Self‐Powered Ultraviolet Photodetectors Driven by Built‐In Electric Field
Self‐powered ultraviolet (UV) photodetectors, which have vast applications in the military and for civilian purposes, have become particularly attractive in recent years due to their advantages of high sensitivity, ultrasmall size, and low power consumption. In particular, self‐powered UV photodetec...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 13; no. 45 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.12.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Self‐powered ultraviolet (UV) photodetectors, which have vast applications in the military and for civilian purposes, have become particularly attractive in recent years due to their advantages of high sensitivity, ultrasmall size, and low power consumption. In particular, self‐powered UV photodetectors driven by a built‐in electric field cannot only detect UV signals but also be powered by the incident signals instead of external power. In this concept, the key issues and most recent developments on photovoltaic type UV photodetectors driven by p–n homojunction, heterojunction, and Schottky junction are surveyed. This should generate extensive interest in this field and encourage more researchers to engage in and tackle the scientific challenges.
In this Concept, self‐powered UV photodetectors driven by a built‐in electric field are presented, which is extremely important for applications in UV detection. The key issues and developments of photovoltaic‐type UV photodetectors driven by the p–n homojunction, heterojunction, and Schottky junction are surveyed. Additionally, the development tendency of next generation photovoltaic‐type UV is also proposed. |
---|---|
AbstractList | Self‐powered ultraviolet (UV) photodetectors, which have vast applications in the military and for civilian purposes, have become particularly attractive in recent years due to their advantages of high sensitivity, ultrasmall size, and low power consumption. In particular, self‐powered UV photodetectors driven by a built‐in electric field cannot only detect UV signals but also be powered by the incident signals instead of external power. In this concept, the key issues and most recent developments on photovoltaic type UV photodetectors driven by
p–n
homojunction, heterojunction, and Schottky junction are surveyed. This should generate extensive interest in this field and encourage more researchers to engage in and tackle the scientific challenges. Self-powered ultraviolet (UV) photodetectors, which have vast applications in the military and for civilian purposes, have become particularly attractive in recent years due to their advantages of high sensitivity, ultrasmall size, and low power consumption. In particular, self-powered UV photodetectors driven by a built-in electric field cannot only detect UV signals but also be powered by the incident signals instead of external power. In this concept, the key issues and most recent developments on photovoltaic type UV photodetectors driven by p-n homojunction, heterojunction, and Schottky junction are surveyed. This should generate extensive interest in this field and encourage more researchers to engage in and tackle the scientific challenges. Self-powered ultraviolet (UV) photodetectors, which have vast applications in the military and for civilian purposes, have become particularly attractive in recent years due to their advantages of high sensitivity, ultrasmall size, and low power consumption. In particular, self-powered UV photodetectors driven by a built-in electric field cannot only detect UV signals but also be powered by the incident signals instead of external power. In this concept, the key issues and most recent developments on photovoltaic type UV photodetectors driven by p-n homojunction, heterojunction, and Schottky junction are surveyed. This should generate extensive interest in this field and encourage more researchers to engage in and tackle the scientific challenges.Self-powered ultraviolet (UV) photodetectors, which have vast applications in the military and for civilian purposes, have become particularly attractive in recent years due to their advantages of high sensitivity, ultrasmall size, and low power consumption. In particular, self-powered UV photodetectors driven by a built-in electric field cannot only detect UV signals but also be powered by the incident signals instead of external power. In this concept, the key issues and most recent developments on photovoltaic type UV photodetectors driven by p-n homojunction, heterojunction, and Schottky junction are surveyed. This should generate extensive interest in this field and encourage more researchers to engage in and tackle the scientific challenges. Self‐powered ultraviolet (UV) photodetectors, which have vast applications in the military and for civilian purposes, have become particularly attractive in recent years due to their advantages of high sensitivity, ultrasmall size, and low power consumption. In particular, self‐powered UV photodetectors driven by a built‐in electric field cannot only detect UV signals but also be powered by the incident signals instead of external power. In this concept, the key issues and most recent developments on photovoltaic type UV photodetectors driven by p–n homojunction, heterojunction, and Schottky junction are surveyed. This should generate extensive interest in this field and encourage more researchers to engage in and tackle the scientific challenges. In this Concept, self‐powered UV photodetectors driven by a built‐in electric field are presented, which is extremely important for applications in UV detection. The key issues and developments of photovoltaic‐type UV photodetectors driven by the p–n homojunction, heterojunction, and Schottky junction are surveyed. Additionally, the development tendency of next generation photovoltaic‐type UV is also proposed. |
Author | Fang, Xiaosheng Su, Longxing Chen, Hongyu Yang, Wei Cai, Jian |
Author_xml | – sequence: 1 givenname: Longxing surname: Su fullname: Su, Longxing organization: Fudan University – sequence: 2 givenname: Wei surname: Yang fullname: Yang, Wei organization: Fudan University – sequence: 3 givenname: Jian surname: Cai fullname: Cai, Jian organization: Fudan University – sequence: 4 givenname: Hongyu surname: Chen fullname: Chen, Hongyu organization: Harbin Institute of Technology – sequence: 5 givenname: Xiaosheng orcidid: 0000-0003-3387-4532 surname: Fang fullname: Fang, Xiaosheng email: xshfang@fudan.edu.cn organization: Fudan University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28926681$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcFKAzEQhoNU1FavHmXBi5etSTbNbo5arRZaFNTzks3OYiTd1CRb6c1H8Bl9ErdUKxTEUwbm-ybD_F3UqW0NCB0T3CcY03M_M6ZPMUkx4Vm6gw4IJ0nMMyo6m5rgfdT1_gXjhFCW7qF9mgnK28YBmj6AqT7fP-7tGzgooycTnFxoayBE98822BICqGCdj66cXkAdFcvostEmtNK4jq5N23VaRSMNpjxEu5U0Ho6-3x56Gl0_Dm_jyd3NeHgxiRVLRRpTLpQEkrAk5YRIWihgSSZBiRQ4x5kUjJGyLAGrSlUcV7ygUg5wlUBRVFIkPXS2njt39rUBH_KZ9gqMkTXYxudEMIIFw3SFnm6hL7ZxdbtdS6V4IAY8W1En31RTzKDM507PpFvmP4dqgf4aUM5676DaIATnqyTyVRL5JolWYFuC0kEGbev2wNr8rYm19qYNLP_5JH-YTia_7hfAC5-e |
CitedBy_id | crossref_primary_10_1088_1402_4896_ac2d8a crossref_primary_10_1002_adfm_201806006 crossref_primary_10_1021_acsaelm_3c00311 crossref_primary_10_1088_1402_4896_ac30a8 crossref_primary_10_1109_JSEN_2020_3001575 crossref_primary_10_1021_acs_nanolett_0c03357 crossref_primary_10_1021_acsami_2c09968 crossref_primary_10_1016_j_nanoen_2020_104872 crossref_primary_10_1016_j_mejo_2021_105237 crossref_primary_10_1063_5_0127889 crossref_primary_10_1016_j_jcat_2024_115877 crossref_primary_10_1016_j_apmt_2022_101717 crossref_primary_10_1039_D1TC02471J crossref_primary_10_1149_2162_8777_aba741 crossref_primary_10_3390_nano12060910 crossref_primary_10_1016_j_cplett_2023_140879 crossref_primary_10_1021_acsaelm_2c01548 crossref_primary_10_1021_acsami_3c03600 crossref_primary_10_1088_1361_6641_acd9e4 crossref_primary_10_1002_admi_202000882 crossref_primary_10_3390_s20010129 crossref_primary_10_1016_j_cej_2020_126336 crossref_primary_10_1039_C8CE01228H crossref_primary_10_1021_acsanm_3c03838 crossref_primary_10_1021_acsanm_2c03776 crossref_primary_10_1039_D3MA01152F crossref_primary_10_7567_APEX_11_116502 crossref_primary_10_1021_acsami_9b03551 crossref_primary_10_1038_s41598_020_79135_y crossref_primary_10_1039_D3CP04415G crossref_primary_10_1002_cssc_201902937 crossref_primary_10_1007_s10854_022_08632_9 crossref_primary_10_1007_s11051_018_4440_y crossref_primary_10_1039_D2NJ06004C crossref_primary_10_1186_s11671_022_03733_0 crossref_primary_10_1016_j_orgel_2023_106946 crossref_primary_10_1063_5_0151055 crossref_primary_10_1002_adfm_202010439 crossref_primary_10_1016_j_mtphys_2023_101279 crossref_primary_10_1016_j_cej_2024_157512 crossref_primary_10_1039_D0CP05292B crossref_primary_10_1515_ntrev_2018_0084 crossref_primary_10_1364_AO_486493 crossref_primary_10_1039_D0TA01379J crossref_primary_10_1016_j_jechem_2022_11_021 crossref_primary_10_1002_smll_202305973 crossref_primary_10_1007_s10853_020_04614_6 crossref_primary_10_1002_aelm_202000501 crossref_primary_10_1021_acs_inorgchem_1c03023 crossref_primary_10_1002_adfm_202001604 crossref_primary_10_1002_aelm_202100717 crossref_primary_10_1016_j_sna_2022_113479 crossref_primary_10_1021_acsnano_4c16106 crossref_primary_10_1088_1361_6528_ab9da8 crossref_primary_10_1016_j_apsusc_2023_156665 crossref_primary_10_3390_photonics11030277 crossref_primary_10_1002_adfm_202405587 crossref_primary_10_1002_sdtp_14229 crossref_primary_10_1016_j_mtphys_2023_101285 crossref_primary_10_1021_acsanm_3c03983 crossref_primary_10_1109_LPT_2022_3193501 crossref_primary_10_1002_adfm_201909909 crossref_primary_10_3390_su13126883 crossref_primary_10_1021_acs_nanolett_8b00988 crossref_primary_10_1116_6_0001196 crossref_primary_10_1002_admi_202101443 crossref_primary_10_1016_j_tsf_2023_140095 crossref_primary_10_1088_1361_6528_ab18c2 crossref_primary_10_3390_cryst11121479 crossref_primary_10_1002_adma_202101059 crossref_primary_10_1002_advs_202301585 crossref_primary_10_1002_aesr_202400052 crossref_primary_10_1016_j_ceramint_2019_05_342 crossref_primary_10_1039_C7TC04754A crossref_primary_10_1088_1361_6641_ad5100 crossref_primary_10_1016_j_jallcom_2019_152401 crossref_primary_10_3390_nano14231903 crossref_primary_10_1002_adfm_201808182 crossref_primary_10_1088_1674_4926_42_5_052301 crossref_primary_10_1002_adma_202109083 crossref_primary_10_1002_adom_202000845 crossref_primary_10_1063_5_0170741 crossref_primary_10_1016_j_nanoen_2018_06_049 crossref_primary_10_1002_adma_202105729 crossref_primary_10_1002_smll_202407107 crossref_primary_10_1088_1361_6463_abbb45 crossref_primary_10_1002_andp_201800440 crossref_primary_10_1002_smll_201801611 crossref_primary_10_1364_AO_531361 crossref_primary_10_1088_1361_6528_ad4711 crossref_primary_10_1021_acsami_4c12680 crossref_primary_10_1002_adfm_201903981 crossref_primary_10_1002_aelm_202300588 crossref_primary_10_1016_j_mattod_2022_11_005 crossref_primary_10_1016_j_mtphys_2024_101327 crossref_primary_10_1016_j_optmat_2023_114778 crossref_primary_10_1039_D1TC05538K crossref_primary_10_1088_1361_6463_ad0478 crossref_primary_10_1007_s10895_024_03918_z crossref_primary_10_1016_j_jsamd_2024_100671 crossref_primary_10_1002_adom_202401685 crossref_primary_10_7498_aps_73_20231698 crossref_primary_10_1016_j_sna_2019_04_049 crossref_primary_10_1088_1361_6463_ad902f crossref_primary_10_1002_adma_201706262 crossref_primary_10_1016_j_apsusc_2023_157149 crossref_primary_10_1039_D1TA01725J crossref_primary_10_1002_smll_201804346 crossref_primary_10_1016_j_apsusc_2023_157144 crossref_primary_10_1088_1361_6528_ad22a6 crossref_primary_10_1016_j_mtcomm_2024_111452 crossref_primary_10_1021_acsaelm_0c00301 crossref_primary_10_1016_j_optlastec_2024_111533 crossref_primary_10_1088_1402_4896_ac9562 crossref_primary_10_1016_j_mssp_2024_108455 crossref_primary_10_1021_acsaelm_4c02210 crossref_primary_10_1016_j_jallcom_2019_05_286 crossref_primary_10_1088_1361_6528_aab9d2 crossref_primary_10_1002_smll_202400045 crossref_primary_10_1038_s41598_025_92596_3 crossref_primary_10_1088_1361_6528_acaf36 crossref_primary_10_1016_j_jallcom_2023_170474 crossref_primary_10_1002_admi_202202130 crossref_primary_10_1063_5_0071602 crossref_primary_10_1002_adom_201901334 crossref_primary_10_1002_adom_202000197 crossref_primary_10_1021_acsaelm_4c00833 crossref_primary_10_1002_admi_202102286 crossref_primary_10_1364_OE_463394 crossref_primary_10_1002_adom_202301460 crossref_primary_10_1016_j_sna_2021_112988 crossref_primary_10_1109_JSEN_2024_3462992 crossref_primary_10_1016_j_cej_2023_146762 crossref_primary_10_1364_OL_449374 crossref_primary_10_1039_C9NH00705A crossref_primary_10_1039_C8TC04258F crossref_primary_10_1088_1361_6528_ad047f crossref_primary_10_1021_acsaelm_4c00284 crossref_primary_10_1002_cnma_201800303 crossref_primary_10_1007_s00340_022_07893_w crossref_primary_10_1039_D1TC03719F crossref_primary_10_1039_C8TC00550H crossref_primary_10_1002_pssa_202200612 crossref_primary_10_1016_j_trac_2020_115989 crossref_primary_10_1007_s00340_020_07567_5 crossref_primary_10_1021_acs_jpclett_0c03382 crossref_primary_10_1039_D1NR04561J crossref_primary_10_1039_D3NR00358B crossref_primary_10_1002_adom_201800811 crossref_primary_10_1039_C9TC06767A crossref_primary_10_1088_1361_6528_acca8b crossref_primary_10_1021_acsnano_4c02588 crossref_primary_10_1002_adom_202000893 crossref_primary_10_1039_C9TC05424C crossref_primary_10_1177_1847980420925674 crossref_primary_10_1016_j_vacuum_2023_112734 crossref_primary_10_1007_s10854_021_07578_8 crossref_primary_10_1039_D2NR06431F crossref_primary_10_1007_s40843_019_9441_6 crossref_primary_10_1016_j_cap_2024_11_014 crossref_primary_10_1016_j_sna_2022_113898 crossref_primary_10_1021_acsami_4c00801 crossref_primary_10_1039_D4SC00722K crossref_primary_10_1016_j_optmat_2023_113923 crossref_primary_10_1039_C9TC00290A crossref_primary_10_1039_C9TC06011A crossref_primary_10_1021_acsanm_3c05745 crossref_primary_10_1002_adfm_201803142 crossref_primary_10_1039_C9NR09095A crossref_primary_10_1016_j_optmat_2024_116141 crossref_primary_10_1016_j_apmt_2022_101686 crossref_primary_10_1002_adem_202301602 crossref_primary_10_1007_s11082_024_07049_4 crossref_primary_10_1016_j_jallcom_2024_177635 crossref_primary_10_1039_C8NH00401C crossref_primary_10_1016_j_sna_2024_116138 crossref_primary_10_1021_acs_jpcc_2c06210 crossref_primary_10_1039_D4TC03140G crossref_primary_10_1021_acsphotonics_3c01435 crossref_primary_10_1088_1361_6528_ac0933 crossref_primary_10_1002_adfm_201809013 crossref_primary_10_1109_JSEN_2024_3435486 crossref_primary_10_3390_cryst13060915 crossref_primary_10_1016_j_cap_2023_12_002 crossref_primary_10_1002_adom_202202383 crossref_primary_10_1088_1361_6463_ac9d47 crossref_primary_10_1016_j_mssp_2018_07_027 crossref_primary_10_1021_acsaelm_3c00370 crossref_primary_10_1039_C9NA00130A crossref_primary_10_1016_j_jphotochem_2024_115480 crossref_primary_10_1016_j_optmat_2024_115135 crossref_primary_10_1016_j_apsusc_2020_147069 crossref_primary_10_1039_C8TC02255K crossref_primary_10_1063_5_0183711 crossref_primary_10_1002_adfm_202208688 crossref_primary_10_1002_advs_202414353 crossref_primary_10_1039_D4NR01366B crossref_primary_10_1063_5_0105350 crossref_primary_10_1039_D1TC03359J crossref_primary_10_1016_j_compositesb_2022_110014 crossref_primary_10_1016_j_nanoms_2024_05_001 crossref_primary_10_1007_s12274_021_3346_7 crossref_primary_10_1039_C9TC03866C crossref_primary_10_1016_j_jallcom_2022_167267 crossref_primary_10_1109_JSEN_2023_3273558 crossref_primary_10_1088_1361_6463_acb6a5 crossref_primary_10_1007_s10854_023_11873_x crossref_primary_10_3390_nano13050954 crossref_primary_10_1088_1361_6528_ab261b crossref_primary_10_1021_acsami_3c02209 crossref_primary_10_1088_1361_6641_ab52f1 crossref_primary_10_1039_D3TC00906H crossref_primary_10_1088_1361_6463_acd460 crossref_primary_10_1021_acsphotonics_3c00687 crossref_primary_10_1021_acsaem_2c02152 crossref_primary_10_1016_j_mssp_2023_107943 crossref_primary_10_1002_adom_201800213 crossref_primary_10_1021_acsami_9b20518 crossref_primary_10_1021_acsami_2c03148 crossref_primary_10_1063_5_0049747 crossref_primary_10_32628_IJSRST241142 crossref_primary_10_1016_j_sna_2020_111835 crossref_primary_10_1021_acsami_9b06455 crossref_primary_10_1039_D0NR07297D crossref_primary_10_1016_j_apsusc_2020_147087 crossref_primary_10_1039_D3NR06643F crossref_primary_10_1002_aelm_202400514 crossref_primary_10_1088_1674_1056_abc546 crossref_primary_10_1016_j_isci_2018_01_002 crossref_primary_10_1002_smtd_202200966 crossref_primary_10_1016_j_nanoen_2024_109968 crossref_primary_10_1021_acsami_3c17881 crossref_primary_10_1088_1361_6641_ab0cb8 crossref_primary_10_1088_1402_4896_acd284 crossref_primary_10_1016_j_jlumin_2025_121181 crossref_primary_10_1002_adma_202407922 crossref_primary_10_1039_D4TC04337E crossref_primary_10_1007_s11431_020_1701_2 crossref_primary_10_1021_acs_jpcc_0c01959 crossref_primary_10_1016_j_apsusc_2022_153350 crossref_primary_10_1039_D0NR00517G crossref_primary_10_1007_s40843_022_2402_3 crossref_primary_10_1021_acsami_9b11012 crossref_primary_10_1039_D3TC03244B crossref_primary_10_1039_D4TC04653F crossref_primary_10_1002_adom_202000215 crossref_primary_10_1021_acsaelm_0c00595 crossref_primary_10_1021_acsami_9b04838 crossref_primary_10_1016_j_cej_2022_136364 crossref_primary_10_1002_adma_201808138 crossref_primary_10_1021_acsami_8b05141 crossref_primary_10_1002_inf2_12540 crossref_primary_10_1039_D2CC02773A crossref_primary_10_1039_C9TA10473A crossref_primary_10_1109_ACCESS_2021_3051187 crossref_primary_10_1021_acsami_2c05422 crossref_primary_10_1007_s12274_020_2749_1 crossref_primary_10_1016_j_nanoen_2023_108891 crossref_primary_10_1002_smll_202406308 crossref_primary_10_1080_19475411_2024_2306837 crossref_primary_10_1021_acsanm_3c04403 crossref_primary_10_1007_s12274_018_2200_z crossref_primary_10_1016_j_jlumin_2022_119473 crossref_primary_10_1016_j_optmat_2024_115185 crossref_primary_10_1007_s11664_022_10176_x crossref_primary_10_1021_acsami_2c21314 crossref_primary_10_1063_5_0058482 crossref_primary_10_1007_s00339_024_08172_5 crossref_primary_10_1002_lpor_202200950 crossref_primary_10_1002_smll_202203532 crossref_primary_10_1016_j_sna_2023_114434 crossref_primary_10_1016_j_tsf_2022_139289 crossref_primary_10_1007_s10853_023_08379_6 crossref_primary_10_1002_aelm_201900794 crossref_primary_10_1021_acsaelm_4c02064 crossref_primary_10_1002_adfm_202100773 crossref_primary_10_1364_PRJ_418450 crossref_primary_10_1039_D2TC01124G crossref_primary_10_1016_j_jlumin_2024_120914 crossref_primary_10_1016_j_jnlest_2021_100081 crossref_primary_10_1039_D0TC01956A crossref_primary_10_1088_1361_6641_acc5ac crossref_primary_10_1039_D2TC01419J crossref_primary_10_1021_acsaelm_3c00220 crossref_primary_10_1109_JSEN_2023_3319501 crossref_primary_10_1021_acsanm_0c01276 crossref_primary_10_1039_D2TC04045J crossref_primary_10_1021_acsami_0c09910 crossref_primary_10_1002_aelm_202300530 crossref_primary_10_1039_D3NR03877G |
Cites_doi | 10.1021/acsami.5b11956 10.1021/acs.nanolett.5b02900 10.1021/ja028371y 10.1021/acsami.6b14305 10.1002/adma.201102407 10.1115/1.2890402 10.1002/adma.201102958 10.1021/acs.chemmater.5b01377 10.1016/j.nanoen.2012.05.003 10.1143/APEX.1.051201 10.1002/adma.201003156 10.1039/c3tc30525b 10.1093/ajcn/80.6.1678S 10.1063/1.3133358 10.1002/adfm.201303367 10.1002/smll.201601913 10.1002/adfm.201100743 10.1088/0031-9155/36/3/001 10.1109/92.920820 10.1021/jp051925 10.1063/1.2785135 10.1109/LED.2016.2631551 10.1126/science.1139366 10.3390/s100908604 10.1038/nnano.2010.78 10.1039/C4TC01839G 10.1007/978-3-540-47235-3 10.1039/c2jm32287k 10.1021/acsami.5b09093 10.1038/srep16819 10.1002/adfm.201200344 10.1007/BF00231145 10.1039/C6TC03830A 10.1002/bltj.20438 10.1175/1520-0469(1974)031<0118:APFTAO>2.0.CO;2 10.1039/C6TC00748A 10.1002/admi.201601064 10.1088/0268-1242/18/4/201 10.1063/1.4839495 10.1016/j.tsf.2010.04.063 10.1021/acsnano.5b07217 10.1002/smll.201503388 10.1016/S0038-1101(01)00271-4 10.1002/adfm.201700264 10.1515/reveh-2014-0041 10.1063/1.4893591 10.1021/am503442c 10.1088/0957-4484/23/11/115401 10.1021/acsami.6b06414 10.1039/C4RA01553C 10.1021/acsami.6b06700 10.1103/PhysRevB.66.073202 10.1021/am4008775 10.1016/j.mattod.2015.06.001 10.1021/acsami.6b12321 10.1021/am406030d 10.1038/ncomms3292 10.1088/0964-1726/17/4/045009 10.1002/adma.200802563 10.1021/acsami.6b11012 10.1063/1.3524231 10.1021/am5089605 10.1021/nl100161z 10.1002/adma.201501517 10.1109/MPRV.2005.9 |
ContentType | Journal Article |
Copyright | 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.201701687 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 28926681 10_1002_smll_201701687 SMLL201701687 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: National Postdoctoral Science Foundation of China funderid: 2017M611411 – fundername: Science and Technology Commission of Shanghai Municipality funderid: 15520720700 – fundername: Programs for Professor of Special Appointment – fundername: Shanghai Shu Guang Project funderid: 12SG01 – fundername: National Natural Science Foundation of China funderid: 11674061; 51471051; 61705043; 61505033 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION FEDTE GODZA HVGLF NPM 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c4797-269cae13437611a2bce438aec97e6608a9441ddde0cfcf60f6b2aa50f3ebbfa93 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 03:47:50 EDT 2025 Fri Jul 25 12:10:03 EDT 2025 Thu Apr 03 07:05:13 EDT 2025 Thu Apr 24 23:12:59 EDT 2025 Tue Jul 01 02:10:31 EDT 2025 Wed Jan 22 16:21:48 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 45 |
Keywords | Schottky junction heterojunction p-n homojunction self-powered |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4797-269cae13437611a2bce438aec97e6608a9441ddde0cfcf60f6b2aa50f3ebbfa93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-3387-4532 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/smll.201701687 |
PMID | 28926681 |
PQID | 1970595689 |
PQPubID | 1046358 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1941094029 proquest_journals_1970595689 pubmed_primary_28926681 crossref_primary_10_1002_smll_201701687 crossref_citationtrail_10_1002_smll_201701687 wiley_primary_10_1002_smll_201701687_SMLL201701687 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-12-00 |
PublicationDateYYYYMMDD | 2017-12-01 |
PublicationDate_xml | – month: 12 year: 2017 text: 2017-12-00 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 10 2010; 97 2010; 15 2013; 4 2013; 1 2017; 4 2014; 24 2003; 18 2014; 29 2008; 1 2013; 5 2017; 9 2010; 518 2014; 4 2014; 2 2009; 94 2017; 38 2002; 46 1984; 57 1987 2005; 109 2011; 21 2011; 23 2004; 80 2012; 24 2003; 125 2010; 5 2012; 23 2014; 6 2012; 22 2015; 15 2015; 5 1991; 36 2009; 21 1974; 31 2015; 18 2017; 27 2008; 17 2015; 10 2013; 103 2007; 91 2007 2015; 8 2008; 92 2015; 7 2016; 12 2016; 4 2014; 105 2007; 316 2015; 27 2012; 1 2001; 9 2002; 66 2005; 4 2008; 130 2016; 8 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 Kim K. J. (e_1_2_7_15_1) 2010; 15 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 Kuhn T. S. (e_1_2_7_6_1) 1987 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 Lin Y. Y. (e_1_2_7_50_1) 2008; 92 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – volume: 2 start-page: 9689 year: 2014 publication-title: J. Mater. Chem. C – volume: 1 start-page: 051201 year: 2008 publication-title: Appl. Phys. Express – volume: 27 start-page: 4216 year: 2015 publication-title: Chem. Mater. – volume: 10 start-page: 8604 year: 2010 publication-title: Sensors – volume: 5 start-page: 391 year: 2010 publication-title: Nat. Nanotechnol. – volume: 8 start-page: 4185 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 21 start-page: 3907 year: 2011 publication-title: Adv. Funct. Mater. – volume: 66 start-page: 073202 year: 2002 publication-title: Phys. Rev. B – volume: 38 start-page: 79 year: 2017 publication-title: IEEE Electron Device Lett. – volume: 15 start-page: 7 year: 2010 publication-title: Bell Labs Tech. J. – volume: 5 start-page: 3671 year: 2013 publication-title: ACS Appl. Mater. Interfaces – volume: 92 start-page: 205 year: 2008 publication-title: Appl. Phys. Lett. – volume: 12 start-page: 2759 year: 2016 publication-title: Small – volume: 8 start-page: 22647 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 4 start-page: 10032 year: 2016 publication-title: J. Mater. Chem. C – volume: 24 start-page: 2591 year: 2014 publication-title: Adv. Funct. Mater. – volume: 94 start-page: 191103 year: 2009 publication-title: Appl. Phys. Lett. – volume: 23 start-page: 649 year: 2011 publication-title: Adv. Mater. – volume: 27 start-page: 4336 year: 2015 publication-title: Adv. Mater. – volume: 23 start-page: 4614 year: 2011 publication-title: Adv. Mater. – volume: 4 start-page: 1601064 year: 2017 publication-title: Adv. Mater. Inter. – volume: 1 start-page: 640 year: 2012 publication-title: Nano Energy – volume: 4 start-page: 18 year: 2005 publication-title: IEEE Pervas. Comput. – volume: 57 start-page: 191 year: 1984 publication-title: Exp. Brain Res. – volume: 4 start-page: 21340 year: 2014 publication-title: RSC Adv. – volume: 22 start-page: 3875 year: 2012 publication-title: Adv. Funct. Mater. – volume: 24 start-page: 280 year: 2012 publication-title: Adv. Mater. – volume: 8 start-page: 26198 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 33924 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 10 start-page: 1572 year: 2015 publication-title: ACS Nano – volume: 9 start-page: 64 year: 2001 publication-title: IEEE VLSI Syst. – volume: 8 start-page: 381 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 31 start-page: 118 year: 1974 publication-title: J. Atmos. Sci. – volume: 4 start-page: 2292 year: 2013 publication-title: Nat. Commun. – volume: 103 start-page: 232112 year: 2013 publication-title: Appl. Phys. Lett. – volume: 9 start-page: 8161 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 36 start-page: 299 year: 1991 publication-title: Phys. Med. Biol. – year: 1987 – volume: 21 start-page: 1618 year: 2009 publication-title: Adv. Mater. – year: 2007 – volume: 22 start-page: 13899 year: 2012 publication-title: J. Mater. Chem. – volume: 29 start-page: 265 year: 2014 publication-title: Rev. Environ. Health – volume: 1 start-page: 4445 year: 2013 publication-title: J. Mater. Chem. C – volume: 46 start-page: 157 year: 2002 publication-title: Solid‐State Electron. – volume: 27 start-page: 1700264 year: 2017 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 16819 year: 2015 publication-title: Sci. Rep. – volume: 12 start-page: 5809 year: 2016 publication-title: Small – volume: 7 start-page: 5820 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 125 start-page: 314 year: 2003 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 1082 year: 2010 publication-title: Nano Lett. – volume: 15 start-page: 6958 year: 2015 publication-title: Nano Lett. – volume: 6 start-page: 4277 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 18 start-page: 493 year: 2015 publication-title: Mater. Today – volume: 18 start-page: R33 year: 2003 publication-title: Semicond. Sci. Technol. – volume: 9 start-page: 2606 year: 2017 publication-title: ACS Appl. Mater. Inter. – volume: 4 start-page: 3113 year: 2016 publication-title: J. Mater. Chem. C – volume: 91 start-page: 141101 year: 2007 publication-title: Appl. Phys. Lett. – volume: 17 start-page: 045009 year: 2008 publication-title: Smart Mater. Struct. – volume: 109 start-page: 13572 year: 2005 publication-title: J. Phys. Chem. B – volume: 518 start-page: 5542 year: 2010 publication-title: Thin Solid Films – volume: 130 start-page: 041002 year: 2008 publication-title: J. Vib. Acoust. – volume: 316 start-page: 102 year: 2007 publication-title: Science – volume: 23 start-page: 115401 year: 2012 publication-title: Nanotechnology – volume: 105 start-page: 072106 year: 2014 publication-title: Appl. Phys. Lett. – volume: 80 start-page: 1678S year: 2004 publication-title: Am. J. Clin. Nutr. – volume: 6 start-page: 14116 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 97 start-page: 223113 year: 2010 publication-title: Appl. Phys. Lett. – ident: e_1_2_7_58_1 doi: 10.1021/acsami.5b11956 – ident: e_1_2_7_29_1 doi: 10.1021/acs.nanolett.5b02900 – ident: e_1_2_7_55_1 doi: 10.1021/ja028371y – ident: e_1_2_7_67_1 doi: 10.1021/acsami.6b14305 – ident: e_1_2_7_30_1 doi: 10.1002/adma.201102407 – ident: e_1_2_7_18_1 doi: 10.1115/1.2890402 – ident: e_1_2_7_9_1 doi: 10.1002/adma.201102958 – ident: e_1_2_7_36_1 doi: 10.1021/acs.chemmater.5b01377 – ident: e_1_2_7_20_1 doi: 10.1016/j.nanoen.2012.05.003 – ident: e_1_2_7_59_1 doi: 10.1143/APEX.1.051201 – ident: e_1_2_7_44_1 doi: 10.1002/adma.201003156 – ident: e_1_2_7_41_1 doi: 10.1039/c3tc30525b – ident: e_1_2_7_7_1 doi: 10.1093/ajcn/80.6.1678S – ident: e_1_2_7_57_1 doi: 10.1063/1.3133358 – ident: e_1_2_7_11_1 doi: 10.1002/adfm.201303367 – ident: e_1_2_7_49_1 doi: 10.1002/smll.201601913 – ident: e_1_2_7_4_1 doi: 10.1002/adfm.201100743 – ident: e_1_2_7_2_1 doi: 10.1088/0031-9155/36/3/001 – ident: e_1_2_7_16_1 doi: 10.1109/92.920820 – ident: e_1_2_7_53_1 doi: 10.1021/jp051925 – ident: e_1_2_7_33_1 doi: 10.1063/1.2785135 – ident: e_1_2_7_60_1 doi: 10.1109/LED.2016.2631551 – ident: e_1_2_7_19_1 doi: 10.1126/science.1139366 – ident: e_1_2_7_23_1 doi: 10.3390/s100908604 – ident: e_1_2_7_21_1 doi: 10.1038/nnano.2010.78 – ident: e_1_2_7_63_1 doi: 10.1039/C4TC01839G – ident: e_1_2_7_40_1 doi: 10.1007/978-3-540-47235-3 – ident: e_1_2_7_54_1 doi: 10.1039/c2jm32287k – ident: e_1_2_7_28_1 doi: 10.1021/acsami.5b09093 – volume: 92 start-page: 205 year: 2008 ident: e_1_2_7_50_1 publication-title: Appl. Phys. Lett. – ident: e_1_2_7_62_1 doi: 10.1038/srep16819 – ident: e_1_2_7_64_1 doi: 10.1002/adfm.201200344 – ident: e_1_2_7_22_1 doi: 10.1007/BF00231145 – ident: e_1_2_7_47_1 doi: 10.1039/C6TC03830A – volume: 15 start-page: 7 year: 2010 ident: e_1_2_7_15_1 publication-title: Bell Labs Tech. J. doi: 10.1002/bltj.20438 – ident: e_1_2_7_5_1 doi: 10.1175/1520-0469(1974)031<0118:APFTAO>2.0.CO;2 – ident: e_1_2_7_51_1 doi: 10.1039/C6TC00748A – ident: e_1_2_7_13_1 doi: 10.1002/admi.201601064 – ident: e_1_2_7_1_1 doi: 10.1088/0268-1242/18/4/201 – ident: e_1_2_7_25_1 doi: 10.1063/1.4839495 – ident: e_1_2_7_35_1 doi: 10.1016/j.tsf.2010.04.063 – ident: e_1_2_7_61_1 doi: 10.1021/acsnano.5b07217 – ident: e_1_2_7_45_1 doi: 10.1002/smll.201503388 – ident: e_1_2_7_24_1 doi: 10.1016/S0038-1101(01)00271-4 – ident: e_1_2_7_46_1 doi: 10.1002/adfm.201700264 – ident: e_1_2_7_3_1 doi: 10.1515/reveh-2014-0041 – ident: e_1_2_7_43_1 doi: 10.1063/1.4893591 – ident: e_1_2_7_66_1 doi: 10.1021/am503442c – ident: e_1_2_7_31_1 doi: 10.1088/0957-4484/23/11/115401 – ident: e_1_2_7_32_1 doi: 10.1021/acsami.6b06414 – ident: e_1_2_7_34_1 doi: 10.1039/C4RA01553C – ident: e_1_2_7_52_1 doi: 10.1021/acsami.6b06700 – ident: e_1_2_7_38_1 doi: 10.1103/PhysRevB.66.073202 – ident: e_1_2_7_65_1 doi: 10.1021/am4008775 – ident: e_1_2_7_8_1 doi: 10.1016/j.mattod.2015.06.001 – ident: e_1_2_7_14_1 doi: 10.1021/acsami.6b12321 – volume-title: Black‐Body Theory and The Quantum Discontinuity, 1894–1912 year: 1987 ident: e_1_2_7_6_1 – ident: e_1_2_7_37_1 doi: 10.1021/am406030d – ident: e_1_2_7_39_1 doi: 10.1038/ncomms3292 – ident: e_1_2_7_17_1 doi: 10.1088/0964-1726/17/4/045009 – ident: e_1_2_7_27_1 doi: 10.1002/adma.200802563 – ident: e_1_2_7_48_1 doi: 10.1021/acsami.6b11012 – ident: e_1_2_7_56_1 doi: 10.1063/1.3524231 – ident: e_1_2_7_42_1 doi: 10.1021/am5089605 – ident: e_1_2_7_26_1 doi: 10.1021/nl100161z – ident: e_1_2_7_12_1 doi: 10.1002/adma.201501517 – ident: e_1_2_7_10_1 doi: 10.1109/MPRV.2005.9 |
SSID | ssj0031247 |
Score | 2.646065 |
SecondaryResourceType | review_article |
Snippet | Self‐powered ultraviolet (UV) photodetectors, which have vast applications in the military and for civilian purposes, have become particularly attractive in... Self-powered ultraviolet (UV) photodetectors, which have vast applications in the military and for civilian purposes, have become particularly attractive in... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | Electric fields heterojunction Heterojunctions Homojunctions Military applications Nanotechnology Photometers Power consumption p–n homojunction Schottky junction self‐powered |
Title | Self‐Powered Ultraviolet Photodetectors Driven by Built‐In Electric Field |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201701687 https://www.ncbi.nlm.nih.gov/pubmed/28926681 https://www.proquest.com/docview/1970595689 https://www.proquest.com/docview/1941094029 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQJziwL2WTkZA4pU2cxImPbBUgQAio1FtkO7aoCClq0wOc-AS-kS_B47ShBSEkuCXKWHE8Hs9zZvwGoT2ofcNUGDqcEbNBMQbkiDgOnCiUXppK4_O4Zfu8oqet4LwdtsdO8Zf8ENUPN7AMu16DgXPRb3yShvYfMwgdAJ84jeE4OSRsASq6qfijfOO8bHUV47McIN4asTa6pDHZfNIrfYOak8jVup7mPOKjTpcZJw_1QSHq8uULn-N_vmoBzQ1xKT4oJ9IimlL5EpodYytcRpe3KtPvr2_XUFhNpbiVFT1uA_sFvr7vFt1UFTYG0MfHPVhEsXjGh4NOVphGZzk-sRV3OhI3IWtuBbWaJ3dHp86wGoMjg4hFDqFMcuX5gVmSPI8TIVXgx1xJFilK3Zgzg6xSo2xXaqmpq6kgnIeu9pUQmjN_FU3n3VytIwwrmwp9EWrqB7HgjLs01UrDoVti5ksNOSNtJHJIVQ4VM7KkJFkmCQxTUg1TDe1X8k8lScePklsj5SZDY-0nHosMyAxpzGpot3pszAxiJzxX3QHIBB5QDRIjs1ZOiupVZs9qYE7s1RCxqv2lD8nt5cVFdbfxl0abaAauy7SaLTRd9AZq24CjQuxYA_gANOwIXQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB5V5QAc-IcuLWAkEKe0iZM48YEDsF3t0t2qol2pt2A7jloRsmg3K9SeeARehVfhEXgSZvIHC0JISD1wTDJWbM-v7fE3AE-o9o20YegoyXGBggrk6DgOnCg0Xpoa9HmqQvvcF8Np8Po4PF6DL-1dmBofottwI82o7DUpOG1I7_xADV28z-nsgADFRRw1eZV79uwjrtoWz0d9ZPFTzge7R6-GTlNYwDFBJCOHC2mU9fwAtcvzFNfGBn6srJGRFcKNlcQgIcV-uyYzmXAzoblSoZv5VutMEf4SWv1LVEac4Pr7bzrEKh_dZVXPBb2kQ1BfLU6ky3dW-7vqB38Lbldj5crZDa7D13aa6hyXd9vLUm-b818QJP-rebwB15rQm72odeUmrNniFlz9CZDxNkwObZ59-_T5gGrH2ZRN83KuqtyFkh2czMpZasvqmGPB-nPyE0yfsZfL07zERqOC7VZFhU4NG1Bi4B2YXsh47sJ6MSvsBjAy3jb0dZgJP4i1ksoVaWYzulfMUSV64LTsT0yDxk5FQfKkxpHmCbEl6djSg2cd_Ycah-SPlFutNCWNPVoknowwjg5FLHvwuPuMloSOh1RhZ0uiCTxCU-RIc6-Wwu5XuCzHSC72esArWfpLH5LDyXjcPd3_l0aP4PLwaDJOxqP9vU24Qu_rLKItWC_nS_sAY8FSP6y0j8HbixbT74tVaPE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB5VRUJwKP-wUMBIIE5pEydx4gMHYLvq0m21oqzUW7AdW1RdstVuVqiceAQehVfhFXgSZvIHC0JISD1wTDJWHM9_PP4G4DH1vpE2jj0lOSYoqECeTtPIS2IT5LlBn6cqtM8DsTuJXh3FR2vwpT0LU-NDdD_cSDMqe00Kfpq77R-goYv3U9o6IDxxkSZNWeWePfuASdvi2bCPHH7C-WDnzctdr-kr4JkokYnHhTTKBmGEyhUEimtjozBV1sjECuGnSmKMkOO0feOME74TmisV-y60WjtF8Eto9C9EwpfULKL_ugOsCtFbVu1c0El6hPTVwkT6fHt1vqtu8LfYdjVUrnzd4Ap8bVepLnE52VqWest8_AVA8n9axquw0QTe7HmtKddgzRbX4fJPcIw3YP_QTt23T5_H1DnO5mwyLeeqqlwo2fjdrJzltqw2ORasPycvwfQZe7E8npY4aFiwnaql0LFhAyoLvAmTc_meW7BezAp7BxiZbhuHOnYijFKtpPJF7qyjU8UcFaIHXsv9zDRY7NQSZJrVKNI8I7ZkHVt68LSjP61RSP5IudkKU9ZYo0UWyASj6FiksgePusdoR2hzSBV2tiSaKCAsRY40t2sh7F6FSTnGcWnQA16J0l_mkB3uj0bd1d1_GfQQLo77g2w0PNi7B5fodl1CtAnr5Xxp72MgWOoHle4xeHveUvod1qhnoA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-Powered+Ultraviolet+Photodetectors+Driven+by+Built-In+Electric+Field&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Su%2C+Longxing&rft.au=Yang%2C+Wei&rft.au=Cai%2C+Jian&rft.au=Chen%2C+Hongyu&rft.date=2017-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=13&rft.issue=45&rft_id=info:doi/10.1002%2Fsmll.201701687&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |