Overproduction of gentamicin B in industrial strain Micromonospora echinospora CCTCC M 2018898 by cloning of the missing genes genR and genS

In pharmaceutical industry, isepamicin is mainly manufactured from gentamicin B, which is produced by Micromonospora echinospora as a minor component of the gentamicin complex. Improvement of gentamicin B production through metabolic engineering is therefore important to satisfy the increasing deman...

Full description

Saved in:
Bibliographic Details
Published inMetabolic engineering communications Vol. 9; p. e00096
Main Authors Chang, Yingying, Chai, Baozhong, Ding, Yunkun, He, Min, Zheng, Linghui, Teng, Yun, Deng, Zixin, Yu, Yi, Liu, Tiangang
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2019
Elsevier
Subjects
Online AccessGet full text
ISSN2214-0301
2214-0301
DOI10.1016/j.mec.2019.e00096

Cover

Abstract In pharmaceutical industry, isepamicin is mainly manufactured from gentamicin B, which is produced by Micromonospora echinospora as a minor component of the gentamicin complex. Improvement of gentamicin B production through metabolic engineering is therefore important to satisfy the increasing demand for isepamicin. We hypothesized that gentamicin B was generated from gentamicin JI-20A via deamination of the C2’ amino group. Using kanJ and kanK as the gene probes, we identified the putative deamination-related genes, genR and genS, through genome mining of the gentamicin B producing strain M. echinospora CCTCC M 2018898. Interestingly, genR and genS constitute a gene cassette located approximately 28.7 kb away from the gentamicin gene cluster. Gene knockout of genR and genS almost abolished the production of gentamicin B in the mutant strain, suggesting that these two genes, which are responsible for the last steps in gentamicin B biosynthesis, constitute the missing part of the known gentamicin biosynthetic pathway. Based on these finding, we successfully constructed a gentamicin B high-yielding strain (798 mg/L), in which an overexpression cassette of genR and genS was introduced. Our work fills the missing piece to solve the puzzle of gentamicin B biosynthesis and may inspire future metabolic engineering efforts to generate gentamycin B high-yielding strains that could eventually satisfy the need for industrial manufacturing of isepamicin. •Two missing genes in the biosynthetic pathway of gentamicin B were found.•CRISPR/Cas9 was applied successfully to delete genes in Micromonospora echinospora.•Overexpression of genR/S cassette improved gentamicin B titer by 64% in current industrial strain.
AbstractList In pharmaceutical industry, isepamicin is mainly manufactured from gentamicin B, which is produced by Micromonospora echinospora as a minor component of the gentamicin complex. Improvement of gentamicin B production through metabolic engineering is therefore important to satisfy the increasing demand for isepamicin. We hypothesized that gentamicin B was generated from gentamicin JI-20A via deamination of the C2' amino group. Using kanJ and kanK as the gene probes, we identified the putative deamination-related genes, genR and genS, through genome mining of the gentamicin B producing strain M. echinospora CCTCC M 2018898. Interestingly, genR and genS constitute a gene cassette located approximately 28.7 kb away from the gentamicin gene cluster. Gene knockout of genR and genS almost abolished the production of gentamicin B in the mutant strain, suggesting that these two genes, which are responsible for the last steps in gentamicin B biosynthesis, constitute the missing part of the known gentamicin biosynthetic pathway. Based on these finding, we successfully constructed a gentamicin B high-yielding strain (798 mg/L), in which an overexpression cassette of genR and genS was introduced. Our work fills the missing piece to solve the puzzle of gentamicin B biosynthesis and may inspire future metabolic engineering efforts to generate gentamycin B high-yielding strains that could eventually satisfy the need for industrial manufacturing of isepamicin.In pharmaceutical industry, isepamicin is mainly manufactured from gentamicin B, which is produced by Micromonospora echinospora as a minor component of the gentamicin complex. Improvement of gentamicin B production through metabolic engineering is therefore important to satisfy the increasing demand for isepamicin. We hypothesized that gentamicin B was generated from gentamicin JI-20A via deamination of the C2' amino group. Using kanJ and kanK as the gene probes, we identified the putative deamination-related genes, genR and genS, through genome mining of the gentamicin B producing strain M. echinospora CCTCC M 2018898. Interestingly, genR and genS constitute a gene cassette located approximately 28.7 kb away from the gentamicin gene cluster. Gene knockout of genR and genS almost abolished the production of gentamicin B in the mutant strain, suggesting that these two genes, which are responsible for the last steps in gentamicin B biosynthesis, constitute the missing part of the known gentamicin biosynthetic pathway. Based on these finding, we successfully constructed a gentamicin B high-yielding strain (798 mg/L), in which an overexpression cassette of genR and genS was introduced. Our work fills the missing piece to solve the puzzle of gentamicin B biosynthesis and may inspire future metabolic engineering efforts to generate gentamycin B high-yielding strains that could eventually satisfy the need for industrial manufacturing of isepamicin.
In pharmaceutical industry, isepamicin is mainly manufactured from gentamicin B, which is produced by Micromonospora echinospora as a minor component of the gentamicin complex. Improvement of gentamicin B production through metabolic engineering is therefore important to satisfy the increasing demand for isepamicin. We hypothesized that gentamicin B was generated from gentamicin JI-20A via deamination of the C2’ amino group. Using kanJ and kanK as the gene probes, we identified the putative deamination-related genes, genR and genS, through genome mining of the gentamicin B producing strain M. echinospora CCTCC M 2018898. Interestingly, genR and genS constitute a gene cassette located approximately 28.7 kb away from the gentamicin gene cluster. Gene knockout of genR and genS almost abolished the production of gentamicin B in the mutant strain, suggesting that these two genes, which are responsible for the last steps in gentamicin B biosynthesis, constitute the missing part of the known gentamicin biosynthetic pathway. Based on these finding, we successfully constructed a gentamicin B high-yielding strain (798 mg/L), in which an overexpression cassette of genR and genS was introduced. Our work fills the missing piece to solve the puzzle of gentamicin B biosynthesis and may inspire future metabolic engineering efforts to generate gentamycin B high-yielding strains that could eventually satisfy the need for industrial manufacturing of isepamicin. Keywords: Gentamicin B, CRISPR/Cas9, Micromonospora echinospora, GenR, GenS
In pharmaceutical industry, isepamicin is mainly manufactured from gentamicin B, which is produced by Micromonospora echinospora as a minor component of the gentamicin complex. Improvement of gentamicin B production through metabolic engineering is therefore important to satisfy the increasing demand for isepamicin. We hypothesized that gentamicin B was generated from gentamicin JI-20A via deamination of the C2’ amino group. Using kanJ and kanK as the gene probes, we identified the putative deamination-related genes, genR and genS, through genome mining of the gentamicin B producing strain M. echinospora CCTCC M 2018898. Interestingly, genR and genS constitute a gene cassette located approximately 28.7 kb away from the gentamicin gene cluster. Gene knockout of genR and genS almost abolished the production of gentamicin B in the mutant strain, suggesting that these two genes, which are responsible for the last steps in gentamicin B biosynthesis, constitute the missing part of the known gentamicin biosynthetic pathway. Based on these finding, we successfully constructed a gentamicin B high-yielding strain (798 mg/L), in which an overexpression cassette of genR and genS was introduced. Our work fills the missing piece to solve the puzzle of gentamicin B biosynthesis and may inspire future metabolic engineering efforts to generate gentamycin B high-yielding strains that could eventually satisfy the need for industrial manufacturing of isepamicin. •Two missing genes in the biosynthetic pathway of gentamicin B were found.•CRISPR/Cas9 was applied successfully to delete genes in Micromonospora echinospora.•Overexpression of genR/S cassette improved gentamicin B titer by 64% in current industrial strain.
In pharmaceutical industry, isepamicin is mainly manufactured from gentamicin B, which is produced by Micromonospora echinospora as a minor component of the gentamicin complex. Improvement of gentamicin B production through metabolic engineering is therefore important to satisfy the increasing demand for isepamicin. We hypothesized that gentamicin B was generated from gentamicin JI-20A via deamination of the C2’ amino group. Using kanJ and kanK as the gene probes, we identified the putative deamination-related genes, genR and genS , through genome mining of the gentamicin B producing strain M. echinospora CCTCC M 2018898. Interestingly, genR and genS constitute a gene cassette located approximately 28.7 kb away from the gentamicin gene cluster. Gene knockout of genR and genS almost abolished the production of gentamicin B in the mutant strain, suggesting that these two genes, which are responsible for the last steps in gentamicin B biosynthesis, constitute the missing part of the known gentamicin biosynthetic pathway. Based on these finding, we successfully constructed a gentamicin B high-yielding strain (798 mg/L), in which an overexpression cassette of genR and genS was introduced. Our work fills the missing piece to solve the puzzle of gentamicin B biosynthesis and may inspire future metabolic engineering efforts to generate gentamycin B high-yielding strains that could eventually satisfy the need for industrial manufacturing of isepamicin. • Two missing genes in the biosynthetic pathway of gentamicin B were found. • CRISPR/Cas9 was applied successfully to delete genes in Micromonospora echinospora. • Overexpression of genR / S cassette improved gentamicin B titer by 64% in current industrial strain.
In pharmaceutical industry, isepamicin is mainly manufactured from gentamicin B, which is produced by Micromonospora echinospora as a minor component of the gentamicin complex. Improvement of gentamicin B production through metabolic engineering is therefore important to satisfy the increasing demand for isepamicin. We hypothesized that gentamicin B was generated from gentamicin JI-20A via deamination of the C2’ amino group. Using kanJ and kanK as the gene probes, we identified the putative deamination-related genes, genR and genS, through genome mining of the gentamicin B producing strain M. echinospora CCTCC M 2018898. Interestingly, genR and genS constitute a gene cassette located approximately 28.7 kb away from the gentamicin gene cluster. Gene knockout of genR and genS almost abolished the production of gentamicin B in the mutant strain, suggesting that these two genes, which are responsible for the last steps in gentamicin B biosynthesis, constitute the missing part of the known gentamicin biosynthetic pathway. Based on these finding, we successfully constructed a gentamicin B high-yielding strain (798 mg/L), in which an overexpression cassette of genR and genS was introduced. Our work fills the missing piece to solve the puzzle of gentamicin B biosynthesis and may inspire future metabolic engineering efforts to generate gentamycin B high-yielding strains that could eventually satisfy the need for industrial manufacturing of isepamicin.
ArticleNumber e00096
Author Teng, Yun
He, Min
Yu, Yi
Chai, Baozhong
Ding, Yunkun
Chang, Yingying
Zheng, Linghui
Liu, Tiangang
Deng, Zixin
AuthorAffiliation a Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China
b Zhejiang Key Laboratory of Antifungal Drugs, Zhejiang Hisun Pharmaceutical Co, Ltd, Taizhou, 318000, China
c Hubei Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan, 430075, China
AuthorAffiliation_xml – name: b Zhejiang Key Laboratory of Antifungal Drugs, Zhejiang Hisun Pharmaceutical Co, Ltd, Taizhou, 318000, China
– name: c Hubei Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan, 430075, China
– name: a Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China
Author_xml – sequence: 1
  givenname: Yingying
  surname: Chang
  fullname: Chang, Yingying
  organization: Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China
– sequence: 2
  givenname: Baozhong
  surname: Chai
  fullname: Chai, Baozhong
  organization: Zhejiang Key Laboratory of Antifungal Drugs, Zhejiang Hisun Pharmaceutical Co, Ltd, Taizhou, 318000, China
– sequence: 3
  givenname: Yunkun
  surname: Ding
  fullname: Ding, Yunkun
  organization: Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China
– sequence: 4
  givenname: Min
  surname: He
  fullname: He, Min
  organization: Zhejiang Key Laboratory of Antifungal Drugs, Zhejiang Hisun Pharmaceutical Co, Ltd, Taizhou, 318000, China
– sequence: 5
  givenname: Linghui
  surname: Zheng
  fullname: Zheng, Linghui
  organization: Zhejiang Key Laboratory of Antifungal Drugs, Zhejiang Hisun Pharmaceutical Co, Ltd, Taizhou, 318000, China
– sequence: 6
  givenname: Yun
  surname: Teng
  fullname: Teng, Yun
  email: yteng@hisunpharm.com
  organization: Zhejiang Key Laboratory of Antifungal Drugs, Zhejiang Hisun Pharmaceutical Co, Ltd, Taizhou, 318000, China
– sequence: 7
  givenname: Zixin
  surname: Deng
  fullname: Deng, Zixin
  organization: Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China
– sequence: 8
  givenname: Yi
  surname: Yu
  fullname: Yu, Yi
  email: yu_yi@whu.edu.cn
  organization: Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China
– sequence: 9
  givenname: Tiangang
  surname: Liu
  fullname: Liu, Tiangang
  email: liutg@whu.edu.cn
  organization: Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China
BookMark eNqNUk1v1DAQjVARLaU_gJuPXHaxJ07iCAkJIj4qtaoE5Wx5J-NdrxJ7sbMr9T_wo3HYVqIcKi6e8Xjesz3vvSxOfPBUFK8FXwou6rfb5Ui4BC7aJXHO2_pZcQYg5IKXXJz8lZ8WFyltc4soayGFeFGclqIBDgLOil83B4q7GPo9Ti54Fixbk5_M6NB59pHlxfl-n6bozMByMLly7TCGMfiQdiEaRrhxD3nX3XYdu2b5XUq1iq3uGA7BO7-eqacNsdGlNG_zNZTm9Rszvp-T76-K59YMiS7u43nx4_On2-7r4urmy2X34WqBsmnrhbAA3BCqhiusOF-11EtRKwRZrsAatBwaqVDaFnlTAuUZoWjaygCYiuryvLg88vbBbPUuutHEOx2M038KIa61iZPDgbQ1wjYzdytraVaNaiUITlXf9zVZsJnr_ZFrt1-N1GMeXjTDI9LHJ95t9DocdK1KVYkqE7y5J4jh557SpPOEkIbBeAr7pKEUEiquWviPVl4BSAVza3NszUqlFMlqdJOZJZ4lHLTgenaR3ursIj27SB9dlJHiH-TDX57CvDtiKKt2cBR1QkceqXeRcMpjdU-gfwPxW-AB
CitedBy_id crossref_primary_10_1016_j_procbio_2021_01_007
crossref_primary_10_3390_biom14040486
crossref_primary_10_1016_j_synbio_2024_11_003
crossref_primary_10_1186_s13036_021_00267_4
crossref_primary_10_3390_molecules28227672
Cites_doi 10.1016/j.copbio.2017.03.019
10.3389/fmicb.2018.01660
10.1016/j.bmcl.2012.12.064
10.1021/jm00340a034
10.1016/j.ymben.2013.07.006
10.1038/327389a0
10.1016/j.ymben.2011.12.007
10.1016/j.tibtech.2005.12.003
10.1080/07388550802262197
10.1186/s12934-015-0402-6
10.1016/j.chembiol.2014.03.005
10.1002/tcr.201500210
10.1039/C5MD00344J
10.1007/s10529-008-9887-y
10.1016/j.chembiol.2014.12.012
10.1002/cbic.201500258
10.1097/QCO.0000000000000012
10.1038/nmeth.2474
10.7164/antibiotics.29.140
10.1016/j.mcna.2006.07.006
10.1021/cr0301088
10.1038/ja.2009.76
10.1007/s101560050001
10.1021/acssynbio.6b00330
10.1093/nar/27.23.4636
10.1016/j.drup.2010.08.003
10.12688/f1000research.11104.1
10.1038/s41589-018-0203-4
10.7164/antibiotics.31.681
10.1016/j.synbio.2016.07.002
10.1016/j.micres.2017.06.006
10.4014/jmb.0910.10031
10.1016/j.synbio.2017.10.003
10.1073/pnas.1711603115
10.1186/gb-2013-14-9-r101
10.1038/35030019
10.1016/j.tetlet.2004.11.130
10.1016/j.ymben.2011.10.003
10.1021/acssynbio.5b00038
10.1093/nar/gkv437
10.1073/pnas.1511027112
10.1021/cb3005116
10.1002/anie.201108122
10.1016/j.copbio.2012.08.010
10.1073/pnas.0811011106
10.1093/nar/gkp1253
10.1016/0378-1119(92)90627-2
ContentType Journal Article
Copyright 2019 The Authors
2019 The Authors.
2019 The Authors 2019
Copyright_xml – notice: 2019 The Authors
– notice: 2019 The Authors.
– notice: 2019 The Authors 2019
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
7X8
5PM
DOA
DOI 10.1016/j.mec.2019.e00096
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic



AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2214-0301
ExternalDocumentID oai_doaj_org_article_fa1f7168c9464ab7894210e5ddd6ef2f
PMC6838515
10_1016_j_mec_2019_e00096
S2214030119300112
GroupedDBID 0R~
0SF
4.4
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HYE
HZ~
IPNFZ
KQ8
M41
M~E
NCXOZ
O9-
OK1
RIG
ROL
RPM
SSZ
AAHBH
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c4796-1f220aec8708c500b9ed4168c243b2facf02748c4f9c0732e019c1795a22a5e63
IEDL.DBID DOA
ISSN 2214-0301
IngestDate Wed Aug 27 01:31:44 EDT 2025
Thu Aug 21 14:11:38 EDT 2025
Fri Jul 11 05:23:43 EDT 2025
Fri Jul 11 09:41:02 EDT 2025
Thu Apr 24 23:12:57 EDT 2025
Tue Jul 01 04:03:42 EDT 2025
Tue Jul 25 20:36:46 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords GenS
Micromonospora echinospora
GenR
Gentamicin B
CRISPR/Cas9
Language English
License This is an open access article under the CC BY-NC-ND license.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4796-1f220aec8708c500b9ed4168c243b2facf02748c4f9c0732e019c1795a22a5e63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/fa1f7168c9464ab7894210e5ddd6ef2f
PMID 31720212
PQID 2305224822
PQPubID 24069
ParticipantIDs doaj_primary_oai_doaj_org_article_fa1f7168c9464ab7894210e5ddd6ef2f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6838515
proquest_miscellaneous_2314250892
proquest_miscellaneous_2305224822
crossref_citationtrail_10_1016_j_mec_2019_e00096
crossref_primary_10_1016_j_mec_2019_e00096
elsevier_sciencedirect_doi_10_1016_j_mec_2019_e00096
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationTitle Metabolic engineering communications
PublicationYear 2019
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Gu, Ni, Ren, Gao, Wang, Xia (bib13) 2015; 16
He, Wang, Bai, Liang, Zhou, Deng (bib16) 2010; 20
Garneau-Tsodikova, Labby (bib11) 2016; 7
Magnet, Blanchard (bib29) 2005; 105
Wu, Gao, Zhou, Wen, Ni, Xia (bib47) 2017; 203
Moon, Jun, Lee, Cheong, Kim, Lee (bib31) 2005; 46
Lynch, Gill (bib28) 2012; 14
Chin, Alexander, Marks, Klammer, Drake, Heiner, Clum, Copeland, Huddleston, Eichler, Turner, Korlach (bib8) 2013; 10
Sucipto, Kudo, Eguchi (bib40) 2012; 51
Huang, Huang, Moison, Guo, Jian, Duan, Deng, Leadlay, Sun (bib17) 2015; 22
Xu, Bhan, Koffas (bib48) 2013; 24
Hammer, Mijakovic, Jensen (bib15) 2006; 24
Jones (bib20) 1995; 7
Jin, Wong, Jiao, Engel, Holdridge, Xu (bib19) 2017; 2
Kondo, Hotta (bib52) 1999; 5
Scheunemann, Graham, Vendeix, Agris (bib37) 2010; 38
Gibson, Benders, Axelrod, Zaveri, Algire, Moodie, Montague, Venter, Smith, Hutchison (bib12) 2008; 105
Yu, Zhang, Deng (bib49) 2017; 6
Shao, Chen, Wang, Li, Tang, Chen, Liu (bib38) 2013; 23
Carter, Clemons, Brodersen, Morgan-Warren, Wimberly, Ramakrishnan (bib7) 2000; 407
Liu, Xiao, Zhou, Deng, Tan, Han, Liu, Deng, Liu (bib27) 2016; 1
Ban, Song, Hwang, Shin, Kim, Hong, Lee, Park, Cha, Liu, Yoon (bib4) 2019; 15
Moazed, Noller (bib30) 1987; 327
Kudo, Eguchi (bib24) 2016; 16
Kumar, Himabindu, Jetty (bib25) 2008; 28
Nagabhushan, Cooper, Tsai, Daniels, Miller (bib32) 1978; 31
Siegl, Tokovenko, Myronovskyi, Luzhetskyy (bib39) 2013; 19
Tong, Charusanti, Zhang, Weber, Lee (bib44) 2015; 4
Guo, Huang, Huang, Duan, Jian, Leeper, Deng, Leadlay, Sun (bib14) 2014; 21
Ramirez, Tolmasky (bib36) 2010; 13
Jackson, Chen, Buising (bib18) 2013; 26
Cunha (bib9) 2006; 90
Park, Ban, Nam, Cha, Yoon (bib34) 2017; 48
Weber, Blin, Duddela, Krug, Kim, Bruccoleri, Lee, Fischbach, Müller, Wohlleben, Breitling, Takano, Medema (bib53) 2015; 43
Testa, Tilley (bib43) 1976; 29
Koren, Harhay, Smith, Bono, Harhay, Mcvey, Radune, Bergman, Phillippy (bib22) 2013; 14
Hong, Ge, Zeng, Zhu, Luo, Shao, Chen (bib50) 2009; 31
Bierman, Logan, O’Brien, Seno, Nagaraja Rao, Schoner (bib51) 1992; 116
Bai, Zhang, Zhao, Hu, Xiang, Miao, Lou, Zhang (bib2) 2015; 112
Tao, Yang, Deng, Sun (bib42) 2018; 9
Delcher, Harmon, Kasif, White, Salzberg (bib10) 1999; 27
Becker, Cooper (bib5) 2013; 8
Kudo, Eguchi (bib23) 2009; 62
Ni, Sun, Gu, Cui, Xia (bib33) 2016; 15
Piepersberg, Aboshanab, Schmidt-Beißner, Wehmeier (bib35) 2007
Li, Guo, Reva, Huang, Xiong, Liu, Deng, Leadlay, Sun (bib26) 2018; 115
Boyle, Silver (bib6) 2012; 14
Tan, Deng, Liu, Tao, Chang, Chen, Chen, Sheng, Deng, Liu (bib41) 2017; 6
Weinstein, Rosselet, Herzog, Black, Luedemann, Wagman, Charney, Marquez, Coniglio, Oden (bib46) 1963; 6
Arya (bib1) 2007
Park (10.1016/j.mec.2019.e00096_bib34) 2017; 48
Moazed (10.1016/j.mec.2019.e00096_bib30) 1987; 327
Carter (10.1016/j.mec.2019.e00096_bib7) 2000; 407
Lynch (10.1016/j.mec.2019.e00096_bib28) 2012; 14
Arya (10.1016/j.mec.2019.e00096_bib1) 2007
Ban (10.1016/j.mec.2019.e00096_bib4) 2019; 15
Tong (10.1016/j.mec.2019.e00096_bib44) 2015; 4
Siegl (10.1016/j.mec.2019.e00096_bib39) 2013; 19
Garneau-Tsodikova (10.1016/j.mec.2019.e00096_bib11) 2016; 7
Jackson (10.1016/j.mec.2019.e00096_bib18) 2013; 26
Boyle (10.1016/j.mec.2019.e00096_bib6) 2012; 14
Moon (10.1016/j.mec.2019.e00096_bib31) 2005; 46
Li (10.1016/j.mec.2019.e00096_bib26) 2018; 115
Magnet (10.1016/j.mec.2019.e00096_bib29) 2005; 105
Piepersberg (10.1016/j.mec.2019.e00096_bib35) 2007
Kondo (10.1016/j.mec.2019.e00096_bib52) 1999; 5
Chin (10.1016/j.mec.2019.e00096_bib8) 2013; 10
Bai (10.1016/j.mec.2019.e00096_bib2) 2015; 112
Ramirez (10.1016/j.mec.2019.e00096_bib36) 2010; 13
Koren (10.1016/j.mec.2019.e00096_bib22) 2013; 14
Ni (10.1016/j.mec.2019.e00096_bib33) 2016; 15
Cunha (10.1016/j.mec.2019.e00096_bib9) 2006; 90
Bierman (10.1016/j.mec.2019.e00096_bib51) 1992; 116
Gu (10.1016/j.mec.2019.e00096_bib13) 2015; 16
Huang (10.1016/j.mec.2019.e00096_bib17) 2015; 22
Yu (10.1016/j.mec.2019.e00096_bib49) 2017; 6
Kudo (10.1016/j.mec.2019.e00096_bib24) 2016; 16
Liu (10.1016/j.mec.2019.e00096_bib27) 2016; 1
Guo (10.1016/j.mec.2019.e00096_bib14) 2014; 21
Kumar (10.1016/j.mec.2019.e00096_bib25) 2008; 28
Tan (10.1016/j.mec.2019.e00096_bib41) 2017; 6
Becker (10.1016/j.mec.2019.e00096_bib5) 2013; 8
Shao (10.1016/j.mec.2019.e00096_bib38) 2013; 23
Wu (10.1016/j.mec.2019.e00096_bib47) 2017; 203
Testa (10.1016/j.mec.2019.e00096_bib43) 1976; 29
Xu (10.1016/j.mec.2019.e00096_bib48) 2013; 24
He (10.1016/j.mec.2019.e00096_bib16) 2010; 20
Gibson (10.1016/j.mec.2019.e00096_bib12) 2008; 105
Hong (10.1016/j.mec.2019.e00096_bib50) 2009; 31
Kudo (10.1016/j.mec.2019.e00096_bib23) 2009; 62
Jin (10.1016/j.mec.2019.e00096_bib19) 2017; 2
Nagabhushan (10.1016/j.mec.2019.e00096_bib32) 1978; 31
Sucipto (10.1016/j.mec.2019.e00096_bib40) 2012; 51
Scheunemann (10.1016/j.mec.2019.e00096_bib37) 2010; 38
Delcher (10.1016/j.mec.2019.e00096_bib10) 1999; 27
Jones (10.1016/j.mec.2019.e00096_bib20) 1995; 7
Weber (10.1016/j.mec.2019.e00096_bib53) 2015; 43
Hammer (10.1016/j.mec.2019.e00096_bib15) 2006; 24
Tao (10.1016/j.mec.2019.e00096_bib42) 2018; 9
Weinstein (10.1016/j.mec.2019.e00096_bib46) 1963; 6
References_xml – volume: 105
  start-page: 20404
  year: 2008
  end-page: 20409
  ident: bib12
  article-title: One-step assembly in yeast of 25 overlapping DNA fragments to form a complete synthetic Mycoplasma genitalium genome
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 21
  start-page: 608
  year: 2014
  end-page: 618
  ident: bib14
  article-title: Specificity and promiscuity at the branch point in gentamicin biosynthesis
  publication-title: Chem. Biol.
– volume: 46
  start-page: 607
  year: 2005
  end-page: 609
  ident: bib31
  article-title: A semisynthesis of isepamicin by fragmentation method
  publication-title: Tetrahedron Lett.
– volume: 48
  start-page: 33
  year: 2017
  end-page: 41
  ident: bib34
  article-title: Biosynthetic pathways of aminoglycosides and their engineering
  publication-title: Curr. Opin. Biotechnol.
– volume: 14
  start-page: R101
  year: 2013
  ident: bib22
  article-title: Reducing assembly complexity of microbial genomes with single-molecule sequencing
  publication-title: Genome Biol.
– volume: 28
  start-page: 173
  year: 2008
  end-page: 212
  ident: bib25
  article-title: Microbial biosynthesis and applications of gentamicin: a critical appraisal
  publication-title: Crit. Rev. Biotechnol.
– volume: 9
  year: 2018
  ident: bib42
  article-title: CRISPR/Cas9-Based editing of Streptomyces for discovery, characterization, and production of natural products
  publication-title: Front. Microbiol.
– volume: 43
  start-page: W237
  year: 2015
  end-page: W243
  ident: bib53
  article-title: antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters
  publication-title: Nucleic Acids Research.
– volume: 15
  year: 2016
  ident: bib33
  article-title: Assembly of a novel biosynthetic pathway for gentamicin B production in Micromonospora echinospora
  publication-title: Microb. Cell Factories
– volume: 112
  start-page: 12181
  year: 2015
  end-page: 12186
  ident: bib2
  article-title: Exploiting a precise design of universal synthetic modular regulatory elements to unlock the microbial natural products in streptomyces
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 27
  start-page: 4636
  year: 1999
  end-page: 4641
  ident: bib10
  article-title: Improved microbial gene identification with GLIMMER
  publication-title: Nucleic Acids Res.
– volume: 2
  start-page: 295
  year: 2017
  end-page: 301
  ident: bib19
  article-title: Rapid evolution of regulatory element libraries for tunable transcriptional and translational control of gene expression
  publication-title: Synth. Syst. Biotechnol.
– volume: 105
  start-page: 477
  year: 2005
  end-page: 497
  ident: bib29
  article-title: Molecular insights into aminoglycoside action and resistance
  publication-title: Chem. Rev.
– volume: 51
  start-page: 3428
  year: 2012
  end-page: 3431
  ident: bib40
  article-title: The last step of kanamycin biosynthesis: unique deamination reaction catalyzed by the alpha-ketoglutarate-dependent nonheme iron dioxygenase KanJ and the NADPH-dependent reductase KanK
  publication-title: Angew. Chem. Int. Ed.
– volume: 6
  start-page: 995
  year: 2017
  end-page: 1005
  ident: bib41
  article-title: Heterologous biosynthesis of spinosad: an omics-guided large, polyketide synthase gene cluster reconstitution in streptomyces
  publication-title: ACS Synth. Biol.
– volume: 7
  start-page: 11
  year: 2016
  end-page: 27
  ident: bib11
  article-title: Mechanisms of resistance to aminoglycoside antibiotics: overview and perspectives
  publication-title: Medchemcomm
– year: 2007
  ident: bib1
  article-title: Aminoglycoside Antibiotics: from Chemical Biology to Drug Discovery
– volume: 90
  start-page: 1089
  year: 2006
  end-page: 1107
  ident: bib9
  article-title: New uses for older antibiotics: nitrofurantoin, amikacin, colistin, polymyxin B, doxycycline, and minocycline revisited
  publication-title: Med. Clin. N. Am.
– volume: 115
  start-page: 1340
  year: 2018
  end-page: 1345
  ident: bib26
  article-title: Methyltransferases of gentamicin biosynthesis
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 31
  start-page: 449
  year: 2009
  end-page: 455
  ident: bib50
  article-title: Molecular cloning and sequence analysis of the sisomicin biosynthetic gene cluster from Micromonospora inyoensis
  publication-title: Biotechnol. Lett.
– volume: 23
  start-page: 1438
  year: 2013
  end-page: 1441
  ident: bib38
  article-title: Characterization of a key aminoglycoside phosphotransferase in gentamicin biosynthesis
  publication-title: Bioorg. Med. Chem. Lett
– volume: 4
  start-page: 1020
  year: 2015
  end-page: 1029
  ident: bib44
  article-title: CRISPR-Cas9 based engineering of actinomycetal genomes
  publication-title: ACS Synth. Biol.
– volume: 24
  start-page: 53
  year: 2006
  end-page: 55
  ident: bib15
  article-title: Synthetic promoter libraries--tuning of gene expression
  publication-title: Trends Biotechnol.
– volume: 1
  start-page: 207
  year: 2016
  end-page: 214
  ident: bib27
  article-title: Development of Streptomyces sp. FR-008 as an emerging chassis
  publication-title: Synth. Syst. Biotechnol.
– start-page: 15
  year: 2007
  end-page: 118
  ident: bib35
  article-title: The biochemistry and genetics of aminoglycoside producers
  publication-title: Aminoglycoside Antiobiotics:From Chemical Biology to Drug Discovery
– volume: 24
  start-page: 291
  year: 2013
  end-page: 299
  ident: bib48
  article-title: Engineering plant metabolism into microbes: from systems biology to synthetic biology
  publication-title: Curr. Opin. Biotechnol.
– volume: 407
  start-page: 340
  year: 2000
  end-page: 348
  ident: bib7
  article-title: Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics
  publication-title: Nature
– volume: 7
  start-page: 7
  year: 1995
  end-page: 16
  ident: bib20
  article-title: Isepamicin (Sch-21420, 1-N-hapa gentamicin-B) - microbiological characteristics including antimicrobial potency and spectrum of activity
  publication-title: J. Chemother.
– volume: 327
  start-page: 389
  year: 1987
  end-page: 394
  ident: bib30
  article-title: Interaction of antibiotics with functional sites in 16s ribosomal-rna
  publication-title: Nature
– volume: 38
  start-page: 3094
  year: 2010
  end-page: 3105
  ident: bib37
  article-title: Binding of aminoglycoside antibiotics to helix 69 of 23S rRNA
  publication-title: Nucleic Acids Res.
– volume: 19
  start-page: 98
  year: 2013
  end-page: 106
  ident: bib39
  article-title: Design, construction and characterisation of a synthetic promoter library for fine-tuned gene expression in actinomycetes
  publication-title: Metab. Eng.
– volume: 5
  start-page: 1
  year: 1999
  end-page: 9
  ident: bib52
  article-title: Semisynthetic aminoglycoside antibiotics: Development and enzymatic modifications
  publication-title: J. Infect. Chemother.
– volume: 29
  start-page: 140
  year: 1976
  end-page: 146
  ident: bib43
  article-title: Biotransformation, a new approach to aminoglycoside biosynthesis .2. Gentamicin
  publication-title: J. Antibiot.
– volume: 6
  start-page: 463
  year: 1963
  end-page: 464
  ident: bib46
  article-title: Gentamicin, a new antibiotic complex from micromonspora
  publication-title: J. Med. Chem.
– volume: 62
  start-page: 471
  year: 2009
  end-page: 481
  ident: bib23
  article-title: Biosynthetic genes for aminoglycoside antibiotics
  publication-title: J. Antibiot.
– volume: 14
  start-page: 205
  year: 2012
  end-page: 211
  ident: bib28
  article-title: Synthetic biology: new strategies for directing design
  publication-title: Metab. Eng.
– volume: 15
  start-page: 295
  year: 2019
  end-page: 303
  ident: bib4
  article-title: Complete reconstitution of the diverse pathways of gentamicin B biosynthesis
  publication-title: Nat. Chem. Biol.
– volume: 16
  start-page: 1933
  year: 2015
  end-page: 1942
  ident: bib13
  article-title: Biosynthesis of epimers C2 and C2a in the gentamicin C complex
  publication-title: Chembiochem
– volume: 22
  start-page: 251
  year: 2015
  end-page: 261
  ident: bib17
  article-title: Delineating the biosynthesis of gentamicin x2, the common precursor of the gentamicin C antibiotic complex
  publication-title: Chem. Biol.
– volume: 116
  start-page: 43
  year: 1992
  end-page: 49
  ident: bib51
  article-title: Bierman, M.; Logan, R.; O’Brien, K.; Seno, E. T.; Nagaraja Rao, R.; Schoner, B. E., Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp
  publication-title: Gene
– volume: 26
  start-page: 516
  year: 2013
  end-page: 525
  ident: bib18
  article-title: Aminoglycosides: how should we use them in the 21st century?
  publication-title: Curr. Opin. Infect. Dis.
– volume: 8
  start-page: 105
  year: 2013
  end-page: 115
  ident: bib5
  article-title: Aminoglycoside antibiotics in the 21st century
  publication-title: ACS Chem. Biol.
– volume: 16
  start-page: 4
  year: 2016
  end-page: 18
  ident: bib24
  article-title: Aminoglycoside antibiotics: new insights into the biosynthetic machinery of old drugs
  publication-title: Chem. Rec.
– volume: 10
  start-page: 563
  year: 2013
  end-page: 569
  ident: bib8
  article-title: Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data
  publication-title: Nat. Methods
– volume: 203
  start-page: 40
  year: 2017
  end-page: 46
  ident: bib47
  article-title: Improving gentamicin B and gentamicin C1a production by engineering the glycosyltransferases that transfer primary metabolites into secondary metabolites biosynthesis
  publication-title: Microbiol. Res.
– volume: 6
  year: 2017
  ident: bib49
  article-title: Parallel pathways in the biosynthesis of aminoglycoside antibiotics
  publication-title: F1000Research
– volume: 20
  start-page: 678
  year: 2010
  end-page: 682
  ident: bib16
  article-title: Two pHZ1358 derivative vectors for efficient gene knockout in streptomyces
  publication-title: J. Microbiol. Biotechnol.
– volume: 14
  start-page: 223
  year: 2012
  end-page: 232
  ident: bib6
  article-title: Parts plus pipes: synthetic biology approaches to metabolic engineering
  publication-title: Metab. Eng.
– volume: 13
  start-page: 151
  year: 2010
  end-page: 171
  ident: bib36
  article-title: Aminoglycoside modifying enzymes
  publication-title: Drug Resist. Updates
– volume: 31
  start-page: 681
  year: 1978
  end-page: 687
  ident: bib32
  article-title: Syntheses and biological properties of 1-N-(S-4-Amino-2-Hydroxybutyryl)-Gentamicin-B and 1-N-(S-3-Amino-2-Hydroxypropionyl)-Gentamicin-B
  publication-title: J. Antibiot.
– volume: 48
  start-page: 33
  year: 2017
  ident: 10.1016/j.mec.2019.e00096_bib34
  article-title: Biosynthetic pathways of aminoglycosides and their engineering
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2017.03.019
– volume: 9
  year: 2018
  ident: 10.1016/j.mec.2019.e00096_bib42
  article-title: CRISPR/Cas9-Based editing of Streptomyces for discovery, characterization, and production of natural products
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2018.01660
– volume: 23
  start-page: 1438
  year: 2013
  ident: 10.1016/j.mec.2019.e00096_bib38
  article-title: Characterization of a key aminoglycoside phosphotransferase in gentamicin biosynthesis
  publication-title: Bioorg. Med. Chem. Lett
  doi: 10.1016/j.bmcl.2012.12.064
– volume: 6
  start-page: 463
  year: 1963
  ident: 10.1016/j.mec.2019.e00096_bib46
  article-title: Gentamicin, a new antibiotic complex from micromonspora
  publication-title: J. Med. Chem.
  doi: 10.1021/jm00340a034
– year: 2007
  ident: 10.1016/j.mec.2019.e00096_bib1
– volume: 19
  start-page: 98
  year: 2013
  ident: 10.1016/j.mec.2019.e00096_bib39
  article-title: Design, construction and characterisation of a synthetic promoter library for fine-tuned gene expression in actinomycetes
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2013.07.006
– volume: 327
  start-page: 389
  year: 1987
  ident: 10.1016/j.mec.2019.e00096_bib30
  article-title: Interaction of antibiotics with functional sites in 16s ribosomal-rna
  publication-title: Nature
  doi: 10.1038/327389a0
– volume: 14
  start-page: 205
  year: 2012
  ident: 10.1016/j.mec.2019.e00096_bib28
  article-title: Synthetic biology: new strategies for directing design
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2011.12.007
– volume: 24
  start-page: 53
  year: 2006
  ident: 10.1016/j.mec.2019.e00096_bib15
  article-title: Synthetic promoter libraries--tuning of gene expression
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2005.12.003
– volume: 28
  start-page: 173
  year: 2008
  ident: 10.1016/j.mec.2019.e00096_bib25
  article-title: Microbial biosynthesis and applications of gentamicin: a critical appraisal
  publication-title: Crit. Rev. Biotechnol.
  doi: 10.1080/07388550802262197
– volume: 15
  year: 2016
  ident: 10.1016/j.mec.2019.e00096_bib33
  article-title: Assembly of a novel biosynthetic pathway for gentamicin B production in Micromonospora echinospora
  publication-title: Microb. Cell Factories
  doi: 10.1186/s12934-015-0402-6
– volume: 21
  start-page: 608
  year: 2014
  ident: 10.1016/j.mec.2019.e00096_bib14
  article-title: Specificity and promiscuity at the branch point in gentamicin biosynthesis
  publication-title: Chem. Biol.
  doi: 10.1016/j.chembiol.2014.03.005
– volume: 16
  start-page: 4
  year: 2016
  ident: 10.1016/j.mec.2019.e00096_bib24
  article-title: Aminoglycoside antibiotics: new insights into the biosynthetic machinery of old drugs
  publication-title: Chem. Rec.
  doi: 10.1002/tcr.201500210
– volume: 7
  start-page: 11
  year: 2016
  ident: 10.1016/j.mec.2019.e00096_bib11
  article-title: Mechanisms of resistance to aminoglycoside antibiotics: overview and perspectives
  publication-title: Medchemcomm
  doi: 10.1039/C5MD00344J
– volume: 31
  start-page: 449
  issue: 3
  year: 2009
  ident: 10.1016/j.mec.2019.e00096_bib50
  article-title: Molecular cloning and sequence analysis of the sisomicin biosynthetic gene cluster from Micromonospora inyoensis
  publication-title: Biotechnol. Lett.
  doi: 10.1007/s10529-008-9887-y
– volume: 22
  start-page: 251
  year: 2015
  ident: 10.1016/j.mec.2019.e00096_bib17
  article-title: Delineating the biosynthesis of gentamicin x2, the common precursor of the gentamicin C antibiotic complex
  publication-title: Chem. Biol.
  doi: 10.1016/j.chembiol.2014.12.012
– volume: 16
  start-page: 1933
  issue: 13
  year: 2015
  ident: 10.1016/j.mec.2019.e00096_bib13
  article-title: Biosynthesis of epimers C2 and C2a in the gentamicin C complex
  publication-title: Chembiochem
  doi: 10.1002/cbic.201500258
– volume: 26
  start-page: 516
  year: 2013
  ident: 10.1016/j.mec.2019.e00096_bib18
  article-title: Aminoglycosides: how should we use them in the 21st century?
  publication-title: Curr. Opin. Infect. Dis.
  doi: 10.1097/QCO.0000000000000012
– volume: 10
  start-page: 563
  year: 2013
  ident: 10.1016/j.mec.2019.e00096_bib8
  article-title: Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2474
– volume: 29
  start-page: 140
  year: 1976
  ident: 10.1016/j.mec.2019.e00096_bib43
  article-title: Biotransformation, a new approach to aminoglycoside biosynthesis .2. Gentamicin
  publication-title: J. Antibiot.
  doi: 10.7164/antibiotics.29.140
– volume: 90
  start-page: 1089
  year: 2006
  ident: 10.1016/j.mec.2019.e00096_bib9
  article-title: New uses for older antibiotics: nitrofurantoin, amikacin, colistin, polymyxin B, doxycycline, and minocycline revisited
  publication-title: Med. Clin. N. Am.
  doi: 10.1016/j.mcna.2006.07.006
– volume: 105
  start-page: 477
  year: 2005
  ident: 10.1016/j.mec.2019.e00096_bib29
  article-title: Molecular insights into aminoglycoside action and resistance
  publication-title: Chem. Rev.
  doi: 10.1021/cr0301088
– volume: 62
  start-page: 471
  year: 2009
  ident: 10.1016/j.mec.2019.e00096_bib23
  article-title: Biosynthetic genes for aminoglycoside antibiotics
  publication-title: J. Antibiot.
  doi: 10.1038/ja.2009.76
– start-page: 15
  year: 2007
  ident: 10.1016/j.mec.2019.e00096_bib35
  article-title: The biochemistry and genetics of aminoglycoside producers
– volume: 5
  start-page: 1
  issue: 1
  year: 1999
  ident: 10.1016/j.mec.2019.e00096_bib52
  article-title: Semisynthetic aminoglycoside antibiotics: Development and enzymatic modifications
  publication-title: J. Infect. Chemother.
  doi: 10.1007/s101560050001
– volume: 6
  start-page: 995
  year: 2017
  ident: 10.1016/j.mec.2019.e00096_bib41
  article-title: Heterologous biosynthesis of spinosad: an omics-guided large, polyketide synthase gene cluster reconstitution in streptomyces
  publication-title: ACS Synth. Biol.
  doi: 10.1021/acssynbio.6b00330
– volume: 27
  start-page: 4636
  year: 1999
  ident: 10.1016/j.mec.2019.e00096_bib10
  article-title: Improved microbial gene identification with GLIMMER
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/27.23.4636
– volume: 13
  start-page: 151
  year: 2010
  ident: 10.1016/j.mec.2019.e00096_bib36
  article-title: Aminoglycoside modifying enzymes
  publication-title: Drug Resist. Updates
  doi: 10.1016/j.drup.2010.08.003
– volume: 7
  start-page: 7
  year: 1995
  ident: 10.1016/j.mec.2019.e00096_bib20
  article-title: Isepamicin (Sch-21420, 1-N-hapa gentamicin-B) - microbiological characteristics including antimicrobial potency and spectrum of activity
  publication-title: J. Chemother.
– volume: 6
  year: 2017
  ident: 10.1016/j.mec.2019.e00096_bib49
  article-title: Parallel pathways in the biosynthesis of aminoglycoside antibiotics
  publication-title: F1000Research
  doi: 10.12688/f1000research.11104.1
– volume: 15
  start-page: 295
  year: 2019
  ident: 10.1016/j.mec.2019.e00096_bib4
  article-title: Complete reconstitution of the diverse pathways of gentamicin B biosynthesis
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/s41589-018-0203-4
– volume: 31
  start-page: 681
  year: 1978
  ident: 10.1016/j.mec.2019.e00096_bib32
  article-title: Syntheses and biological properties of 1-N-(S-4-Amino-2-Hydroxybutyryl)-Gentamicin-B and 1-N-(S-3-Amino-2-Hydroxypropionyl)-Gentamicin-B
  publication-title: J. Antibiot.
  doi: 10.7164/antibiotics.31.681
– volume: 1
  start-page: 207
  year: 2016
  ident: 10.1016/j.mec.2019.e00096_bib27
  article-title: Development of Streptomyces sp. FR-008 as an emerging chassis
  publication-title: Synth. Syst. Biotechnol.
  doi: 10.1016/j.synbio.2016.07.002
– volume: 203
  start-page: 40
  year: 2017
  ident: 10.1016/j.mec.2019.e00096_bib47
  article-title: Improving gentamicin B and gentamicin C1a production by engineering the glycosyltransferases that transfer primary metabolites into secondary metabolites biosynthesis
  publication-title: Microbiol. Res.
  doi: 10.1016/j.micres.2017.06.006
– volume: 20
  start-page: 678
  year: 2010
  ident: 10.1016/j.mec.2019.e00096_bib16
  article-title: Two pHZ1358 derivative vectors for efficient gene knockout in streptomyces
  publication-title: J. Microbiol. Biotechnol.
  doi: 10.4014/jmb.0910.10031
– volume: 2
  start-page: 295
  year: 2017
  ident: 10.1016/j.mec.2019.e00096_bib19
  article-title: Rapid evolution of regulatory element libraries for tunable transcriptional and translational control of gene expression
  publication-title: Synth. Syst. Biotechnol.
  doi: 10.1016/j.synbio.2017.10.003
– volume: 115
  start-page: 1340
  year: 2018
  ident: 10.1016/j.mec.2019.e00096_bib26
  article-title: Methyltransferases of gentamicin biosynthesis
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1711603115
– volume: 14
  start-page: R101
  year: 2013
  ident: 10.1016/j.mec.2019.e00096_bib22
  article-title: Reducing assembly complexity of microbial genomes with single-molecule sequencing
  publication-title: Genome Biol.
  doi: 10.1186/gb-2013-14-9-r101
– volume: 407
  start-page: 340
  year: 2000
  ident: 10.1016/j.mec.2019.e00096_bib7
  article-title: Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics
  publication-title: Nature
  doi: 10.1038/35030019
– volume: 46
  start-page: 607
  year: 2005
  ident: 10.1016/j.mec.2019.e00096_bib31
  article-title: A semisynthesis of isepamicin by fragmentation method
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2004.11.130
– volume: 14
  start-page: 223
  year: 2012
  ident: 10.1016/j.mec.2019.e00096_bib6
  article-title: Parts plus pipes: synthetic biology approaches to metabolic engineering
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2011.10.003
– volume: 4
  start-page: 1020
  year: 2015
  ident: 10.1016/j.mec.2019.e00096_bib44
  article-title: CRISPR-Cas9 based engineering of actinomycetal genomes
  publication-title: ACS Synth. Biol.
  doi: 10.1021/acssynbio.5b00038
– volume: 43
  start-page: W237
  issue: Web Server issue
  year: 2015
  ident: 10.1016/j.mec.2019.e00096_bib53
  article-title: antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters
  publication-title: Nucleic Acids Research.
  doi: 10.1093/nar/gkv437
– volume: 112
  start-page: 12181
  year: 2015
  ident: 10.1016/j.mec.2019.e00096_bib2
  article-title: Exploiting a precise design of universal synthetic modular regulatory elements to unlock the microbial natural products in streptomyces
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1511027112
– volume: 8
  start-page: 105
  year: 2013
  ident: 10.1016/j.mec.2019.e00096_bib5
  article-title: Aminoglycoside antibiotics in the 21st century
  publication-title: ACS Chem. Biol.
  doi: 10.1021/cb3005116
– volume: 51
  start-page: 3428
  year: 2012
  ident: 10.1016/j.mec.2019.e00096_bib40
  article-title: The last step of kanamycin biosynthesis: unique deamination reaction catalyzed by the alpha-ketoglutarate-dependent nonheme iron dioxygenase KanJ and the NADPH-dependent reductase KanK
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201108122
– volume: 24
  start-page: 291
  year: 2013
  ident: 10.1016/j.mec.2019.e00096_bib48
  article-title: Engineering plant metabolism into microbes: from systems biology to synthetic biology
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2012.08.010
– volume: 105
  start-page: 20404
  year: 2008
  ident: 10.1016/j.mec.2019.e00096_bib12
  article-title: One-step assembly in yeast of 25 overlapping DNA fragments to form a complete synthetic Mycoplasma genitalium genome
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0811011106
– volume: 38
  start-page: 3094
  year: 2010
  ident: 10.1016/j.mec.2019.e00096_bib37
  article-title: Binding of aminoglycoside antibiotics to helix 69 of 23S rRNA
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkp1253
– volume: 116
  start-page: 43
  issue: 1
  year: 1992
  ident: 10.1016/j.mec.2019.e00096_bib51
  article-title: Bierman, M.; Logan, R.; O’Brien, K.; Seno, E. T.; Nagaraja Rao, R.; Schoner, B. E., Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp
  publication-title: Gene
  doi: 10.1016/0378-1119(92)90627-2
SSID ssj0001361411
Score 2.1668522
Snippet In pharmaceutical industry, isepamicin is mainly manufactured from gentamicin B, which is produced by Micromonospora echinospora as a minor component of the...
In pharmaceutical industry, isepamicin is mainly manufactured from gentamicin B, which is produced by Micromonospora echinospora as a minor component of the...
SourceID doaj
pubmedcentral
proquest
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e00096
SubjectTerms biochemical pathways
biosynthesis
CRISPR/Cas9
deamination
gene targeting
genome mining
GenR
GenS
gentamicin
Gentamicin B
manufacturing
metabolic engineering
Micromonospora echinospora
multigene family
mutants
pharmaceutical industry
Title Overproduction of gentamicin B in industrial strain Micromonospora echinospora CCTCC M 2018898 by cloning of the missing genes genR and genS
URI https://dx.doi.org/10.1016/j.mec.2019.e00096
https://www.proquest.com/docview/2305224822
https://www.proquest.com/docview/2314250892
https://pubmed.ncbi.nlm.nih.gov/PMC6838515
https://doaj.org/article/fa1f7168c9464ab7894210e5ddd6ef2f
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUlvbSH0jYN3X4EFXIKOJFl2ZaOiWkIDdtAmpDchCyP6IbEW7pJof-hP7ozsr3Yl-2lF2Ns2fJoRtIbafyGsT0iy9EimERolydKO-xSpnAJ1CFXypUp1PS_8_xrcXqlvtzkN6NUXxQT1tEDdw13GFwaENNrb1ShXF1qo9BLgbxpmgKCDDT6CiNGzlRcXclw2onJd6VMVUK4f9jSjMFd90D0hak5gAjiJ5NS5O6fzE0j7DmNnBxNRScv2YseQ_Kj7ttfsSfQvmbPR8yC2-zP-S-KJYxsrtjyfBl4_IfqnjbS-THHw2KdtIOvYqIIPu-C84g9HA2DA4VZ9udVdVlVfM5RGq2N5vVv7u_iSi69GkEkR3uhZQeqBlZ0vOCubejk2xt2dfL5sjpN-sQLiVelKZI0SCkceOzL2udC1AYaRTqQKqtlcD6QM6u9CsbjECEBW9Jjz86dlC6HItthW-2yhbeMlw71XWdoEpApEZQGV6Izb0qXGpe6csbE0PLW96zkJPOdHcLPbi0qy5KybKesGdtfP_Kjo-TYVPiY1LkuSGza8QLamO1tzP7LxmZMDcZge2DSAQ581WJT3Z8Gw7GoBNqJcS0sH1cW_T7EvQrB2aYyKY6nQhssU06sbiLM9E67-B4pwgudIZTO3_0P6d-zZyRUF8PzgW09_HyEj4jEHupd9vTo7OL6bDd2vr8XzjKV
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Overproduction+of+gentamicin+B+in+industrial+strain+Micromonospora+echinospora+CCTCC+M+2018898+by+cloning+of+the+missing+genes+genR+and+genS&rft.jtitle=Metabolic+engineering+communications&rft.au=Yingying+Chang&rft.au=Baozhong+Chai&rft.au=Yunkun+Ding&rft.au=Min+He&rft.date=2019-12-01&rft.pub=Elsevier&rft.issn=2214-0301&rft.eissn=2214-0301&rft.volume=9&rft_id=info:doi/10.1016%2Fj.mec.2019.e00096&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_fa1f7168c9464ab7894210e5ddd6ef2f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-0301&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-0301&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-0301&client=summon