratio. Purpose To describe and characterize a new approach to first‐pass myocardial perfusion utilizing balanced steady‐state free precession acquisition without the use of saturation recovery or other magnetization preparation. Theory The balanced steady‐state free precession sequence is inherently sensitive to contrast agent enhancement of the myocardium. This sensitivity can be used to advantage in first‐pass myocardial perfusion imaging by eliminating the need for magnetization preparation. Methods Bloch equation simulations, phantom experiments, and in vivo 2D imaging studies were run comparing the proposed technique with three other methods: saturation recovery spoiled gradient echo, saturation recovery steady‐state free precession, and steady‐state spoiled gradient echo without magnetization preparation. Additionally, an acquisition‐reconstruction strategy for 3D perfusion imaging is proposed and initial experience with this approach is demonstrated in healthy subjects and one patient. Results Phantom experiments verified simulation results showing the sensitivity of the balanced steady‐state free precession sequence to contrast agent enhancement in solid tissue is similar to that of magnetization‐prepared acquisitions. Images acquired in normal volunteers showed the proposed technique provided superior signal and signal‐to‐noise ratio compared with all other sequences at baseline as well as postcontrast. Conclusions A new approach to first‐pass myocardial perfusion is presented that obviates the need for magnetization preparation and provides high signal‐to‐noise ratio. Magn Reson Med 71:133–144, 2014. © 2013 Wiley Periodicals, Inc. Purpose To describe and characterize a new approach to first-pass myocardial perfusion utilizing balanced steady-state free precession acquisition without the use of saturation recovery or other magnetization preparation. Theory The balanced steady-state free precession sequence is inherently sensitive to contrast agent enhancement of the myocardium. This sensitivity can be used to advantage in first-pass myocardial perfusion imaging by eliminating the need for magnetization preparation. Methods Bloch equation simulations, phantom experiments, and in vivo 2D imaging studies were run comparing the proposed technique with three other methods: saturation recovery spoiled gradient echo, saturation recovery steady-state free precession, and steady-state spoiled gradient echo without magnetization preparation. Additionally, an acquisition-reconstruction strategy for 3D perfusion imaging is proposed and initial experience with this approach is demonstrated in healthy subjects and one patient. Results Phantom experiments verified simulation results showing the sensitivity of the balanced steady-state free precession sequence to contrast agent enhancement in solid tissue is similar to that of magnetization-prepared acquisitions. Images acquired in normal volunteers showed the proposed technique provided superior signal and signal-to-noise ratio compared with all other sequences at baseline as well as postcontrast. Conclusions A new approach to first-pass myocardial perfusion is presented that obviates the need for magnetization preparation and provides high signal-to-noise ratio. Magn Reson Med 71:133-144, 2014. copyright 2013 Wiley Periodicals, Inc. To describe and characterize a new approach to first-pass myocardial perfusion utilizing balanced steady-state free precession acquisition without the use of saturation recovery or other magnetization preparation. The balanced steady-state free precession sequence is inherently sensitive to contrast agent enhancement of the myocardium. This sensitivity can be used to advantage in first-pass myocardial perfusion imaging by eliminating the need for magnetization preparation. Bloch equation simulations, phantom experiments, and in vivo 2D imaging studies were run comparing the proposed technique with three other methods: saturation recovery spoiled gradient echo, saturation recovery steady-state free precession, and steady-state spoiled gradient echo without magnetization preparation. Additionally, an acquisition-reconstruction strategy for 3D perfusion imaging is proposed and initial experience with this approach is demonstrated in healthy subjects and one patient. Phantom experiments verified simulation results showing the sensitivity of the balanced steady-state free precession sequence to contrast agent enhancement in solid tissue is similar to that of magnetization-prepared acquisitions. Images acquired in normal volunteers showed the proposed technique provided superior signal and signal-to-noise ratio compared with all other sequences at baseline as well as postcontrast. A new approach to first-pass myocardial perfusion is presented that obviates the need for magnetization preparation and provides high signal-to-noise ratio. Purpose To describe and characterize a new approach to first-pass myocardial perfusion utilizing balanced steady-state free precession acquisition without the use of saturation recovery or other magnetization preparation. Theory The balanced steady-state free precession sequence is inherently sensitive to contrast agent enhancement of the myocardium. This sensitivity can be used to advantage in first-pass myocardial perfusion imaging by eliminating the need for magnetization preparation. Methods Bloch equation simulations, phantom experiments, and in vivo 2D imaging studies were run comparing the proposed technique with three other methods: saturation recovery spoiled gradient echo, saturation recovery steady-state free precession, and steady-state spoiled gradient echo without magnetization preparation. Additionally, an acquisition-reconstruction strategy for 3D perfusion imaging is proposed and initial experience with this approach is demonstrated in healthy subjects and one patient. Results Phantom experiments verified simulation results showing the sensitivity of the balanced steady-state free precession sequence to contrast agent enhancement in solid tissue is similar to that of magnetization-prepared acquisitions. Images acquired in normal volunteers showed the proposed technique provided superior signal and signal-to-noise ratio compared with all other sequences at baseline as well as postcontrast. Conclusions A new approach to first-pass myocardial perfusion is presented that obviates the need for magnetization preparation and provides high signal-to-noise ratio. Magn Reson Med 71:133-144, 2014. © 2013 Wiley Periodicals, Inc. [PUBLICATION ABSTRACT] |
Author | Giri, Shivraman Simonetti, Orlando P. Xue, Hui Raman, Subha V. Rajagopalan, Sanjay White, Richard D. Zuehlsdorff, Sven Kroeker, Randall Maiseyeu, Andrei |
AuthorAffiliation | 2 Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus, Ohio, USA 1 Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA 4 Siemens Corporate Research, Princeton, New Jersey, USA 6 Siemens Healthcare, Winnipeg, Manitoba, Canada 5 Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, Ohio, USA 7 Department of Radiology, The Ohio State University, Columbus, Ohio, USA 3 Siemens Healthcare, Chicago, IL, USA |
AuthorAffiliation_xml | – name: 3 Siemens Healthcare, Chicago, IL, USA – name: 6 Siemens Healthcare, Winnipeg, Manitoba, Canada – name: 4 Siemens Corporate Research, Princeton, New Jersey, USA – name: 5 Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, Ohio, USA – name: 1 Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA – name: 7 Department of Radiology, The Ohio State University, Columbus, Ohio, USA – name: 2 Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus, Ohio, USA |
Author_xml | – sequence: 1 givenname: Shivraman surname: Giri fullname: Giri, Shivraman organization: Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA – sequence: 2 givenname: Hui surname: Xue fullname: Xue, Hui organization: Siemens Corporate Research, New Jersey, Princeton, USA – sequence: 3 givenname: Andrei surname: Maiseyeu fullname: Maiseyeu, Andrei organization: Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA – sequence: 4 givenname: Randall surname: Kroeker fullname: Kroeker, Randall organization: Siemens Healthcare, Manitoba, Winnipeg, Canada – sequence: 5 givenname: Sanjay surname: Rajagopalan fullname: Rajagopalan, Sanjay organization: Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA – sequence: 6 givenname: Richard D. surname: White fullname: White, Richard D. organization: Department of Radiology, The Ohio State University, Ohio, Columbus, USA – sequence: 7 givenname: Sven surname: Zuehlsdorff fullname: Zuehlsdorff, Sven organization: Siemens Healthcare, Illinois, Chicago, USA – sequence: 8 givenname: Subha V. surname: Raman fullname: Raman, Subha V. organization: Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA – sequence: 9 givenname: Orlando P. surname: Simonetti fullname: Simonetti, Orlando P. email: Orlando.Simonetti@osumc.edu organization: Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23440705$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks9PFDEcxRsDkQU9-A-YSbzAYaC_pp16MEEQMGF1YTUem26nXYoz07GdAfe_p7CwWUk0poce-nmvr33fbbDR-tYA8AbBfQQhPmhCs48pI-ULMEIFxjkuBN0AI8gpzAkSdAtsx3gNIRSC05dgCxNKIYfFCMynvVHVIo-96k1mXYh93qkYs84EO0Tn22x3Oj2ZTPbeZ4dZa24z1XXBK32V9T4jx-uSZuG1CpVT9ZraNWru2vkrsGlVHc3rx30HfD_59O3oLD__evr56PA815SLMsfMlkZjbrgljJWqLCuEK0UpKQiHUGNVUKUJ5tzaGbeotAhDVswERjNjSkJ2wIelbzfMGlNp0_ZB1bILKUdYSK-c_POkdVdy7m9kuo6mlQx2Hw2C_zWY2MvGRW3qWrXGD1EiKjBjiMLiP1AmGOUI4YS-e4Ze-yG06SfuqZIhgQhP1Nv18KvUT3UlYG8J6OBjDMauEATl_SjINAryYRQSe_CM1S6VnDpJ73b1vxS3rjaLv1vL8eX4SZEvFS725vdKocJPyTjhhfzx5VSSjxfw8mJM5YTcATJN0vA |
CODEN | MRMEEN |
CitedBy_id | crossref_primary_10_1002_mrm_25478 crossref_primary_10_1186_s12968_015_0162_9 crossref_primary_10_1002_mrm_25752 crossref_primary_10_1002_mrm_28765 crossref_primary_10_1177_2058460117729186 crossref_primary_10_1002_mrm_25074 crossref_primary_10_1002_mrm_29453 |
Cites_doi | 10.1002/jmri.20050 10.1002/mrm.1910340220 10.1021/cr00081a003 10.1002/jmri.21167 10.1080/10976640601187604 10.1016/0730-725X(93)90420-I 10.1002/mrm.1910100209 10.1118/1.4738965 10.1097/00004424-199809000-00012 10.1016/j.jacc.2010.05.067 10.1161/01.CIR.0000080915.35024.A9 10.1002/mrm.1910350513 10.1016/j.jacc.2004.11.069 10.1148/radiology.174.3.2305058 10.1002/mrm.1170 10.1161/01.CIR.96.9.2859 10.1148/radiology.219.1.r01ap12264 10.1023/A:1020830525823 10.1002/jmri.20054 10.1186/1532-429X-13-S1-O8 10.1002/mrm.10314 10.1148/radiol.2323030573 10.1186/1532-429X-10-18 10.1002/jmri.21286 10.1097/01.rli.0000197668.44926.f7 10.1007/s00330-003-1957-x 10.1186/1532-429X-10-57 10.1148/radiology.219.3.r01jn44828 10.1002/mrm.10085 10.1002/mrm.23318 10.1002/mrm.20666 |
ContentType | Journal Article |
Copyright | Copyright © 2013 Wiley Periodicals, Inc. |
Copyright_xml | – notice: Copyright © 2013 Wiley Periodicals, Inc. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 7QO 5PM |
DOI | 10.1002/mrm.24638 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic Biotechnology Research Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitleList | MEDLINE - Academic Engineering Research Database MEDLINE Biochemistry Abstracts 1 |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 1522-2594 |
EndPage | 144 |
ExternalDocumentID | PMC3664646 3158308571 23440705 10_1002_mrm_24638 MRM24638 ark_67375_WNG_3BQ0RQM4_P |
Genre | article Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Heart, Lung, and Blood Institute funderid: R01HL102450 – fundername: NHLBI NIH HHS grantid: R01 HL102450 – fundername: NHLBI NIH HHS grantid: R01HL102450 – fundername: National Heart, Lung, and Blood Institute : NHLBI grantid: R01 HL102450 || HL |
GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIACR AIAGR AIDQK AIDYY AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT 24P AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RGB RWI WRC WUP AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 7QO 5PM |
ID | FETCH-LOGICAL-c4798-26f8ec27e7f3668a88d12da44353700c2a54ac3277ffb7f18f12065b921bee833 |
IEDL.DBID | DR2 |
ISSN | 0740-3194 1522-2594 |
IngestDate | Thu Aug 21 18:13:22 EDT 2025 Fri Jul 11 15:36:20 EDT 2025 Fri Jul 11 13:56:08 EDT 2025 Fri Jul 25 12:20:46 EDT 2025 Thu Apr 03 06:58:39 EDT 2025 Tue Jul 01 01:20:52 EDT 2025 Thu Apr 24 23:03:25 EDT 2025 Wed Jan 22 16:33:44 EST 2025 Tue Sep 09 05:22:59 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | steady state cardiac MRI first-pass myocardial perfusion |
Language | English |
License | Copyright © 2013 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4798-26f8ec27e7f3668a88d12da44353700c2a54ac3277ffb7f18f12065b921bee833 |
Notes | ArticleID:MRM24638 istex:802688CECD248C1C9CB3EEB8DC669AD60583C00F National Heart, Lung, and Blood Institute - No. R01HL102450 ark:/67375/WNG-3BQ0RQM4-P ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 23440705 |
PQID | 1468619137 |
PQPubID | 1016391 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3664646 proquest_miscellaneous_1492661405 proquest_miscellaneous_1469647112 proquest_journals_1468619137 pubmed_primary_23440705 crossref_primary_10_1002_mrm_24638 crossref_citationtrail_10_1002_mrm_24638 wiley_primary_10_1002_mrm_24638_MRM24638 istex_primary_ark_67375_WNG_3BQ0RQM4_P |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2014 |
PublicationDateYYYYMMDD | 2014-01-01 |
PublicationDate_xml | – month: 01 year: 2014 text: January 2014 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Magnetic resonance in medicine |
PublicationTitleAlternate | Magn. Reson. Med |
PublicationYear | 2014 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Tofts PS, Shuter B, Pope JM. Ni-DTPA doped agarose-gel-a phantom material for Gd-DTPA enhancement measurements. Magn Reson Imaging 1993;11:125-133. Abdel-Aty H, Boye P, Zagrosek A, Wassmuth R, Kumar A, Messroghli D, Bock P, Dietz R, Friedrich MG, Schulz-Menger J. Diagnostic performance of cardiovascular magnetic resonance in patients with suspected acute myocarditis: comparison of different approaches. J Am Coll Cardiol 2005;45:1815-1822. Bernstein MA, King KF. Handbook of MRI pulse sequences. Amsterdam; Oxford: Academic Press; 2004. xxii,1017 p. Lauerma K, Virtanen KS, Sipila LM, Hekali P, Aronen HJ. Multislice MRI in assessment of myocardial perfusion in patients with single-vessel proximal left anterior descending coronary artery disease before and after revascularization. Circulation 1997;96:2859-2867. Hsu L-Y, Kellman P, Gatehouse P, Zuehlsdorff S, Glielmi C, Groves D, Aletras A, Bandettini P, Arai A. Comparison of arterial input function measured from dual-bolus and dual-sequence dynamic contrast-enhanced cardiac magnetic resonance imaging. J Cardiovasc Magn Reson 13 (Suppl 1):O8. Pintaske J, Martirosian P, Graf H, Erb G, Lodemann KP, Claussen CD, Schick F. Relaxivity of gadopentetate dimeglumine (Magnevist), gadobutrol (Gadovist), and gadobenate dimeglumine (MultiHance) in human blood plasma at 0.2, 1.5, and 3 Tesla. Invest Radiol 2006;41:213-221. Scheffler K, Lehnhardt S. Principles and applications of balanced SSFP techniques. Eur Radiol 2003;13:2409-2418. Hargreaves BA, Vasanawala SS, Pauly JM, Nishimura DG. Characterization and reduction of the transient response in steady-state MR imaging. Magn Reson Med 2001;46:149-158. Lauffer RB. Paramagnetic metal-complexes as water proton relaxation agents for NMR imaging-theory and design. Chem Rev 1987;87:901-927. Hermosillo G, Chefdhotel C, Faugeras O. Variational methods for multimodal image matching. Int J Comp Vis 2002;50:329-343. Xue H, Zuehlsdorff S, Kellman P, Arai A, Nielles-Vallespin S, Chefdhotel C, Lorenz CH, Guehring J. Unsupervised inline analysis of cardiac perfusion MRI. Med Image Comput Comput Assist Interv 2009;12(Pt 2):741-749. Fenchel M, Helber U, Simonetti OP, Stauder NI, Kramer U, Nguyen CN, Finn JP, Claussen CD, Miller S. Multislice first-pass myocardial perfusion imaging: Comparison of saturation recovery (SR)-TrueFISP-two-dimensional (2D) and SR-TurboFLASH-2D pulse sequences. J Magn Reson Imaging 2004;19:555-563. Eitel I, von Knobelsdorff-Brenkenhoff F, Bernhardt P, Carbone I, Muellerleile K, Aldrovandi A, Francone M, Desch S, Gutberlet M, Strohm O, Schuler G, Schulz-Menger J, Thiele H, Friedrich MG. Clinical characteristics and cardiovascular magnetic resonance findings in stress (takotsubo) cardiomyopathy. JAMA 306:277-286. Larsson HBW, FritzHansen T, Rostrup E, Sondergaard L, Ring P, Henriksen O. Myocardial perfusion modeling using MRI. Magn Reson Med 1996;35:716-726. Nagel E, Klein C, Paetsch I, Hettwer S, Schnackenburg B, Wegscheider K, Fleck E. Magnetic resonance perfusion measurements for the noninvasive detection of coronary artery disease. Circulation 2003;108:432-437. Kellman P, Arai AE. Imaging sequences for first pass perfusion-a review. J Cardiovasc Magn Reson 2007;9:525-537. Gerber BL, Raman SV, Nayak K, Epstein FH, Ferreira P, Axel L, Kraitchman DL. Myocardial first-pass perfusion cardiovascular magnetic resonance: history, theory, and current state of the art. J Cardiovasc Magn Reson 2008;10:18. DiBella EV, Chen L, Schabel MC, Adluru G, McGann CJ. Myocardial perfusion acquisition without magnetization preparation or gating. Magn Reson Med 67:609-613. Storey P, Chen Q, Li W, Edelman RR, Prasad PV. Band artifacts due to bulk motion. Magn Reson Med 2002;48:1028-1036. Barkhausen J, Ruehm SG, Goyen M, Buck T, Laub G, Debatin JF. MR evaluation of ventricular function: True fast imaging with steady-state precession versus fast low-angle shot cine MR imaging: feasibility study. Radiology 2001;219:264-269. Chen L, Adluru G, Schabel MC, McGann CJ, Dibella EV. Myocardial perfusion MRI with an undersampled 3D stack-of-stars sequence. Med Phys 2012;39:5204-5211. Xue H, Guehring J, Srinivasan L, Zuehlsdorff S, Saddi K, Chefdhotel C, Hajnal JV, Rueckert D. Evaluation of rigid and non-rigid motion compensation of cardiac perfusion MRI. Med Image Comput Comput Assist Interv Int Conf Med Image Comput Comput Assist Interv 2008;11(Pt 2):35-43. Carr JC, Simonetti O, Bundy J, Li DB, Pereles S, Finn JP. Cine MR angiography of the heart with segmented true fast imaging with steady-state precession. Radiology 2001;219:828-834. Epstein FH, London JF, Peters DC, Goncalves LM, Agyeman K, Taylor J, Balaban RS, Arai AE. Multislice first-pass cardiac perfusion MRI: validation in a model of myocardial infarction. Magn Reson Med 2002;47:482-491. Lyne JC, Gatehouse PD, Assomull RG, Smith GC, Kellman P, Firmin DN, Pennell DJ. Direct comparison of myocardial perfusion cardiovascular magnetic resonance sequences with parallel acquisition. J Magn Reson Imaging 2007;26:1444-1451. Laub G, Kroeker R. syngo TWIST for dynamic time-resolved MR angiography. MAGNETOM Flash 2006;34:92-95. Christian TF, Rettmann DW, Aletras AH, Liao SL, Taylor JL, Balaban RS, Arai AE. Absolute myocardial perfusion in canines measured by using dual-bolus first-pass MR imaging. Radiology 2004;232:677-684. Hsu LY, Kellman P, Arai AE. Nonlinear myocardial signal intensity correction improves quantification of contrast-enhanced first-pass MR perfusion in humans. J Magn Reson Imaging 2008;27:793-801. Atkinson DJ, Burstein D, Edelman RR. First-pass cardiac perfusion: evaluation with ultrafast MR imaging. Radiology 1990;174(3 Pt 1):757-762. Miller DD, Holmvang G, Gill JB, Dragotakes D, Kantor HL, Okada RD, Brady TJ. MRI detection of myocardial perfusion changes by gadolinium-DTPA infusion during dipyridamole hyperemia. Magn Reson Med 1989;10:246-255. Di Bella EV, Parker DL, Sinusas AJ. On the dark rim artifact in dynamic contrast-enhanced MRI myocardial perfusion studies. Magn Reson Med 2005;54:1295-1299. Gatehouse PD, Elkington AG, Ablitt NA, Yang GZ, Pennell DJ, Firmin DN. Accurate assessment of the arterial input function during high-dose myocardial perfusion cardiovascular magnetic resonance. J Magn Reson Imaging 2004;20:39-45. Judd RM, Reeder SB, Atalar E, Mcveigh ER, Zerhouni EA. A magnetization-driven gradient-echo pulse sequence for the study of myocardial perfusion. Magn Reson Med 1995;34:276-282. Parker DL, Tsuruda JS, Goodrich KC, Alexander AL, Buswell HR. Contrast-enhanced magnetic resonance angiography of cerebral arteries. A review. Invest Radiol 1998;33:560-572. Manka R, Jahnke C, Kozerke S, Vitanis V, Crelier G, Gebker R, Schnackenburg B, Boesiger P, Fleck E, Paetsch I. Dynamic 3-dimensional stress cardiac magnetic resonance perfusion imaging: detection of coronary artery disease and volumetry of myocardial hypoenhancement before and after coronary stenting. J Am Coll Cardiol 2011;57:437-444. Barth M, Moser E. Proton NMR relaxation times of human blood samples at 1.5 T and implications for functional MRI. Cell Mol Biol (Noisy-le-grand) 1997;43:783-791. Shin T, Hu HH, Pohost GM, Nayak KS. Three dimensional first-pass myocardial perfusion imaging at 3T: feasibility study. J Cardiovasc Magn Reson 2008;10:57. 67 2004; 20 2006; 34 1997; 43 2002; 50 1995; 34 2003; 13 2008; 10 2011; 57 2012; 39 2008; 11 1996; 35 2001; 46 2005; 45 2009; 12 2004; 232 2002; 47 13 2002; 48 2003; 108 2006; 41 1987; 87 1989; 10 2004; 19 1997; 96 1993; 11 2008; 27 2007; 9 2005; 54 2004; xxii 306 2001; 219 1990; 174 1998; 33 2007; 26 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 Xue H (e_1_2_8_27_1) 2009; 12 e_1_2_8_26_1 Laub G (e_1_2_8_25_1) 2006; 34 Eitel I (e_1_2_8_37_1); 306 Bernstein MA (e_1_2_8_21_1) 2004 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 Barth M (e_1_2_8_18_1) 1997; 43 e_1_2_8_23_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 Xue H (e_1_2_8_22_1) 2008; 11 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_32_1 DiBella EV (e_1_2_8_6_1); 67 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 12465113 - Magn Reson Med. 2002 Dec;48(6):1028-36 19077220 - J Cardiovasc Magn Reson. 2008;10:57 21771988 - JAMA. 2011 Jul 20;306(3):277-86 2305058 - Radiology. 1990 Mar;174(3 Pt 1):757-62 9298600 - Cell Mol Biol (Noisy-le-grand). 1997 Jul;43(5):783-91 11274568 - Radiology. 2001 Apr;219(1):264-9 9766041 - Invest Radiol. 1998 Sep;33(9):560-72 11376278 - Radiology. 2001 Jun;219(3):828-34 22190332 - Magn Reson Med. 2012 Mar;67(3):609-13 11870835 - Magn Reson Med. 2002 Mar;47(3):482-91 17968886 - J Magn Reson Imaging. 2007 Dec;26(6):1444-51 18442372 - J Cardiovasc Magn Reson. 2008;10:18 2761383 - Magn Reson Med. 1989 May;10(2):246-55 9386150 - Circulation. 1997 Nov 4;96(9):2859-67 16200553 - Magn Reson Med. 2005 Nov;54(5):1295-9 20426178 - Med Image Comput Comput Assist Interv. 2009;12(Pt 2):741-9 12928954 - Eur Radiol. 2003 Nov;13(11):2409-18 8423715 - Magn Reson Imaging. 1993;11(1):125-33 21251584 - J Am Coll Cardiol. 2011 Jan 25;57(4):437-44 17365232 - J Cardiovasc Magn Reson. 2007;9(3):525-37 22894445 - Med Phys. 2012 Aug;39(8):5204-11 18302205 - J Magn Reson Imaging. 2008 Apr;27(4):793-801 16481903 - Invest Radiol. 2006 Mar;41(3):213-21 8722823 - Magn Reson Med. 1996 May;35(5):716-26 18982587 - Med Image Comput Comput Assist Interv. 2008;11(Pt 2):35-43 15284436 - Radiology. 2004 Sep;232(3):677-84 11443721 - Magn Reson Med. 2001 Jul;46(1):149-58 15112304 - J Magn Reson Imaging. 2004 May;19(5):555-63 7476088 - Magn Reson Med. 1995 Aug;34(2):276-82 12860910 - Circulation. 2003 Jul 29;108(4):432-7 15936612 - J Am Coll Cardiol. 2005 Jun 7;45(11):1815-22 15221807 - J Magn Reson Imaging. 2004 Jul;20(1):39-45 |
References_xml | – reference: Laub G, Kroeker R. syngo TWIST for dynamic time-resolved MR angiography. MAGNETOM Flash 2006;34:92-95. – reference: Di Bella EV, Parker DL, Sinusas AJ. On the dark rim artifact in dynamic contrast-enhanced MRI myocardial perfusion studies. Magn Reson Med 2005;54:1295-1299. – reference: Abdel-Aty H, Boye P, Zagrosek A, Wassmuth R, Kumar A, Messroghli D, Bock P, Dietz R, Friedrich MG, Schulz-Menger J. Diagnostic performance of cardiovascular magnetic resonance in patients with suspected acute myocarditis: comparison of different approaches. J Am Coll Cardiol 2005;45:1815-1822. – reference: Parker DL, Tsuruda JS, Goodrich KC, Alexander AL, Buswell HR. Contrast-enhanced magnetic resonance angiography of cerebral arteries. A review. Invest Radiol 1998;33:560-572. – reference: Hargreaves BA, Vasanawala SS, Pauly JM, Nishimura DG. Characterization and reduction of the transient response in steady-state MR imaging. Magn Reson Med 2001;46:149-158. – reference: Chen L, Adluru G, Schabel MC, McGann CJ, Dibella EV. Myocardial perfusion MRI with an undersampled 3D stack-of-stars sequence. Med Phys 2012;39:5204-5211. – reference: Larsson HBW, FritzHansen T, Rostrup E, Sondergaard L, Ring P, Henriksen O. Myocardial perfusion modeling using MRI. Magn Reson Med 1996;35:716-726. – reference: Lauffer RB. Paramagnetic metal-complexes as water proton relaxation agents for NMR imaging-theory and design. Chem Rev 1987;87:901-927. – reference: Bernstein MA, King KF. Handbook of MRI pulse sequences. Amsterdam; Oxford: Academic Press; 2004. xxii,1017 p. – reference: Pintaske J, Martirosian P, Graf H, Erb G, Lodemann KP, Claussen CD, Schick F. Relaxivity of gadopentetate dimeglumine (Magnevist), gadobutrol (Gadovist), and gadobenate dimeglumine (MultiHance) in human blood plasma at 0.2, 1.5, and 3 Tesla. Invest Radiol 2006;41:213-221. – reference: Hsu LY, Kellman P, Arai AE. Nonlinear myocardial signal intensity correction improves quantification of contrast-enhanced first-pass MR perfusion in humans. J Magn Reson Imaging 2008;27:793-801. – reference: Tofts PS, Shuter B, Pope JM. Ni-DTPA doped agarose-gel-a phantom material for Gd-DTPA enhancement measurements. Magn Reson Imaging 1993;11:125-133. – reference: Storey P, Chen Q, Li W, Edelman RR, Prasad PV. Band artifacts due to bulk motion. Magn Reson Med 2002;48:1028-1036. – reference: Epstein FH, London JF, Peters DC, Goncalves LM, Agyeman K, Taylor J, Balaban RS, Arai AE. Multislice first-pass cardiac perfusion MRI: validation in a model of myocardial infarction. Magn Reson Med 2002;47:482-491. – reference: Barkhausen J, Ruehm SG, Goyen M, Buck T, Laub G, Debatin JF. MR evaluation of ventricular function: True fast imaging with steady-state precession versus fast low-angle shot cine MR imaging: feasibility study. Radiology 2001;219:264-269. – reference: Hsu L-Y, Kellman P, Gatehouse P, Zuehlsdorff S, Glielmi C, Groves D, Aletras A, Bandettini P, Arai A. Comparison of arterial input function measured from dual-bolus and dual-sequence dynamic contrast-enhanced cardiac magnetic resonance imaging. J Cardiovasc Magn Reson 13 (Suppl 1):O8. – reference: Hermosillo G, Chefdhotel C, Faugeras O. Variational methods for multimodal image matching. Int J Comp Vis 2002;50:329-343. – reference: Eitel I, von Knobelsdorff-Brenkenhoff F, Bernhardt P, Carbone I, Muellerleile K, Aldrovandi A, Francone M, Desch S, Gutberlet M, Strohm O, Schuler G, Schulz-Menger J, Thiele H, Friedrich MG. Clinical characteristics and cardiovascular magnetic resonance findings in stress (takotsubo) cardiomyopathy. JAMA 306:277-286. – reference: Miller DD, Holmvang G, Gill JB, Dragotakes D, Kantor HL, Okada RD, Brady TJ. MRI detection of myocardial perfusion changes by gadolinium-DTPA infusion during dipyridamole hyperemia. Magn Reson Med 1989;10:246-255. – reference: Judd RM, Reeder SB, Atalar E, Mcveigh ER, Zerhouni EA. A magnetization-driven gradient-echo pulse sequence for the study of myocardial perfusion. Magn Reson Med 1995;34:276-282. – reference: Carr JC, Simonetti O, Bundy J, Li DB, Pereles S, Finn JP. Cine MR angiography of the heart with segmented true fast imaging with steady-state precession. Radiology 2001;219:828-834. – reference: Barth M, Moser E. Proton NMR relaxation times of human blood samples at 1.5 T and implications for functional MRI. Cell Mol Biol (Noisy-le-grand) 1997;43:783-791. – reference: Lauerma K, Virtanen KS, Sipila LM, Hekali P, Aronen HJ. Multislice MRI in assessment of myocardial perfusion in patients with single-vessel proximal left anterior descending coronary artery disease before and after revascularization. Circulation 1997;96:2859-2867. – reference: Gatehouse PD, Elkington AG, Ablitt NA, Yang GZ, Pennell DJ, Firmin DN. Accurate assessment of the arterial input function during high-dose myocardial perfusion cardiovascular magnetic resonance. J Magn Reson Imaging 2004;20:39-45. – reference: Atkinson DJ, Burstein D, Edelman RR. First-pass cardiac perfusion: evaluation with ultrafast MR imaging. Radiology 1990;174(3 Pt 1):757-762. – reference: Xue H, Zuehlsdorff S, Kellman P, Arai A, Nielles-Vallespin S, Chefdhotel C, Lorenz CH, Guehring J. Unsupervised inline analysis of cardiac perfusion MRI. Med Image Comput Comput Assist Interv 2009;12(Pt 2):741-749. – reference: Shin T, Hu HH, Pohost GM, Nayak KS. Three dimensional first-pass myocardial perfusion imaging at 3T: feasibility study. J Cardiovasc Magn Reson 2008;10:57. – reference: Lyne JC, Gatehouse PD, Assomull RG, Smith GC, Kellman P, Firmin DN, Pennell DJ. Direct comparison of myocardial perfusion cardiovascular magnetic resonance sequences with parallel acquisition. J Magn Reson Imaging 2007;26:1444-1451. – reference: Kellman P, Arai AE. Imaging sequences for first pass perfusion-a review. J Cardiovasc Magn Reson 2007;9:525-537. – reference: DiBella EV, Chen L, Schabel MC, Adluru G, McGann CJ. Myocardial perfusion acquisition without magnetization preparation or gating. Magn Reson Med 67:609-613. – reference: Nagel E, Klein C, Paetsch I, Hettwer S, Schnackenburg B, Wegscheider K, Fleck E. Magnetic resonance perfusion measurements for the noninvasive detection of coronary artery disease. Circulation 2003;108:432-437. – reference: Gerber BL, Raman SV, Nayak K, Epstein FH, Ferreira P, Axel L, Kraitchman DL. Myocardial first-pass perfusion cardiovascular magnetic resonance: history, theory, and current state of the art. J Cardiovasc Magn Reson 2008;10:18. – reference: Manka R, Jahnke C, Kozerke S, Vitanis V, Crelier G, Gebker R, Schnackenburg B, Boesiger P, Fleck E, Paetsch I. Dynamic 3-dimensional stress cardiac magnetic resonance perfusion imaging: detection of coronary artery disease and volumetry of myocardial hypoenhancement before and after coronary stenting. J Am Coll Cardiol 2011;57:437-444. – reference: Christian TF, Rettmann DW, Aletras AH, Liao SL, Taylor JL, Balaban RS, Arai AE. Absolute myocardial perfusion in canines measured by using dual-bolus first-pass MR imaging. Radiology 2004;232:677-684. – reference: Fenchel M, Helber U, Simonetti OP, Stauder NI, Kramer U, Nguyen CN, Finn JP, Claussen CD, Miller S. Multislice first-pass myocardial perfusion imaging: Comparison of saturation recovery (SR)-TrueFISP-two-dimensional (2D) and SR-TurboFLASH-2D pulse sequences. J Magn Reson Imaging 2004;19:555-563. – reference: Scheffler K, Lehnhardt S. Principles and applications of balanced SSFP techniques. Eur Radiol 2003;13:2409-2418. – reference: Xue H, Guehring J, Srinivasan L, Zuehlsdorff S, Saddi K, Chefdhotel C, Hajnal JV, Rueckert D. Evaluation of rigid and non-rigid motion compensation of cardiac perfusion MRI. Med Image Comput Comput Assist Interv Int Conf Med Image Comput Comput Assist Interv 2008;11(Pt 2):35-43. – volume: 10 start-page: 57 year: 2008 article-title: Three dimensional first‐pass myocardial perfusion imaging at 3T: feasibility study publication-title: J Cardiovasc Magn Reson – volume: xxii start-page: 1017 year: 2004 – volume: 46 start-page: 149 year: 2001 end-page: 158 article-title: Characterization and reduction of the transient response in steady‐state MR imaging publication-title: Magn Reson Med – volume: 13 start-page: O8 issue: Suppl 1 article-title: Comparison of arterial input function measured from dual‐bolus and dual‐sequence dynamic contrast‐enhanced cardiac magnetic resonance imaging publication-title: J Cardiovasc Magn Reson – volume: 26 start-page: 1444 year: 2007 end-page: 1451 article-title: Direct comparison of myocardial perfusion cardiovascular magnetic resonance sequences with parallel acquisition publication-title: J Magn Reson Imaging – volume: 12 start-page: 741 issue: Pt 2 year: 2009 end-page: 749 article-title: Unsupervised inline analysis of cardiac perfusion MRI publication-title: Med Image Comput Comput Assist Interv – volume: 219 start-page: 828 year: 2001 end-page: 834 article-title: Cine MR angiography of the heart with segmented true fast imaging with steady‐state precession publication-title: Radiology – volume: 34 start-page: 92 year: 2006 end-page: 95 article-title: syngo TWIST for dynamic time‐resolved MR angiography publication-title: MAGNETOM Flash – volume: 45 start-page: 1815 year: 2005 end-page: 1822 article-title: Diagnostic performance of cardiovascular magnetic resonance in patients with suspected acute myocarditis: comparison of different approaches publication-title: J Am Coll Cardiol – volume: 67 start-page: 609 end-page: 613 article-title: Myocardial perfusion acquisition without magnetization preparation or gating publication-title: Magn Reson Med – volume: 34 start-page: 276 year: 1995 end-page: 282 article-title: A magnetization‐driven gradient‐echo pulse sequence for the study of myocardial perfusion publication-title: Magn Reson Med – volume: 232 start-page: 677 year: 2004 end-page: 684 article-title: Absolute myocardial perfusion in canines measured by using dual‐bolus first‐pass MR imaging publication-title: Radiology – volume: 41 start-page: 213 year: 2006 end-page: 221 article-title: Relaxivity of gadopentetate dimeglumine (Magnevist), gadobutrol (Gadovist), and gadobenate dimeglumine (MultiHance) in human blood plasma at 0.2, 1.5, and 3 Tesla publication-title: Invest Radiol – volume: 19 start-page: 555 year: 2004 end-page: 563 article-title: Multislice first‐pass myocardial perfusion imaging: Comparison of saturation recovery (SR)‐TrueFISP‐two‐dimensional (2D) and SR‐TurboFLASH‐2D pulse sequences publication-title: J Magn Reson Imaging – volume: 33 start-page: 560 year: 1998 end-page: 572 article-title: Contrast‐enhanced magnetic resonance angiography of cerebral arteries publication-title: A review. Invest Radiol – volume: 306 start-page: 277 end-page: 286 article-title: Clinical characteristics and cardiovascular magnetic resonance findings in stress (takotsubo) cardiomyopathy publication-title: JAMA – volume: 57 start-page: 437 year: 2011 end-page: 444 article-title: Dynamic 3‐dimensional stress cardiac magnetic resonance perfusion imaging: detection of coronary artery disease and volumetry of myocardial hypoenhancement before and after coronary stenting publication-title: J Am Coll Cardiol – volume: 108 start-page: 432 year: 2003 end-page: 437 article-title: Magnetic resonance perfusion measurements for the noninvasive detection of coronary artery disease publication-title: Circulation – volume: 10 start-page: 246 year: 1989 end-page: 255 article-title: MRI detection of myocardial perfusion changes by gadolinium‐DTPA infusion during dipyridamole hyperemia publication-title: Magn Reson Med – volume: 9 start-page: 525 year: 2007 end-page: 537 article-title: Imaging sequences for first pass perfusion—a review publication-title: J Cardiovasc Magn Reson – volume: 50 start-page: 329 year: 2002 end-page: 343 article-title: Variational methods for multimodal image matching publication-title: Int J Comp Vis – volume: 48 start-page: 1028 year: 2002 end-page: 1036 article-title: Band artifacts due to bulk motion publication-title: Magn Reson Med – volume: 27 start-page: 793 year: 2008 end-page: 801 article-title: Nonlinear myocardial signal intensity correction improves quantification of contrast‐enhanced first‐pass MR perfusion in humans publication-title: J Magn Reson Imaging – volume: 43 start-page: 783 year: 1997 end-page: 791 article-title: Proton NMR relaxation times of human blood samples at 1.5 T and implications for functional MRI publication-title: Cell Mol Biol (Noisy‐le‐grand) – volume: 11 start-page: 125 year: 1993 end-page: 133 article-title: Ni‐DTPA doped agarose‐gel—a phantom material for Gd‐DTPA enhancement measurements publication-title: Magn Reson Imaging – volume: 219 start-page: 264 year: 2001 end-page: 269 article-title: MR evaluation of ventricular function: True fast imaging with steady‐state precession versus fast low‐angle shot cine MR imaging: feasibility study publication-title: Radiology – volume: 174 start-page: 757 issue: 3 Pt 1 year: 1990 end-page: 762 article-title: First‐pass cardiac perfusion: evaluation with ultrafast MR imaging publication-title: Radiology – volume: 54 start-page: 1295 year: 2005 end-page: 1299 article-title: On the dark rim artifact in dynamic contrast‐enhanced MRI myocardial perfusion studies publication-title: Magn Reson Med – volume: 35 start-page: 716 year: 1996 end-page: 726 article-title: Myocardial perfusion modeling using MRI publication-title: Magn Reson Med – volume: 10 start-page: 18 year: 2008 article-title: Myocardial first‐pass perfusion cardiovascular magnetic resonance: history, theory, and current state of the art publication-title: J Cardiovasc Magn Reson – volume: 11 start-page: 35 issue: Pt 2 year: 2008 end-page: 43 article-title: Evaluation of rigid and non‐rigid motion compensation of cardiac perfusion MRI publication-title: Med Image Comput Comput Assist Interv Int Conf Med Image Comput Comput Assist Interv – volume: 47 start-page: 482 year: 2002 end-page: 491 article-title: Multislice first‐pass cardiac perfusion MRI: validation in a model of myocardial infarction publication-title: Magn Reson Med – volume: 96 start-page: 2859 year: 1997 end-page: 2867 article-title: Multislice MRI in assessment of myocardial perfusion in patients with single‐vessel proximal left anterior descending coronary artery disease before and after revascularization publication-title: Circulation – volume: 87 start-page: 901 year: 1987 end-page: 927 article-title: Paramagnetic metal‐complexes as water proton relaxation agents for NMR imaging—theory and design publication-title: Chem Rev – volume: 20 start-page: 39 year: 2004 end-page: 45 article-title: Accurate assessment of the arterial input function during high‐dose myocardial perfusion cardiovascular magnetic resonance publication-title: J Magn Reson Imaging – volume: 39 start-page: 5204 year: 2012 end-page: 5211 article-title: Myocardial perfusion MRI with an undersampled 3D stack‐of‐stars sequence publication-title: Med Phys – volume: 13 start-page: 2409 year: 2003 end-page: 2418 article-title: Principles and applications of balanced SSFP techniques publication-title: Eur Radiol – ident: e_1_2_8_24_1 doi: 10.1002/jmri.20050 – volume: 11 start-page: 35 issue: 2 year: 2008 ident: e_1_2_8_22_1 article-title: Evaluation of rigid and non‐rigid motion compensation of cardiac perfusion MRI publication-title: Med Image Comput Comput Assist Interv Int Conf Med Image Comput Comput Assist Interv – volume: 306 start-page: 277 ident: e_1_2_8_37_1 article-title: Clinical characteristics and cardiovascular magnetic resonance findings in stress (takotsubo) cardiomyopathy publication-title: JAMA – ident: e_1_2_8_5_1 doi: 10.1002/mrm.1910340220 – ident: e_1_2_8_15_1 doi: 10.1021/cr00081a003 – ident: e_1_2_8_34_1 doi: 10.1002/jmri.21167 – volume: 12 start-page: 741 issue: 2 year: 2009 ident: e_1_2_8_27_1 article-title: Unsupervised inline analysis of cardiac perfusion MRI publication-title: Med Image Comput Comput Assist Interv – ident: e_1_2_8_4_1 doi: 10.1080/10976640601187604 – ident: e_1_2_8_20_1 doi: 10.1016/0730-725X(93)90420-I – ident: e_1_2_8_2_1 doi: 10.1002/mrm.1910100209 – ident: e_1_2_8_8_1 doi: 10.1118/1.4738965 – ident: e_1_2_8_17_1 doi: 10.1097/00004424-199809000-00012 – ident: e_1_2_8_9_1 doi: 10.1016/j.jacc.2010.05.067 – ident: e_1_2_8_13_1 doi: 10.1161/01.CIR.0000080915.35024.A9 – ident: e_1_2_8_32_1 doi: 10.1002/mrm.1910350513 – ident: e_1_2_8_38_1 doi: 10.1016/j.jacc.2004.11.069 – ident: e_1_2_8_3_1 doi: 10.1148/radiology.174.3.2305058 – start-page: 1017 volume-title: Handbook of MRI pulse sequences year: 2004 ident: e_1_2_8_21_1 – ident: e_1_2_8_19_1 doi: 10.1002/mrm.1170 – ident: e_1_2_8_23_1 doi: 10.1161/01.CIR.96.9.2859 – ident: e_1_2_8_35_1 doi: 10.1148/radiology.219.1.r01ap12264 – ident: e_1_2_8_26_1 doi: 10.1023/A:1020830525823 – ident: e_1_2_8_31_1 doi: 10.1002/jmri.20054 – ident: e_1_2_8_29_1 doi: 10.1186/1532-429X-13-S1-O8 – ident: e_1_2_8_12_1 doi: 10.1002/mrm.10314 – ident: e_1_2_8_30_1 doi: 10.1148/radiol.2323030573 – ident: e_1_2_8_7_1 doi: 10.1186/1532-429X-10-18 – volume: 43 start-page: 783 year: 1997 ident: e_1_2_8_18_1 article-title: Proton NMR relaxation times of human blood samples at 1.5 T and implications for functional MRI publication-title: Cell Mol Biol (Noisy‐le‐grand) – ident: e_1_2_8_33_1 doi: 10.1002/jmri.21286 – ident: e_1_2_8_16_1 doi: 10.1097/01.rli.0000197668.44926.f7 – ident: e_1_2_8_14_1 doi: 10.1007/s00330-003-1957-x – ident: e_1_2_8_10_1 doi: 10.1186/1532-429X-10-57 – ident: e_1_2_8_36_1 doi: 10.1148/radiology.219.3.r01jn44828 – volume: 34 start-page: 92 year: 2006 ident: e_1_2_8_25_1 article-title: syngo TWIST for dynamic time‐resolved MR angiography publication-title: MAGNETOM Flash – ident: e_1_2_8_28_1 doi: 10.1002/mrm.10085 – volume: 67 start-page: 609 ident: e_1_2_8_6_1 article-title: Myocardial perfusion acquisition without magnetization preparation or gating publication-title: Magn Reson Med doi: 10.1002/mrm.23318 – ident: e_1_2_8_11_1 doi: 10.1002/mrm.20666 – reference: 15936612 - J Am Coll Cardiol. 2005 Jun 7;45(11):1815-22 – reference: 16481903 - Invest Radiol. 2006 Mar;41(3):213-21 – reference: 8722823 - Magn Reson Med. 1996 May;35(5):716-26 – reference: 17968886 - J Magn Reson Imaging. 2007 Dec;26(6):1444-51 – reference: 11376278 - Radiology. 2001 Jun;219(3):828-34 – reference: 11443721 - Magn Reson Med. 2001 Jul;46(1):149-58 – reference: 12465113 - Magn Reson Med. 2002 Dec;48(6):1028-36 – reference: 2761383 - Magn Reson Med. 1989 May;10(2):246-55 – reference: 9766041 - Invest Radiol. 1998 Sep;33(9):560-72 – reference: 9298600 - Cell Mol Biol (Noisy-le-grand). 1997 Jul;43(5):783-91 – reference: 15221807 - J Magn Reson Imaging. 2004 Jul;20(1):39-45 – reference: 8423715 - Magn Reson Imaging. 1993;11(1):125-33 – reference: 12928954 - Eur Radiol. 2003 Nov;13(11):2409-18 – reference: 22894445 - Med Phys. 2012 Aug;39(8):5204-11 – reference: 15112304 - J Magn Reson Imaging. 2004 May;19(5):555-63 – reference: 19077220 - J Cardiovasc Magn Reson. 2008;10:57 – reference: 15284436 - Radiology. 2004 Sep;232(3):677-84 – reference: 17365232 - J Cardiovasc Magn Reson. 2007;9(3):525-37 – reference: 12860910 - Circulation. 2003 Jul 29;108(4):432-7 – reference: 16200553 - Magn Reson Med. 2005 Nov;54(5):1295-9 – reference: 21251584 - J Am Coll Cardiol. 2011 Jan 25;57(4):437-44 – reference: 22190332 - Magn Reson Med. 2012 Mar;67(3):609-13 – reference: 7476088 - Magn Reson Med. 1995 Aug;34(2):276-82 – reference: 21771988 - JAMA. 2011 Jul 20;306(3):277-86 – reference: 18442372 - J Cardiovasc Magn Reson. 2008;10:18 – reference: 20426178 - Med Image Comput Comput Assist Interv. 2009;12(Pt 2):741-9 – reference: 18982587 - Med Image Comput Comput Assist Interv. 2008;11(Pt 2):35-43 – reference: 18302205 - J Magn Reson Imaging. 2008 Apr;27(4):793-801 – reference: 2305058 - Radiology. 1990 Mar;174(3 Pt 1):757-62 – reference: 9386150 - Circulation. 1997 Nov 4;96(9):2859-67 – reference: 11274568 - Radiology. 2001 Apr;219(1):264-9 – reference: 11870835 - Magn Reson Med. 2002 Mar;47(3):482-91 |
SSID | ssj0009974 |
Score | 2.1437135 |
Snippet | Purpose
To describe and characterize a new approach to first‐pass myocardial perfusion utilizing balanced steady‐state free precession acquisition without the... To describe and characterize a new approach to first-pass myocardial perfusion utilizing balanced steady-state free precession acquisition without the use of... Purpose To describe and characterize a new approach to first-pass myocardial perfusion utilizing balanced steady-state free precession acquisition without the... |
SourceID | pubmedcentral proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 133 |
SubjectTerms | Algorithms cardiac MRI Contrast media Coronary Vessels - anatomy & histology first-pass myocardial perfusion Humans Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Imaging, Three-Dimensional - methods Magnetic Resonance Angiography - methods Myocardial Perfusion Imaging - methods Reference Values Reproducibility of Results Sensitivity and Specificity steady state |
Title | Steady-state first-pass perfusion (SSFPP): A new approach to 3D first-pass myocardial perfusion imaging |
URI | https://api.istex.fr/ark:/67375/WNG-3BQ0RQM4-P/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.24638 https://www.ncbi.nlm.nih.gov/pubmed/23440705 https://www.proquest.com/docview/1468619137 https://www.proquest.com/docview/1469647112 https://www.proquest.com/docview/1492661405 https://pubmed.ncbi.nlm.nih.gov/PMC3664646 |
Volume | 71 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIhAXCuWVUpBBCJVDtontxAmcCmWpkFJtt1T0UCly_BCrNtnVPiTKiZ_Ab-SXMHYe7UJBCOWSyGMpHs_Yn8fjzwg9j4xixiSRD9OdjVZJ5QsdcJ-EWioBPc5Sexo524_3jtiH4-h4Bb1uz8LU_BBdwM16hhuvrYOLYrZ9QRpaTsseYWA-MP6GNLa8-bvDC-qoNK0ZmDmz40zKWlahgGx3NZfmomtWrV-uApq_50texrFuIuqvoZO2CXX-yWlvMS968usv7I7_2cbb6FYDUPFObVF30Iqu1tGNrNmCX0fXXc6onN1Fpc0FVuc_vn13p5KwGQGShK8J4HE80VOzsJE4vHV42B8MXr7COxggPG5JzPF8jOnucqXyHGZWa7Fnl-qPSneR0j101H_38e2e39ze4EvGU3C_2CRaEq65oXGciCRRIVGCAT6jPAgkERETkhLOjSm4CRMTEsBDRUrCQuuE0vtotRpX-iHClrStMJFQaaRZrE2iJI0VEQUzccSU8tBW24-5bKjN7Q0bZ3lNykxyUGTuFOmhZ53opObzuErohTOGTkJMT20CHI_yT_vvc_rmIBgeZCwfeGiztZa88f2ZXUwlsCwNKffQ064YvNZuxYhKjxdOxh4BBrD7N5nUoacg8tCD2gC7HyKUwUrclvAl0-wELGv4ckk1-uzYw6EzGDygM2d5f9ZCng0z97Lx76KP0E1AlKyOUW2i1fl0oR8DapsXT5x7_gRmHUFn |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVjwuPMorUMAghMoh28Rx4gRxKZRlgWa13baiFxQlsS1WbbKr7a5EOfET-I38EsbOo10oCKFcEnksxeMZ-_N4_Bngqa8EUyr0bZzudLQqF3YqHW5TV-YixR5nkT6NHPeD3j57f-AfLMHL5ixMxQ_RBty0Z5jxWju4DkhvnLKGFtOiQxnazwVYYQg09NJra3hKHhVFFQczZ3qkiVjDK-TQjbbqwmy0ohX75Tyo-XvG5Fkka6ai7jX41DSiykA57MxnWSf_-gu_4_-28jpcrTEq2ayM6gYsyXIVLsX1LvwqXDRpo_nxTSh0OrA4-fHtuzmYRNQIwSR-TRCSk4mcqrkOxpH13d3uYPD8BdkkiOJJw2NOZmPibS1WKk5wctVGe3Sm_qgwdyndgv3um73XPbu-wMHOGY_QAwMVypxyyZUXBGEahsKlImUI0TzuODlNfZbmHuVcqYwrN1QuRUiURdTNpAw97zYsl-NS3gWiedsy5aci8iULpApF7gWCphlTgc-EsGC96cgkr9nN9SUbR0nFy0wTVGRiFGnBk1Z0UlF6nCf0zFhDK5FOD3UOHPeTj_23ifdqxxnuxCwZWLDWmEtSu_-xXk-FuDJ1PW7B47YYHVfvxqSlHM-NjD4FjHj3bzKRAVCOb8GdygLbH6Iew8W4LuELttkKaOLwxZJy9NkQiGNnMHxQZ8b0_qyFJB7G5uXev4s-gsu9vXg72X7X_3AfriDAZFXIag2WZ9O5fIAgbpY9NL76E1OPRYY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVlRceJRXoEBACJVDtonjxAmcCmUpj11tt1T0gBQ5fohVm-xquytRTvwEfiO_hLHzaBcKQiiXRB5L8XjG_jwefwZ4HGlJtU4iD6c7E60S0uPKZx4JlJAce5ym5jRyrx_v7NO3B9HBEjxvzsJU_BBtwM14hh2vjYNPpN48JQ0tpkWHUDSfC7BCY0QSBhENT7mj0rSiYGbUDDQpbWiFfLLZVl2YjFaMXr-chzR_T5g8C2TtTNS9Ap-aNlQJKIed-SzviK-_0Dv-ZyOvwuUaobpblUldgyVVrsFqr96DX4OLNmlUHF-HwiQDy5Mf377bY0muHiGUxK8JAnJ3oqZ6bkJx7sbeXncwePrM3XIRw7sNi7k7G7vh9mKl4gSnVmOyR2fqjwp7k9IN2O---vByx6uvb_AEZSn6X6wTJQhTTIdxnPAkkQGRnCJAC5nvC8IjykVIGNM6ZzpIdEAQEOUpCXKlkjC8CcvluFS3wTWsbbmOuEwjRWOlEynCWBKeUx1HVEoHNpp-zETNbW6u2DjKKlZmkqEiM6tIBx61opOK0OM8oSfWGFoJPj00GXAsyj72X2fhi11_uNuj2cCB9cZastr5j81qKsF1aRAyBx62xei2Zi-Gl2o8tzLmDDCi3b_JpBY--ZEDtyoDbH-IhBSX4qaELZhmK2BowxdLytFnSx-OnUHxQZ1Zy_uzFrLesGdf7vy76ANYHWx3s_dv-u_uwiVEl7SKV63D8mw6V_cQwc3y-9ZTfwJaeUQ1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Steady%E2%80%90state+first%E2%80%90pass+perfusion+%28SSFPP%29%3A+A+new+approach+to+3D+first%E2%80%90pass+myocardial+perfusion+imaging&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Giri%2C+Shivraman&rft.au=Xue%2C+Hui&rft.au=Maiseyeu%2C+Andrei&rft.au=Kroeker%2C+Randall&rft.date=2014-01-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=71&rft.issue=1&rft.spage=133&rft.epage=144&rft_id=info:doi/10.1002%2Fmrm.24638&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mrm_24638 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |