Multiple hypothesis testing strategies for genetic case-control association studies
The genetic case–control association study of unrelated subjects is a leading method to identify single nucleotide polymorphisms (SNPs) and SNP haplotypes that modulate the risk of complex diseases. Association studies often genotype several SNPs in a number of candidate genes; we propose a two‐stag...
Saved in:
Published in | Statistics in medicine Vol. 25; no. 18; pp. 3134 - 3149 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
30.09.2006
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0277-6715 1097-0258 |
DOI | 10.1002/sim.2407 |
Cover
Loading…
Abstract | The genetic case–control association study of unrelated subjects is a leading method to identify single nucleotide polymorphisms (SNPs) and SNP haplotypes that modulate the risk of complex diseases. Association studies often genotype several SNPs in a number of candidate genes; we propose a two‐stage approach to address the inherent statistical multiple comparisons problem. In the first stage, each gene's association with disease is summarized by a single p‐value that controls a familywise error rate. In the second stage, summary p‐values are adjusted for multiplicity using a false discovery rate (FDR) controlling procedure. For the first stage, we consider marginal and joint tests of SNPs and haplotypes within genes, and we construct an omnibus test that combines SNP and haplotype analysis. Simulation studies show that when disease susceptibility is conferred by a SNP, and all common SNPs in a gene are genotyped, marginal analysis of SNPs using the Simes test has similar or higher power than marginal or joint haplotype analysis. Conversely, haplotype analysis can be more powerful when disease susceptibility is conferred by a haplotype. The omnibus test tracks the more powerful of the two approaches, which is generally unknown. Multiple testing balances the desire for statistical power against the implicit costs of false positive results, which up to now appear to be common in the literature. Published in 2005 by John Wiley & Sons, Ltd. |
---|---|
AbstractList | The genetic case-control association study of unrelated subjects is a leading method to identify single nucleotide polymorphisms (SNPs) and SNP haplotypes that modulate the risk of complex diseases. Association studies often genotype several SNPs in a number of candidate genes; we propose a two-stage approach to address the inherent statistical multiple comparisons problem. In the first stage, each gene's association with disease is summarized by a single p-value that controls a familywise error rate. In the second stage, summary p-values are adjusted for multiplicity using a false discovery rate (FDR) controlling procedure. For the first stage, we consider marginal and joint tests of SNPs and haplotypes within genes, and we construct an omnibus test that combines SNP and haplotype analysis. Simulation studies show that when disease susceptibility is conferred by a SNP, and all common SNPs in a gene are genotyped, marginal analysis of SNPs using the Simes test has similar or higher power than marginal or joint haplotype analysis. Conversely, haplotype analysis can be more powerful when disease susceptibility is conferred by a haplotype. The omnibus test tracks the more powerful of the two approaches, which is generally unknown. Multiple testing balances the desire for statistical power against the implicit costs of false positive results, which up to now appear to be common in the literature.The genetic case-control association study of unrelated subjects is a leading method to identify single nucleotide polymorphisms (SNPs) and SNP haplotypes that modulate the risk of complex diseases. Association studies often genotype several SNPs in a number of candidate genes; we propose a two-stage approach to address the inherent statistical multiple comparisons problem. In the first stage, each gene's association with disease is summarized by a single p-value that controls a familywise error rate. In the second stage, summary p-values are adjusted for multiplicity using a false discovery rate (FDR) controlling procedure. For the first stage, we consider marginal and joint tests of SNPs and haplotypes within genes, and we construct an omnibus test that combines SNP and haplotype analysis. Simulation studies show that when disease susceptibility is conferred by a SNP, and all common SNPs in a gene are genotyped, marginal analysis of SNPs using the Simes test has similar or higher power than marginal or joint haplotype analysis. Conversely, haplotype analysis can be more powerful when disease susceptibility is conferred by a haplotype. The omnibus test tracks the more powerful of the two approaches, which is generally unknown. Multiple testing balances the desire for statistical power against the implicit costs of false positive results, which up to now appear to be common in the literature. The genetic case-control association study of unrelated subjects is a leading method to identify single nucleotide polymorphisms (SNPs) and SNP haplotypes that modulate the risk of complex diseases. Association studies often genotype several SNPs in a number of candidate genes; we propose a two-stage approach to address the inherent statistical multiple comparisons problem. In the first stage, each genes association with disease is summarized by a single p-value that controls a familywise error rate. In the second stage, summary p-values are adjusted for multiplicity using a false discovery rate (FDR) controlling procedure. For the first stage, we consider marginal and joint tests of SNPs and haplotypes within genes, and we construct an omnibus test that combines SNP and haplotype analysis. Simulation studies show that when disease susceptibility is conferred by a SNP, and all common SNPs in a gene are genotyped, marginal analysis of SNPs using the Simes test has similar or higher power than marginal or joint haplotype analysis. Conversely, haplotype analysis can be more powerful when disease susceptibility is conferred by a haplotype. The omnibus test tracks the more powerful of the two approaches, which is generally unknown. Multiple testing balances the desire for statistical power against the implicit costs of false positive results, which up to now appear to be common in the literature. [PUBLICATION ABSTRACT] The genetic case–control association study of unrelated subjects is a leading method to identify single nucleotide polymorphisms (SNPs) and SNP haplotypes that modulate the risk of complex diseases. Association studies often genotype several SNPs in a number of candidate genes; we propose a two‐stage approach to address the inherent statistical multiple comparisons problem. In the first stage, each gene's association with disease is summarized by a single p ‐value that controls a familywise error rate. In the second stage, summary p ‐values are adjusted for multiplicity using a false discovery rate (FDR) controlling procedure. For the first stage, we consider marginal and joint tests of SNPs and haplotypes within genes, and we construct an omnibus test that combines SNP and haplotype analysis. Simulation studies show that when disease susceptibility is conferred by a SNP, and all common SNPs in a gene are genotyped, marginal analysis of SNPs using the Simes test has similar or higher power than marginal or joint haplotype analysis. Conversely, haplotype analysis can be more powerful when disease susceptibility is conferred by a haplotype. The omnibus test tracks the more powerful of the two approaches, which is generally unknown. Multiple testing balances the desire for statistical power against the implicit costs of false positive results, which up to now appear to be common in the literature. Published in 2005 by John Wiley & Sons, Ltd. The genetic case-control association study of unrelated subjects is a leading method to identify single nucleotide polymorphisms (SNPs) and SNP haplotypes that modulate the risk of complex diseases. Association studies often genotype several SNPs in a number of candidate genes; we propose a two-stage approach to address the inherent statistical multiple comparisons problem. In the first stage, each gene's association with disease is summarized by a single p-value that controls a familywise error rate. In the second stage, summary p-values are adjusted for multiplicity using a false discovery rate (FDR) controlling procedure. For the first stage, we consider marginal and joint tests of SNPs and haplotypes within genes, and we construct an omnibus test that combines SNP and haplotype analysis. Simulation studies show that when disease susceptibility is conferred by a SNP, and all common SNPs in a gene are genotyped, marginal analysis of SNPs using the Simes test has similar or higher power than marginal or joint haplotype analysis. Conversely, haplotype analysis can be more powerful when disease susceptibility is conferred by a haplotype. The omnibus test tracks the more powerful of the two approaches, which is generally unknown. Multiple testing balances the desire for statistical power against the implicit costs of false positive results, which up to now appear to be common in the literature. The genetic case–control association study of unrelated subjects is a leading method to identify single nucleotide polymorphisms (SNPs) and SNP haplotypes that modulate the risk of complex diseases. Association studies often genotype several SNPs in a number of candidate genes; we propose a two‐stage approach to address the inherent statistical multiple comparisons problem. In the first stage, each gene's association with disease is summarized by a single p‐value that controls a familywise error rate. In the second stage, summary p‐values are adjusted for multiplicity using a false discovery rate (FDR) controlling procedure. For the first stage, we consider marginal and joint tests of SNPs and haplotypes within genes, and we construct an omnibus test that combines SNP and haplotype analysis. Simulation studies show that when disease susceptibility is conferred by a SNP, and all common SNPs in a gene are genotyped, marginal analysis of SNPs using the Simes test has similar or higher power than marginal or joint haplotype analysis. Conversely, haplotype analysis can be more powerful when disease susceptibility is conferred by a haplotype. The omnibus test tracks the more powerful of the two approaches, which is generally unknown. Multiple testing balances the desire for statistical power against the implicit costs of false positive results, which up to now appear to be common in the literature. Published in 2005 by John Wiley & Sons, Ltd. |
Author | Che, Anney Chen, Bingshu E. Rosenberg, Philip S. |
Author_xml | – sequence: 1 givenname: Philip S. surname: Rosenberg fullname: Rosenberg, Philip S. email: rosenbep@mail.nih.gov organization: Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Rockville, MD, U.S.A – sequence: 2 givenname: Anney surname: Che fullname: Che, Anney email: chea@mail.nih.gov organization: Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Rockville, MD, U.S.A – sequence: 3 givenname: Bingshu E. surname: Chen fullname: Chen, Bingshu E. email: cheneric@mail.nih.gov organization: Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Rockville, MD, U.S.A |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/16252274$$D View this record in MEDLINE/PubMed |
BookMark | eNp10cFOGzEQBmCroiqBVuoTVKseql422LP22ntEqFBUAgdScbQc72ww3ayD7RXN29dpKBKgnnz5ZvR7_gOyN_gBCfnI6JRRCkfRrabAqXxDJow2sqQg1B6ZUJCyrCUT--QgxjtKGRMg35F9VoMAkHxCrmdjn9y6x-J2s_bpFqOLRcKY3LAsYgom4dJhLDofiiUOmJwtrIlYWj-k4PvCxOitM8n5Ifuxzfg9eduZPuKHx_eQ_Dz9Nj_5Xl5cnZ2fHF-UlsscEik3DfBuoShVtKVMmVpxseiglUKaViI3gjdG2rax1LAc2ja4gI4JZQVT1SH5stu7Dv5-zJn1ykWLfW8G9GPUtVJQgdzCzy_gnR_DkLNpgIpxAFZn9OkRjYsVtnod3MqEjf53qwymO2CDjzFgp61Lfz-ez-R6zajelqFzGXpbRh74-mLgaedrWu7og-tx81-nr89nz72LCX8_eRN-6VpWUuibyzMtb-azueI_NKv-ALFEpy4 |
CODEN | SMEDDA |
CitedBy_id | crossref_primary_10_1371_journal_pgen_1000587 crossref_primary_10_1371_journal_pone_0004895 crossref_primary_10_1371_journal_pone_0016739 crossref_primary_10_1214_07_AOS557 crossref_primary_10_1093_bioinformatics_btac232 crossref_primary_10_1371_journal_pone_0026165 crossref_primary_10_1093_carcin_bgi314 crossref_primary_10_1016_j_ajhg_2007_10_010 crossref_primary_10_1158_0008_5472_CAN_09_1734 crossref_primary_10_1016_j_neurobiolaging_2008_05_025 crossref_primary_10_1002_sim_3300 crossref_primary_10_1016_j_ophtha_2010_03_059 crossref_primary_10_1002_gepi_20192 crossref_primary_10_1007_s00281_013_0388_2 crossref_primary_10_1128_IAI_00443_12 crossref_primary_10_1007_s10038_006_0057_6 crossref_primary_10_1016_j_ophtha_2014_12_038 crossref_primary_10_1093_bib_bbu050 crossref_primary_10_1093_carcin_bgp024 crossref_primary_10_1002_gepi_20288 crossref_primary_10_1158_0008_5472_CAN_08_0444 crossref_primary_10_1158_1055_9965_EPI_07_2704 crossref_primary_10_1093_carcin_bgq038 crossref_primary_10_1038_sj_npp_1301394 crossref_primary_10_1016_j_ajog_2006_03_109 crossref_primary_10_1093_bioinformatics_btm496 crossref_primary_10_1158_1055_9965_EPI_05_0853 crossref_primary_10_1016_j_biopsych_2009_06_024 crossref_primary_10_1093_jamiaopen_ooab045 crossref_primary_10_1002_gepi_20162 crossref_primary_10_1002_gepi_20382 crossref_primary_10_1007_s00439_006_0177_2 crossref_primary_10_1016_j_ejca_2008_01_026 |
Cites_doi | 10.1016/S0140-6736(03)12516-0 10.1159/000073202 10.1126/science.1066921 10.1016/S0378-3758(99)00039-7 10.1016/S0378-3758(99)00041-5 10.1126/science.1059431 10.1086/375140 10.1126/science.1065573 10.1159/000071807 10.1073/pnas.96.26.15173 10.1111/1467-9868.00346 10.1038/85776 10.1016/S0168-9525(03)00022-2 10.1038/nrg796 10.1093/biomet/73.3.751 10.1034/j.1399-0004.2000.580402.x 10.1086/340788 10.1093/genetics/154.4.1917 10.1002/gepi.1124 10.1214/aos/1015362192 10.1038/ng1001-233 10.3102/10769986025001060 10.1086/338688 10.1038/ng749 10.1016/S0959-437X(03)00056-X 10.1086/380204 10.1016/S0378-3758(99)00040-3 10.1093/biomet/83.4.928 10.1080/01621459.1997.10473682 10.1086/377138 10.1159/000071811 10.1016/S0167-7152(01)00196-1 10.1101/gr.148401 10.1111/j.2517-6161.1995.tb02031.x 10.1038/75360 10.1002/sim.4780090710 10.1126/science.1069424 10.1086/423901 10.1038/ng1001-229 10.1016/S0168-9525(01)02342-3 10.1038/35015718 10.1038/nature02168 10.1214/aos/1013699998 10.1002/sim.1474 10.1093/nar/29.1.308 |
ContentType | Journal Article |
Copyright | This article is a U.S. Government work and is in the public domain in the U.S.A. Published in 2005 by John Wiley & Sons, Ltd. Copyright John Wiley and Sons, Limited Sep 30, 2006 |
Copyright_xml | – notice: This article is a U.S. Government work and is in the public domain in the U.S.A. Published in 2005 by John Wiley & Sons, Ltd. – notice: Copyright John Wiley and Sons, Limited Sep 30, 2006 |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 |
DOI | 10.1002/sim.2407 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Statistics Public Health |
EISSN | 1097-0258 |
EndPage | 3149 |
ExternalDocumentID | 1146146131 16252274 10_1002_sim_2407 SIM2407 ark_67375_WNG_7WTMT84K_1 |
Genre | article Journal Article Research Support, N.I.H., Intramural Feature |
GrantInformation_xml | – fundername: NIH – fundername: Intramural NIH HHS |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5RE 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAWTL AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABOCM ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD EX3 F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WOHZO WOW WQJ WRC WUP WWH WXSBR WYISQ XBAML XG1 XV2 ZZTAW ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM AAMMB AEFGJ AGXDD AIDQK AIDYY K9. 7X8 |
ID | FETCH-LOGICAL-c4797-e04a924fb80080d018a6845bf2d757ad7e4a549a7cd9c0a1162c9eb2f158c5183 |
IEDL.DBID | DR2 |
ISSN | 0277-6715 |
IngestDate | Thu Jul 10 18:17:28 EDT 2025 Fri Jul 25 04:39:15 EDT 2025 Wed Feb 19 01:42:57 EST 2025 Tue Jul 01 04:32:59 EDT 2025 Thu Apr 24 22:55:33 EDT 2025 Wed Jan 22 16:51:20 EST 2025 Wed Oct 30 09:55:45 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4797-e04a924fb80080d018a6845bf2d757ad7e4a549a7cd9c0a1162c9eb2f158c5183 |
Notes | istex:C123509DF044D9C840637F4F80C7090111F44545 This article is a U.S. Government work and is in the public domain in the U.S.A. ark:/67375/WNG-7WTMT84K-1 NIH ArticleID:SIM2407 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 16252274 |
PQID | 223142216 |
PQPubID | 48361 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_68823278 proquest_journals_223142216 pubmed_primary_16252274 crossref_citationtrail_10_1002_sim_2407 crossref_primary_10_1002_sim_2407 wiley_primary_10_1002_sim_2407_SIM2407 istex_primary_ark_67375_WNG_7WTMT84K_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 30 September 2006 |
PublicationDateYYYYMMDD | 2006-09-30 |
PublicationDate_xml | – month: 09 year: 2006 text: 30 September 2006 day: 30 |
PublicationDecade | 2000 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: England – name: New York |
PublicationTitle | Statistics in medicine |
PublicationTitleAlternate | Statist. Med |
PublicationYear | 2006 |
Publisher | John Wiley & Sons, Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley Subscription Services, Inc |
References | Simes RJ. An improved Bonferroni procedure for multiple tests of significance. Biometrika 1986; 73(3):751-754. Kruglyak L, Nickerson DA. Variation is the spice of life. Nature Genetics 2001; 27(3):234-236. Schork NJ, Fallin D, Lanchbury JS. Single nucleotide polymorphisms and the future of genetic epidemiology. Clinical Genetics 2000; 58(4):250-264. Epstein MP, Satten GA. Inference on haplotype effects in case-control studies using unphased genotype data. American Journal of Human Genetics 2003; 73(6):1316-1329. Westfall PH, Zaykin DV, Young SS. Multiple tests for genetic effects in association studies. Methods in Molecular Biology 2002; 184:143-168. Sarkar SK, Chang CK. The Simes method for multiple hypothesis testing with positively dependent test statistics. Journal of the American Statistical Association 1997; 92(440):1601-1608. Johnson GC, Esposito L, Barratt BJ, Smith AN, Heward J, Di Genova G, Ueda H, Cordell HJ, Eaves IA, Dudbridge F, Twells RC, Payne F, Hughes W, Nutland S, Stevens H, Carr P, Tuomilehto-Wolf E, Tuomilehto J, Gough SC, Clayton DG, Todd JA. Haplotype tagging for the identification of common disease genes. Nature Genetics 2001; 29(2):233-237. Yekutieli D, Benjamini Y. Resampling-based false discovery rate controlling multiple test procedures for correlated test statistics. Journal of Statistical Planning and Inference 1999; 82(1-2):171-196. Krummenauer F, Hommel G. The size of Simes' global test for discrete test statistics. Journal of Statistical Planning and Inference 1999; 82(1-2):151-162. Clark AG. Finding genes underlying risk of complex disease by linkage disequilibrium mapping. Current Opinion in Genetics and Development 2003; 13(3):296-302. Tabor HK, Risch NJ, Myers RM. Opinion: candidate-gene approaches for studying complex genetic traits: practical considerations. Nature Reviews Genetics 2002; 3(5):391-397. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B (Methodological) 1995; 57(1):289-300. Benjamini Y, Yekutieli D. The control of the false discovery rate in multiple testing under dependency. Annals of Statistics 2001; 29(4):1165-1188. Clark AG, Nielsen R, Signorovitch J, Matise TC, Glanowski S, Heil J, Winn-Deen ES, Holden AL, Lai E. Linkage disequilibrium and inference of ancestral recombination in 538 single-nucleotide polymorphism clusters across the human genome. American Journal of Human Genetics 2003; 73(2):285-300. Ioannidis JP, Ntzani EE, Trikalinos TA, Contopoulos-Ioannidis DG. Replication validity of genetic association studies. Nature Genetics 2001; 29(3):306-309. Schork NJ. Power calculations for genetic association studies using estimated probability distributions. American Journal of Human Genetics 2002; 70(6):1480-1489. Samuel-Cahn E. Is the Simes improved Bonferroni procedure conservative? Biometrika 1996; 83(4):928-933. Efron B, Tibshirani R. Empirical Bayes methods and false discovery rates for microarrays. Genetic Epidemiology 2002; 23(1):70-86. Kwok PY. Genomics. Genetic association by whole-genome analysis? Science 2001; 294(5547):1669-1670. Fallin D, Cohen A, Essioux L, Chumakov I, Blumenfeld M, Cohen D, Schork NJ. Genetic analysis of case/control data using estimated haplotype frequencies: application to APOE locus variation and Alzheimer's disease. Genome Research 2001; 11(1):143-151. Daly MJ, Rioux JD, Schaffner SF, Hudson TJ, Lander ES. High-resolution haplotype structure in the human genome. Nature Genetics 2001; 29(2):229-232. Zhao LP, Li SS, Khalid N. A method for the assessment of disease associations with single-nucleotide polymorphism haplotypes and environmental variables in case-control studies. American Journal of Human Genetics 2003; 72(5):1231-1250. Hochberg Y, Benjamini Y. More powerful procedures for multiple significance testing. Statistics in Medicine 1990; 9(7):811-818. Benjamini Y, Hochberg Y. On the adaptive control of the false discovery rate in multiple testing with independent statistics. Journal of Educational and Behavioral Statistics 2000; 25(1):60-83. Cardon LR, Abecasis GR. Using haplotype blocks to map human complex trait loci. Trends in Genetics 2003; 19(3):135-140. Stram DO, Haiman CA, Hirschhorn JN, Altshuler D, Kolonel LN, Henderson BE, Pike MC. Choosing haplotype-tagging SNPS based on unphased genotype data using a preliminary sample of unrelated subjects with an example from the Multiethnic Cohort Study. Human Heredity 2003; 55(1):27-36. Emahazion T, Feuk L, Jobs M, Sawyer SL, Fredman D, St Clair D, Prince JA, Brookes AJ. SNP association studies in Alzheimer's disease highlight problems for complex disease analysis. Trends in Genetics 2001; 17(7):407-413. Neale BM, Sham PC. The future of association studies: gene-based analysis and replication. American Journal of Human Genetics 2004; 75(3):353-362. Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA. Score tests for association between traits and haplotypes when linkage phase is ambiguous. American Journal of Human Genetics 2002; 70(2):425-434. McCarthy JJ, Hilfiker R. The use of single-nucleotide polymorphism maps in pharmacogenomics. Nature Biotechnology 2000; 18(5):505-508. Zheng G. Use of max and min scores for trend tests for association when the genetic model is unknown. Statistics in Medicine 2003; 22(16):2657-2666. Patil N, Berno AJ, Hinds DA, Barrett WA, Doshi JM, Hacker CR, Kautzer CR, Lee DH, Marjoribanks C, McDonough DP, Nguyen BT, Norris MC, Sheehan JB, Shen N, Stern D, Stokowski RP, Thomas DJ, Trulson MO, Vyas KR, Frazer KA, Fodor SP, Cox DR. Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21. Science 2001; 294(5547):1719-1723. Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K. dbSNP: the NCBI database of genetic variation. Nucleic Acids Research 2001; 29(1):308-311. Sarkar SK. Some results on false discovery rate in stepwise multiple testing procedures. Annals of Statistics 2002; 30(1):239-257. Storey JD. A direct approach to false discovery rates. Journal of the Royal Statistical Society, Series B (Methodological) 2002; 64(3):479-498. Benjamini Y, Liu W. A step-down multiple hypotheses testing procedure that controls the false discovery rate under independence. Journal of Statistical Planning and Inference 1999; 82(1-2):163-170. Risch NJ. Searching for genetic determinants in the new millennium. Nature 2000; 405(6788):847-856. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, Higgins J, DeFelice M, Lochner A, Faggart M, Liu-Cordero SN, Rotimi C, Adeyemo A, Cooper R, Ward R, Lander ES, Daly MJ, Altshuler D. The structure of haplotype blocks in the human genome. Science 2002; 296(5576):2225-2229. Ioannidis JP, Trikalinos TA, Ntzani EE, Contopoulos-Ioannidis DG. Genetic associations in large versus small studies: an empirical assessment. Lancet 2003; 361(9357):567-571. The International HapMap Project. Nature 2003; 426(6968):789-796. Stephens JC, Schneider JA, Tanguay DA, Choi J, Acharya T, Stanley SE, Jiang R, Messer CJ, Chew A, Han JH, Duan J, Carr JL, Lee MS, Koshy B, Kumar AM, Zhang G, Newell WR, Windemuth A, Xu C, Kalbfleisch TS, Shaner SL, Arnold K, Schulz V, Drysdale CM, Nandabalan K, Judson RS, Ruano G, Vovis GF. Haplotype variation and linkage disequilibrium in 313 human genes. Science 2001; 293(5529):489-493. Zaykin DV, Young SS, Westfall PH. Using the false discovery rate approach in the genetic dissection of complex traits: a response to Weller et al. Genetics 2000; 154(4):1917-1918. Collins A, Lonjou C, Morton NE. Genetic epidemiology of single-nucleotide polymorphisms. Proceedings of the National Academy of Sciences of the U.S.A. 1999; 96(26):15173-15177. Lake SL, Lyon H, Tantisira K, Silverman EK, Weiss ST, Laird NM, Schaid DJ. Estimation and tests of haplotype-environment interaction when linkage phase is ambiguous. Human Heredity 2003; 55(1):56-65. Kwong KS, Wong EH. A more powerful step-up procedure for controlling the false discovery rate under independence. Statistics and Probability Letters 2002; 56(2):217-225. Stram DO, Leigh PC, Bretsky P, Freedman M, Hirschhorn JN, Altshuler D, Kolonel LN, Henderson BE, Thomas DC. Modeling and E-M estimation of haplotype-specific relative risks from genotype data for a case-control study of unrelated individuals. Human Heredity 2003; 55(4):179-190. 1986; 73 2002; 296 2002; 30 2000; 25 1995; 57 2002; 56 2003; 13 2002; 3 2001; 27 2000; 154 2003; 19 2001; 29 1999; 82 2003; 72 2003; 73 2003; 55 2004; 75 2001; 294 2000; 18 2003; 426 2001; 293 1997; 92 2000; 58 2002; 64 2002; 184 2002; 23 2000; 405 1996; 83 2002; 70 1999; 96 2001; 17 2001; 11 1990; 9 2003; 22 2003; 361 e_1_2_1_41_2 e_1_2_1_40_2 e_1_2_1_22_2 e_1_2_1_45_2 e_1_2_1_23_2 e_1_2_1_44_2 e_1_2_1_20_2 e_1_2_1_43_2 e_1_2_1_21_2 e_1_2_1_42_2 e_1_2_1_26_2 e_1_2_1_27_2 Zaykin DV (e_1_2_1_38_2) 2000; 154 e_1_2_1_24_2 e_1_2_1_47_2 e_1_2_1_25_2 e_1_2_1_46_2 e_1_2_1_28_2 e_1_2_1_29_2 Westfall PH (e_1_2_1_31_2) 2002; 184 e_1_2_1_6_2 e_1_2_1_30_2 e_1_2_1_7_2 e_1_2_1_4_2 e_1_2_1_5_2 e_1_2_1_2_2 e_1_2_1_11_2 e_1_2_1_34_2 e_1_2_1_3_2 e_1_2_1_12_2 e_1_2_1_33_2 e_1_2_1_32_2 e_1_2_1_10_2 e_1_2_1_15_2 e_1_2_1_16_2 e_1_2_1_37_2 e_1_2_1_13_2 e_1_2_1_36_2 e_1_2_1_14_2 e_1_2_1_35_2 e_1_2_1_19_2 e_1_2_1_8_2 e_1_2_1_17_2 e_1_2_1_9_2 e_1_2_1_18_2 e_1_2_1_39_2 |
References_xml | – reference: Cardon LR, Abecasis GR. Using haplotype blocks to map human complex trait loci. Trends in Genetics 2003; 19(3):135-140. – reference: Kwok PY. Genomics. Genetic association by whole-genome analysis? Science 2001; 294(5547):1669-1670. – reference: Kwong KS, Wong EH. A more powerful step-up procedure for controlling the false discovery rate under independence. Statistics and Probability Letters 2002; 56(2):217-225. – reference: Clark AG. Finding genes underlying risk of complex disease by linkage disequilibrium mapping. Current Opinion in Genetics and Development 2003; 13(3):296-302. – reference: Sarkar SK, Chang CK. The Simes method for multiple hypothesis testing with positively dependent test statistics. Journal of the American Statistical Association 1997; 92(440):1601-1608. – reference: Clark AG, Nielsen R, Signorovitch J, Matise TC, Glanowski S, Heil J, Winn-Deen ES, Holden AL, Lai E. Linkage disequilibrium and inference of ancestral recombination in 538 single-nucleotide polymorphism clusters across the human genome. American Journal of Human Genetics 2003; 73(2):285-300. – reference: Lake SL, Lyon H, Tantisira K, Silverman EK, Weiss ST, Laird NM, Schaid DJ. Estimation and tests of haplotype-environment interaction when linkage phase is ambiguous. Human Heredity 2003; 55(1):56-65. – reference: Ioannidis JP, Trikalinos TA, Ntzani EE, Contopoulos-Ioannidis DG. Genetic associations in large versus small studies: an empirical assessment. Lancet 2003; 361(9357):567-571. – reference: Stram DO, Leigh PC, Bretsky P, Freedman M, Hirschhorn JN, Altshuler D, Kolonel LN, Henderson BE, Thomas DC. Modeling and E-M estimation of haplotype-specific relative risks from genotype data for a case-control study of unrelated individuals. Human Heredity 2003; 55(4):179-190. – reference: Samuel-Cahn E. Is the Simes improved Bonferroni procedure conservative? Biometrika 1996; 83(4):928-933. – reference: Epstein MP, Satten GA. Inference on haplotype effects in case-control studies using unphased genotype data. American Journal of Human Genetics 2003; 73(6):1316-1329. – reference: Storey JD. A direct approach to false discovery rates. Journal of the Royal Statistical Society, Series B (Methodological) 2002; 64(3):479-498. – reference: Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA. Score tests for association between traits and haplotypes when linkage phase is ambiguous. American Journal of Human Genetics 2002; 70(2):425-434. – reference: McCarthy JJ, Hilfiker R. The use of single-nucleotide polymorphism maps in pharmacogenomics. Nature Biotechnology 2000; 18(5):505-508. – reference: The International HapMap Project. Nature 2003; 426(6968):789-796. – reference: Patil N, Berno AJ, Hinds DA, Barrett WA, Doshi JM, Hacker CR, Kautzer CR, Lee DH, Marjoribanks C, McDonough DP, Nguyen BT, Norris MC, Sheehan JB, Shen N, Stern D, Stokowski RP, Thomas DJ, Trulson MO, Vyas KR, Frazer KA, Fodor SP, Cox DR. Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21. Science 2001; 294(5547):1719-1723. – reference: Collins A, Lonjou C, Morton NE. Genetic epidemiology of single-nucleotide polymorphisms. Proceedings of the National Academy of Sciences of the U.S.A. 1999; 96(26):15173-15177. – reference: Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K. dbSNP: the NCBI database of genetic variation. Nucleic Acids Research 2001; 29(1):308-311. – reference: Simes RJ. An improved Bonferroni procedure for multiple tests of significance. Biometrika 1986; 73(3):751-754. – reference: Neale BM, Sham PC. The future of association studies: gene-based analysis and replication. American Journal of Human Genetics 2004; 75(3):353-362. – reference: Zheng G. Use of max and min scores for trend tests for association when the genetic model is unknown. Statistics in Medicine 2003; 22(16):2657-2666. – reference: Krummenauer F, Hommel G. The size of Simes' global test for discrete test statistics. Journal of Statistical Planning and Inference 1999; 82(1-2):151-162. – reference: Kruglyak L, Nickerson DA. Variation is the spice of life. Nature Genetics 2001; 27(3):234-236. – reference: Hochberg Y, Benjamini Y. More powerful procedures for multiple significance testing. Statistics in Medicine 1990; 9(7):811-818. – reference: Yekutieli D, Benjamini Y. Resampling-based false discovery rate controlling multiple test procedures for correlated test statistics. Journal of Statistical Planning and Inference 1999; 82(1-2):171-196. – reference: Sarkar SK. Some results on false discovery rate in stepwise multiple testing procedures. Annals of Statistics 2002; 30(1):239-257. – reference: Zaykin DV, Young SS, Westfall PH. Using the false discovery rate approach in the genetic dissection of complex traits: a response to Weller et al. Genetics 2000; 154(4):1917-1918. – reference: Schork NJ, Fallin D, Lanchbury JS. Single nucleotide polymorphisms and the future of genetic epidemiology. Clinical Genetics 2000; 58(4):250-264. – reference: Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B (Methodological) 1995; 57(1):289-300. – reference: Fallin D, Cohen A, Essioux L, Chumakov I, Blumenfeld M, Cohen D, Schork NJ. Genetic analysis of case/control data using estimated haplotype frequencies: application to APOE locus variation and Alzheimer's disease. Genome Research 2001; 11(1):143-151. – reference: Stram DO, Haiman CA, Hirschhorn JN, Altshuler D, Kolonel LN, Henderson BE, Pike MC. Choosing haplotype-tagging SNPS based on unphased genotype data using a preliminary sample of unrelated subjects with an example from the Multiethnic Cohort Study. Human Heredity 2003; 55(1):27-36. – reference: Zhao LP, Li SS, Khalid N. A method for the assessment of disease associations with single-nucleotide polymorphism haplotypes and environmental variables in case-control studies. American Journal of Human Genetics 2003; 72(5):1231-1250. – reference: Benjamini Y, Hochberg Y. On the adaptive control of the false discovery rate in multiple testing with independent statistics. Journal of Educational and Behavioral Statistics 2000; 25(1):60-83. – reference: Risch NJ. Searching for genetic determinants in the new millennium. Nature 2000; 405(6788):847-856. – reference: Johnson GC, Esposito L, Barratt BJ, Smith AN, Heward J, Di Genova G, Ueda H, Cordell HJ, Eaves IA, Dudbridge F, Twells RC, Payne F, Hughes W, Nutland S, Stevens H, Carr P, Tuomilehto-Wolf E, Tuomilehto J, Gough SC, Clayton DG, Todd JA. Haplotype tagging for the identification of common disease genes. Nature Genetics 2001; 29(2):233-237. – reference: Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, Higgins J, DeFelice M, Lochner A, Faggart M, Liu-Cordero SN, Rotimi C, Adeyemo A, Cooper R, Ward R, Lander ES, Daly MJ, Altshuler D. The structure of haplotype blocks in the human genome. Science 2002; 296(5576):2225-2229. – reference: Stephens JC, Schneider JA, Tanguay DA, Choi J, Acharya T, Stanley SE, Jiang R, Messer CJ, Chew A, Han JH, Duan J, Carr JL, Lee MS, Koshy B, Kumar AM, Zhang G, Newell WR, Windemuth A, Xu C, Kalbfleisch TS, Shaner SL, Arnold K, Schulz V, Drysdale CM, Nandabalan K, Judson RS, Ruano G, Vovis GF. Haplotype variation and linkage disequilibrium in 313 human genes. Science 2001; 293(5529):489-493. – reference: Ioannidis JP, Ntzani EE, Trikalinos TA, Contopoulos-Ioannidis DG. Replication validity of genetic association studies. Nature Genetics 2001; 29(3):306-309. – reference: Benjamini Y, Liu W. A step-down multiple hypotheses testing procedure that controls the false discovery rate under independence. Journal of Statistical Planning and Inference 1999; 82(1-2):163-170. – reference: Tabor HK, Risch NJ, Myers RM. Opinion: candidate-gene approaches for studying complex genetic traits: practical considerations. Nature Reviews Genetics 2002; 3(5):391-397. – reference: Daly MJ, Rioux JD, Schaffner SF, Hudson TJ, Lander ES. High-resolution haplotype structure in the human genome. Nature Genetics 2001; 29(2):229-232. – reference: Westfall PH, Zaykin DV, Young SS. Multiple tests for genetic effects in association studies. Methods in Molecular Biology 2002; 184:143-168. – reference: Schork NJ. Power calculations for genetic association studies using estimated probability distributions. American Journal of Human Genetics 2002; 70(6):1480-1489. – reference: Efron B, Tibshirani R. Empirical Bayes methods and false discovery rates for microarrays. Genetic Epidemiology 2002; 23(1):70-86. – reference: Emahazion T, Feuk L, Jobs M, Sawyer SL, Fredman D, St Clair D, Prince JA, Brookes AJ. SNP association studies in Alzheimer's disease highlight problems for complex disease analysis. Trends in Genetics 2001; 17(7):407-413. – reference: Benjamini Y, Yekutieli D. The control of the false discovery rate in multiple testing under dependency. Annals of Statistics 2001; 29(4):1165-1188. – volume: 11 start-page: 143 issue: 1 year: 2001 end-page: 151 article-title: Genetic analysis of case/control data using estimated haplotype frequencies: application to APOE locus variation and Alzheimer's disease publication-title: Genome Research – volume: 72 start-page: 1231 issue: 5 year: 2003 end-page: 1250 article-title: A method for the assessment of disease associations with single‐nucleotide polymorphism haplotypes and environmental variables in case–control studies publication-title: American Journal of Human Genetics – volume: 92 start-page: 1601 issue: 440 year: 1997 end-page: 1608 article-title: The Simes method for multiple hypothesis testing with positively dependent test statistics publication-title: Journal of the American Statistical Association – volume: 56 start-page: 217 issue: 2 year: 2002 end-page: 225 article-title: A more powerful step‐up procedure for controlling the false discovery rate under independence publication-title: Statistics and Probability Letters – volume: 55 start-page: 56 issue: 1 year: 2003 end-page: 65 article-title: Estimation and tests of haplotype‐environment interaction when linkage phase is ambiguous publication-title: Human Heredity – volume: 294 start-page: 1669 issue: 5547 year: 2001 end-page: 1670 article-title: Genomics. Genetic association by whole‐genome analysis? publication-title: Science – volume: 29 start-page: 1165 issue: 4 year: 2001 end-page: 1188 article-title: The control of the false discovery rate in multiple testing under dependency publication-title: Annals of Statistics – volume: 70 start-page: 1480 issue: 6 year: 2002 end-page: 1489 article-title: Power calculations for genetic association studies using estimated probability distributions publication-title: American Journal of Human Genetics – volume: 70 start-page: 425 issue: 2 year: 2002 end-page: 434 article-title: Score tests for association between traits and haplotypes when linkage phase is ambiguous publication-title: American Journal of Human Genetics – volume: 29 start-page: 308 issue: 1 year: 2001 end-page: 311 article-title: dbSNP: the NCBI database of genetic variation publication-title: Nucleic Acids Research – volume: 17 start-page: 407 issue: 7 year: 2001 end-page: 413 article-title: SNP association studies in Alzheimer's disease highlight problems for complex disease analysis publication-title: Trends in Genetics – volume: 154 start-page: 1917 issue: 4 year: 2000 end-page: 1918 article-title: Using the false discovery rate approach in the genetic dissection of complex traits: a response to Weller publication-title: Genetics – volume: 96 start-page: 15173 issue: 26 year: 1999 end-page: 15177 article-title: Genetic epidemiology of single‐nucleotide polymorphisms publication-title: Proceedings of the National Academy of Sciences of the U.S.A. – volume: 82 start-page: 151 issue: 1–2 year: 1999 end-page: 162 article-title: The size of Simes' global test for discrete test statistics publication-title: Journal of Statistical Planning and Inference – volume: 25 start-page: 60 issue: 1 year: 2000 end-page: 83 article-title: On the adaptive control of the false discovery rate in multiple testing with independent statistics publication-title: Journal of Educational and Behavioral Statistics – volume: 29 start-page: 306 issue: 3 year: 2001 end-page: 309 article-title: Replication validity of genetic association studies publication-title: Nature Genetics – volume: 55 start-page: 179 issue: 4 year: 2003 end-page: 190 article-title: Modeling and E‐M estimation of haplotype‐specific relative risks from genotype data for a case–control study of unrelated individuals publication-title: Human Heredity – volume: 73 start-page: 1316 issue: 6 year: 2003 end-page: 1329 article-title: Inference on haplotype effects in case–control studies using unphased genotype data publication-title: American Journal of Human Genetics – volume: 9 start-page: 811 issue: 7 year: 1990 end-page: 818 article-title: More powerful procedures for multiple significance testing publication-title: Statistics in Medicine – volume: 57 start-page: 289 issue: 1 year: 1995 end-page: 300 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing publication-title: Journal of the Royal Statistical Society, Series B (Methodological) – volume: 296 start-page: 2225 issue: 5576 year: 2002 end-page: 2229 article-title: The structure of haplotype blocks in the human genome publication-title: Science – volume: 29 start-page: 229 issue: 2 year: 2001 end-page: 232 article-title: High‐resolution haplotype structure in the human genome publication-title: Nature Genetics – volume: 23 start-page: 70 issue: 1 year: 2002 end-page: 86 article-title: Empirical Bayes methods and false discovery rates for microarrays publication-title: Genetic Epidemiology – volume: 294 start-page: 1719 issue: 5547 year: 2001 end-page: 1723 article-title: Blocks of limited haplotype diversity revealed by high‐resolution scanning of human chromosome 21 publication-title: Science – volume: 58 start-page: 250 issue: 4 year: 2000 end-page: 264 article-title: Single nucleotide polymorphisms and the future of genetic epidemiology publication-title: Clinical Genetics – volume: 18 start-page: 505 issue: 5 year: 2000 end-page: 508 article-title: The use of single‐nucleotide polymorphism maps in pharmacogenomics publication-title: Nature Biotechnology – volume: 64 start-page: 479 issue: 3 year: 2002 end-page: 498 article-title: A direct approach to false discovery rates publication-title: Journal of the Royal Statistical Society, Series B (Methodological) – volume: 73 start-page: 285 issue: 2 year: 2003 end-page: 300 article-title: Linkage disequilibrium and inference of ancestral recombination in 538 single‐nucleotide polymorphism clusters across the human genome publication-title: American Journal of Human Genetics – volume: 29 start-page: 233 issue: 2 year: 2001 end-page: 237 article-title: Haplotype tagging for the identification of common disease genes publication-title: Nature Genetics – volume: 55 start-page: 27 issue: 1 year: 2003 end-page: 36 article-title: Choosing haplotype‐tagging SNPS based on unphased genotype data using a preliminary sample of unrelated subjects with an example from the Multiethnic Cohort Study publication-title: Human Heredity – volume: 82 start-page: 163 issue: 1–2 year: 1999 end-page: 170 article-title: A step‐down multiple hypotheses testing procedure that controls the false discovery rate under independence publication-title: Journal of Statistical Planning and Inference – volume: 426 start-page: 789 issue: 6968 year: 2003 end-page: 796 publication-title: Nature – volume: 405 start-page: 847 issue: 6788 year: 2000 end-page: 856 article-title: Searching for genetic determinants in the new millennium publication-title: Nature – volume: 83 start-page: 928 issue: 4 year: 1996 end-page: 933 article-title: Is the Simes improved Bonferroni procedure conservative? publication-title: Biometrika – volume: 75 start-page: 353 issue: 3 year: 2004 end-page: 362 article-title: The future of association studies: gene‐based analysis and replication publication-title: American Journal of Human Genetics – volume: 73 start-page: 751 issue: 3 year: 1986 end-page: 754 article-title: An improved Bonferroni procedure for multiple tests of significance publication-title: Biometrika – volume: 27 start-page: 234 issue: 3 year: 2001 end-page: 236 article-title: Variation is the spice of life publication-title: Nature Genetics – volume: 3 start-page: 391 issue: 5 year: 2002 end-page: 397 article-title: Opinion: candidate‐gene approaches for studying complex genetic traits: practical considerations publication-title: Nature Reviews Genetics – volume: 19 start-page: 135 issue: 3 year: 2003 end-page: 140 article-title: Using haplotype blocks to map human complex trait loci publication-title: Trends in Genetics – volume: 184 start-page: 143 year: 2002 end-page: 168 article-title: Multiple tests for genetic effects in association studies publication-title: Methods in Molecular Biology – volume: 361 start-page: 567 issue: 9357 year: 2003 end-page: 571 article-title: Genetic associations in large small studies: an empirical assessment publication-title: Lancet – volume: 13 start-page: 296 issue: 3 year: 2003 end-page: 302 article-title: Finding genes underlying risk of complex disease by linkage disequilibrium mapping publication-title: Current Opinion in Genetics and Development – volume: 82 start-page: 171 issue: 1–2 year: 1999 end-page: 196 article-title: Resampling‐based false discovery rate controlling multiple test procedures for correlated test statistics publication-title: Journal of Statistical Planning and Inference – volume: 293 start-page: 489 issue: 5529 year: 2001 end-page: 493 article-title: Haplotype variation and linkage disequilibrium in 313 human genes publication-title: Science – volume: 30 start-page: 239 issue: 1 year: 2002 end-page: 257 article-title: Some results on false discovery rate in stepwise multiple testing procedures publication-title: Annals of Statistics – volume: 22 start-page: 2657 issue: 16 year: 2003 end-page: 2666 article-title: Use of max and min scores for trend tests for association when the genetic model is unknown publication-title: Statistics in Medicine – ident: e_1_2_1_46_2 doi: 10.1016/S0140-6736(03)12516-0 – ident: e_1_2_1_17_2 doi: 10.1159/000073202 – ident: e_1_2_1_12_2 doi: 10.1126/science.1066921 – ident: e_1_2_1_29_2 doi: 10.1016/S0378-3758(99)00039-7 – ident: e_1_2_1_32_2 doi: 10.1016/S0378-3758(99)00041-5 – ident: e_1_2_1_6_2 doi: 10.1126/science.1059431 – ident: e_1_2_1_19_2 doi: 10.1086/375140 – ident: e_1_2_1_10_2 doi: 10.1126/science.1065573 – ident: e_1_2_1_37_2 doi: 10.1159/000071807 – volume: 184 start-page: 143 year: 2002 ident: e_1_2_1_31_2 article-title: Multiple tests for genetic effects in association studies publication-title: Methods in Molecular Biology – ident: e_1_2_1_26_2 doi: 10.1073/pnas.96.26.15173 – ident: e_1_2_1_39_2 doi: 10.1111/1467-9868.00346 – ident: e_1_2_1_2_2 doi: 10.1038/85776 – ident: e_1_2_1_8_2 doi: 10.1016/S0168-9525(03)00022-2 – ident: e_1_2_1_47_2 doi: 10.1038/nrg796 – ident: e_1_2_1_24_2 doi: 10.1093/biomet/73.3.751 – ident: e_1_2_1_20_2 doi: 10.1034/j.1399-0004.2000.580402.x – ident: e_1_2_1_14_2 doi: 10.1086/340788 – volume: 154 start-page: 1917 issue: 4 year: 2000 ident: e_1_2_1_38_2 article-title: Using the false discovery rate approach in the genetic dissection of complex traits: a response to Weller et al publication-title: Genetics doi: 10.1093/genetics/154.4.1917 – ident: e_1_2_1_40_2 doi: 10.1002/gepi.1124 – ident: e_1_2_1_34_2 doi: 10.1214/aos/1015362192 – ident: e_1_2_1_35_2 doi: 10.1038/ng1001-233 – ident: e_1_2_1_43_2 doi: 10.3102/10769986025001060 – ident: e_1_2_1_16_2 doi: 10.1086/338688 – ident: e_1_2_1_45_2 doi: 10.1038/ng749 – ident: e_1_2_1_13_2 doi: 10.1016/S0959-437X(03)00056-X – ident: e_1_2_1_18_2 doi: 10.1086/380204 – ident: e_1_2_1_41_2 doi: 10.1016/S0378-3758(99)00040-3 – ident: e_1_2_1_28_2 doi: 10.1093/biomet/83.4.928 – ident: e_1_2_1_30_2 doi: 10.1080/01621459.1997.10473682 – ident: e_1_2_1_9_2 doi: 10.1086/377138 – ident: e_1_2_1_27_2 doi: 10.1159/000071811 – ident: e_1_2_1_42_2 doi: 10.1016/S0167-7152(01)00196-1 – ident: e_1_2_1_15_2 doi: 10.1101/gr.148401 – ident: e_1_2_1_25_2 doi: 10.1111/j.2517-6161.1995.tb02031.x – ident: e_1_2_1_22_2 doi: 10.1038/75360 – ident: e_1_2_1_23_2 doi: 10.1002/sim.4780090710 – ident: e_1_2_1_7_2 doi: 10.1126/science.1069424 – ident: e_1_2_1_36_2 doi: 10.1086/423901 – ident: e_1_2_1_5_2 doi: 10.1038/ng1001-229 – ident: e_1_2_1_21_2 doi: 10.1016/S0168-9525(01)02342-3 – ident: e_1_2_1_11_2 doi: 10.1038/35015718 – ident: e_1_2_1_4_2 doi: 10.1038/nature02168 – ident: e_1_2_1_33_2 doi: 10.1214/aos/1013699998 – ident: e_1_2_1_44_2 doi: 10.1002/sim.1474 – ident: e_1_2_1_3_2 doi: 10.1093/nar/29.1.308 |
SSID | ssj0011527 |
Score | 2.0002744 |
Snippet | The genetic case–control association study of unrelated subjects is a leading method to identify single nucleotide polymorphisms (SNPs) and SNP haplotypes that... The genetic case-control association study of unrelated subjects is a leading method to identify single nucleotide polymorphisms (SNPs) and SNP haplotypes that... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3134 |
SubjectTerms | Case-Control Studies Computer Simulation Data Interpretation, Statistical Disease epidemiology Genetic Predisposition to Disease Genetics Genotype & phenotype Haplotypes human genome Humans Hypothesis testing Logistic Models Polymorphism Polymorphism, Single Nucleotide research design single nucleotide statistics and numerical data |
Title | Multiple hypothesis testing strategies for genetic case-control association studies |
URI | https://api.istex.fr/ark:/67375/WNG-7WTMT84K-1/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.2407 https://www.ncbi.nlm.nih.gov/pubmed/16252274 https://www.proquest.com/docview/223142216 https://www.proquest.com/docview/68823278 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6hVkKVEIUFSlp-jITglG2cOrb3iBClgNID7KqVOFj-W6gKadVkpbYn3oE35EnwxElWRUVCnHLIRJrYM_Y3npnPAM8dp1YKNkmt9S5l3MvUCONSbryQhokdNseMbrnP92bs_WFx2FVVYi9M5IcYDtzQM9r1Gh1cm3p7SRpaH30fYzgSll8s1UI89HFgjqL9ba2YoeSCFj3vbJZv9x9e2YlWcVDPr4OZV1Fru-3srsPnXuFYbXI8XjRmbC__4HL8vz-6A7c7NEpeRfO5Czd8NYKbZZdvH8GteKpHYrPSCNYQm0Zq53swK7tiRPL14hQbueqjmjTI2lF9IXXTc1CQAItJMFPsliQ2bJq_fvzsCuSJXhoHqWNF432Y7b6Zvt5Lu1saUsvERKQ-YzoEcXMjEX26jErNJSvMPHeiENoJz3QIQrWwbmIzTSnP7STE83NaSFuEFeUBrFQnlX8IxBTSGxNCVqsZszLTTgdbyh2jzHOjswRe9jOmbEdhjjdpfFORfDlXYQgVDmECzwbJ00jbcY3Mi3bSBwF9doxlbqJQB_tvlTiYllPJPiiawFZvFarz8FoFWIXHZ5Qn8HR4G1wT8y268ieLWvEQvezkQiawEU1pqUqIOvNcsKBCaxB_1VF9elfic_NfBbdgLR4SYUXLI1hpzhb-cYBNjXnSOshvn6YVhg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVoJKiMfyCgVqJASnbOPUsb3ihICypc0eYFftAcmyHS9UhbRqshJw4j_wD_kleOIkq6IiIU45ZCJN7Bl7nt8APCk4tVKwUWytK2LGnYyNMEXMjRPSMLHN5pjRzSd8PGNvD7PDFXje9cIEfIg-4Iaa0ZzXqOAYkN5aooZWR1-G6I9cgjUc6I1a-epdjx1Fu3mtmKPkgmYd8mySbnVfnruL1nBZv15kaJ63W5uLZ-c6fOhYDvUmx8NFbYb2-x9ojv_5TzfgWmuQkhdBgm7CiisHcDlvU-4DuBoCeyT0Kw1gHc3TgO58C2Z5W49IPn07xV6u6qgiNQJ3lB9JVXcwFMRbxsRLKjZMEuvvzV8_frY18kQv5YNUoajxNsx2Xk9fjuN2UENsmRiJ2CVMez9ubiQaoEVCpeaSZWaeFiITuhCOae-HamGLkU00pTy1I-_Sz2kmbeYPlTuwWp6U7h4Qk0lnjPdarWbMykQX2otTWjDKHDc6ieBZt2XKtijmOEzjswr4y6nyS6hwCSN43FOeBuSOC2ieNrveE-izY6x0E5k6mLxR4mCaTyXbUzSCjU4sVKvklfKWFUbQKI9gs3_rtRNTLrp0J4tKce_AbKdCRnA3yNKSFe94pqlgnoVGIv7Ko3q_m-Pz_r8SbsKV8TTfV_u7k70NWA8xIyxweQCr9dnCPfRWVG0eNdryG9TjGZ8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BK1WVEI_l0VCgRkJwyjZOHdt7RJSlpWSFYFet1IPlV2hVSFdNVgJO_Af-Ib8EO06yKioS4pRDJtLEnrHn88x8BnhmKNackVGstTUxoZbHiikTU2UZV4TtkMJndPMJ3ZuRt0fZUVtV6XthAj9Ef-DmPaNZr72Dz02xvSQNrU6_DD0cuQ6rhCbcA6_dDz11FO6ua_UpSspw1hHPJul29-WlrWjVj-rXq-LMy2Frs--Mb8Fxp3EoNzkbLmo11N__IHP8v1-6DTfbcBS9DPZzB67ZcgBreZtwH8CNcKyHQrfSANZ9cBq4ne_CLG-rEdHJt7nv5KpOK1R72o7yE6rqjoQCubgYOTv17ZJIu13z14-fbYU8kkvrQFUoabwHs_Hr6au9uL2mIdaEjVhsEyIdiisU9-GnSTCXlJNMFalhGZOGWSIdCpVMm5FOJMY01SMH6AuccZ25JeU-rJTnpd0ApDJulXKYVUtCNE-kkc6YUkMwsVTJJIIX3YwJ3XKY-6s0PovAvpwKN4TCD2EET3vJeeDtuELmeTPpvYC8OPN1biwTh5M3gh1O8yknBwJHsNlZhWhdvBIurvLnZ5hGsNW_db7pEy6ytOeLSlAHX3ZSxiN4EExpqYqDnWnKiFOhMYi_6ig-7uf--fBfBbdg7f3uWLzbnxxswno4MPLVLY9gpb5Y2McuhKrVk8ZXfgObGRhX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+hypothesis+testing+strategies+for+genetic+case-control+association+studies&rft.jtitle=Statistics+in+medicine&rft.au=Rosenberg%2C+Philip+S&rft.au=Che%2C+Anney&rft.au=Chen%2C+Bingshu+E&rft.date=2006-09-30&rft.issn=0277-6715&rft.volume=25&rft.issue=18&rft.spage=3134&rft_id=info:doi/10.1002%2Fsim.2407&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon |