Polyiodide Confinement by Starch Enables Shuttle‐Free Zn–Iodine Batteries

Aqueous Zn–iodine (Zn–I2) batteries have been regarded as a promising energy‐storage system owing to their high energy/power density, safety, and cost‐effectiveness. However, the polyiodide shuttling results in serious active mass loss and Zn corrosion, which limits the cycling life of Zn–I2 batteri...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 34; no. 23; pp. e2201716 - n/a
Main Authors Zhang, Shao‐Jian, Hao, Junnan, Li, Huan, Zhang, Peng‐Fang, Yin, Zu‐Wei, Li, Yu‐Yang, Zhang, Bingkai, Lin, Zhan, Qiao, Shi‐Zhang
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.06.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aqueous Zn–iodine (Zn–I2) batteries have been regarded as a promising energy‐storage system owing to their high energy/power density, safety, and cost‐effectiveness. However, the polyiodide shuttling results in serious active mass loss and Zn corrosion, which limits the cycling life of Zn–I2 batteries. Inspired by the chromogenic reaction between starch and iodine, a structure confinement strategy is proposed to suppress polyiodide shuttling in Zn–I2 batteries by hiring starch, due to its unique double‐helix structure. In situ Raman spectroscopy demonstrates an I5−‐dominated I−/I2 conversion mechanism when using starch. The I5− presents a much stronger bonding with starch than I3−, inhibiting the polyiodide shuttling in Zn–I2 batteries, which is confirmed by in situ ultraviolet–visible spectra. Consequently, a highly reversible Zn–I2 battery with high Coulombic efficiency (≈100% at 0.2 A g−1) and ultralong cycling stability (>50 000 cycles) is realized. Simultaneously, the Zn corrosion triggered by polyiodide is effectively inhibited owing to the desirable shuttling‐suppression by the starch, as evidenced by X‐ray photoelectron spectroscopy analysis. This work provides a new understanding of the failure mechanism of Zn–I2 batteries and proposes a cheap but effective strategy to realize high‐cyclability Zn–I2 batteries. Inspired by the significant chromogenic reaction between starch and iodine, the shuttle effect of Zn–I2 batteries is effectively addressed by using starch, which strongly anchors polyiodide anions due to its unique double‐helix structure. Benefiting from this structure confinement, a Coulombic efficiency of almost 100% and an ultralong life of 50 000 cycles are realized in Zn–I2 batteries.
AbstractList Aqueous Zn–iodine (Zn–I2) batteries have been regarded as a promising energy‐storage system owing to their high energy/power density, safety, and cost‐effectiveness. However, the polyiodide shuttling results in serious active mass loss and Zn corrosion, which limits the cycling life of Zn–I2 batteries. Inspired by the chromogenic reaction between starch and iodine, a structure confinement strategy is proposed to suppress polyiodide shuttling in Zn–I2 batteries by hiring starch, due to its unique double‐helix structure. In situ Raman spectroscopy demonstrates an I5−‐dominated I−/I2 conversion mechanism when using starch. The I5− presents a much stronger bonding with starch than I3−, inhibiting the polyiodide shuttling in Zn–I2 batteries, which is confirmed by in situ ultraviolet–visible spectra. Consequently, a highly reversible Zn–I2 battery with high Coulombic efficiency (≈100% at 0.2 A g−1) and ultralong cycling stability (>50 000 cycles) is realized. Simultaneously, the Zn corrosion triggered by polyiodide is effectively inhibited owing to the desirable shuttling‐suppression by the starch, as evidenced by X‐ray photoelectron spectroscopy analysis. This work provides a new understanding of the failure mechanism of Zn–I2 batteries and proposes a cheap but effective strategy to realize high‐cyclability Zn–I2 batteries. Inspired by the significant chromogenic reaction between starch and iodine, the shuttle effect of Zn–I2 batteries is effectively addressed by using starch, which strongly anchors polyiodide anions due to its unique double‐helix structure. Benefiting from this structure confinement, a Coulombic efficiency of almost 100% and an ultralong life of 50 000 cycles are realized in Zn–I2 batteries.
Aqueous Zn-iodine (Zn-I2 ) batteries have been regarded as a promising energy-storage system owing to their high energy/power density, safety, and cost-effectiveness. However, the polyiodide shuttling results in serious active mass loss and Zn corrosion, which limits the cycling life of Zn-I2 batteries. Inspired by the chromogenic reaction between starch and iodine, a structure confinement strategy is proposed to suppress polyiodide shuttling in Zn-I2 batteries by hiring starch, due to its unique double-helix structure. In situ Raman spectroscopy demonstrates an I5 - -dominated I- /I2 conversion mechanism when using starch. The I5 - presents a much stronger bonding with starch than I3 - , inhibiting the polyiodide shuttling in Zn-I2 batteries, which is confirmed by in situ ultraviolet-visible spectra. Consequently, a highly reversible Zn-I2 battery with high Coulombic efficiency (≈100% at 0.2 A g-1 ) and ultralong cycling stability (>50 000 cycles) is realized. Simultaneously, the Zn corrosion triggered by polyiodide is effectively inhibited owing to the desirable shuttling-suppression by the starch, as evidenced by X-ray photoelectron spectroscopy analysis. This work provides a new understanding of the failure mechanism of Zn-I2 batteries and proposes a cheap but effective strategy to realize high-cyclability Zn-I2 batteries.Aqueous Zn-iodine (Zn-I2 ) batteries have been regarded as a promising energy-storage system owing to their high energy/power density, safety, and cost-effectiveness. However, the polyiodide shuttling results in serious active mass loss and Zn corrosion, which limits the cycling life of Zn-I2 batteries. Inspired by the chromogenic reaction between starch and iodine, a structure confinement strategy is proposed to suppress polyiodide shuttling in Zn-I2 batteries by hiring starch, due to its unique double-helix structure. In situ Raman spectroscopy demonstrates an I5 - -dominated I- /I2 conversion mechanism when using starch. The I5 - presents a much stronger bonding with starch than I3 - , inhibiting the polyiodide shuttling in Zn-I2 batteries, which is confirmed by in situ ultraviolet-visible spectra. Consequently, a highly reversible Zn-I2 battery with high Coulombic efficiency (≈100% at 0.2 A g-1 ) and ultralong cycling stability (>50 000 cycles) is realized. Simultaneously, the Zn corrosion triggered by polyiodide is effectively inhibited owing to the desirable shuttling-suppression by the starch, as evidenced by X-ray photoelectron spectroscopy analysis. This work provides a new understanding of the failure mechanism of Zn-I2 batteries and proposes a cheap but effective strategy to realize high-cyclability Zn-I2 batteries.
Aqueous Zn–iodine (Zn–I2) batteries have been regarded as a promising energy‐storage system owing to their high energy/power density, safety, and cost‐effectiveness. However, the polyiodide shuttling results in serious active mass loss and Zn corrosion, which limits the cycling life of Zn–I2 batteries. Inspired by the chromogenic reaction between starch and iodine, a structure confinement strategy is proposed to suppress polyiodide shuttling in Zn–I2 batteries by hiring starch, due to its unique double‐helix structure. In situ Raman spectroscopy demonstrates an I5−‐dominated I−/I2 conversion mechanism when using starch. The I5− presents a much stronger bonding with starch than I3−, inhibiting the polyiodide shuttling in Zn–I2 batteries, which is confirmed by in situ ultraviolet–visible spectra. Consequently, a highly reversible Zn–I2 battery with high Coulombic efficiency (≈100% at 0.2 A g−1) and ultralong cycling stability (>50 000 cycles) is realized. Simultaneously, the Zn corrosion triggered by polyiodide is effectively inhibited owing to the desirable shuttling‐suppression by the starch, as evidenced by X‐ray photoelectron spectroscopy analysis. This work provides a new understanding of the failure mechanism of Zn–I2 batteries and proposes a cheap but effective strategy to realize high‐cyclability Zn–I2 batteries.
Aqueous Zn-iodine (Zn-I ) batteries have been regarded as a promising energy-storage system owing to their high energy/power density, safety, and cost-effectiveness. However, the polyiodide shuttling results in serious active mass loss and Zn corrosion, which limits the cycling life of Zn-I batteries. Inspired by the chromogenic reaction between starch and iodine, a structure confinement strategy is proposed to suppress polyiodide shuttling in Zn-I batteries by hiring starch, due to its unique double-helix structure. In situ Raman spectroscopy demonstrates an I -dominated I /I conversion mechanism when using starch. The I presents a much stronger bonding with starch than I , inhibiting the polyiodide shuttling in Zn-I batteries, which is confirmed by in situ ultraviolet-visible spectra. Consequently, a highly reversible Zn-I battery with high Coulombic efficiency (≈100% at 0.2 A g ) and ultralong cycling stability (>50 000 cycles) is realized. Simultaneously, the Zn corrosion triggered by polyiodide is effectively inhibited owing to the desirable shuttling-suppression by the starch, as evidenced by X-ray photoelectron spectroscopy analysis. This work provides a new understanding of the failure mechanism of Zn-I batteries and proposes a cheap but effective strategy to realize high-cyclability Zn-I batteries.
Aqueous Zn–iodine (Zn–I 2 ) batteries have been regarded as a promising energy‐storage system owing to their high energy/power density, safety, and cost‐effectiveness. However, the polyiodide shuttling results in serious active mass loss and Zn corrosion, which limits the cycling life of Zn–I 2 batteries. Inspired by the chromogenic reaction between starch and iodine, a structure confinement strategy is proposed to suppress polyiodide shuttling in Zn–I 2 batteries by hiring starch, due to its unique double‐helix structure. In situ Raman spectroscopy demonstrates an I 5 − ‐dominated I − /I 2 conversion mechanism when using starch. The I 5 − presents a much stronger bonding with starch than I 3 − , inhibiting the polyiodide shuttling in Zn–I 2 batteries, which is confirmed by in situ ultraviolet–visible spectra. Consequently, a highly reversible Zn–I 2 battery with high Coulombic efficiency (≈100% at 0.2 A g −1 ) and ultralong cycling stability (>50 000 cycles) is realized. Simultaneously, the Zn corrosion triggered by polyiodide is effectively inhibited owing to the desirable shuttling‐suppression by the starch, as evidenced by X‐ray photoelectron spectroscopy analysis. This work provides a new understanding of the failure mechanism of Zn–I 2 batteries and proposes a cheap but effective strategy to realize high‐cyclability Zn–I 2 batteries.
Author Zhang, Bingkai
Zhang, Peng‐Fang
Zhang, Shao‐Jian
Yin, Zu‐Wei
Li, Huan
Hao, Junnan
Qiao, Shi‐Zhang
Lin, Zhan
Li, Yu‐Yang
Author_xml – sequence: 1
  givenname: Shao‐Jian
  surname: Zhang
  fullname: Zhang, Shao‐Jian
  organization: The University of Adelaide
– sequence: 2
  givenname: Junnan
  surname: Hao
  fullname: Hao, Junnan
  organization: The University of Adelaide
– sequence: 3
  givenname: Huan
  surname: Li
  fullname: Li, Huan
  organization: The University of Adelaide
– sequence: 4
  givenname: Peng‐Fang
  surname: Zhang
  fullname: Zhang, Peng‐Fang
  organization: Liaocheng University
– sequence: 5
  givenname: Zu‐Wei
  surname: Yin
  fullname: Yin, Zu‐Wei
  organization: Xiamen University
– sequence: 6
  givenname: Yu‐Yang
  surname: Li
  fullname: Li, Yu‐Yang
  organization: Xiamen University
– sequence: 7
  givenname: Bingkai
  surname: Zhang
  fullname: Zhang, Bingkai
  organization: Guangdong University of Technology
– sequence: 8
  givenname: Zhan
  surname: Lin
  fullname: Lin, Zhan
  email: zhanlin@gdut.edu.cn
  organization: Guangdong University of Technology
– sequence: 9
  givenname: Shi‐Zhang
  orcidid: 0000-0002-4568-8422
  surname: Qiao
  fullname: Qiao, Shi‐Zhang
  email: s.qiao@adelaide.edu.au
  organization: The University of Adelaide
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35435291$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFKHTEUhoMoetVuXcqAm27mNieTZJLl9VZbQalgu-kmZGbOxchMYpMM5e58hELf0CfpyNUKQunqbL7v5-f8-2TbB4-EHAGdA6Xsg-0GO2eUMQo1yC0yA8Gg5FSLbTKjuhKlllztkf2U7iilWlK5S_YqwSvBNMzI1XXo1y50rsNiGfzKeRzQ56JZFzfZxva2OPO26TEVN7djzj0-Pvw6j4jFd__48PtiEj0WpzZnjA7TIdlZ2T7hu-d7QL6dn31dfi4vv3y6WC4uy5bXWpaKWl1LXqO1ynIKlWa8q6dyHBoFqtG6s8AEYFOLFmhTqU4KhQqhhY4LrA7I-03ufQw_RkzZDC612PfWYxiTYVIwWgEoOqEnb9C7MEY_tZuomoOWjLGJOn6mxmbAztxHN9i4Ni-PmgC-AdoYUoq4Mq3LNrvgc7SuN0DN0x7maQ_zd49Jm7_RXpL_KeiN8NP1uP4PbRYfrxav7h-b3JyT
CitedBy_id crossref_primary_10_1016_j_ensm_2024_103731
crossref_primary_10_1021_acsnano_4c07880
crossref_primary_10_1021_jacs_2c13540
crossref_primary_10_1002_ange_202308182
crossref_primary_10_1016_j_jallcom_2023_169696
crossref_primary_10_1016_j_jpowsour_2024_234658
crossref_primary_10_1002_ange_202404784
crossref_primary_10_1002_aenm_202404845
crossref_primary_10_1021_acsami_4c11550
crossref_primary_10_1002_aenm_202402306
crossref_primary_10_1002_adma_202403097
crossref_primary_10_1002_cnl2_155
crossref_primary_10_1016_j_cej_2023_144845
crossref_primary_10_1002_adfm_202421714
crossref_primary_10_1039_D3TA02117C
crossref_primary_10_1002_smll_202405487
crossref_primary_10_1038_s41570_024_00597_z
crossref_primary_10_1002_ange_202413703
crossref_primary_10_1021_jacs_4c08145
crossref_primary_10_1002_ange_202310284
crossref_primary_10_1002_adfm_202405358
crossref_primary_10_1002_smll_202207664
crossref_primary_10_1039_D4SC00276H
crossref_primary_10_1002_smll_202306947
crossref_primary_10_1021_acsnano_4c10901
crossref_primary_10_1002_adfm_202306359
crossref_primary_10_1002_aenm_202304110
crossref_primary_10_1002_adfm_202310294
crossref_primary_10_1002_anie_202301570
crossref_primary_10_1002_aenm_202403092
crossref_primary_10_1002_eem2_12870
crossref_primary_10_1002_aenm_202302738
crossref_primary_10_1016_j_carbpol_2024_122217
crossref_primary_10_1016_j_jcis_2024_10_161
crossref_primary_10_1016_j_cej_2025_159785
crossref_primary_10_1039_D3NJ04827F
crossref_primary_10_1002_anie_202319125
crossref_primary_10_1021_acssuschemeng_4c05339
crossref_primary_10_1002_adma_202306531
crossref_primary_10_1002_aenm_202302187
crossref_primary_10_1002_ange_202416755
crossref_primary_10_1002_ange_202301570
crossref_primary_10_1002_anie_202414166
crossref_primary_10_1039_D3EE03297C
crossref_primary_10_1016_j_ijbiomac_2023_125597
crossref_primary_10_1002_adma_202404011
crossref_primary_10_1002_smll_202310341
crossref_primary_10_1016_j_electacta_2023_142593
crossref_primary_10_1016_j_apsusc_2024_159982
crossref_primary_10_1039_D3EE02945J
crossref_primary_10_1002_adfm_202422677
crossref_primary_10_1002_ange_202317652
crossref_primary_10_1002_anie_202412989
crossref_primary_10_1002_smll_202408312
crossref_primary_10_1039_D4EE00881B
crossref_primary_10_1016_j_apcatb_2024_124800
crossref_primary_10_1002_ange_202300418
crossref_primary_10_1002_adma_202419502
crossref_primary_10_1039_D3EE01677C
crossref_primary_10_1039_D5EE00027K
crossref_primary_10_1002_cssc_202201464
crossref_primary_10_1021_acscatal_4c01516
crossref_primary_10_1039_D4EE02192D
crossref_primary_10_1039_D3SC06150G
crossref_primary_10_1002_anie_202312982
crossref_primary_10_1002_adfm_202400517
crossref_primary_10_1021_acsami_2c22477
crossref_primary_10_1039_D3NR06195G
crossref_primary_10_1002_anie_202404784
crossref_primary_10_1002_anie_202502386
crossref_primary_10_1002_ange_202303011
crossref_primary_10_1021_acs_jpclett_2c03502
crossref_primary_10_1002_adfm_202314189
crossref_primary_10_1002_anie_202418069
crossref_primary_10_1002_cnl2_56
crossref_primary_10_1021_acs_nanolett_2c03919
crossref_primary_10_1002_aenm_202401321
crossref_primary_10_1021_acsnano_3c05702
crossref_primary_10_3390_ma17071646
crossref_primary_10_1021_acsaelm_4c01485
crossref_primary_10_1002_ange_202412989
crossref_primary_10_1002_anie_202317652
crossref_primary_10_1039_D4TA02558J
crossref_primary_10_1002_adfm_202304811
crossref_primary_10_1002_smll_202411627
crossref_primary_10_1002_adma_202309038
crossref_primary_10_1039_D3TA03338D
crossref_primary_10_1002_ange_202418069
crossref_primary_10_1002_anie_202212666
crossref_primary_10_1039_D4EE05873A
crossref_primary_10_1002_ange_202307880
crossref_primary_10_1002_adma_202401091
crossref_primary_10_1002_adma_202412667
crossref_primary_10_1021_jacs_4c03518
crossref_primary_10_1016_j_cej_2024_149535
crossref_primary_10_1002_anie_202413703
crossref_primary_10_1002_adfm_202414022
crossref_primary_10_1021_acsnano_2c06362
crossref_primary_10_1002_adfm_202407050
crossref_primary_10_1002_adfm_202416799
crossref_primary_10_1002_aenm_202404814
crossref_primary_10_1073_pnas_2401060121
crossref_primary_10_1002_adma_202416345
crossref_primary_10_1002_aenm_202300922
crossref_primary_10_1016_j_nanoen_2024_110519
crossref_primary_10_1039_D4CC02266A
crossref_primary_10_1039_D4CC06288D
crossref_primary_10_1088_2752_5724_ad50f1
crossref_primary_10_1002_adma_202311914
crossref_primary_10_1007_s12598_024_02916_1
crossref_primary_10_1039_D5EE00075K
crossref_primary_10_1016_j_nanoen_2025_110876
crossref_primary_10_1088_1361_6463_ad9483
crossref_primary_10_1002_aenm_202401737
crossref_primary_10_1039_D2TA09357J
crossref_primary_10_1002_anie_202303011
crossref_primary_10_1002_anie_202416755
crossref_primary_10_3389_fchem_2023_1150885
crossref_primary_10_1016_j_nanoen_2023_109096
crossref_primary_10_1002_ange_202502386
crossref_primary_10_1002_smtd_202300546
crossref_primary_10_1002_adfm_202211979
crossref_primary_10_1016_j_mser_2024_100865
crossref_primary_10_1002_ange_202403187
crossref_primary_10_1002_anie_202300418
crossref_primary_10_1039_D4EE03164D
crossref_primary_10_1002_adfm_202409099
crossref_primary_10_1002_inf2_12620
crossref_primary_10_1016_j_jechem_2022_08_026
crossref_primary_10_1002_adfm_202304223
crossref_primary_10_1002_adom_202302201
crossref_primary_10_1021_acsenergylett_4c00992
crossref_primary_10_1002_adma_202403499
crossref_primary_10_1002_anie_202307880
crossref_primary_10_1002_ange_202212666
crossref_primary_10_1016_j_jelechem_2023_117569
crossref_primary_10_1002_adma_202304983
crossref_primary_10_1002_adfm_202300656
crossref_primary_10_1149_1945_7111_ad281a
crossref_primary_10_1021_acsnano_4c06252
crossref_primary_10_1002_anie_202415759
crossref_primary_10_1021_acs_energyfuels_5c00038
crossref_primary_10_1021_acscatal_2c05024
crossref_primary_10_1002_ange_202312982
crossref_primary_10_1002_adma_202420005
crossref_primary_10_1002_anie_202308182
crossref_primary_10_1039_D3EE01453C
crossref_primary_10_1002_adfm_202310693
crossref_primary_10_1002_cnma_202400004
crossref_primary_10_1038_s41467_024_55348_x
crossref_primary_10_1039_D4QI01357C
crossref_primary_10_1002_ange_202414166
crossref_primary_10_1002_smll_202310475
crossref_primary_10_1039_D4TA05108D
crossref_primary_10_1016_j_jcis_2024_03_149
crossref_primary_10_1039_D4SC00792A
crossref_primary_10_1002_smll_202500223
crossref_primary_10_1002_ange_202319125
crossref_primary_10_1002_anie_202423265
crossref_primary_10_1039_D4EE05767H
crossref_primary_10_20517_energymater_2024_12
crossref_primary_10_1002_adma_202408213
crossref_primary_10_1002_ange_202312000
crossref_primary_10_1002_adma_202404093
crossref_primary_10_1007_s42823_024_00836_9
crossref_primary_10_1002_anie_202410848
crossref_primary_10_1002_ange_202423265
crossref_primary_10_1021_jacs_4c12960
crossref_primary_10_1002_ange_202318470
crossref_primary_10_1002_cssc_202401010
crossref_primary_10_1039_D3CS00771E
crossref_primary_10_1002_adfm_202301291
crossref_primary_10_1002_adma_202418258
crossref_primary_10_1002_adfm_202411137
crossref_primary_10_1002_ange_202415759
crossref_primary_10_1002_aenm_202402900
crossref_primary_10_1002_adfm_202501332
crossref_primary_10_1016_j_cej_2023_148332
crossref_primary_10_1016_j_est_2024_111716
crossref_primary_10_1038_s41467_025_58273_9
crossref_primary_10_1002_smll_202310293
crossref_primary_10_1002_anie_202310284
crossref_primary_10_1002_anie_202403187
crossref_primary_10_1038_s41467_022_34303_8
crossref_primary_10_1002_smll_202310972
crossref_primary_10_1021_acsnano_3c01518
crossref_primary_10_1002_adfm_202416931
crossref_primary_10_1016_j_electacta_2024_144928
crossref_primary_10_1021_acsnano_3c07868
crossref_primary_10_1016_j_jpowsour_2024_234325
crossref_primary_10_1016_j_ensm_2023_103019
crossref_primary_10_1002_adfm_202410712
crossref_primary_10_1002_eem2_12522
crossref_primary_10_1016_j_cej_2023_142580
crossref_primary_10_1002_adfm_202406125
crossref_primary_10_1016_j_cej_2024_155250
crossref_primary_10_1002_ange_202410848
crossref_primary_10_1016_j_jpowsour_2024_234798
crossref_primary_10_1016_j_inoche_2024_113489
crossref_primary_10_1021_acsaem_2c04102
crossref_primary_10_1002_adma_202408317
crossref_primary_10_1002_aenm_202303221
crossref_primary_10_1016_j_apsusc_2024_162180
crossref_primary_10_1021_jacs_3c12638
crossref_primary_10_1002_aenm_202404426
crossref_primary_10_1093_nsr_nwae181
crossref_primary_10_1002_anie_202312000
crossref_primary_10_1002_anie_202318470
crossref_primary_10_1039_D3TA01706K
crossref_primary_10_1021_acsenergylett_3c01354
crossref_primary_10_1021_acs_nanolett_3c01310
crossref_primary_10_3390_batteries9010062
Cites_doi 10.1016/j.electacta.2018.11.131
10.1016/B978-0-12-746270-7.50012-4
10.1002/adma.202006897
10.1002/adma.202003021
10.1016/S0144-8617(02)00053-X
10.1002/star.200700696
10.1021/acsami.1c03804
10.1038/s41563-018-0063-z
10.1038/nenergy.2016.119
10.1002/aesr.202100076
10.1021/jacs.0c09794
10.1002/aenm.202102010
10.1021/cr0204101
10.1002/(SICI)1099-0518(19990801)37:15<2711::AID-POLA4>3.0.CO;2-6
10.1039/C9TA13081K
10.1007/s12274-017-1920-9
10.1002/sia.740180107
10.1126/science.1212741
10.1039/C8EE02825G
10.1021/ja00530a003
10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2
10.1021/acs.jpca.6b00982
10.1016/0008-6215(96)00159-0
10.1038/ncomms7303
10.1002/aenm.202001997
10.1002/adfm.201802564
10.1021/jf011652p
10.1038/35104644
10.1016/j.cej.2021.131283
10.1002/eem2.12108
10.1002/anie.202014447
10.1002/anie.202016531
10.1002/sia.740010304
10.1021/acssuschemeng.0c04571
10.1016/j.joule.2019.02.012
10.1038/s41467-021-27728-0
10.1002/adma.202004240
10.1002/star.201000013
10.1002/star.19910431002
10.1038/nenergy.2016.39
10.1021/ja00478a045
ContentType Journal Article
Copyright 2022 The Authors. Advanced Materials published by Wiley‐VCH GmbH
2022 The Authors. Advanced Materials published by Wiley-VCH GmbH.
2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. Advanced Materials published by Wiley‐VCH GmbH
– notice: 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202201716
DatabaseName Wiley Online Library Open Access (Activated by CARLI)
CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Materials Research Database
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access (Activated by CARLI)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 35435291
10_1002_adma_202201716
ADMA202201716
Genre article
Journal Article
GrantInformation_xml – fundername: Australian Research Council (ARC)
  funderid: FL170100154; DP220102596
– fundername: Australian Government
– fundername: University of Adelaide
– fundername: National Computational Infrastructure (NCI)
– fundername: Phoenix High Performance Computing
– fundername: Australian Research Council (ARC)
  grantid: FL170100154
– fundername: Australian Research Council (ARC)
  grantid: DP220102596
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADNMO
AETEA
AFFNX
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
AEUQT
AFPWT
NPM
RWI
RWM
WRC
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4796-80a97647eaa8a4013924d709641b818b99da1251eb75c10b38d658e8e1c1d45e3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 09:58:27 EDT 2025
Fri Jul 25 08:06:13 EDT 2025
Wed Feb 19 02:25:56 EST 2025
Thu Apr 24 23:07:50 EDT 2025
Tue Jul 01 02:33:16 EDT 2025
Wed Jun 11 08:29:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords shuttle effect
Zn-iodine batteries
starch
Zn corrosion
structure confinement
Language English
License Attribution
2022 The Authors. Advanced Materials published by Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4796-80a97647eaa8a4013924d709641b818b99da1251eb75c10b38d658e8e1c1d45e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4568-8422
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202201716
PMID 35435291
PQID 2674196222
PQPubID 2045203
PageCount 11
ParticipantIDs proquest_miscellaneous_2652031180
proquest_journals_2674196222
pubmed_primary_35435291
crossref_citationtrail_10_1002_adma_202201716
crossref_primary_10_1002_adma_202201716
wiley_primary_10_1002_adma_202201716_ADMA202201716
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2020 1961; 32 72
2018; 28
2019; 3
2002; 50
2020; 142
2011 2001; 334 414
2019; 12
2022 2022; 428 13
2018 2019 2021 2020; 11 296 2 8
1992; 18
2020; 32
2016; 120
2020; 8
2021 2015; 60 6
2018; 17
2020; 4
2016; 1
2021; 33
1991; 43
2002; 103
2003 1999; 51 37
2021 2020; 13 10
1978; 100
1996; 292
1979; 1
2008; 60
2021 2021; 60 11
1980; 102
1984 2010; 62
e_1_2_7_6_1
e_1_2_7_4_2
e_1_2_7_5_1
e_1_2_7_3_2
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_8_3
e_1_2_7_8_2
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_6_2
e_1_2_7_7_1
e_1_2_7_19_2
e_1_2_7_19_1
e_1_2_7_17_2
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_1_2
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_12_2
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_10_2
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_8_4
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_24_1
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – volume: 51 37
  start-page: 191 2711
  year: 2003 1999
  publication-title: Carbohydr. Polym. J. Polym. Sci., Part A: Polym. Chem.
– volume: 334 414
  start-page: 928 359
  year: 2011 2001
  publication-title: Science Nature
– volume: 1
  start-page: 86
  year: 1979
  publication-title: Surf. Interface Anal.
– volume: 60 6
  start-page: 3791 6303
  year: 2021 2015
  publication-title: Angew. Chem. Nat. Commun.
– volume: 3
  start-page: 1289
  year: 2019
  publication-title: Joule
– volume: 103
  start-page: 1649
  year: 2002
  publication-title: Chem. Rev.
– volume: 32 72
  start-page: 175
  year: 2020 1961
  publication-title: Adv. Mater. Geol. Soc. Am. Bull.
– volume: 60 11
  start-page: 7366
  year: 2021 2021
  publication-title: Angew. Chem., Int. Ed. Adv. Energy Mater.
– volume: 62
  start-page: 153 389
  year: 1984 2010
  publication-title: Starch: Chem. Technol. Starch
– volume: 60
  start-page: 165
  year: 2008
  publication-title: Starch
– volume: 4
  start-page: 111
  year: 2020
  publication-title: Energy Environ. Mater.
– volume: 50
  start-page: 3912
  year: 2002
  publication-title: J. Agric. Food Chem.
– volume: 292
  start-page: 129
  year: 1996
  publication-title: Carbohydr. Res.
– volume: 43
  start-page: 375
  year: 1991
  publication-title: Starch
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 17
  start-page: 543
  year: 2018
  publication-title: Nat. Mater.
– volume: 11 296 2 8
  start-page: 3548 755 3785
  year: 2018 2019 2021 2020
  publication-title: Nano Res. Electrochim. Acta Adv. Energy Sustainability Res. J. Mater. Chem. A
– volume: 120
  start-page: 2144
  year: 2016
  publication-title: J. Phys. Chem. A
– volume: 100
  start-page: 3215
  year: 1978
  publication-title: J. Am. Chem. Soc.
– volume: 428 13
  start-page: 125
  year: 2022 2022
  publication-title: Chem. Eng. J. Nat. Commun.
– volume: 8
  year: 2020
  publication-title: ACS Sustainable Chem. Eng.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 12
  start-page: 1834
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 18
  start-page: 39
  year: 1992
  publication-title: Surf. Interface Anal.
– volume: 102
  start-page: 3322
  year: 1980
  publication-title: J. Am. Chem. Soc.
– volume: 142
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 13 10
  year: 2021 2020
  publication-title: ACS Appl. Mater. Interfaces Adv. Energy Mater.
– ident: e_1_2_7_8_2
  doi: 10.1016/j.electacta.2018.11.131
– ident: e_1_2_7_12_1
  doi: 10.1016/B978-0-12-746270-7.50012-4
– ident: e_1_2_7_9_1
  doi: 10.1002/adma.202006897
– ident: e_1_2_7_29_1
  doi: 10.1002/adma.202003021
– ident: e_1_2_7_17_1
  doi: 10.1016/S0144-8617(02)00053-X
– ident: e_1_2_7_20_1
  doi: 10.1002/star.200700696
– ident: e_1_2_7_10_1
  doi: 10.1021/acsami.1c03804
– ident: e_1_2_7_23_1
  doi: 10.1038/s41563-018-0063-z
– ident: e_1_2_7_21_1
  doi: 10.1038/nenergy.2016.119
– ident: e_1_2_7_8_3
  doi: 10.1002/aesr.202100076
– ident: e_1_2_7_30_1
  doi: 10.1021/jacs.0c09794
– ident: e_1_2_7_3_2
  doi: 10.1002/aenm.202102010
– ident: e_1_2_7_5_1
  doi: 10.1021/cr0204101
– ident: e_1_2_7_17_2
  doi: 10.1002/(SICI)1099-0518(19990801)37:15<2711::AID-POLA4>3.0.CO;2-6
– ident: e_1_2_7_8_4
  doi: 10.1039/C9TA13081K
– ident: e_1_2_7_8_1
  doi: 10.1007/s12274-017-1920-9
– ident: e_1_2_7_27_1
  doi: 10.1002/sia.740180107
– ident: e_1_2_7_1_1
  doi: 10.1126/science.1212741
– ident: e_1_2_7_7_1
  doi: 10.1039/C8EE02825G
– ident: e_1_2_7_11_1
  doi: 10.1021/ja00530a003
– ident: e_1_2_7_4_2
  doi: 10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2
– ident: e_1_2_7_18_1
  doi: 10.1021/acs.jpca.6b00982
– ident: e_1_2_7_16_1
  doi: 10.1016/0008-6215(96)00159-0
– ident: e_1_2_7_6_2
  doi: 10.1038/ncomms7303
– ident: e_1_2_7_10_2
  doi: 10.1002/aenm.202001997
– ident: e_1_2_7_2_1
  doi: 10.1002/adfm.201802564
– ident: e_1_2_7_15_1
  doi: 10.1021/jf011652p
– ident: e_1_2_7_1_2
  doi: 10.1038/35104644
– ident: e_1_2_7_19_1
  doi: 10.1016/j.cej.2021.131283
– ident: e_1_2_7_22_1
  doi: 10.1002/eem2.12108
– ident: e_1_2_7_6_1
  doi: 10.1002/anie.202014447
– ident: e_1_2_7_3_1
  doi: 10.1002/anie.202016531
– ident: e_1_2_7_28_1
  doi: 10.1002/sia.740010304
– ident: e_1_2_7_25_1
  doi: 10.1021/acssuschemeng.0c04571
– ident: e_1_2_7_26_1
  doi: 10.1016/j.joule.2019.02.012
– ident: e_1_2_7_19_2
  doi: 10.1038/s41467-021-27728-0
– ident: e_1_2_7_4_1
  doi: 10.1002/adma.202004240
– ident: e_1_2_7_12_2
  doi: 10.1002/star.201000013
– ident: e_1_2_7_13_1
  doi: 10.1002/star.19910431002
– ident: e_1_2_7_24_1
  doi: 10.1038/nenergy.2016.39
– ident: e_1_2_7_14_1
  doi: 10.1021/ja00478a045
SSID ssj0009606
Score 2.7057717
Snippet Aqueous Zn–iodine (Zn–I2) batteries have been regarded as a promising energy‐storage system owing to their high energy/power density, safety, and...
Aqueous Zn–iodine (Zn–I 2 ) batteries have been regarded as a promising energy‐storage system owing to their high energy/power density, safety, and...
Aqueous Zn-iodine (Zn-I ) batteries have been regarded as a promising energy-storage system owing to their high energy/power density, safety, and...
Aqueous Zn-iodine (Zn-I2 ) batteries have been regarded as a promising energy-storage system owing to their high energy/power density, safety, and...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2201716
SubjectTerms Bonding strength
Confinement
Corrosion
Cycles
Energy storage
Failure analysis
Failure mechanisms
Iodine
Materials science
Photoelectrons
Raman spectroscopy
shuttle effect
Spectrum analysis
starch
Storage batteries
structure confinement
Ultraviolet spectra
Zn corrosion
Zn–iodine batteries
Title Polyiodide Confinement by Starch Enables Shuttle‐Free Zn–Iodine Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202201716
https://www.ncbi.nlm.nih.gov/pubmed/35435291
https://www.proquest.com/docview/2674196222
https://www.proquest.com/docview/2652031180
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bT9swFMePWJ_Yw8ZtIwMqIyHxFEgc5-LHCqgKUhHiIqG9RL6hoaEU0faBPfERJvEN-0k4J2nTFjQhjbdEthXfjv234_MzwE6U6YAcKn3sLZkvjAh8ZW-EbxWK8TjQNkrJG7l7mnSuxMl1fD3jxV_xIeoNN7KMcrwmA1e6vz-FhipbcoM4L4kvOAjTgS1SRedTfhTJ8xK2F8W-TEQ2oTYGfH8--fys9EZqzivXcuppfwU1yXR14uT33nCg98yfVzzHj5RqCb6MdSlrVR1pGRZcsQKfZ2iFq9A969093vbsrXWMHAUxhLYWmX5kKFnRXthR6YjVZxe_hoRGHj39bT84x34Wo6fnY0xYOFbxPHF5vgZX7aPLg44_vo3BNyKVRC1WKF1E6pTKFK3KcOVmU6xiEWqc9bWUVpFacjqNTRjoKLOoblzmQhNaEbvoGzSKXuHWgUmdasuTKJEmE6EJdCBTg8W94UrTLWge-JPWyM0YVU43ZtzlFWSZ51RNeV1NHuzW8e8rSMc_Y25OGjcfG2s_5wnKKpmgUvJguw5GM6N_J6pwvSHFiTmOf2EWePC96hT1p6IYNSeXoQe8bNp38pC3Drut-u3H_yTagEV6ro6sbUJj8DB0WyiOBroJn7g4a5Zm8ALCUwTe
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LTtwwFIaPCl0UFtAbEKDUlZBYBRLHuXg5ahkNLYMqLhJiE_mGiooyCGYWsOIRkPqGPEnPcSah0wpVgmViW_Ht2L8dn88A60mhI3KoDLG3FKEwIgqVPRWhVSjG00jbJCdv5P5e1jsSX4_T5jQh-cLUfIh2w40sw4_XZOC0Ib31QA1V1oODOPfIlyl4Sdd6-1XV_gNBigS6x-0laSgzUTTcxohvTaafnJf-EZuT2tVPPt150E226zMnPzdHQ71pbv4iOj6rXK9hbixNWafuS2_ghavewuwfwMJ30P8-OL8-G9gz6xj5CmII7S4yfc1QtaLJsG3vi3XFDn6MiI58f3vXvXSOnVT3t792MGHlWI30xBX6ezjqbh9-7oXjCxlCI3JJ4GKF6kXkTqlC0cIMF282xzoWscaJX0tpFQkmp_PUxJFOCosCxxUuNrEVqUsWYLoaVG4JmNS5tjxLMmkKEZtIRzI3WNxTrjRdhBZA2DRHaca0cro047ysOcu8pGoq22oKYKONf1FzOh6Nudq0bjm216uSZ6isZIZiKYBPbTBaGv0-UZUbjChOynEIjIsogMW6V7SfSlKUnVzGAXDftv_JQ9n50u-0T8tPSfQRXvUO-7vl7s7etxWYoff1CbZVmB5ejtwH1EpDveat4Tfvaggi
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LTtwwFIaPKJWqsqClFwiF4kqVugo4jpPYyxHDCNoOQm2RUDeRb6MiUAbBzAJWPAJS35An6TnJTGCoqkrtMrGt-Hbs347PZ4D3qbKcHCpj7C0qlk7y2PiBjL1BMZ5x69OCvJH7-_nuofx4lB3d8-Jv-BDthhtZRj1ek4Gf-cHWHTTU-JobJERNfHkEj2XOFfXr7pc7gBTp85q2l2axzqWaYhu52JpNPzst_aY1Z6VrPff0noGZ5ro5cnKyOR7ZTXf1AOj4P8V6DosTYco6TU9agrlQvYCFe7jCl9A_GJ5eHg_9sQ-MPAUxhPYWmb1kqFnRYNhO7Yl1wb7-GBMb-fb6pnceAvte3V7_3MOEVWAN0BPX56_gsLfzbXs3nlzHEDtZaMIWG9QusgjGKEPLMly6-QKrWCYWp32rtTckl4ItMpdwmyqP8iaokLjEyyykr2G-GlZhBZi2hfUiT3PtlEwct1wXDos7EMbSNWgRxNPWKN2EVU5XZpyWDWVZlFRNZVtNEXxo4581lI4_xlybNm45sdaLUuSoq3SOUimCd20w2hn9PDFVGI4pTiZwAEwUj2C56RTtp9IMRafQSQSibtq_5KHsdPud9mn1XxJtwJODbq_8vLf_6Q08pdfN8bU1mB-dj8M6CqWRfVvbwi_iEwba
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polyiodide+Confinement+by+Starch+Enables+Shuttle%E2%80%90Free+Zn%E2%80%93Iodine+Batteries&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhang%2C+Shao%E2%80%90Jian&rft.au=Hao%2C+Junnan&rft.au=Li%2C+Huan&rft.au=Zhang%2C+Peng%E2%80%90Fang&rft.date=2022-06-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=34&rft.issue=23&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202201716&rft.externalDBID=10.1002%252Fadma.202201716&rft.externalDocID=ADMA202201716
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon