Polyiodide Confinement by Starch Enables Shuttle‐Free Zn–Iodine Batteries
Aqueous Zn–iodine (Zn–I2) batteries have been regarded as a promising energy‐storage system owing to their high energy/power density, safety, and cost‐effectiveness. However, the polyiodide shuttling results in serious active mass loss and Zn corrosion, which limits the cycling life of Zn–I2 batteri...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 34; no. 23; pp. e2201716 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.06.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aqueous Zn–iodine (Zn–I2) batteries have been regarded as a promising energy‐storage system owing to their high energy/power density, safety, and cost‐effectiveness. However, the polyiodide shuttling results in serious active mass loss and Zn corrosion, which limits the cycling life of Zn–I2 batteries. Inspired by the chromogenic reaction between starch and iodine, a structure confinement strategy is proposed to suppress polyiodide shuttling in Zn–I2 batteries by hiring starch, due to its unique double‐helix structure. In situ Raman spectroscopy demonstrates an I5−‐dominated I−/I2 conversion mechanism when using starch. The I5− presents a much stronger bonding with starch than I3−, inhibiting the polyiodide shuttling in Zn–I2 batteries, which is confirmed by in situ ultraviolet–visible spectra. Consequently, a highly reversible Zn–I2 battery with high Coulombic efficiency (≈100% at 0.2 A g−1) and ultralong cycling stability (>50 000 cycles) is realized. Simultaneously, the Zn corrosion triggered by polyiodide is effectively inhibited owing to the desirable shuttling‐suppression by the starch, as evidenced by X‐ray photoelectron spectroscopy analysis. This work provides a new understanding of the failure mechanism of Zn–I2 batteries and proposes a cheap but effective strategy to realize high‐cyclability Zn–I2 batteries.
Inspired by the significant chromogenic reaction between starch and iodine, the shuttle effect of Zn–I2 batteries is effectively addressed by using starch, which strongly anchors polyiodide anions due to its unique double‐helix structure. Benefiting from this structure confinement, a Coulombic efficiency of almost 100% and an ultralong life of 50 000 cycles are realized in Zn–I2 batteries. |
---|---|
AbstractList | Aqueous Zn–iodine (Zn–I2) batteries have been regarded as a promising energy‐storage system owing to their high energy/power density, safety, and cost‐effectiveness. However, the polyiodide shuttling results in serious active mass loss and Zn corrosion, which limits the cycling life of Zn–I2 batteries. Inspired by the chromogenic reaction between starch and iodine, a structure confinement strategy is proposed to suppress polyiodide shuttling in Zn–I2 batteries by hiring starch, due to its unique double‐helix structure. In situ Raman spectroscopy demonstrates an I5−‐dominated I−/I2 conversion mechanism when using starch. The I5− presents a much stronger bonding with starch than I3−, inhibiting the polyiodide shuttling in Zn–I2 batteries, which is confirmed by in situ ultraviolet–visible spectra. Consequently, a highly reversible Zn–I2 battery with high Coulombic efficiency (≈100% at 0.2 A g−1) and ultralong cycling stability (>50 000 cycles) is realized. Simultaneously, the Zn corrosion triggered by polyiodide is effectively inhibited owing to the desirable shuttling‐suppression by the starch, as evidenced by X‐ray photoelectron spectroscopy analysis. This work provides a new understanding of the failure mechanism of Zn–I2 batteries and proposes a cheap but effective strategy to realize high‐cyclability Zn–I2 batteries.
Inspired by the significant chromogenic reaction between starch and iodine, the shuttle effect of Zn–I2 batteries is effectively addressed by using starch, which strongly anchors polyiodide anions due to its unique double‐helix structure. Benefiting from this structure confinement, a Coulombic efficiency of almost 100% and an ultralong life of 50 000 cycles are realized in Zn–I2 batteries. Aqueous Zn-iodine (Zn-I2 ) batteries have been regarded as a promising energy-storage system owing to their high energy/power density, safety, and cost-effectiveness. However, the polyiodide shuttling results in serious active mass loss and Zn corrosion, which limits the cycling life of Zn-I2 batteries. Inspired by the chromogenic reaction between starch and iodine, a structure confinement strategy is proposed to suppress polyiodide shuttling in Zn-I2 batteries by hiring starch, due to its unique double-helix structure. In situ Raman spectroscopy demonstrates an I5 - -dominated I- /I2 conversion mechanism when using starch. The I5 - presents a much stronger bonding with starch than I3 - , inhibiting the polyiodide shuttling in Zn-I2 batteries, which is confirmed by in situ ultraviolet-visible spectra. Consequently, a highly reversible Zn-I2 battery with high Coulombic efficiency (≈100% at 0.2 A g-1 ) and ultralong cycling stability (>50 000 cycles) is realized. Simultaneously, the Zn corrosion triggered by polyiodide is effectively inhibited owing to the desirable shuttling-suppression by the starch, as evidenced by X-ray photoelectron spectroscopy analysis. This work provides a new understanding of the failure mechanism of Zn-I2 batteries and proposes a cheap but effective strategy to realize high-cyclability Zn-I2 batteries.Aqueous Zn-iodine (Zn-I2 ) batteries have been regarded as a promising energy-storage system owing to their high energy/power density, safety, and cost-effectiveness. However, the polyiodide shuttling results in serious active mass loss and Zn corrosion, which limits the cycling life of Zn-I2 batteries. Inspired by the chromogenic reaction between starch and iodine, a structure confinement strategy is proposed to suppress polyiodide shuttling in Zn-I2 batteries by hiring starch, due to its unique double-helix structure. In situ Raman spectroscopy demonstrates an I5 - -dominated I- /I2 conversion mechanism when using starch. The I5 - presents a much stronger bonding with starch than I3 - , inhibiting the polyiodide shuttling in Zn-I2 batteries, which is confirmed by in situ ultraviolet-visible spectra. Consequently, a highly reversible Zn-I2 battery with high Coulombic efficiency (≈100% at 0.2 A g-1 ) and ultralong cycling stability (>50 000 cycles) is realized. Simultaneously, the Zn corrosion triggered by polyiodide is effectively inhibited owing to the desirable shuttling-suppression by the starch, as evidenced by X-ray photoelectron spectroscopy analysis. This work provides a new understanding of the failure mechanism of Zn-I2 batteries and proposes a cheap but effective strategy to realize high-cyclability Zn-I2 batteries. Aqueous Zn–iodine (Zn–I2) batteries have been regarded as a promising energy‐storage system owing to their high energy/power density, safety, and cost‐effectiveness. However, the polyiodide shuttling results in serious active mass loss and Zn corrosion, which limits the cycling life of Zn–I2 batteries. Inspired by the chromogenic reaction between starch and iodine, a structure confinement strategy is proposed to suppress polyiodide shuttling in Zn–I2 batteries by hiring starch, due to its unique double‐helix structure. In situ Raman spectroscopy demonstrates an I5−‐dominated I−/I2 conversion mechanism when using starch. The I5− presents a much stronger bonding with starch than I3−, inhibiting the polyiodide shuttling in Zn–I2 batteries, which is confirmed by in situ ultraviolet–visible spectra. Consequently, a highly reversible Zn–I2 battery with high Coulombic efficiency (≈100% at 0.2 A g−1) and ultralong cycling stability (>50 000 cycles) is realized. Simultaneously, the Zn corrosion triggered by polyiodide is effectively inhibited owing to the desirable shuttling‐suppression by the starch, as evidenced by X‐ray photoelectron spectroscopy analysis. This work provides a new understanding of the failure mechanism of Zn–I2 batteries and proposes a cheap but effective strategy to realize high‐cyclability Zn–I2 batteries. Aqueous Zn-iodine (Zn-I ) batteries have been regarded as a promising energy-storage system owing to their high energy/power density, safety, and cost-effectiveness. However, the polyiodide shuttling results in serious active mass loss and Zn corrosion, which limits the cycling life of Zn-I batteries. Inspired by the chromogenic reaction between starch and iodine, a structure confinement strategy is proposed to suppress polyiodide shuttling in Zn-I batteries by hiring starch, due to its unique double-helix structure. In situ Raman spectroscopy demonstrates an I -dominated I /I conversion mechanism when using starch. The I presents a much stronger bonding with starch than I , inhibiting the polyiodide shuttling in Zn-I batteries, which is confirmed by in situ ultraviolet-visible spectra. Consequently, a highly reversible Zn-I battery with high Coulombic efficiency (≈100% at 0.2 A g ) and ultralong cycling stability (>50 000 cycles) is realized. Simultaneously, the Zn corrosion triggered by polyiodide is effectively inhibited owing to the desirable shuttling-suppression by the starch, as evidenced by X-ray photoelectron spectroscopy analysis. This work provides a new understanding of the failure mechanism of Zn-I batteries and proposes a cheap but effective strategy to realize high-cyclability Zn-I batteries. Aqueous Zn–iodine (Zn–I 2 ) batteries have been regarded as a promising energy‐storage system owing to their high energy/power density, safety, and cost‐effectiveness. However, the polyiodide shuttling results in serious active mass loss and Zn corrosion, which limits the cycling life of Zn–I 2 batteries. Inspired by the chromogenic reaction between starch and iodine, a structure confinement strategy is proposed to suppress polyiodide shuttling in Zn–I 2 batteries by hiring starch, due to its unique double‐helix structure. In situ Raman spectroscopy demonstrates an I 5 − ‐dominated I − /I 2 conversion mechanism when using starch. The I 5 − presents a much stronger bonding with starch than I 3 − , inhibiting the polyiodide shuttling in Zn–I 2 batteries, which is confirmed by in situ ultraviolet–visible spectra. Consequently, a highly reversible Zn–I 2 battery with high Coulombic efficiency (≈100% at 0.2 A g −1 ) and ultralong cycling stability (>50 000 cycles) is realized. Simultaneously, the Zn corrosion triggered by polyiodide is effectively inhibited owing to the desirable shuttling‐suppression by the starch, as evidenced by X‐ray photoelectron spectroscopy analysis. This work provides a new understanding of the failure mechanism of Zn–I 2 batteries and proposes a cheap but effective strategy to realize high‐cyclability Zn–I 2 batteries. |
Author | Zhang, Bingkai Zhang, Peng‐Fang Zhang, Shao‐Jian Yin, Zu‐Wei Li, Huan Hao, Junnan Qiao, Shi‐Zhang Lin, Zhan Li, Yu‐Yang |
Author_xml | – sequence: 1 givenname: Shao‐Jian surname: Zhang fullname: Zhang, Shao‐Jian organization: The University of Adelaide – sequence: 2 givenname: Junnan surname: Hao fullname: Hao, Junnan organization: The University of Adelaide – sequence: 3 givenname: Huan surname: Li fullname: Li, Huan organization: The University of Adelaide – sequence: 4 givenname: Peng‐Fang surname: Zhang fullname: Zhang, Peng‐Fang organization: Liaocheng University – sequence: 5 givenname: Zu‐Wei surname: Yin fullname: Yin, Zu‐Wei organization: Xiamen University – sequence: 6 givenname: Yu‐Yang surname: Li fullname: Li, Yu‐Yang organization: Xiamen University – sequence: 7 givenname: Bingkai surname: Zhang fullname: Zhang, Bingkai organization: Guangdong University of Technology – sequence: 8 givenname: Zhan surname: Lin fullname: Lin, Zhan email: zhanlin@gdut.edu.cn organization: Guangdong University of Technology – sequence: 9 givenname: Shi‐Zhang orcidid: 0000-0002-4568-8422 surname: Qiao fullname: Qiao, Shi‐Zhang email: s.qiao@adelaide.edu.au organization: The University of Adelaide |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35435291$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcFKHTEUhoMoetVuXcqAm27mNieTZJLl9VZbQalgu-kmZGbOxchMYpMM5e58hELf0CfpyNUKQunqbL7v5-f8-2TbB4-EHAGdA6Xsg-0GO2eUMQo1yC0yA8Gg5FSLbTKjuhKlllztkf2U7iilWlK5S_YqwSvBNMzI1XXo1y50rsNiGfzKeRzQ56JZFzfZxva2OPO26TEVN7djzj0-Pvw6j4jFd__48PtiEj0WpzZnjA7TIdlZ2T7hu-d7QL6dn31dfi4vv3y6WC4uy5bXWpaKWl1LXqO1ynIKlWa8q6dyHBoFqtG6s8AEYFOLFmhTqU4KhQqhhY4LrA7I-03ufQw_RkzZDC612PfWYxiTYVIwWgEoOqEnb9C7MEY_tZuomoOWjLGJOn6mxmbAztxHN9i4Ni-PmgC-AdoYUoq4Mq3LNrvgc7SuN0DN0x7maQ_zd49Jm7_RXpL_KeiN8NP1uP4PbRYfrxav7h-b3JyT |
CitedBy_id | crossref_primary_10_1016_j_ensm_2024_103731 crossref_primary_10_1021_acsnano_4c07880 crossref_primary_10_1021_jacs_2c13540 crossref_primary_10_1002_ange_202308182 crossref_primary_10_1016_j_jallcom_2023_169696 crossref_primary_10_1016_j_jpowsour_2024_234658 crossref_primary_10_1002_ange_202404784 crossref_primary_10_1002_aenm_202404845 crossref_primary_10_1021_acsami_4c11550 crossref_primary_10_1002_aenm_202402306 crossref_primary_10_1002_adma_202403097 crossref_primary_10_1002_cnl2_155 crossref_primary_10_1016_j_cej_2023_144845 crossref_primary_10_1002_adfm_202421714 crossref_primary_10_1039_D3TA02117C crossref_primary_10_1002_smll_202405487 crossref_primary_10_1038_s41570_024_00597_z crossref_primary_10_1002_ange_202413703 crossref_primary_10_1021_jacs_4c08145 crossref_primary_10_1002_ange_202310284 crossref_primary_10_1002_adfm_202405358 crossref_primary_10_1002_smll_202207664 crossref_primary_10_1039_D4SC00276H crossref_primary_10_1002_smll_202306947 crossref_primary_10_1021_acsnano_4c10901 crossref_primary_10_1002_adfm_202306359 crossref_primary_10_1002_aenm_202304110 crossref_primary_10_1002_adfm_202310294 crossref_primary_10_1002_anie_202301570 crossref_primary_10_1002_aenm_202403092 crossref_primary_10_1002_eem2_12870 crossref_primary_10_1002_aenm_202302738 crossref_primary_10_1016_j_carbpol_2024_122217 crossref_primary_10_1016_j_jcis_2024_10_161 crossref_primary_10_1016_j_cej_2025_159785 crossref_primary_10_1039_D3NJ04827F crossref_primary_10_1002_anie_202319125 crossref_primary_10_1021_acssuschemeng_4c05339 crossref_primary_10_1002_adma_202306531 crossref_primary_10_1002_aenm_202302187 crossref_primary_10_1002_ange_202416755 crossref_primary_10_1002_ange_202301570 crossref_primary_10_1002_anie_202414166 crossref_primary_10_1039_D3EE03297C crossref_primary_10_1016_j_ijbiomac_2023_125597 crossref_primary_10_1002_adma_202404011 crossref_primary_10_1002_smll_202310341 crossref_primary_10_1016_j_electacta_2023_142593 crossref_primary_10_1016_j_apsusc_2024_159982 crossref_primary_10_1039_D3EE02945J crossref_primary_10_1002_adfm_202422677 crossref_primary_10_1002_ange_202317652 crossref_primary_10_1002_anie_202412989 crossref_primary_10_1002_smll_202408312 crossref_primary_10_1039_D4EE00881B crossref_primary_10_1016_j_apcatb_2024_124800 crossref_primary_10_1002_ange_202300418 crossref_primary_10_1002_adma_202419502 crossref_primary_10_1039_D3EE01677C crossref_primary_10_1039_D5EE00027K crossref_primary_10_1002_cssc_202201464 crossref_primary_10_1021_acscatal_4c01516 crossref_primary_10_1039_D4EE02192D crossref_primary_10_1039_D3SC06150G crossref_primary_10_1002_anie_202312982 crossref_primary_10_1002_adfm_202400517 crossref_primary_10_1021_acsami_2c22477 crossref_primary_10_1039_D3NR06195G crossref_primary_10_1002_anie_202404784 crossref_primary_10_1002_anie_202502386 crossref_primary_10_1002_ange_202303011 crossref_primary_10_1021_acs_jpclett_2c03502 crossref_primary_10_1002_adfm_202314189 crossref_primary_10_1002_anie_202418069 crossref_primary_10_1002_cnl2_56 crossref_primary_10_1021_acs_nanolett_2c03919 crossref_primary_10_1002_aenm_202401321 crossref_primary_10_1021_acsnano_3c05702 crossref_primary_10_3390_ma17071646 crossref_primary_10_1021_acsaelm_4c01485 crossref_primary_10_1002_ange_202412989 crossref_primary_10_1002_anie_202317652 crossref_primary_10_1039_D4TA02558J crossref_primary_10_1002_adfm_202304811 crossref_primary_10_1002_smll_202411627 crossref_primary_10_1002_adma_202309038 crossref_primary_10_1039_D3TA03338D crossref_primary_10_1002_ange_202418069 crossref_primary_10_1002_anie_202212666 crossref_primary_10_1039_D4EE05873A crossref_primary_10_1002_ange_202307880 crossref_primary_10_1002_adma_202401091 crossref_primary_10_1002_adma_202412667 crossref_primary_10_1021_jacs_4c03518 crossref_primary_10_1016_j_cej_2024_149535 crossref_primary_10_1002_anie_202413703 crossref_primary_10_1002_adfm_202414022 crossref_primary_10_1021_acsnano_2c06362 crossref_primary_10_1002_adfm_202407050 crossref_primary_10_1002_adfm_202416799 crossref_primary_10_1002_aenm_202404814 crossref_primary_10_1073_pnas_2401060121 crossref_primary_10_1002_adma_202416345 crossref_primary_10_1002_aenm_202300922 crossref_primary_10_1016_j_nanoen_2024_110519 crossref_primary_10_1039_D4CC02266A crossref_primary_10_1039_D4CC06288D crossref_primary_10_1088_2752_5724_ad50f1 crossref_primary_10_1002_adma_202311914 crossref_primary_10_1007_s12598_024_02916_1 crossref_primary_10_1039_D5EE00075K crossref_primary_10_1016_j_nanoen_2025_110876 crossref_primary_10_1088_1361_6463_ad9483 crossref_primary_10_1002_aenm_202401737 crossref_primary_10_1039_D2TA09357J crossref_primary_10_1002_anie_202303011 crossref_primary_10_1002_anie_202416755 crossref_primary_10_3389_fchem_2023_1150885 crossref_primary_10_1016_j_nanoen_2023_109096 crossref_primary_10_1002_ange_202502386 crossref_primary_10_1002_smtd_202300546 crossref_primary_10_1002_adfm_202211979 crossref_primary_10_1016_j_mser_2024_100865 crossref_primary_10_1002_ange_202403187 crossref_primary_10_1002_anie_202300418 crossref_primary_10_1039_D4EE03164D crossref_primary_10_1002_adfm_202409099 crossref_primary_10_1002_inf2_12620 crossref_primary_10_1016_j_jechem_2022_08_026 crossref_primary_10_1002_adfm_202304223 crossref_primary_10_1002_adom_202302201 crossref_primary_10_1021_acsenergylett_4c00992 crossref_primary_10_1002_adma_202403499 crossref_primary_10_1002_anie_202307880 crossref_primary_10_1002_ange_202212666 crossref_primary_10_1016_j_jelechem_2023_117569 crossref_primary_10_1002_adma_202304983 crossref_primary_10_1002_adfm_202300656 crossref_primary_10_1149_1945_7111_ad281a crossref_primary_10_1021_acsnano_4c06252 crossref_primary_10_1002_anie_202415759 crossref_primary_10_1021_acs_energyfuels_5c00038 crossref_primary_10_1021_acscatal_2c05024 crossref_primary_10_1002_ange_202312982 crossref_primary_10_1002_adma_202420005 crossref_primary_10_1002_anie_202308182 crossref_primary_10_1039_D3EE01453C crossref_primary_10_1002_adfm_202310693 crossref_primary_10_1002_cnma_202400004 crossref_primary_10_1038_s41467_024_55348_x crossref_primary_10_1039_D4QI01357C crossref_primary_10_1002_ange_202414166 crossref_primary_10_1002_smll_202310475 crossref_primary_10_1039_D4TA05108D crossref_primary_10_1016_j_jcis_2024_03_149 crossref_primary_10_1039_D4SC00792A crossref_primary_10_1002_smll_202500223 crossref_primary_10_1002_ange_202319125 crossref_primary_10_1002_anie_202423265 crossref_primary_10_1039_D4EE05767H crossref_primary_10_20517_energymater_2024_12 crossref_primary_10_1002_adma_202408213 crossref_primary_10_1002_ange_202312000 crossref_primary_10_1002_adma_202404093 crossref_primary_10_1007_s42823_024_00836_9 crossref_primary_10_1002_anie_202410848 crossref_primary_10_1002_ange_202423265 crossref_primary_10_1021_jacs_4c12960 crossref_primary_10_1002_ange_202318470 crossref_primary_10_1002_cssc_202401010 crossref_primary_10_1039_D3CS00771E crossref_primary_10_1002_adfm_202301291 crossref_primary_10_1002_adma_202418258 crossref_primary_10_1002_adfm_202411137 crossref_primary_10_1002_ange_202415759 crossref_primary_10_1002_aenm_202402900 crossref_primary_10_1002_adfm_202501332 crossref_primary_10_1016_j_cej_2023_148332 crossref_primary_10_1016_j_est_2024_111716 crossref_primary_10_1038_s41467_025_58273_9 crossref_primary_10_1002_smll_202310293 crossref_primary_10_1002_anie_202310284 crossref_primary_10_1002_anie_202403187 crossref_primary_10_1038_s41467_022_34303_8 crossref_primary_10_1002_smll_202310972 crossref_primary_10_1021_acsnano_3c01518 crossref_primary_10_1002_adfm_202416931 crossref_primary_10_1016_j_electacta_2024_144928 crossref_primary_10_1021_acsnano_3c07868 crossref_primary_10_1016_j_jpowsour_2024_234325 crossref_primary_10_1016_j_ensm_2023_103019 crossref_primary_10_1002_adfm_202410712 crossref_primary_10_1002_eem2_12522 crossref_primary_10_1016_j_cej_2023_142580 crossref_primary_10_1002_adfm_202406125 crossref_primary_10_1016_j_cej_2024_155250 crossref_primary_10_1002_ange_202410848 crossref_primary_10_1016_j_jpowsour_2024_234798 crossref_primary_10_1016_j_inoche_2024_113489 crossref_primary_10_1021_acsaem_2c04102 crossref_primary_10_1002_adma_202408317 crossref_primary_10_1002_aenm_202303221 crossref_primary_10_1016_j_apsusc_2024_162180 crossref_primary_10_1021_jacs_3c12638 crossref_primary_10_1002_aenm_202404426 crossref_primary_10_1093_nsr_nwae181 crossref_primary_10_1002_anie_202312000 crossref_primary_10_1002_anie_202318470 crossref_primary_10_1039_D3TA01706K crossref_primary_10_1021_acsenergylett_3c01354 crossref_primary_10_1021_acs_nanolett_3c01310 crossref_primary_10_3390_batteries9010062 |
Cites_doi | 10.1016/j.electacta.2018.11.131 10.1016/B978-0-12-746270-7.50012-4 10.1002/adma.202006897 10.1002/adma.202003021 10.1016/S0144-8617(02)00053-X 10.1002/star.200700696 10.1021/acsami.1c03804 10.1038/s41563-018-0063-z 10.1038/nenergy.2016.119 10.1002/aesr.202100076 10.1021/jacs.0c09794 10.1002/aenm.202102010 10.1021/cr0204101 10.1002/(SICI)1099-0518(19990801)37:15<2711::AID-POLA4>3.0.CO;2-6 10.1039/C9TA13081K 10.1007/s12274-017-1920-9 10.1002/sia.740180107 10.1126/science.1212741 10.1039/C8EE02825G 10.1021/ja00530a003 10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2 10.1021/acs.jpca.6b00982 10.1016/0008-6215(96)00159-0 10.1038/ncomms7303 10.1002/aenm.202001997 10.1002/adfm.201802564 10.1021/jf011652p 10.1038/35104644 10.1016/j.cej.2021.131283 10.1002/eem2.12108 10.1002/anie.202014447 10.1002/anie.202016531 10.1002/sia.740010304 10.1021/acssuschemeng.0c04571 10.1016/j.joule.2019.02.012 10.1038/s41467-021-27728-0 10.1002/adma.202004240 10.1002/star.201000013 10.1002/star.19910431002 10.1038/nenergy.2016.39 10.1021/ja00478a045 |
ContentType | Journal Article |
Copyright | 2022 The Authors. Advanced Materials published by Wiley‐VCH GmbH 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH. 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. Advanced Materials published by Wiley‐VCH GmbH – notice: 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH. – notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202201716 |
DatabaseName | Wiley Online Library Open Access (Activated by CARLI) CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database PubMed CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access (Activated by CARLI) url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 35435291 10_1002_adma_202201716 ADMA202201716 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Australian Research Council (ARC) funderid: FL170100154; DP220102596 – fundername: Australian Government – fundername: University of Adelaide – fundername: National Computational Infrastructure (NCI) – fundername: Phoenix High Performance Computing – fundername: Australian Research Council (ARC) grantid: FL170100154 – fundername: Australian Research Council (ARC) grantid: DP220102596 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGYGG AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADNMO AETEA AFFNX AGQPQ ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH AEUQT AFPWT NPM RWI RWM WRC 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4796-80a97647eaa8a4013924d709641b818b99da1251eb75c10b38d658e8e1c1d45e3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 09:58:27 EDT 2025 Fri Jul 25 08:06:13 EDT 2025 Wed Feb 19 02:25:56 EST 2025 Thu Apr 24 23:07:50 EDT 2025 Tue Jul 01 02:33:16 EDT 2025 Wed Jun 11 08:29:51 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Keywords | shuttle effect Zn-iodine batteries starch Zn corrosion structure confinement |
Language | English |
License | Attribution 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4796-80a97647eaa8a4013924d709641b818b99da1251eb75c10b38d658e8e1c1d45e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4568-8422 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202201716 |
PMID | 35435291 |
PQID | 2674196222 |
PQPubID | 2045203 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2652031180 proquest_journals_2674196222 pubmed_primary_35435291 crossref_citationtrail_10_1002_adma_202201716 crossref_primary_10_1002_adma_202201716 wiley_primary_10_1002_adma_202201716_ADMA202201716 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-01 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2020 1961; 32 72 2018; 28 2019; 3 2002; 50 2020; 142 2011 2001; 334 414 2019; 12 2022 2022; 428 13 2018 2019 2021 2020; 11 296 2 8 1992; 18 2020; 32 2016; 120 2020; 8 2021 2015; 60 6 2018; 17 2020; 4 2016; 1 2021; 33 1991; 43 2002; 103 2003 1999; 51 37 2021 2020; 13 10 1978; 100 1996; 292 1979; 1 2008; 60 2021 2021; 60 11 1980; 102 1984 2010; 62 e_1_2_7_6_1 e_1_2_7_4_2 e_1_2_7_5_1 e_1_2_7_3_2 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_8_3 e_1_2_7_8_2 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_6_2 e_1_2_7_7_1 e_1_2_7_19_2 e_1_2_7_19_1 e_1_2_7_17_2 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_1_2 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_12_2 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_10_2 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_8_4 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_24_1 e_1_2_7_23_1 e_1_2_7_22_1 e_1_2_7_21_1 e_1_2_7_20_1 |
References_xml | – volume: 51 37 start-page: 191 2711 year: 2003 1999 publication-title: Carbohydr. Polym. J. Polym. Sci., Part A: Polym. Chem. – volume: 334 414 start-page: 928 359 year: 2011 2001 publication-title: Science Nature – volume: 1 start-page: 86 year: 1979 publication-title: Surf. Interface Anal. – volume: 60 6 start-page: 3791 6303 year: 2021 2015 publication-title: Angew. Chem. Nat. Commun. – volume: 3 start-page: 1289 year: 2019 publication-title: Joule – volume: 103 start-page: 1649 year: 2002 publication-title: Chem. Rev. – volume: 32 72 start-page: 175 year: 2020 1961 publication-title: Adv. Mater. Geol. Soc. Am. Bull. – volume: 60 11 start-page: 7366 year: 2021 2021 publication-title: Angew. Chem., Int. Ed. Adv. Energy Mater. – volume: 62 start-page: 153 389 year: 1984 2010 publication-title: Starch: Chem. Technol. Starch – volume: 60 start-page: 165 year: 2008 publication-title: Starch – volume: 4 start-page: 111 year: 2020 publication-title: Energy Environ. Mater. – volume: 50 start-page: 3912 year: 2002 publication-title: J. Agric. Food Chem. – volume: 292 start-page: 129 year: 1996 publication-title: Carbohydr. Res. – volume: 43 start-page: 375 year: 1991 publication-title: Starch – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 17 start-page: 543 year: 2018 publication-title: Nat. Mater. – volume: 11 296 2 8 start-page: 3548 755 3785 year: 2018 2019 2021 2020 publication-title: Nano Res. Electrochim. Acta Adv. Energy Sustainability Res. J. Mater. Chem. A – volume: 120 start-page: 2144 year: 2016 publication-title: J. Phys. Chem. A – volume: 100 start-page: 3215 year: 1978 publication-title: J. Am. Chem. Soc. – volume: 428 13 start-page: 125 year: 2022 2022 publication-title: Chem. Eng. J. Nat. Commun. – volume: 8 year: 2020 publication-title: ACS Sustainable Chem. Eng. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 12 start-page: 1834 year: 2019 publication-title: Energy Environ. Sci. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 18 start-page: 39 year: 1992 publication-title: Surf. Interface Anal. – volume: 102 start-page: 3322 year: 1980 publication-title: J. Am. Chem. Soc. – volume: 142 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 13 10 year: 2021 2020 publication-title: ACS Appl. Mater. Interfaces Adv. Energy Mater. – ident: e_1_2_7_8_2 doi: 10.1016/j.electacta.2018.11.131 – ident: e_1_2_7_12_1 doi: 10.1016/B978-0-12-746270-7.50012-4 – ident: e_1_2_7_9_1 doi: 10.1002/adma.202006897 – ident: e_1_2_7_29_1 doi: 10.1002/adma.202003021 – ident: e_1_2_7_17_1 doi: 10.1016/S0144-8617(02)00053-X – ident: e_1_2_7_20_1 doi: 10.1002/star.200700696 – ident: e_1_2_7_10_1 doi: 10.1021/acsami.1c03804 – ident: e_1_2_7_23_1 doi: 10.1038/s41563-018-0063-z – ident: e_1_2_7_21_1 doi: 10.1038/nenergy.2016.119 – ident: e_1_2_7_8_3 doi: 10.1002/aesr.202100076 – ident: e_1_2_7_30_1 doi: 10.1021/jacs.0c09794 – ident: e_1_2_7_3_2 doi: 10.1002/aenm.202102010 – ident: e_1_2_7_5_1 doi: 10.1021/cr0204101 – ident: e_1_2_7_17_2 doi: 10.1002/(SICI)1099-0518(19990801)37:15<2711::AID-POLA4>3.0.CO;2-6 – ident: e_1_2_7_8_4 doi: 10.1039/C9TA13081K – ident: e_1_2_7_8_1 doi: 10.1007/s12274-017-1920-9 – ident: e_1_2_7_27_1 doi: 10.1002/sia.740180107 – ident: e_1_2_7_1_1 doi: 10.1126/science.1212741 – ident: e_1_2_7_7_1 doi: 10.1039/C8EE02825G – ident: e_1_2_7_11_1 doi: 10.1021/ja00530a003 – ident: e_1_2_7_4_2 doi: 10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2 – ident: e_1_2_7_18_1 doi: 10.1021/acs.jpca.6b00982 – ident: e_1_2_7_16_1 doi: 10.1016/0008-6215(96)00159-0 – ident: e_1_2_7_6_2 doi: 10.1038/ncomms7303 – ident: e_1_2_7_10_2 doi: 10.1002/aenm.202001997 – ident: e_1_2_7_2_1 doi: 10.1002/adfm.201802564 – ident: e_1_2_7_15_1 doi: 10.1021/jf011652p – ident: e_1_2_7_1_2 doi: 10.1038/35104644 – ident: e_1_2_7_19_1 doi: 10.1016/j.cej.2021.131283 – ident: e_1_2_7_22_1 doi: 10.1002/eem2.12108 – ident: e_1_2_7_6_1 doi: 10.1002/anie.202014447 – ident: e_1_2_7_3_1 doi: 10.1002/anie.202016531 – ident: e_1_2_7_28_1 doi: 10.1002/sia.740010304 – ident: e_1_2_7_25_1 doi: 10.1021/acssuschemeng.0c04571 – ident: e_1_2_7_26_1 doi: 10.1016/j.joule.2019.02.012 – ident: e_1_2_7_19_2 doi: 10.1038/s41467-021-27728-0 – ident: e_1_2_7_4_1 doi: 10.1002/adma.202004240 – ident: e_1_2_7_12_2 doi: 10.1002/star.201000013 – ident: e_1_2_7_13_1 doi: 10.1002/star.19910431002 – ident: e_1_2_7_24_1 doi: 10.1038/nenergy.2016.39 – ident: e_1_2_7_14_1 doi: 10.1021/ja00478a045 |
SSID | ssj0009606 |
Score | 2.7057717 |
Snippet | Aqueous Zn–iodine (Zn–I2) batteries have been regarded as a promising energy‐storage system owing to their high energy/power density, safety, and... Aqueous Zn–iodine (Zn–I 2 ) batteries have been regarded as a promising energy‐storage system owing to their high energy/power density, safety, and... Aqueous Zn-iodine (Zn-I ) batteries have been regarded as a promising energy-storage system owing to their high energy/power density, safety, and... Aqueous Zn-iodine (Zn-I2 ) batteries have been regarded as a promising energy-storage system owing to their high energy/power density, safety, and... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2201716 |
SubjectTerms | Bonding strength Confinement Corrosion Cycles Energy storage Failure analysis Failure mechanisms Iodine Materials science Photoelectrons Raman spectroscopy shuttle effect Spectrum analysis starch Storage batteries structure confinement Ultraviolet spectra Zn corrosion Zn–iodine batteries |
Title | Polyiodide Confinement by Starch Enables Shuttle‐Free Zn–Iodine Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202201716 https://www.ncbi.nlm.nih.gov/pubmed/35435291 https://www.proquest.com/docview/2674196222 https://www.proquest.com/docview/2652031180 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bT9swFMePWJ_Yw8ZtIwMqIyHxFEgc5-LHCqgKUhHiIqG9RL6hoaEU0faBPfERJvEN-0k4J2nTFjQhjbdEthXfjv234_MzwE6U6YAcKn3sLZkvjAh8ZW-EbxWK8TjQNkrJG7l7mnSuxMl1fD3jxV_xIeoNN7KMcrwmA1e6vz-FhipbcoM4L4kvOAjTgS1SRedTfhTJ8xK2F8W-TEQ2oTYGfH8--fys9EZqzivXcuppfwU1yXR14uT33nCg98yfVzzHj5RqCb6MdSlrVR1pGRZcsQKfZ2iFq9A969093vbsrXWMHAUxhLYWmX5kKFnRXthR6YjVZxe_hoRGHj39bT84x34Wo6fnY0xYOFbxPHF5vgZX7aPLg44_vo3BNyKVRC1WKF1E6pTKFK3KcOVmU6xiEWqc9bWUVpFacjqNTRjoKLOoblzmQhNaEbvoGzSKXuHWgUmdasuTKJEmE6EJdCBTg8W94UrTLWge-JPWyM0YVU43ZtzlFWSZ51RNeV1NHuzW8e8rSMc_Y25OGjcfG2s_5wnKKpmgUvJguw5GM6N_J6pwvSHFiTmOf2EWePC96hT1p6IYNSeXoQe8bNp38pC3Drut-u3H_yTagEV6ro6sbUJj8DB0WyiOBroJn7g4a5Zm8ALCUwTe |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LTtwwFIaPCl0UFtAbEKDUlZBYBRLHuXg5ahkNLYMqLhJiE_mGiooyCGYWsOIRkPqGPEnPcSah0wpVgmViW_Ht2L8dn88A60mhI3KoDLG3FKEwIgqVPRWhVSjG00jbJCdv5P5e1jsSX4_T5jQh-cLUfIh2w40sw4_XZOC0Ib31QA1V1oODOPfIlyl4Sdd6-1XV_gNBigS6x-0laSgzUTTcxohvTaafnJf-EZuT2tVPPt150E226zMnPzdHQ71pbv4iOj6rXK9hbixNWafuS2_ghavewuwfwMJ30P8-OL8-G9gz6xj5CmII7S4yfc1QtaLJsG3vi3XFDn6MiI58f3vXvXSOnVT3t792MGHlWI30xBX6ezjqbh9-7oXjCxlCI3JJ4GKF6kXkTqlC0cIMF282xzoWscaJX0tpFQkmp_PUxJFOCosCxxUuNrEVqUsWYLoaVG4JmNS5tjxLMmkKEZtIRzI3WNxTrjRdhBZA2DRHaca0cro047ysOcu8pGoq22oKYKONf1FzOh6Nudq0bjm216uSZ6isZIZiKYBPbTBaGv0-UZUbjChOynEIjIsogMW6V7SfSlKUnVzGAXDftv_JQ9n50u-0T8tPSfQRXvUO-7vl7s7etxWYoff1CbZVmB5ejtwH1EpDveat4Tfvaggi |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LTtwwFIaPKJWqsqClFwiF4kqVugo4jpPYyxHDCNoOQm2RUDeRb6MiUAbBzAJWPAJS35An6TnJTGCoqkrtMrGt-Hbs347PZ4D3qbKcHCpj7C0qlk7y2PiBjL1BMZ5x69OCvJH7-_nuofx4lB3d8-Jv-BDthhtZRj1ek4Gf-cHWHTTU-JobJERNfHkEj2XOFfXr7pc7gBTp85q2l2axzqWaYhu52JpNPzst_aY1Z6VrPff0noGZ5ro5cnKyOR7ZTXf1AOj4P8V6DosTYco6TU9agrlQvYCFe7jCl9A_GJ5eHg_9sQ-MPAUxhPYWmb1kqFnRYNhO7Yl1wb7-GBMb-fb6pnceAvte3V7_3MOEVWAN0BPX56_gsLfzbXs3nlzHEDtZaMIWG9QusgjGKEPLMly6-QKrWCYWp32rtTckl4ItMpdwmyqP8iaokLjEyyykr2G-GlZhBZi2hfUiT3PtlEwct1wXDos7EMbSNWgRxNPWKN2EVU5XZpyWDWVZlFRNZVtNEXxo4581lI4_xlybNm45sdaLUuSoq3SOUimCd20w2hn9PDFVGI4pTiZwAEwUj2C56RTtp9IMRafQSQSibtq_5KHsdPud9mn1XxJtwJODbq_8vLf_6Q08pdfN8bU1mB-dj8M6CqWRfVvbwi_iEwba |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polyiodide+Confinement+by+Starch+Enables+Shuttle%E2%80%90Free+Zn%E2%80%93Iodine+Batteries&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhang%2C+Shao%E2%80%90Jian&rft.au=Hao%2C+Junnan&rft.au=Li%2C+Huan&rft.au=Zhang%2C+Peng%E2%80%90Fang&rft.date=2022-06-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=34&rft.issue=23&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202201716&rft.externalDBID=10.1002%252Fadma.202201716&rft.externalDocID=ADMA202201716 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |