Multiple hypothesis testing strategies for genetic case-control association studies

The genetic case–control association study of unrelated subjects is a leading method to identify single nucleotide polymorphisms (SNPs) and SNP haplotypes that modulate the risk of complex diseases. Association studies often genotype several SNPs in a number of candidate genes; we propose a two‐stag...

Full description

Saved in:
Bibliographic Details
Published inStatistics in medicine Vol. 25; no. 18; pp. 3134 - 3149
Main Authors Rosenberg, Philip S., Che, Anney, Chen, Bingshu E.
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 30.09.2006
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0277-6715
1097-0258
DOI10.1002/sim.2407

Cover

Loading…
Abstract The genetic case–control association study of unrelated subjects is a leading method to identify single nucleotide polymorphisms (SNPs) and SNP haplotypes that modulate the risk of complex diseases. Association studies often genotype several SNPs in a number of candidate genes; we propose a two‐stage approach to address the inherent statistical multiple comparisons problem. In the first stage, each gene's association with disease is summarized by a single p‐value that controls a familywise error rate. In the second stage, summary p‐values are adjusted for multiplicity using a false discovery rate (FDR) controlling procedure. For the first stage, we consider marginal and joint tests of SNPs and haplotypes within genes, and we construct an omnibus test that combines SNP and haplotype analysis. Simulation studies show that when disease susceptibility is conferred by a SNP, and all common SNPs in a gene are genotyped, marginal analysis of SNPs using the Simes test has similar or higher power than marginal or joint haplotype analysis. Conversely, haplotype analysis can be more powerful when disease susceptibility is conferred by a haplotype. The omnibus test tracks the more powerful of the two approaches, which is generally unknown. Multiple testing balances the desire for statistical power against the implicit costs of false positive results, which up to now appear to be common in the literature. Published in 2005 by John Wiley & Sons, Ltd.
AbstractList The genetic case-control association study of unrelated subjects is a leading method to identify single nucleotide polymorphisms (SNPs) and SNP haplotypes that modulate the risk of complex diseases. Association studies often genotype several SNPs in a number of candidate genes; we propose a two-stage approach to address the inherent statistical multiple comparisons problem. In the first stage, each gene's association with disease is summarized by a single p-value that controls a familywise error rate. In the second stage, summary p-values are adjusted for multiplicity using a false discovery rate (FDR) controlling procedure. For the first stage, we consider marginal and joint tests of SNPs and haplotypes within genes, and we construct an omnibus test that combines SNP and haplotype analysis. Simulation studies show that when disease susceptibility is conferred by a SNP, and all common SNPs in a gene are genotyped, marginal analysis of SNPs using the Simes test has similar or higher power than marginal or joint haplotype analysis. Conversely, haplotype analysis can be more powerful when disease susceptibility is conferred by a haplotype. The omnibus test tracks the more powerful of the two approaches, which is generally unknown. Multiple testing balances the desire for statistical power against the implicit costs of false positive results, which up to now appear to be common in the literature.The genetic case-control association study of unrelated subjects is a leading method to identify single nucleotide polymorphisms (SNPs) and SNP haplotypes that modulate the risk of complex diseases. Association studies often genotype several SNPs in a number of candidate genes; we propose a two-stage approach to address the inherent statistical multiple comparisons problem. In the first stage, each gene's association with disease is summarized by a single p-value that controls a familywise error rate. In the second stage, summary p-values are adjusted for multiplicity using a false discovery rate (FDR) controlling procedure. For the first stage, we consider marginal and joint tests of SNPs and haplotypes within genes, and we construct an omnibus test that combines SNP and haplotype analysis. Simulation studies show that when disease susceptibility is conferred by a SNP, and all common SNPs in a gene are genotyped, marginal analysis of SNPs using the Simes test has similar or higher power than marginal or joint haplotype analysis. Conversely, haplotype analysis can be more powerful when disease susceptibility is conferred by a haplotype. The omnibus test tracks the more powerful of the two approaches, which is generally unknown. Multiple testing balances the desire for statistical power against the implicit costs of false positive results, which up to now appear to be common in the literature.
The genetic case-control association study of unrelated subjects is a leading method to identify single nucleotide polymorphisms (SNPs) and SNP haplotypes that modulate the risk of complex diseases. Association studies often genotype several SNPs in a number of candidate genes; we propose a two-stage approach to address the inherent statistical multiple comparisons problem. In the first stage, each genes association with disease is summarized by a single p-value that controls a familywise error rate. In the second stage, summary p-values are adjusted for multiplicity using a false discovery rate (FDR) controlling procedure. For the first stage, we consider marginal and joint tests of SNPs and haplotypes within genes, and we construct an omnibus test that combines SNP and haplotype analysis. Simulation studies show that when disease susceptibility is conferred by a SNP, and all common SNPs in a gene are genotyped, marginal analysis of SNPs using the Simes test has similar or higher power than marginal or joint haplotype analysis. Conversely, haplotype analysis can be more powerful when disease susceptibility is conferred by a haplotype. The omnibus test tracks the more powerful of the two approaches, which is generally unknown. Multiple testing balances the desire for statistical power against the implicit costs of false positive results, which up to now appear to be common in the literature. [PUBLICATION ABSTRACT]
The genetic case–control association study of unrelated subjects is a leading method to identify single nucleotide polymorphisms (SNPs) and SNP haplotypes that modulate the risk of complex diseases. Association studies often genotype several SNPs in a number of candidate genes; we propose a two‐stage approach to address the inherent statistical multiple comparisons problem. In the first stage, each gene's association with disease is summarized by a single p ‐value that controls a familywise error rate. In the second stage, summary p ‐values are adjusted for multiplicity using a false discovery rate (FDR) controlling procedure. For the first stage, we consider marginal and joint tests of SNPs and haplotypes within genes, and we construct an omnibus test that combines SNP and haplotype analysis. Simulation studies show that when disease susceptibility is conferred by a SNP, and all common SNPs in a gene are genotyped, marginal analysis of SNPs using the Simes test has similar or higher power than marginal or joint haplotype analysis. Conversely, haplotype analysis can be more powerful when disease susceptibility is conferred by a haplotype. The omnibus test tracks the more powerful of the two approaches, which is generally unknown. Multiple testing balances the desire for statistical power against the implicit costs of false positive results, which up to now appear to be common in the literature. Published in 2005 by John Wiley & Sons, Ltd.
The genetic case-control association study of unrelated subjects is a leading method to identify single nucleotide polymorphisms (SNPs) and SNP haplotypes that modulate the risk of complex diseases. Association studies often genotype several SNPs in a number of candidate genes; we propose a two-stage approach to address the inherent statistical multiple comparisons problem. In the first stage, each gene's association with disease is summarized by a single p-value that controls a familywise error rate. In the second stage, summary p-values are adjusted for multiplicity using a false discovery rate (FDR) controlling procedure. For the first stage, we consider marginal and joint tests of SNPs and haplotypes within genes, and we construct an omnibus test that combines SNP and haplotype analysis. Simulation studies show that when disease susceptibility is conferred by a SNP, and all common SNPs in a gene are genotyped, marginal analysis of SNPs using the Simes test has similar or higher power than marginal or joint haplotype analysis. Conversely, haplotype analysis can be more powerful when disease susceptibility is conferred by a haplotype. The omnibus test tracks the more powerful of the two approaches, which is generally unknown. Multiple testing balances the desire for statistical power against the implicit costs of false positive results, which up to now appear to be common in the literature.
The genetic case–control association study of unrelated subjects is a leading method to identify single nucleotide polymorphisms (SNPs) and SNP haplotypes that modulate the risk of complex diseases. Association studies often genotype several SNPs in a number of candidate genes; we propose a two‐stage approach to address the inherent statistical multiple comparisons problem. In the first stage, each gene's association with disease is summarized by a single p‐value that controls a familywise error rate. In the second stage, summary p‐values are adjusted for multiplicity using a false discovery rate (FDR) controlling procedure. For the first stage, we consider marginal and joint tests of SNPs and haplotypes within genes, and we construct an omnibus test that combines SNP and haplotype analysis. Simulation studies show that when disease susceptibility is conferred by a SNP, and all common SNPs in a gene are genotyped, marginal analysis of SNPs using the Simes test has similar or higher power than marginal or joint haplotype analysis. Conversely, haplotype analysis can be more powerful when disease susceptibility is conferred by a haplotype. The omnibus test tracks the more powerful of the two approaches, which is generally unknown. Multiple testing balances the desire for statistical power against the implicit costs of false positive results, which up to now appear to be common in the literature. Published in 2005 by John Wiley & Sons, Ltd.
Author Che, Anney
Chen, Bingshu E.
Rosenberg, Philip S.
Author_xml – sequence: 1
  givenname: Philip S.
  surname: Rosenberg
  fullname: Rosenberg, Philip S.
  email: rosenbep@mail.nih.gov
  organization: Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Rockville, MD, U.S.A
– sequence: 2
  givenname: Anney
  surname: Che
  fullname: Che, Anney
  email: chea@mail.nih.gov
  organization: Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Rockville, MD, U.S.A
– sequence: 3
  givenname: Bingshu E.
  surname: Chen
  fullname: Chen, Bingshu E.
  email: cheneric@mail.nih.gov
  organization: Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Rockville, MD, U.S.A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16252274$$D View this record in MEDLINE/PubMed
BookMark eNp10cFOGzEQBmCroiqBVuoTVKseql422LP22ntEqFBUAgdScbQc72ww3ayD7RXN29dpKBKgnnz5ZvR7_gOyN_gBCfnI6JRRCkfRrabAqXxDJow2sqQg1B6ZUJCyrCUT--QgxjtKGRMg35F9VoMAkHxCrmdjn9y6x-J2s_bpFqOLRcKY3LAsYgom4dJhLDofiiUOmJwtrIlYWj-k4PvCxOitM8n5Ifuxzfg9eduZPuKHx_eQ_Dz9Nj_5Xl5cnZ2fHF-UlsscEik3DfBuoShVtKVMmVpxseiglUKaViI3gjdG2rax1LAc2ja4gI4JZQVT1SH5stu7Dv5-zJn1ykWLfW8G9GPUtVJQgdzCzy_gnR_DkLNpgIpxAFZn9OkRjYsVtnod3MqEjf53qwymO2CDjzFgp61Lfz-ez-R6zajelqFzGXpbRh74-mLgaedrWu7og-tx81-nr89nz72LCX8_eRN-6VpWUuibyzMtb-azueI_NKv-ALFEpy4
CODEN SMEDDA
CitedBy_id crossref_primary_10_1371_journal_pgen_1000587
crossref_primary_10_1371_journal_pone_0004895
crossref_primary_10_1371_journal_pone_0016739
crossref_primary_10_1214_07_AOS557
crossref_primary_10_1093_bioinformatics_btac232
crossref_primary_10_1371_journal_pone_0026165
crossref_primary_10_1093_carcin_bgi314
crossref_primary_10_1016_j_ajhg_2007_10_010
crossref_primary_10_1158_0008_5472_CAN_09_1734
crossref_primary_10_1016_j_neurobiolaging_2008_05_025
crossref_primary_10_1002_sim_3300
crossref_primary_10_1016_j_ophtha_2010_03_059
crossref_primary_10_1002_gepi_20192
crossref_primary_10_1007_s00281_013_0388_2
crossref_primary_10_1128_IAI_00443_12
crossref_primary_10_1007_s10038_006_0057_6
crossref_primary_10_1016_j_ophtha_2014_12_038
crossref_primary_10_1093_bib_bbu050
crossref_primary_10_1093_carcin_bgp024
crossref_primary_10_1002_gepi_20288
crossref_primary_10_1158_0008_5472_CAN_08_0444
crossref_primary_10_1158_1055_9965_EPI_07_2704
crossref_primary_10_1093_carcin_bgq038
crossref_primary_10_1038_sj_npp_1301394
crossref_primary_10_1016_j_ajog_2006_03_109
crossref_primary_10_1093_bioinformatics_btm496
crossref_primary_10_1158_1055_9965_EPI_05_0853
crossref_primary_10_1016_j_biopsych_2009_06_024
crossref_primary_10_1093_jamiaopen_ooab045
crossref_primary_10_1002_gepi_20162
crossref_primary_10_1002_gepi_20382
crossref_primary_10_1007_s00439_006_0177_2
crossref_primary_10_1016_j_ejca_2008_01_026
Cites_doi 10.1016/S0140-6736(03)12516-0
10.1159/000073202
10.1126/science.1066921
10.1016/S0378-3758(99)00039-7
10.1016/S0378-3758(99)00041-5
10.1126/science.1059431
10.1086/375140
10.1126/science.1065573
10.1159/000071807
10.1073/pnas.96.26.15173
10.1111/1467-9868.00346
10.1038/85776
10.1016/S0168-9525(03)00022-2
10.1038/nrg796
10.1093/biomet/73.3.751
10.1034/j.1399-0004.2000.580402.x
10.1086/340788
10.1093/genetics/154.4.1917
10.1002/gepi.1124
10.1214/aos/1015362192
10.1038/ng1001-233
10.3102/10769986025001060
10.1086/338688
10.1038/ng749
10.1016/S0959-437X(03)00056-X
10.1086/380204
10.1016/S0378-3758(99)00040-3
10.1093/biomet/83.4.928
10.1080/01621459.1997.10473682
10.1086/377138
10.1159/000071811
10.1016/S0167-7152(01)00196-1
10.1101/gr.148401
10.1111/j.2517-6161.1995.tb02031.x
10.1038/75360
10.1002/sim.4780090710
10.1126/science.1069424
10.1086/423901
10.1038/ng1001-229
10.1016/S0168-9525(01)02342-3
10.1038/35015718
10.1038/nature02168
10.1214/aos/1013699998
10.1002/sim.1474
10.1093/nar/29.1.308
ContentType Journal Article
Copyright This article is a U.S. Government work and is in the public domain in the U.S.A. Published in 2005 by John Wiley & Sons, Ltd.
Copyright John Wiley and Sons, Limited Sep 30, 2006
Copyright_xml – notice: This article is a U.S. Government work and is in the public domain in the U.S.A. Published in 2005 by John Wiley & Sons, Ltd.
– notice: Copyright John Wiley and Sons, Limited Sep 30, 2006
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
DOI 10.1002/sim.2407
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
CrossRef
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Public Health
EISSN 1097-0258
EndPage 3149
ExternalDocumentID 1146146131
16252274
10_1002_sim_2407
SIM2407
ark_67375_WNG_7WTMT84K_1
Genre article
Journal Article
Research Support, N.I.H., Intramural
Feature
GrantInformation_xml – fundername: NIH
– fundername: Intramural NIH HHS
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABOCM
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
EX3
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WOW
WQJ
WRC
WUP
WWH
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
K9.
7X8
ID FETCH-LOGICAL-c4797-e04a924fb80080d018a6845bf2d757ad7e4a549a7cd9c0a1162c9eb2f158c5183
IEDL.DBID DR2
ISSN 0277-6715
IngestDate Thu Jul 10 18:17:28 EDT 2025
Fri Jul 25 04:39:15 EDT 2025
Wed Feb 19 01:42:57 EST 2025
Tue Jul 01 04:32:59 EDT 2025
Thu Apr 24 22:55:33 EDT 2025
Wed Jan 22 16:51:20 EST 2025
Wed Oct 30 09:55:45 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4797-e04a924fb80080d018a6845bf2d757ad7e4a549a7cd9c0a1162c9eb2f158c5183
Notes istex:C123509DF044D9C840637F4F80C7090111F44545
This article is a U.S. Government work and is in the public domain in the U.S.A.
ark:/67375/WNG-7WTMT84K-1
NIH
ArticleID:SIM2407
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 16252274
PQID 223142216
PQPubID 48361
PageCount 16
ParticipantIDs proquest_miscellaneous_68823278
proquest_journals_223142216
pubmed_primary_16252274
crossref_citationtrail_10_1002_sim_2407
crossref_primary_10_1002_sim_2407
wiley_primary_10_1002_sim_2407_SIM2407
istex_primary_ark_67375_WNG_7WTMT84K_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 30 September 2006
PublicationDateYYYYMMDD 2006-09-30
PublicationDate_xml – month: 09
  year: 2006
  text: 30 September 2006
  day: 30
PublicationDecade 2000
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: England
– name: New York
PublicationTitle Statistics in medicine
PublicationTitleAlternate Statist. Med
PublicationYear 2006
Publisher John Wiley & Sons, Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley Subscription Services, Inc
References Simes RJ. An improved Bonferroni procedure for multiple tests of significance. Biometrika 1986; 73(3):751-754.
Kruglyak L, Nickerson DA. Variation is the spice of life. Nature Genetics 2001; 27(3):234-236.
Schork NJ, Fallin D, Lanchbury JS. Single nucleotide polymorphisms and the future of genetic epidemiology. Clinical Genetics 2000; 58(4):250-264.
Epstein MP, Satten GA. Inference on haplotype effects in case-control studies using unphased genotype data. American Journal of Human Genetics 2003; 73(6):1316-1329.
Westfall PH, Zaykin DV, Young SS. Multiple tests for genetic effects in association studies. Methods in Molecular Biology 2002; 184:143-168.
Sarkar SK, Chang CK. The Simes method for multiple hypothesis testing with positively dependent test statistics. Journal of the American Statistical Association 1997; 92(440):1601-1608.
Johnson GC, Esposito L, Barratt BJ, Smith AN, Heward J, Di Genova G, Ueda H, Cordell HJ, Eaves IA, Dudbridge F, Twells RC, Payne F, Hughes W, Nutland S, Stevens H, Carr P, Tuomilehto-Wolf E, Tuomilehto J, Gough SC, Clayton DG, Todd JA. Haplotype tagging for the identification of common disease genes. Nature Genetics 2001; 29(2):233-237.
Yekutieli D, Benjamini Y. Resampling-based false discovery rate controlling multiple test procedures for correlated test statistics. Journal of Statistical Planning and Inference 1999; 82(1-2):171-196.
Krummenauer F, Hommel G. The size of Simes' global test for discrete test statistics. Journal of Statistical Planning and Inference 1999; 82(1-2):151-162.
Clark AG. Finding genes underlying risk of complex disease by linkage disequilibrium mapping. Current Opinion in Genetics and Development 2003; 13(3):296-302.
Tabor HK, Risch NJ, Myers RM. Opinion: candidate-gene approaches for studying complex genetic traits: practical considerations. Nature Reviews Genetics 2002; 3(5):391-397.
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B (Methodological) 1995; 57(1):289-300.
Benjamini Y, Yekutieli D. The control of the false discovery rate in multiple testing under dependency. Annals of Statistics 2001; 29(4):1165-1188.
Clark AG, Nielsen R, Signorovitch J, Matise TC, Glanowski S, Heil J, Winn-Deen ES, Holden AL, Lai E. Linkage disequilibrium and inference of ancestral recombination in 538 single-nucleotide polymorphism clusters across the human genome. American Journal of Human Genetics 2003; 73(2):285-300.
Ioannidis JP, Ntzani EE, Trikalinos TA, Contopoulos-Ioannidis DG. Replication validity of genetic association studies. Nature Genetics 2001; 29(3):306-309.
Schork NJ. Power calculations for genetic association studies using estimated probability distributions. American Journal of Human Genetics 2002; 70(6):1480-1489.
Samuel-Cahn E. Is the Simes improved Bonferroni procedure conservative? Biometrika 1996; 83(4):928-933.
Efron B, Tibshirani R. Empirical Bayes methods and false discovery rates for microarrays. Genetic Epidemiology 2002; 23(1):70-86.
Kwok PY. Genomics. Genetic association by whole-genome analysis? Science 2001; 294(5547):1669-1670.
Fallin D, Cohen A, Essioux L, Chumakov I, Blumenfeld M, Cohen D, Schork NJ. Genetic analysis of case/control data using estimated haplotype frequencies: application to APOE locus variation and Alzheimer's disease. Genome Research 2001; 11(1):143-151.
Daly MJ, Rioux JD, Schaffner SF, Hudson TJ, Lander ES. High-resolution haplotype structure in the human genome. Nature Genetics 2001; 29(2):229-232.
Zhao LP, Li SS, Khalid N. A method for the assessment of disease associations with single-nucleotide polymorphism haplotypes and environmental variables in case-control studies. American Journal of Human Genetics 2003; 72(5):1231-1250.
Hochberg Y, Benjamini Y. More powerful procedures for multiple significance testing. Statistics in Medicine 1990; 9(7):811-818.
Benjamini Y, Hochberg Y. On the adaptive control of the false discovery rate in multiple testing with independent statistics. Journal of Educational and Behavioral Statistics 2000; 25(1):60-83.
Cardon LR, Abecasis GR. Using haplotype blocks to map human complex trait loci. Trends in Genetics 2003; 19(3):135-140.
Stram DO, Haiman CA, Hirschhorn JN, Altshuler D, Kolonel LN, Henderson BE, Pike MC. Choosing haplotype-tagging SNPS based on unphased genotype data using a preliminary sample of unrelated subjects with an example from the Multiethnic Cohort Study. Human Heredity 2003; 55(1):27-36.
Emahazion T, Feuk L, Jobs M, Sawyer SL, Fredman D, St Clair D, Prince JA, Brookes AJ. SNP association studies in Alzheimer's disease highlight problems for complex disease analysis. Trends in Genetics 2001; 17(7):407-413.
Neale BM, Sham PC. The future of association studies: gene-based analysis and replication. American Journal of Human Genetics 2004; 75(3):353-362.
Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA. Score tests for association between traits and haplotypes when linkage phase is ambiguous. American Journal of Human Genetics 2002; 70(2):425-434.
McCarthy JJ, Hilfiker R. The use of single-nucleotide polymorphism maps in pharmacogenomics. Nature Biotechnology 2000; 18(5):505-508.
Zheng G. Use of max and min scores for trend tests for association when the genetic model is unknown. Statistics in Medicine 2003; 22(16):2657-2666.
Patil N, Berno AJ, Hinds DA, Barrett WA, Doshi JM, Hacker CR, Kautzer CR, Lee DH, Marjoribanks C, McDonough DP, Nguyen BT, Norris MC, Sheehan JB, Shen N, Stern D, Stokowski RP, Thomas DJ, Trulson MO, Vyas KR, Frazer KA, Fodor SP, Cox DR. Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21. Science 2001; 294(5547):1719-1723.
Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K. dbSNP: the NCBI database of genetic variation. Nucleic Acids Research 2001; 29(1):308-311.
Sarkar SK. Some results on false discovery rate in stepwise multiple testing procedures. Annals of Statistics 2002; 30(1):239-257.
Storey JD. A direct approach to false discovery rates. Journal of the Royal Statistical Society, Series B (Methodological) 2002; 64(3):479-498.
Benjamini Y, Liu W. A step-down multiple hypotheses testing procedure that controls the false discovery rate under independence. Journal of Statistical Planning and Inference 1999; 82(1-2):163-170.
Risch NJ. Searching for genetic determinants in the new millennium. Nature 2000; 405(6788):847-856.
Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, Higgins J, DeFelice M, Lochner A, Faggart M, Liu-Cordero SN, Rotimi C, Adeyemo A, Cooper R, Ward R, Lander ES, Daly MJ, Altshuler D. The structure of haplotype blocks in the human genome. Science 2002; 296(5576):2225-2229.
Ioannidis JP, Trikalinos TA, Ntzani EE, Contopoulos-Ioannidis DG. Genetic associations in large versus small studies: an empirical assessment. Lancet 2003; 361(9357):567-571.
The International HapMap Project. Nature 2003; 426(6968):789-796.
Stephens JC, Schneider JA, Tanguay DA, Choi J, Acharya T, Stanley SE, Jiang R, Messer CJ, Chew A, Han JH, Duan J, Carr JL, Lee MS, Koshy B, Kumar AM, Zhang G, Newell WR, Windemuth A, Xu C, Kalbfleisch TS, Shaner SL, Arnold K, Schulz V, Drysdale CM, Nandabalan K, Judson RS, Ruano G, Vovis GF. Haplotype variation and linkage disequilibrium in 313 human genes. Science 2001; 293(5529):489-493.
Zaykin DV, Young SS, Westfall PH. Using the false discovery rate approach in the genetic dissection of complex traits: a response to Weller et al. Genetics 2000; 154(4):1917-1918.
Collins A, Lonjou C, Morton NE. Genetic epidemiology of single-nucleotide polymorphisms. Proceedings of the National Academy of Sciences of the U.S.A. 1999; 96(26):15173-15177.
Lake SL, Lyon H, Tantisira K, Silverman EK, Weiss ST, Laird NM, Schaid DJ. Estimation and tests of haplotype-environment interaction when linkage phase is ambiguous. Human Heredity 2003; 55(1):56-65.
Kwong KS, Wong EH. A more powerful step-up procedure for controlling the false discovery rate under independence. Statistics and Probability Letters 2002; 56(2):217-225.
Stram DO, Leigh PC, Bretsky P, Freedman M, Hirschhorn JN, Altshuler D, Kolonel LN, Henderson BE, Thomas DC. Modeling and E-M estimation of haplotype-specific relative risks from genotype data for a case-control study of unrelated individuals. Human Heredity 2003; 55(4):179-190.
1986; 73
2002; 296
2002; 30
2000; 25
1995; 57
2002; 56
2003; 13
2002; 3
2001; 27
2000; 154
2003; 19
2001; 29
1999; 82
2003; 72
2003; 73
2003; 55
2004; 75
2001; 294
2000; 18
2003; 426
2001; 293
1997; 92
2000; 58
2002; 64
2002; 184
2002; 23
2000; 405
1996; 83
2002; 70
1999; 96
2001; 17
2001; 11
1990; 9
2003; 22
2003; 361
e_1_2_1_41_2
e_1_2_1_40_2
e_1_2_1_22_2
e_1_2_1_45_2
e_1_2_1_23_2
e_1_2_1_44_2
e_1_2_1_20_2
e_1_2_1_43_2
e_1_2_1_21_2
e_1_2_1_42_2
e_1_2_1_26_2
e_1_2_1_27_2
Zaykin DV (e_1_2_1_38_2) 2000; 154
e_1_2_1_24_2
e_1_2_1_47_2
e_1_2_1_25_2
e_1_2_1_46_2
e_1_2_1_28_2
e_1_2_1_29_2
Westfall PH (e_1_2_1_31_2) 2002; 184
e_1_2_1_6_2
e_1_2_1_30_2
e_1_2_1_7_2
e_1_2_1_4_2
e_1_2_1_5_2
e_1_2_1_2_2
e_1_2_1_11_2
e_1_2_1_34_2
e_1_2_1_3_2
e_1_2_1_12_2
e_1_2_1_33_2
e_1_2_1_32_2
e_1_2_1_10_2
e_1_2_1_15_2
e_1_2_1_16_2
e_1_2_1_37_2
e_1_2_1_13_2
e_1_2_1_36_2
e_1_2_1_14_2
e_1_2_1_35_2
e_1_2_1_19_2
e_1_2_1_8_2
e_1_2_1_17_2
e_1_2_1_9_2
e_1_2_1_18_2
e_1_2_1_39_2
References_xml – reference: Cardon LR, Abecasis GR. Using haplotype blocks to map human complex trait loci. Trends in Genetics 2003; 19(3):135-140.
– reference: Kwok PY. Genomics. Genetic association by whole-genome analysis? Science 2001; 294(5547):1669-1670.
– reference: Kwong KS, Wong EH. A more powerful step-up procedure for controlling the false discovery rate under independence. Statistics and Probability Letters 2002; 56(2):217-225.
– reference: Clark AG. Finding genes underlying risk of complex disease by linkage disequilibrium mapping. Current Opinion in Genetics and Development 2003; 13(3):296-302.
– reference: Sarkar SK, Chang CK. The Simes method for multiple hypothesis testing with positively dependent test statistics. Journal of the American Statistical Association 1997; 92(440):1601-1608.
– reference: Clark AG, Nielsen R, Signorovitch J, Matise TC, Glanowski S, Heil J, Winn-Deen ES, Holden AL, Lai E. Linkage disequilibrium and inference of ancestral recombination in 538 single-nucleotide polymorphism clusters across the human genome. American Journal of Human Genetics 2003; 73(2):285-300.
– reference: Lake SL, Lyon H, Tantisira K, Silverman EK, Weiss ST, Laird NM, Schaid DJ. Estimation and tests of haplotype-environment interaction when linkage phase is ambiguous. Human Heredity 2003; 55(1):56-65.
– reference: Ioannidis JP, Trikalinos TA, Ntzani EE, Contopoulos-Ioannidis DG. Genetic associations in large versus small studies: an empirical assessment. Lancet 2003; 361(9357):567-571.
– reference: Stram DO, Leigh PC, Bretsky P, Freedman M, Hirschhorn JN, Altshuler D, Kolonel LN, Henderson BE, Thomas DC. Modeling and E-M estimation of haplotype-specific relative risks from genotype data for a case-control study of unrelated individuals. Human Heredity 2003; 55(4):179-190.
– reference: Samuel-Cahn E. Is the Simes improved Bonferroni procedure conservative? Biometrika 1996; 83(4):928-933.
– reference: Epstein MP, Satten GA. Inference on haplotype effects in case-control studies using unphased genotype data. American Journal of Human Genetics 2003; 73(6):1316-1329.
– reference: Storey JD. A direct approach to false discovery rates. Journal of the Royal Statistical Society, Series B (Methodological) 2002; 64(3):479-498.
– reference: Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA. Score tests for association between traits and haplotypes when linkage phase is ambiguous. American Journal of Human Genetics 2002; 70(2):425-434.
– reference: McCarthy JJ, Hilfiker R. The use of single-nucleotide polymorphism maps in pharmacogenomics. Nature Biotechnology 2000; 18(5):505-508.
– reference: The International HapMap Project. Nature 2003; 426(6968):789-796.
– reference: Patil N, Berno AJ, Hinds DA, Barrett WA, Doshi JM, Hacker CR, Kautzer CR, Lee DH, Marjoribanks C, McDonough DP, Nguyen BT, Norris MC, Sheehan JB, Shen N, Stern D, Stokowski RP, Thomas DJ, Trulson MO, Vyas KR, Frazer KA, Fodor SP, Cox DR. Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21. Science 2001; 294(5547):1719-1723.
– reference: Collins A, Lonjou C, Morton NE. Genetic epidemiology of single-nucleotide polymorphisms. Proceedings of the National Academy of Sciences of the U.S.A. 1999; 96(26):15173-15177.
– reference: Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K. dbSNP: the NCBI database of genetic variation. Nucleic Acids Research 2001; 29(1):308-311.
– reference: Simes RJ. An improved Bonferroni procedure for multiple tests of significance. Biometrika 1986; 73(3):751-754.
– reference: Neale BM, Sham PC. The future of association studies: gene-based analysis and replication. American Journal of Human Genetics 2004; 75(3):353-362.
– reference: Zheng G. Use of max and min scores for trend tests for association when the genetic model is unknown. Statistics in Medicine 2003; 22(16):2657-2666.
– reference: Krummenauer F, Hommel G. The size of Simes' global test for discrete test statistics. Journal of Statistical Planning and Inference 1999; 82(1-2):151-162.
– reference: Kruglyak L, Nickerson DA. Variation is the spice of life. Nature Genetics 2001; 27(3):234-236.
– reference: Hochberg Y, Benjamini Y. More powerful procedures for multiple significance testing. Statistics in Medicine 1990; 9(7):811-818.
– reference: Yekutieli D, Benjamini Y. Resampling-based false discovery rate controlling multiple test procedures for correlated test statistics. Journal of Statistical Planning and Inference 1999; 82(1-2):171-196.
– reference: Sarkar SK. Some results on false discovery rate in stepwise multiple testing procedures. Annals of Statistics 2002; 30(1):239-257.
– reference: Zaykin DV, Young SS, Westfall PH. Using the false discovery rate approach in the genetic dissection of complex traits: a response to Weller et al. Genetics 2000; 154(4):1917-1918.
– reference: Schork NJ, Fallin D, Lanchbury JS. Single nucleotide polymorphisms and the future of genetic epidemiology. Clinical Genetics 2000; 58(4):250-264.
– reference: Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B (Methodological) 1995; 57(1):289-300.
– reference: Fallin D, Cohen A, Essioux L, Chumakov I, Blumenfeld M, Cohen D, Schork NJ. Genetic analysis of case/control data using estimated haplotype frequencies: application to APOE locus variation and Alzheimer's disease. Genome Research 2001; 11(1):143-151.
– reference: Stram DO, Haiman CA, Hirschhorn JN, Altshuler D, Kolonel LN, Henderson BE, Pike MC. Choosing haplotype-tagging SNPS based on unphased genotype data using a preliminary sample of unrelated subjects with an example from the Multiethnic Cohort Study. Human Heredity 2003; 55(1):27-36.
– reference: Zhao LP, Li SS, Khalid N. A method for the assessment of disease associations with single-nucleotide polymorphism haplotypes and environmental variables in case-control studies. American Journal of Human Genetics 2003; 72(5):1231-1250.
– reference: Benjamini Y, Hochberg Y. On the adaptive control of the false discovery rate in multiple testing with independent statistics. Journal of Educational and Behavioral Statistics 2000; 25(1):60-83.
– reference: Risch NJ. Searching for genetic determinants in the new millennium. Nature 2000; 405(6788):847-856.
– reference: Johnson GC, Esposito L, Barratt BJ, Smith AN, Heward J, Di Genova G, Ueda H, Cordell HJ, Eaves IA, Dudbridge F, Twells RC, Payne F, Hughes W, Nutland S, Stevens H, Carr P, Tuomilehto-Wolf E, Tuomilehto J, Gough SC, Clayton DG, Todd JA. Haplotype tagging for the identification of common disease genes. Nature Genetics 2001; 29(2):233-237.
– reference: Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, Higgins J, DeFelice M, Lochner A, Faggart M, Liu-Cordero SN, Rotimi C, Adeyemo A, Cooper R, Ward R, Lander ES, Daly MJ, Altshuler D. The structure of haplotype blocks in the human genome. Science 2002; 296(5576):2225-2229.
– reference: Stephens JC, Schneider JA, Tanguay DA, Choi J, Acharya T, Stanley SE, Jiang R, Messer CJ, Chew A, Han JH, Duan J, Carr JL, Lee MS, Koshy B, Kumar AM, Zhang G, Newell WR, Windemuth A, Xu C, Kalbfleisch TS, Shaner SL, Arnold K, Schulz V, Drysdale CM, Nandabalan K, Judson RS, Ruano G, Vovis GF. Haplotype variation and linkage disequilibrium in 313 human genes. Science 2001; 293(5529):489-493.
– reference: Ioannidis JP, Ntzani EE, Trikalinos TA, Contopoulos-Ioannidis DG. Replication validity of genetic association studies. Nature Genetics 2001; 29(3):306-309.
– reference: Benjamini Y, Liu W. A step-down multiple hypotheses testing procedure that controls the false discovery rate under independence. Journal of Statistical Planning and Inference 1999; 82(1-2):163-170.
– reference: Tabor HK, Risch NJ, Myers RM. Opinion: candidate-gene approaches for studying complex genetic traits: practical considerations. Nature Reviews Genetics 2002; 3(5):391-397.
– reference: Daly MJ, Rioux JD, Schaffner SF, Hudson TJ, Lander ES. High-resolution haplotype structure in the human genome. Nature Genetics 2001; 29(2):229-232.
– reference: Westfall PH, Zaykin DV, Young SS. Multiple tests for genetic effects in association studies. Methods in Molecular Biology 2002; 184:143-168.
– reference: Schork NJ. Power calculations for genetic association studies using estimated probability distributions. American Journal of Human Genetics 2002; 70(6):1480-1489.
– reference: Efron B, Tibshirani R. Empirical Bayes methods and false discovery rates for microarrays. Genetic Epidemiology 2002; 23(1):70-86.
– reference: Emahazion T, Feuk L, Jobs M, Sawyer SL, Fredman D, St Clair D, Prince JA, Brookes AJ. SNP association studies in Alzheimer's disease highlight problems for complex disease analysis. Trends in Genetics 2001; 17(7):407-413.
– reference: Benjamini Y, Yekutieli D. The control of the false discovery rate in multiple testing under dependency. Annals of Statistics 2001; 29(4):1165-1188.
– volume: 11
  start-page: 143
  issue: 1
  year: 2001
  end-page: 151
  article-title: Genetic analysis of case/control data using estimated haplotype frequencies: application to APOE locus variation and Alzheimer's disease
  publication-title: Genome Research
– volume: 72
  start-page: 1231
  issue: 5
  year: 2003
  end-page: 1250
  article-title: A method for the assessment of disease associations with single‐nucleotide polymorphism haplotypes and environmental variables in case–control studies
  publication-title: American Journal of Human Genetics
– volume: 92
  start-page: 1601
  issue: 440
  year: 1997
  end-page: 1608
  article-title: The Simes method for multiple hypothesis testing with positively dependent test statistics
  publication-title: Journal of the American Statistical Association
– volume: 56
  start-page: 217
  issue: 2
  year: 2002
  end-page: 225
  article-title: A more powerful step‐up procedure for controlling the false discovery rate under independence
  publication-title: Statistics and Probability Letters
– volume: 55
  start-page: 56
  issue: 1
  year: 2003
  end-page: 65
  article-title: Estimation and tests of haplotype‐environment interaction when linkage phase is ambiguous
  publication-title: Human Heredity
– volume: 294
  start-page: 1669
  issue: 5547
  year: 2001
  end-page: 1670
  article-title: Genomics. Genetic association by whole‐genome analysis?
  publication-title: Science
– volume: 29
  start-page: 1165
  issue: 4
  year: 2001
  end-page: 1188
  article-title: The control of the false discovery rate in multiple testing under dependency
  publication-title: Annals of Statistics
– volume: 70
  start-page: 1480
  issue: 6
  year: 2002
  end-page: 1489
  article-title: Power calculations for genetic association studies using estimated probability distributions
  publication-title: American Journal of Human Genetics
– volume: 70
  start-page: 425
  issue: 2
  year: 2002
  end-page: 434
  article-title: Score tests for association between traits and haplotypes when linkage phase is ambiguous
  publication-title: American Journal of Human Genetics
– volume: 29
  start-page: 308
  issue: 1
  year: 2001
  end-page: 311
  article-title: dbSNP: the NCBI database of genetic variation
  publication-title: Nucleic Acids Research
– volume: 17
  start-page: 407
  issue: 7
  year: 2001
  end-page: 413
  article-title: SNP association studies in Alzheimer's disease highlight problems for complex disease analysis
  publication-title: Trends in Genetics
– volume: 154
  start-page: 1917
  issue: 4
  year: 2000
  end-page: 1918
  article-title: Using the false discovery rate approach in the genetic dissection of complex traits: a response to Weller
  publication-title: Genetics
– volume: 96
  start-page: 15173
  issue: 26
  year: 1999
  end-page: 15177
  article-title: Genetic epidemiology of single‐nucleotide polymorphisms
  publication-title: Proceedings of the National Academy of Sciences of the U.S.A.
– volume: 82
  start-page: 151
  issue: 1–2
  year: 1999
  end-page: 162
  article-title: The size of Simes' global test for discrete test statistics
  publication-title: Journal of Statistical Planning and Inference
– volume: 25
  start-page: 60
  issue: 1
  year: 2000
  end-page: 83
  article-title: On the adaptive control of the false discovery rate in multiple testing with independent statistics
  publication-title: Journal of Educational and Behavioral Statistics
– volume: 29
  start-page: 306
  issue: 3
  year: 2001
  end-page: 309
  article-title: Replication validity of genetic association studies
  publication-title: Nature Genetics
– volume: 55
  start-page: 179
  issue: 4
  year: 2003
  end-page: 190
  article-title: Modeling and E‐M estimation of haplotype‐specific relative risks from genotype data for a case–control study of unrelated individuals
  publication-title: Human Heredity
– volume: 73
  start-page: 1316
  issue: 6
  year: 2003
  end-page: 1329
  article-title: Inference on haplotype effects in case–control studies using unphased genotype data
  publication-title: American Journal of Human Genetics
– volume: 9
  start-page: 811
  issue: 7
  year: 1990
  end-page: 818
  article-title: More powerful procedures for multiple significance testing
  publication-title: Statistics in Medicine
– volume: 57
  start-page: 289
  issue: 1
  year: 1995
  end-page: 300
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: Journal of the Royal Statistical Society, Series B (Methodological)
– volume: 296
  start-page: 2225
  issue: 5576
  year: 2002
  end-page: 2229
  article-title: The structure of haplotype blocks in the human genome
  publication-title: Science
– volume: 29
  start-page: 229
  issue: 2
  year: 2001
  end-page: 232
  article-title: High‐resolution haplotype structure in the human genome
  publication-title: Nature Genetics
– volume: 23
  start-page: 70
  issue: 1
  year: 2002
  end-page: 86
  article-title: Empirical Bayes methods and false discovery rates for microarrays
  publication-title: Genetic Epidemiology
– volume: 294
  start-page: 1719
  issue: 5547
  year: 2001
  end-page: 1723
  article-title: Blocks of limited haplotype diversity revealed by high‐resolution scanning of human chromosome 21
  publication-title: Science
– volume: 58
  start-page: 250
  issue: 4
  year: 2000
  end-page: 264
  article-title: Single nucleotide polymorphisms and the future of genetic epidemiology
  publication-title: Clinical Genetics
– volume: 18
  start-page: 505
  issue: 5
  year: 2000
  end-page: 508
  article-title: The use of single‐nucleotide polymorphism maps in pharmacogenomics
  publication-title: Nature Biotechnology
– volume: 64
  start-page: 479
  issue: 3
  year: 2002
  end-page: 498
  article-title: A direct approach to false discovery rates
  publication-title: Journal of the Royal Statistical Society, Series B (Methodological)
– volume: 73
  start-page: 285
  issue: 2
  year: 2003
  end-page: 300
  article-title: Linkage disequilibrium and inference of ancestral recombination in 538 single‐nucleotide polymorphism clusters across the human genome
  publication-title: American Journal of Human Genetics
– volume: 29
  start-page: 233
  issue: 2
  year: 2001
  end-page: 237
  article-title: Haplotype tagging for the identification of common disease genes
  publication-title: Nature Genetics
– volume: 55
  start-page: 27
  issue: 1
  year: 2003
  end-page: 36
  article-title: Choosing haplotype‐tagging SNPS based on unphased genotype data using a preliminary sample of unrelated subjects with an example from the Multiethnic Cohort Study
  publication-title: Human Heredity
– volume: 82
  start-page: 163
  issue: 1–2
  year: 1999
  end-page: 170
  article-title: A step‐down multiple hypotheses testing procedure that controls the false discovery rate under independence
  publication-title: Journal of Statistical Planning and Inference
– volume: 426
  start-page: 789
  issue: 6968
  year: 2003
  end-page: 796
  publication-title: Nature
– volume: 405
  start-page: 847
  issue: 6788
  year: 2000
  end-page: 856
  article-title: Searching for genetic determinants in the new millennium
  publication-title: Nature
– volume: 83
  start-page: 928
  issue: 4
  year: 1996
  end-page: 933
  article-title: Is the Simes improved Bonferroni procedure conservative?
  publication-title: Biometrika
– volume: 75
  start-page: 353
  issue: 3
  year: 2004
  end-page: 362
  article-title: The future of association studies: gene‐based analysis and replication
  publication-title: American Journal of Human Genetics
– volume: 73
  start-page: 751
  issue: 3
  year: 1986
  end-page: 754
  article-title: An improved Bonferroni procedure for multiple tests of significance
  publication-title: Biometrika
– volume: 27
  start-page: 234
  issue: 3
  year: 2001
  end-page: 236
  article-title: Variation is the spice of life
  publication-title: Nature Genetics
– volume: 3
  start-page: 391
  issue: 5
  year: 2002
  end-page: 397
  article-title: Opinion: candidate‐gene approaches for studying complex genetic traits: practical considerations
  publication-title: Nature Reviews Genetics
– volume: 19
  start-page: 135
  issue: 3
  year: 2003
  end-page: 140
  article-title: Using haplotype blocks to map human complex trait loci
  publication-title: Trends in Genetics
– volume: 184
  start-page: 143
  year: 2002
  end-page: 168
  article-title: Multiple tests for genetic effects in association studies
  publication-title: Methods in Molecular Biology
– volume: 361
  start-page: 567
  issue: 9357
  year: 2003
  end-page: 571
  article-title: Genetic associations in large small studies: an empirical assessment
  publication-title: Lancet
– volume: 13
  start-page: 296
  issue: 3
  year: 2003
  end-page: 302
  article-title: Finding genes underlying risk of complex disease by linkage disequilibrium mapping
  publication-title: Current Opinion in Genetics and Development
– volume: 82
  start-page: 171
  issue: 1–2
  year: 1999
  end-page: 196
  article-title: Resampling‐based false discovery rate controlling multiple test procedures for correlated test statistics
  publication-title: Journal of Statistical Planning and Inference
– volume: 293
  start-page: 489
  issue: 5529
  year: 2001
  end-page: 493
  article-title: Haplotype variation and linkage disequilibrium in 313 human genes
  publication-title: Science
– volume: 30
  start-page: 239
  issue: 1
  year: 2002
  end-page: 257
  article-title: Some results on false discovery rate in stepwise multiple testing procedures
  publication-title: Annals of Statistics
– volume: 22
  start-page: 2657
  issue: 16
  year: 2003
  end-page: 2666
  article-title: Use of max and min scores for trend tests for association when the genetic model is unknown
  publication-title: Statistics in Medicine
– ident: e_1_2_1_46_2
  doi: 10.1016/S0140-6736(03)12516-0
– ident: e_1_2_1_17_2
  doi: 10.1159/000073202
– ident: e_1_2_1_12_2
  doi: 10.1126/science.1066921
– ident: e_1_2_1_29_2
  doi: 10.1016/S0378-3758(99)00039-7
– ident: e_1_2_1_32_2
  doi: 10.1016/S0378-3758(99)00041-5
– ident: e_1_2_1_6_2
  doi: 10.1126/science.1059431
– ident: e_1_2_1_19_2
  doi: 10.1086/375140
– ident: e_1_2_1_10_2
  doi: 10.1126/science.1065573
– ident: e_1_2_1_37_2
  doi: 10.1159/000071807
– volume: 184
  start-page: 143
  year: 2002
  ident: e_1_2_1_31_2
  article-title: Multiple tests for genetic effects in association studies
  publication-title: Methods in Molecular Biology
– ident: e_1_2_1_26_2
  doi: 10.1073/pnas.96.26.15173
– ident: e_1_2_1_39_2
  doi: 10.1111/1467-9868.00346
– ident: e_1_2_1_2_2
  doi: 10.1038/85776
– ident: e_1_2_1_8_2
  doi: 10.1016/S0168-9525(03)00022-2
– ident: e_1_2_1_47_2
  doi: 10.1038/nrg796
– ident: e_1_2_1_24_2
  doi: 10.1093/biomet/73.3.751
– ident: e_1_2_1_20_2
  doi: 10.1034/j.1399-0004.2000.580402.x
– ident: e_1_2_1_14_2
  doi: 10.1086/340788
– volume: 154
  start-page: 1917
  issue: 4
  year: 2000
  ident: e_1_2_1_38_2
  article-title: Using the false discovery rate approach in the genetic dissection of complex traits: a response to Weller et al
  publication-title: Genetics
  doi: 10.1093/genetics/154.4.1917
– ident: e_1_2_1_40_2
  doi: 10.1002/gepi.1124
– ident: e_1_2_1_34_2
  doi: 10.1214/aos/1015362192
– ident: e_1_2_1_35_2
  doi: 10.1038/ng1001-233
– ident: e_1_2_1_43_2
  doi: 10.3102/10769986025001060
– ident: e_1_2_1_16_2
  doi: 10.1086/338688
– ident: e_1_2_1_45_2
  doi: 10.1038/ng749
– ident: e_1_2_1_13_2
  doi: 10.1016/S0959-437X(03)00056-X
– ident: e_1_2_1_18_2
  doi: 10.1086/380204
– ident: e_1_2_1_41_2
  doi: 10.1016/S0378-3758(99)00040-3
– ident: e_1_2_1_28_2
  doi: 10.1093/biomet/83.4.928
– ident: e_1_2_1_30_2
  doi: 10.1080/01621459.1997.10473682
– ident: e_1_2_1_9_2
  doi: 10.1086/377138
– ident: e_1_2_1_27_2
  doi: 10.1159/000071811
– ident: e_1_2_1_42_2
  doi: 10.1016/S0167-7152(01)00196-1
– ident: e_1_2_1_15_2
  doi: 10.1101/gr.148401
– ident: e_1_2_1_25_2
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– ident: e_1_2_1_22_2
  doi: 10.1038/75360
– ident: e_1_2_1_23_2
  doi: 10.1002/sim.4780090710
– ident: e_1_2_1_7_2
  doi: 10.1126/science.1069424
– ident: e_1_2_1_36_2
  doi: 10.1086/423901
– ident: e_1_2_1_5_2
  doi: 10.1038/ng1001-229
– ident: e_1_2_1_21_2
  doi: 10.1016/S0168-9525(01)02342-3
– ident: e_1_2_1_11_2
  doi: 10.1038/35015718
– ident: e_1_2_1_4_2
  doi: 10.1038/nature02168
– ident: e_1_2_1_33_2
  doi: 10.1214/aos/1013699998
– ident: e_1_2_1_44_2
  doi: 10.1002/sim.1474
– ident: e_1_2_1_3_2
  doi: 10.1093/nar/29.1.308
SSID ssj0011527
Score 2.0002744
Snippet The genetic case–control association study of unrelated subjects is a leading method to identify single nucleotide polymorphisms (SNPs) and SNP haplotypes that...
The genetic case-control association study of unrelated subjects is a leading method to identify single nucleotide polymorphisms (SNPs) and SNP haplotypes that...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3134
SubjectTerms Case-Control Studies
Computer Simulation
Data Interpretation, Statistical
Disease
epidemiology
Genetic Predisposition to Disease
Genetics
Genotype & phenotype
Haplotypes
human genome
Humans
Hypothesis testing
Logistic Models
Polymorphism
Polymorphism, Single Nucleotide
research design
single nucleotide
statistics and numerical data
Title Multiple hypothesis testing strategies for genetic case-control association studies
URI https://api.istex.fr/ark:/67375/WNG-7WTMT84K-1/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.2407
https://www.ncbi.nlm.nih.gov/pubmed/16252274
https://www.proquest.com/docview/223142216
https://www.proquest.com/docview/68823278
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6hVkKVEIUFSlp-jITglG2cOrb3iBClgNID7KqVOFj-W6gKadVkpbYn3oE35EnwxElWRUVCnHLIRJrYM_Y3npnPAM8dp1YKNkmt9S5l3MvUCONSbryQhokdNseMbrnP92bs_WFx2FVVYi9M5IcYDtzQM9r1Gh1cm3p7SRpaH30fYzgSll8s1UI89HFgjqL9ba2YoeSCFj3vbJZv9x9e2YlWcVDPr4OZV1Fru-3srsPnXuFYbXI8XjRmbC__4HL8vz-6A7c7NEpeRfO5Czd8NYKbZZdvH8GteKpHYrPSCNYQm0Zq53swK7tiRPL14hQbueqjmjTI2lF9IXXTc1CQAItJMFPsliQ2bJq_fvzsCuSJXhoHqWNF432Y7b6Zvt5Lu1saUsvERKQ-YzoEcXMjEX26jErNJSvMPHeiENoJz3QIQrWwbmIzTSnP7STE83NaSFuEFeUBrFQnlX8IxBTSGxNCVqsZszLTTgdbyh2jzHOjswRe9jOmbEdhjjdpfFORfDlXYQgVDmECzwbJ00jbcY3Mi3bSBwF9doxlbqJQB_tvlTiYllPJPiiawFZvFarz8FoFWIXHZ5Qn8HR4G1wT8y268ieLWvEQvezkQiawEU1pqUqIOvNcsKBCaxB_1VF9elfic_NfBbdgLR4SYUXLI1hpzhb-cYBNjXnSOshvn6YVhg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVoJKiMfyCgVqJASnbOPUsb3ihICypc0eYFftAcmyHS9UhbRqshJw4j_wD_kleOIkq6IiIU45ZCJN7Bl7nt8APCk4tVKwUWytK2LGnYyNMEXMjRPSMLHN5pjRzSd8PGNvD7PDFXje9cIEfIg-4Iaa0ZzXqOAYkN5aooZWR1-G6I9cgjUc6I1a-epdjx1Fu3mtmKPkgmYd8mySbnVfnruL1nBZv15kaJ63W5uLZ-c6fOhYDvUmx8NFbYb2-x9ojv_5TzfgWmuQkhdBgm7CiisHcDlvU-4DuBoCeyT0Kw1gHc3TgO58C2Z5W49IPn07xV6u6qgiNQJ3lB9JVXcwFMRbxsRLKjZMEuvvzV8_frY18kQv5YNUoajxNsx2Xk9fjuN2UENsmRiJ2CVMez9ubiQaoEVCpeaSZWaeFiITuhCOae-HamGLkU00pTy1I-_Sz2kmbeYPlTuwWp6U7h4Qk0lnjPdarWbMykQX2otTWjDKHDc6ieBZt2XKtijmOEzjswr4y6nyS6hwCSN43FOeBuSOC2ieNrveE-izY6x0E5k6mLxR4mCaTyXbUzSCjU4sVKvklfKWFUbQKI9gs3_rtRNTLrp0J4tKce_AbKdCRnA3yNKSFe94pqlgnoVGIv7Ko3q_m-Pz_r8SbsKV8TTfV_u7k70NWA8xIyxweQCr9dnCPfRWVG0eNdryG9TjGZ8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BK1WVEI_l0VCgRkJwyjZOHdt7RJSlpWSFYFet1IPlV2hVSFdNVgJO_Af-Ib8EO06yKioS4pRDJtLEnrHn88x8BnhmKNackVGstTUxoZbHiikTU2UZV4TtkMJndPMJ3ZuRt0fZUVtV6XthAj9Ef-DmPaNZr72Dz02xvSQNrU6_DD0cuQ6rhCbcA6_dDz11FO6ua_UpSspw1hHPJul29-WlrWjVj-rXq-LMy2Frs--Mb8Fxp3EoNzkbLmo11N__IHP8v1-6DTfbcBS9DPZzB67ZcgBreZtwH8CNcKyHQrfSANZ9cBq4ne_CLG-rEdHJt7nv5KpOK1R72o7yE6rqjoQCubgYOTv17ZJIu13z14-fbYU8kkvrQFUoabwHs_Hr6au9uL2mIdaEjVhsEyIdiisU9-GnSTCXlJNMFalhGZOGWSIdCpVMm5FOJMY01SMH6AuccZ25JeU-rJTnpd0ApDJulXKYVUtCNE-kkc6YUkMwsVTJJIIX3YwJ3XKY-6s0PovAvpwKN4TCD2EET3vJeeDtuELmeTPpvYC8OPN1biwTh5M3gh1O8yknBwJHsNlZhWhdvBIurvLnZ5hGsNW_db7pEy6ytOeLSlAHX3ZSxiN4EExpqYqDnWnKiFOhMYi_6ig-7uf--fBfBbdg7f3uWLzbnxxswno4MPLVLY9gpb5Y2McuhKrVk8ZXfgObGRhX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+hypothesis+testing+strategies+for+genetic+case-control+association+studies&rft.jtitle=Statistics+in+medicine&rft.au=Rosenberg%2C+Philip+S&rft.au=Che%2C+Anney&rft.au=Chen%2C+Bingshu+E&rft.date=2006-09-30&rft.issn=0277-6715&rft.volume=25&rft.issue=18&rft.spage=3134&rft_id=info:doi/10.1002%2Fsim.2407&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon