Overproduction of gentamicin B in industrial strain Micromonospora echinospora CCTCC M 2018898 by cloning of the missing genes genR and genS
In pharmaceutical industry, isepamicin is mainly manufactured from gentamicin B, which is produced by Micromonospora echinospora as a minor component of the gentamicin complex. Improvement of gentamicin B production through metabolic engineering is therefore important to satisfy the increasing deman...
Saved in:
Published in | Metabolic engineering communications Vol. 9; p. e00096 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2019
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2214-0301 2214-0301 |
DOI | 10.1016/j.mec.2019.e00096 |
Cover
Abstract | In pharmaceutical industry, isepamicin is mainly manufactured from gentamicin B, which is produced by Micromonospora echinospora as a minor component of the gentamicin complex. Improvement of gentamicin B production through metabolic engineering is therefore important to satisfy the increasing demand for isepamicin. We hypothesized that gentamicin B was generated from gentamicin JI-20A via deamination of the C2’ amino group. Using kanJ and kanK as the gene probes, we identified the putative deamination-related genes, genR and genS, through genome mining of the gentamicin B producing strain M. echinospora CCTCC M 2018898. Interestingly, genR and genS constitute a gene cassette located approximately 28.7 kb away from the gentamicin gene cluster. Gene knockout of genR and genS almost abolished the production of gentamicin B in the mutant strain, suggesting that these two genes, which are responsible for the last steps in gentamicin B biosynthesis, constitute the missing part of the known gentamicin biosynthetic pathway. Based on these finding, we successfully constructed a gentamicin B high-yielding strain (798 mg/L), in which an overexpression cassette of genR and genS was introduced. Our work fills the missing piece to solve the puzzle of gentamicin B biosynthesis and may inspire future metabolic engineering efforts to generate gentamycin B high-yielding strains that could eventually satisfy the need for industrial manufacturing of isepamicin.
•Two missing genes in the biosynthetic pathway of gentamicin B were found.•CRISPR/Cas9 was applied successfully to delete genes in Micromonospora echinospora.•Overexpression of genR/S cassette improved gentamicin B titer by 64% in current industrial strain. |
---|---|
AbstractList | In pharmaceutical industry, isepamicin is mainly manufactured from gentamicin B, which is produced by Micromonospora echinospora as a minor component of the gentamicin complex. Improvement of gentamicin B production through metabolic engineering is therefore important to satisfy the increasing demand for isepamicin. We hypothesized that gentamicin B was generated from gentamicin JI-20A via deamination of the C2' amino group. Using kanJ and kanK as the gene probes, we identified the putative deamination-related genes, genR and genS, through genome mining of the gentamicin B producing strain M. echinospora CCTCC M 2018898. Interestingly, genR and genS constitute a gene cassette located approximately 28.7 kb away from the gentamicin gene cluster. Gene knockout of genR and genS almost abolished the production of gentamicin B in the mutant strain, suggesting that these two genes, which are responsible for the last steps in gentamicin B biosynthesis, constitute the missing part of the known gentamicin biosynthetic pathway. Based on these finding, we successfully constructed a gentamicin B high-yielding strain (798 mg/L), in which an overexpression cassette of genR and genS was introduced. Our work fills the missing piece to solve the puzzle of gentamicin B biosynthesis and may inspire future metabolic engineering efforts to generate gentamycin B high-yielding strains that could eventually satisfy the need for industrial manufacturing of isepamicin.In pharmaceutical industry, isepamicin is mainly manufactured from gentamicin B, which is produced by Micromonospora echinospora as a minor component of the gentamicin complex. Improvement of gentamicin B production through metabolic engineering is therefore important to satisfy the increasing demand for isepamicin. We hypothesized that gentamicin B was generated from gentamicin JI-20A via deamination of the C2' amino group. Using kanJ and kanK as the gene probes, we identified the putative deamination-related genes, genR and genS, through genome mining of the gentamicin B producing strain M. echinospora CCTCC M 2018898. Interestingly, genR and genS constitute a gene cassette located approximately 28.7 kb away from the gentamicin gene cluster. Gene knockout of genR and genS almost abolished the production of gentamicin B in the mutant strain, suggesting that these two genes, which are responsible for the last steps in gentamicin B biosynthesis, constitute the missing part of the known gentamicin biosynthetic pathway. Based on these finding, we successfully constructed a gentamicin B high-yielding strain (798 mg/L), in which an overexpression cassette of genR and genS was introduced. Our work fills the missing piece to solve the puzzle of gentamicin B biosynthesis and may inspire future metabolic engineering efforts to generate gentamycin B high-yielding strains that could eventually satisfy the need for industrial manufacturing of isepamicin. In pharmaceutical industry, isepamicin is mainly manufactured from gentamicin B, which is produced by Micromonospora echinospora as a minor component of the gentamicin complex. Improvement of gentamicin B production through metabolic engineering is therefore important to satisfy the increasing demand for isepamicin. We hypothesized that gentamicin B was generated from gentamicin JI-20A via deamination of the C2’ amino group. Using kanJ and kanK as the gene probes, we identified the putative deamination-related genes, genR and genS, through genome mining of the gentamicin B producing strain M. echinospora CCTCC M 2018898. Interestingly, genR and genS constitute a gene cassette located approximately 28.7 kb away from the gentamicin gene cluster. Gene knockout of genR and genS almost abolished the production of gentamicin B in the mutant strain, suggesting that these two genes, which are responsible for the last steps in gentamicin B biosynthesis, constitute the missing part of the known gentamicin biosynthetic pathway. Based on these finding, we successfully constructed a gentamicin B high-yielding strain (798 mg/L), in which an overexpression cassette of genR and genS was introduced. Our work fills the missing piece to solve the puzzle of gentamicin B biosynthesis and may inspire future metabolic engineering efforts to generate gentamycin B high-yielding strains that could eventually satisfy the need for industrial manufacturing of isepamicin. Keywords: Gentamicin B, CRISPR/Cas9, Micromonospora echinospora, GenR, GenS In pharmaceutical industry, isepamicin is mainly manufactured from gentamicin B, which is produced by Micromonospora echinospora as a minor component of the gentamicin complex. Improvement of gentamicin B production through metabolic engineering is therefore important to satisfy the increasing demand for isepamicin. We hypothesized that gentamicin B was generated from gentamicin JI-20A via deamination of the C2’ amino group. Using kanJ and kanK as the gene probes, we identified the putative deamination-related genes, genR and genS, through genome mining of the gentamicin B producing strain M. echinospora CCTCC M 2018898. Interestingly, genR and genS constitute a gene cassette located approximately 28.7 kb away from the gentamicin gene cluster. Gene knockout of genR and genS almost abolished the production of gentamicin B in the mutant strain, suggesting that these two genes, which are responsible for the last steps in gentamicin B biosynthesis, constitute the missing part of the known gentamicin biosynthetic pathway. Based on these finding, we successfully constructed a gentamicin B high-yielding strain (798 mg/L), in which an overexpression cassette of genR and genS was introduced. Our work fills the missing piece to solve the puzzle of gentamicin B biosynthesis and may inspire future metabolic engineering efforts to generate gentamycin B high-yielding strains that could eventually satisfy the need for industrial manufacturing of isepamicin. •Two missing genes in the biosynthetic pathway of gentamicin B were found.•CRISPR/Cas9 was applied successfully to delete genes in Micromonospora echinospora.•Overexpression of genR/S cassette improved gentamicin B titer by 64% in current industrial strain. In pharmaceutical industry, isepamicin is mainly manufactured from gentamicin B, which is produced by Micromonospora echinospora as a minor component of the gentamicin complex. Improvement of gentamicin B production through metabolic engineering is therefore important to satisfy the increasing demand for isepamicin. We hypothesized that gentamicin B was generated from gentamicin JI-20A via deamination of the C2’ amino group. Using kanJ and kanK as the gene probes, we identified the putative deamination-related genes, genR and genS , through genome mining of the gentamicin B producing strain M. echinospora CCTCC M 2018898. Interestingly, genR and genS constitute a gene cassette located approximately 28.7 kb away from the gentamicin gene cluster. Gene knockout of genR and genS almost abolished the production of gentamicin B in the mutant strain, suggesting that these two genes, which are responsible for the last steps in gentamicin B biosynthesis, constitute the missing part of the known gentamicin biosynthetic pathway. Based on these finding, we successfully constructed a gentamicin B high-yielding strain (798 mg/L), in which an overexpression cassette of genR and genS was introduced. Our work fills the missing piece to solve the puzzle of gentamicin B biosynthesis and may inspire future metabolic engineering efforts to generate gentamycin B high-yielding strains that could eventually satisfy the need for industrial manufacturing of isepamicin. • Two missing genes in the biosynthetic pathway of gentamicin B were found. • CRISPR/Cas9 was applied successfully to delete genes in Micromonospora echinospora. • Overexpression of genR / S cassette improved gentamicin B titer by 64% in current industrial strain. In pharmaceutical industry, isepamicin is mainly manufactured from gentamicin B, which is produced by Micromonospora echinospora as a minor component of the gentamicin complex. Improvement of gentamicin B production through metabolic engineering is therefore important to satisfy the increasing demand for isepamicin. We hypothesized that gentamicin B was generated from gentamicin JI-20A via deamination of the C2’ amino group. Using kanJ and kanK as the gene probes, we identified the putative deamination-related genes, genR and genS, through genome mining of the gentamicin B producing strain M. echinospora CCTCC M 2018898. Interestingly, genR and genS constitute a gene cassette located approximately 28.7 kb away from the gentamicin gene cluster. Gene knockout of genR and genS almost abolished the production of gentamicin B in the mutant strain, suggesting that these two genes, which are responsible for the last steps in gentamicin B biosynthesis, constitute the missing part of the known gentamicin biosynthetic pathway. Based on these finding, we successfully constructed a gentamicin B high-yielding strain (798 mg/L), in which an overexpression cassette of genR and genS was introduced. Our work fills the missing piece to solve the puzzle of gentamicin B biosynthesis and may inspire future metabolic engineering efforts to generate gentamycin B high-yielding strains that could eventually satisfy the need for industrial manufacturing of isepamicin. |
ArticleNumber | e00096 |
Author | Teng, Yun He, Min Yu, Yi Chai, Baozhong Ding, Yunkun Chang, Yingying Zheng, Linghui Liu, Tiangang Deng, Zixin |
AuthorAffiliation | a Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China b Zhejiang Key Laboratory of Antifungal Drugs, Zhejiang Hisun Pharmaceutical Co, Ltd, Taizhou, 318000, China c Hubei Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan, 430075, China |
AuthorAffiliation_xml | – name: b Zhejiang Key Laboratory of Antifungal Drugs, Zhejiang Hisun Pharmaceutical Co, Ltd, Taizhou, 318000, China – name: c Hubei Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan, 430075, China – name: a Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China |
Author_xml | – sequence: 1 givenname: Yingying surname: Chang fullname: Chang, Yingying organization: Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China – sequence: 2 givenname: Baozhong surname: Chai fullname: Chai, Baozhong organization: Zhejiang Key Laboratory of Antifungal Drugs, Zhejiang Hisun Pharmaceutical Co, Ltd, Taizhou, 318000, China – sequence: 3 givenname: Yunkun surname: Ding fullname: Ding, Yunkun organization: Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China – sequence: 4 givenname: Min surname: He fullname: He, Min organization: Zhejiang Key Laboratory of Antifungal Drugs, Zhejiang Hisun Pharmaceutical Co, Ltd, Taizhou, 318000, China – sequence: 5 givenname: Linghui surname: Zheng fullname: Zheng, Linghui organization: Zhejiang Key Laboratory of Antifungal Drugs, Zhejiang Hisun Pharmaceutical Co, Ltd, Taizhou, 318000, China – sequence: 6 givenname: Yun surname: Teng fullname: Teng, Yun email: yteng@hisunpharm.com organization: Zhejiang Key Laboratory of Antifungal Drugs, Zhejiang Hisun Pharmaceutical Co, Ltd, Taizhou, 318000, China – sequence: 7 givenname: Zixin surname: Deng fullname: Deng, Zixin organization: Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China – sequence: 8 givenname: Yi surname: Yu fullname: Yu, Yi email: yu_yi@whu.edu.cn organization: Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China – sequence: 9 givenname: Tiangang surname: Liu fullname: Liu, Tiangang email: liutg@whu.edu.cn organization: Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China |
BookMark | eNqNUk1v1DAQjVARLaU_gJuPXHaxJ07iCAkJIj4qtaoE5Wx5J-NdrxJ7sbMr9T_wo3HYVqIcKi6e8Xjesz3vvSxOfPBUFK8FXwou6rfb5Ui4BC7aJXHO2_pZcQYg5IKXXJz8lZ8WFyltc4soayGFeFGclqIBDgLOil83B4q7GPo9Ti54Fixbk5_M6NB59pHlxfl-n6bozMByMLly7TCGMfiQdiEaRrhxD3nX3XYdu2b5XUq1iq3uGA7BO7-eqacNsdGlNG_zNZTm9Rszvp-T76-K59YMiS7u43nx4_On2-7r4urmy2X34WqBsmnrhbAA3BCqhiusOF-11EtRKwRZrsAatBwaqVDaFnlTAuUZoWjaygCYiuryvLg88vbBbPUuutHEOx2M038KIa61iZPDgbQ1wjYzdytraVaNaiUITlXf9zVZsJnr_ZFrt1-N1GMeXjTDI9LHJ95t9DocdK1KVYkqE7y5J4jh557SpPOEkIbBeAr7pKEUEiquWviPVl4BSAVza3NszUqlFMlqdJOZJZ4lHLTgenaR3ursIj27SB9dlJHiH-TDX57CvDtiKKt2cBR1QkceqXeRcMpjdU-gfwPxW-AB |
CitedBy_id | crossref_primary_10_1016_j_procbio_2021_01_007 crossref_primary_10_3390_biom14040486 crossref_primary_10_1016_j_synbio_2024_11_003 crossref_primary_10_1186_s13036_021_00267_4 crossref_primary_10_3390_molecules28227672 |
Cites_doi | 10.1016/j.copbio.2017.03.019 10.3389/fmicb.2018.01660 10.1016/j.bmcl.2012.12.064 10.1021/jm00340a034 10.1016/j.ymben.2013.07.006 10.1038/327389a0 10.1016/j.ymben.2011.12.007 10.1016/j.tibtech.2005.12.003 10.1080/07388550802262197 10.1186/s12934-015-0402-6 10.1016/j.chembiol.2014.03.005 10.1002/tcr.201500210 10.1039/C5MD00344J 10.1007/s10529-008-9887-y 10.1016/j.chembiol.2014.12.012 10.1002/cbic.201500258 10.1097/QCO.0000000000000012 10.1038/nmeth.2474 10.7164/antibiotics.29.140 10.1016/j.mcna.2006.07.006 10.1021/cr0301088 10.1038/ja.2009.76 10.1007/s101560050001 10.1021/acssynbio.6b00330 10.1093/nar/27.23.4636 10.1016/j.drup.2010.08.003 10.12688/f1000research.11104.1 10.1038/s41589-018-0203-4 10.7164/antibiotics.31.681 10.1016/j.synbio.2016.07.002 10.1016/j.micres.2017.06.006 10.4014/jmb.0910.10031 10.1016/j.synbio.2017.10.003 10.1073/pnas.1711603115 10.1186/gb-2013-14-9-r101 10.1038/35030019 10.1016/j.tetlet.2004.11.130 10.1016/j.ymben.2011.10.003 10.1021/acssynbio.5b00038 10.1093/nar/gkv437 10.1073/pnas.1511027112 10.1021/cb3005116 10.1002/anie.201108122 10.1016/j.copbio.2012.08.010 10.1073/pnas.0811011106 10.1093/nar/gkp1253 10.1016/0378-1119(92)90627-2 |
ContentType | Journal Article |
Copyright | 2019 The Authors 2019 The Authors. 2019 The Authors 2019 |
Copyright_xml | – notice: 2019 The Authors – notice: 2019 The Authors. – notice: 2019 The Authors 2019 |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 7X8 5PM DOA |
DOI | 10.1016/j.mec.2019.e00096 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2214-0301 |
ExternalDocumentID | oai_doaj_org_article_fa1f7168c9464ab7894210e5ddd6ef2f PMC6838515 10_1016_j_mec_2019_e00096 S2214030119300112 |
GroupedDBID | 0R~ 0SF 4.4 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BCNDV EBS EJD FDB GROUPED_DOAJ HYE HZ~ IPNFZ KQ8 M41 M~E NCXOZ O9- OK1 RIG ROL RPM SSZ AAHBH AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c4796-1f220aec8708c500b9ed4168c243b2facf02748c4f9c0732e019c1795a22a5e63 |
IEDL.DBID | DOA |
ISSN | 2214-0301 |
IngestDate | Wed Aug 27 01:31:44 EDT 2025 Thu Aug 21 14:11:38 EDT 2025 Fri Jul 11 05:23:43 EDT 2025 Fri Jul 11 09:41:02 EDT 2025 Thu Apr 24 23:12:57 EDT 2025 Tue Jul 01 04:03:42 EDT 2025 Tue Jul 25 20:36:46 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | GenS Micromonospora echinospora GenR Gentamicin B CRISPR/Cas9 |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4796-1f220aec8708c500b9ed4168c243b2facf02748c4f9c0732e019c1795a22a5e63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/fa1f7168c9464ab7894210e5ddd6ef2f |
PMID | 31720212 |
PQID | 2305224822 |
PQPubID | 24069 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_fa1f7168c9464ab7894210e5ddd6ef2f pubmedcentral_primary_oai_pubmedcentral_nih_gov_6838515 proquest_miscellaneous_2314250892 proquest_miscellaneous_2305224822 crossref_citationtrail_10_1016_j_mec_2019_e00096 crossref_primary_10_1016_j_mec_2019_e00096 elsevier_sciencedirect_doi_10_1016_j_mec_2019_e00096 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-12-01 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Metabolic engineering communications |
PublicationYear | 2019 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Gu, Ni, Ren, Gao, Wang, Xia (bib13) 2015; 16 He, Wang, Bai, Liang, Zhou, Deng (bib16) 2010; 20 Garneau-Tsodikova, Labby (bib11) 2016; 7 Magnet, Blanchard (bib29) 2005; 105 Wu, Gao, Zhou, Wen, Ni, Xia (bib47) 2017; 203 Moon, Jun, Lee, Cheong, Kim, Lee (bib31) 2005; 46 Lynch, Gill (bib28) 2012; 14 Chin, Alexander, Marks, Klammer, Drake, Heiner, Clum, Copeland, Huddleston, Eichler, Turner, Korlach (bib8) 2013; 10 Sucipto, Kudo, Eguchi (bib40) 2012; 51 Huang, Huang, Moison, Guo, Jian, Duan, Deng, Leadlay, Sun (bib17) 2015; 22 Xu, Bhan, Koffas (bib48) 2013; 24 Hammer, Mijakovic, Jensen (bib15) 2006; 24 Jones (bib20) 1995; 7 Jin, Wong, Jiao, Engel, Holdridge, Xu (bib19) 2017; 2 Kondo, Hotta (bib52) 1999; 5 Scheunemann, Graham, Vendeix, Agris (bib37) 2010; 38 Gibson, Benders, Axelrod, Zaveri, Algire, Moodie, Montague, Venter, Smith, Hutchison (bib12) 2008; 105 Yu, Zhang, Deng (bib49) 2017; 6 Shao, Chen, Wang, Li, Tang, Chen, Liu (bib38) 2013; 23 Carter, Clemons, Brodersen, Morgan-Warren, Wimberly, Ramakrishnan (bib7) 2000; 407 Liu, Xiao, Zhou, Deng, Tan, Han, Liu, Deng, Liu (bib27) 2016; 1 Ban, Song, Hwang, Shin, Kim, Hong, Lee, Park, Cha, Liu, Yoon (bib4) 2019; 15 Moazed, Noller (bib30) 1987; 327 Kudo, Eguchi (bib24) 2016; 16 Kumar, Himabindu, Jetty (bib25) 2008; 28 Nagabhushan, Cooper, Tsai, Daniels, Miller (bib32) 1978; 31 Siegl, Tokovenko, Myronovskyi, Luzhetskyy (bib39) 2013; 19 Tong, Charusanti, Zhang, Weber, Lee (bib44) 2015; 4 Guo, Huang, Huang, Duan, Jian, Leeper, Deng, Leadlay, Sun (bib14) 2014; 21 Ramirez, Tolmasky (bib36) 2010; 13 Jackson, Chen, Buising (bib18) 2013; 26 Cunha (bib9) 2006; 90 Park, Ban, Nam, Cha, Yoon (bib34) 2017; 48 Weber, Blin, Duddela, Krug, Kim, Bruccoleri, Lee, Fischbach, Müller, Wohlleben, Breitling, Takano, Medema (bib53) 2015; 43 Testa, Tilley (bib43) 1976; 29 Koren, Harhay, Smith, Bono, Harhay, Mcvey, Radune, Bergman, Phillippy (bib22) 2013; 14 Hong, Ge, Zeng, Zhu, Luo, Shao, Chen (bib50) 2009; 31 Bierman, Logan, O’Brien, Seno, Nagaraja Rao, Schoner (bib51) 1992; 116 Bai, Zhang, Zhao, Hu, Xiang, Miao, Lou, Zhang (bib2) 2015; 112 Tao, Yang, Deng, Sun (bib42) 2018; 9 Delcher, Harmon, Kasif, White, Salzberg (bib10) 1999; 27 Becker, Cooper (bib5) 2013; 8 Kudo, Eguchi (bib23) 2009; 62 Ni, Sun, Gu, Cui, Xia (bib33) 2016; 15 Piepersberg, Aboshanab, Schmidt-Beißner, Wehmeier (bib35) 2007 Li, Guo, Reva, Huang, Xiong, Liu, Deng, Leadlay, Sun (bib26) 2018; 115 Boyle, Silver (bib6) 2012; 14 Tan, Deng, Liu, Tao, Chang, Chen, Chen, Sheng, Deng, Liu (bib41) 2017; 6 Weinstein, Rosselet, Herzog, Black, Luedemann, Wagman, Charney, Marquez, Coniglio, Oden (bib46) 1963; 6 Arya (bib1) 2007 Park (10.1016/j.mec.2019.e00096_bib34) 2017; 48 Moazed (10.1016/j.mec.2019.e00096_bib30) 1987; 327 Carter (10.1016/j.mec.2019.e00096_bib7) 2000; 407 Lynch (10.1016/j.mec.2019.e00096_bib28) 2012; 14 Arya (10.1016/j.mec.2019.e00096_bib1) 2007 Ban (10.1016/j.mec.2019.e00096_bib4) 2019; 15 Tong (10.1016/j.mec.2019.e00096_bib44) 2015; 4 Siegl (10.1016/j.mec.2019.e00096_bib39) 2013; 19 Garneau-Tsodikova (10.1016/j.mec.2019.e00096_bib11) 2016; 7 Jackson (10.1016/j.mec.2019.e00096_bib18) 2013; 26 Boyle (10.1016/j.mec.2019.e00096_bib6) 2012; 14 Moon (10.1016/j.mec.2019.e00096_bib31) 2005; 46 Li (10.1016/j.mec.2019.e00096_bib26) 2018; 115 Magnet (10.1016/j.mec.2019.e00096_bib29) 2005; 105 Piepersberg (10.1016/j.mec.2019.e00096_bib35) 2007 Kondo (10.1016/j.mec.2019.e00096_bib52) 1999; 5 Chin (10.1016/j.mec.2019.e00096_bib8) 2013; 10 Bai (10.1016/j.mec.2019.e00096_bib2) 2015; 112 Ramirez (10.1016/j.mec.2019.e00096_bib36) 2010; 13 Koren (10.1016/j.mec.2019.e00096_bib22) 2013; 14 Ni (10.1016/j.mec.2019.e00096_bib33) 2016; 15 Cunha (10.1016/j.mec.2019.e00096_bib9) 2006; 90 Bierman (10.1016/j.mec.2019.e00096_bib51) 1992; 116 Gu (10.1016/j.mec.2019.e00096_bib13) 2015; 16 Huang (10.1016/j.mec.2019.e00096_bib17) 2015; 22 Yu (10.1016/j.mec.2019.e00096_bib49) 2017; 6 Kudo (10.1016/j.mec.2019.e00096_bib24) 2016; 16 Liu (10.1016/j.mec.2019.e00096_bib27) 2016; 1 Guo (10.1016/j.mec.2019.e00096_bib14) 2014; 21 Kumar (10.1016/j.mec.2019.e00096_bib25) 2008; 28 Tan (10.1016/j.mec.2019.e00096_bib41) 2017; 6 Becker (10.1016/j.mec.2019.e00096_bib5) 2013; 8 Shao (10.1016/j.mec.2019.e00096_bib38) 2013; 23 Wu (10.1016/j.mec.2019.e00096_bib47) 2017; 203 Testa (10.1016/j.mec.2019.e00096_bib43) 1976; 29 Xu (10.1016/j.mec.2019.e00096_bib48) 2013; 24 He (10.1016/j.mec.2019.e00096_bib16) 2010; 20 Gibson (10.1016/j.mec.2019.e00096_bib12) 2008; 105 Hong (10.1016/j.mec.2019.e00096_bib50) 2009; 31 Kudo (10.1016/j.mec.2019.e00096_bib23) 2009; 62 Jin (10.1016/j.mec.2019.e00096_bib19) 2017; 2 Nagabhushan (10.1016/j.mec.2019.e00096_bib32) 1978; 31 Sucipto (10.1016/j.mec.2019.e00096_bib40) 2012; 51 Scheunemann (10.1016/j.mec.2019.e00096_bib37) 2010; 38 Delcher (10.1016/j.mec.2019.e00096_bib10) 1999; 27 Jones (10.1016/j.mec.2019.e00096_bib20) 1995; 7 Weber (10.1016/j.mec.2019.e00096_bib53) 2015; 43 Hammer (10.1016/j.mec.2019.e00096_bib15) 2006; 24 Tao (10.1016/j.mec.2019.e00096_bib42) 2018; 9 Weinstein (10.1016/j.mec.2019.e00096_bib46) 1963; 6 |
References_xml | – volume: 105 start-page: 20404 year: 2008 end-page: 20409 ident: bib12 article-title: One-step assembly in yeast of 25 overlapping DNA fragments to form a complete synthetic Mycoplasma genitalium genome publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 21 start-page: 608 year: 2014 end-page: 618 ident: bib14 article-title: Specificity and promiscuity at the branch point in gentamicin biosynthesis publication-title: Chem. Biol. – volume: 46 start-page: 607 year: 2005 end-page: 609 ident: bib31 article-title: A semisynthesis of isepamicin by fragmentation method publication-title: Tetrahedron Lett. – volume: 48 start-page: 33 year: 2017 end-page: 41 ident: bib34 article-title: Biosynthetic pathways of aminoglycosides and their engineering publication-title: Curr. Opin. Biotechnol. – volume: 14 start-page: R101 year: 2013 ident: bib22 article-title: Reducing assembly complexity of microbial genomes with single-molecule sequencing publication-title: Genome Biol. – volume: 28 start-page: 173 year: 2008 end-page: 212 ident: bib25 article-title: Microbial biosynthesis and applications of gentamicin: a critical appraisal publication-title: Crit. Rev. Biotechnol. – volume: 9 year: 2018 ident: bib42 article-title: CRISPR/Cas9-Based editing of Streptomyces for discovery, characterization, and production of natural products publication-title: Front. Microbiol. – volume: 43 start-page: W237 year: 2015 end-page: W243 ident: bib53 article-title: antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters publication-title: Nucleic Acids Research. – volume: 15 year: 2016 ident: bib33 article-title: Assembly of a novel biosynthetic pathway for gentamicin B production in Micromonospora echinospora publication-title: Microb. Cell Factories – volume: 112 start-page: 12181 year: 2015 end-page: 12186 ident: bib2 article-title: Exploiting a precise design of universal synthetic modular regulatory elements to unlock the microbial natural products in streptomyces publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 27 start-page: 4636 year: 1999 end-page: 4641 ident: bib10 article-title: Improved microbial gene identification with GLIMMER publication-title: Nucleic Acids Res. – volume: 2 start-page: 295 year: 2017 end-page: 301 ident: bib19 article-title: Rapid evolution of regulatory element libraries for tunable transcriptional and translational control of gene expression publication-title: Synth. Syst. Biotechnol. – volume: 105 start-page: 477 year: 2005 end-page: 497 ident: bib29 article-title: Molecular insights into aminoglycoside action and resistance publication-title: Chem. Rev. – volume: 51 start-page: 3428 year: 2012 end-page: 3431 ident: bib40 article-title: The last step of kanamycin biosynthesis: unique deamination reaction catalyzed by the alpha-ketoglutarate-dependent nonheme iron dioxygenase KanJ and the NADPH-dependent reductase KanK publication-title: Angew. Chem. Int. Ed. – volume: 6 start-page: 995 year: 2017 end-page: 1005 ident: bib41 article-title: Heterologous biosynthesis of spinosad: an omics-guided large, polyketide synthase gene cluster reconstitution in streptomyces publication-title: ACS Synth. Biol. – volume: 7 start-page: 11 year: 2016 end-page: 27 ident: bib11 article-title: Mechanisms of resistance to aminoglycoside antibiotics: overview and perspectives publication-title: Medchemcomm – year: 2007 ident: bib1 article-title: Aminoglycoside Antibiotics: from Chemical Biology to Drug Discovery – volume: 90 start-page: 1089 year: 2006 end-page: 1107 ident: bib9 article-title: New uses for older antibiotics: nitrofurantoin, amikacin, colistin, polymyxin B, doxycycline, and minocycline revisited publication-title: Med. Clin. N. Am. – volume: 115 start-page: 1340 year: 2018 end-page: 1345 ident: bib26 article-title: Methyltransferases of gentamicin biosynthesis publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 31 start-page: 449 year: 2009 end-page: 455 ident: bib50 article-title: Molecular cloning and sequence analysis of the sisomicin biosynthetic gene cluster from Micromonospora inyoensis publication-title: Biotechnol. Lett. – volume: 23 start-page: 1438 year: 2013 end-page: 1441 ident: bib38 article-title: Characterization of a key aminoglycoside phosphotransferase in gentamicin biosynthesis publication-title: Bioorg. Med. Chem. Lett – volume: 4 start-page: 1020 year: 2015 end-page: 1029 ident: bib44 article-title: CRISPR-Cas9 based engineering of actinomycetal genomes publication-title: ACS Synth. Biol. – volume: 24 start-page: 53 year: 2006 end-page: 55 ident: bib15 article-title: Synthetic promoter libraries--tuning of gene expression publication-title: Trends Biotechnol. – volume: 1 start-page: 207 year: 2016 end-page: 214 ident: bib27 article-title: Development of Streptomyces sp. FR-008 as an emerging chassis publication-title: Synth. Syst. Biotechnol. – start-page: 15 year: 2007 end-page: 118 ident: bib35 article-title: The biochemistry and genetics of aminoglycoside producers publication-title: Aminoglycoside Antiobiotics:From Chemical Biology to Drug Discovery – volume: 24 start-page: 291 year: 2013 end-page: 299 ident: bib48 article-title: Engineering plant metabolism into microbes: from systems biology to synthetic biology publication-title: Curr. Opin. Biotechnol. – volume: 407 start-page: 340 year: 2000 end-page: 348 ident: bib7 article-title: Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics publication-title: Nature – volume: 7 start-page: 7 year: 1995 end-page: 16 ident: bib20 article-title: Isepamicin (Sch-21420, 1-N-hapa gentamicin-B) - microbiological characteristics including antimicrobial potency and spectrum of activity publication-title: J. Chemother. – volume: 327 start-page: 389 year: 1987 end-page: 394 ident: bib30 article-title: Interaction of antibiotics with functional sites in 16s ribosomal-rna publication-title: Nature – volume: 38 start-page: 3094 year: 2010 end-page: 3105 ident: bib37 article-title: Binding of aminoglycoside antibiotics to helix 69 of 23S rRNA publication-title: Nucleic Acids Res. – volume: 19 start-page: 98 year: 2013 end-page: 106 ident: bib39 article-title: Design, construction and characterisation of a synthetic promoter library for fine-tuned gene expression in actinomycetes publication-title: Metab. Eng. – volume: 5 start-page: 1 year: 1999 end-page: 9 ident: bib52 article-title: Semisynthetic aminoglycoside antibiotics: Development and enzymatic modifications publication-title: J. Infect. Chemother. – volume: 29 start-page: 140 year: 1976 end-page: 146 ident: bib43 article-title: Biotransformation, a new approach to aminoglycoside biosynthesis .2. Gentamicin publication-title: J. Antibiot. – volume: 6 start-page: 463 year: 1963 end-page: 464 ident: bib46 article-title: Gentamicin, a new antibiotic complex from micromonspora publication-title: J. Med. Chem. – volume: 62 start-page: 471 year: 2009 end-page: 481 ident: bib23 article-title: Biosynthetic genes for aminoglycoside antibiotics publication-title: J. Antibiot. – volume: 14 start-page: 205 year: 2012 end-page: 211 ident: bib28 article-title: Synthetic biology: new strategies for directing design publication-title: Metab. Eng. – volume: 15 start-page: 295 year: 2019 end-page: 303 ident: bib4 article-title: Complete reconstitution of the diverse pathways of gentamicin B biosynthesis publication-title: Nat. Chem. Biol. – volume: 16 start-page: 1933 year: 2015 end-page: 1942 ident: bib13 article-title: Biosynthesis of epimers C2 and C2a in the gentamicin C complex publication-title: Chembiochem – volume: 22 start-page: 251 year: 2015 end-page: 261 ident: bib17 article-title: Delineating the biosynthesis of gentamicin x2, the common precursor of the gentamicin C antibiotic complex publication-title: Chem. Biol. – volume: 116 start-page: 43 year: 1992 end-page: 49 ident: bib51 article-title: Bierman, M.; Logan, R.; O’Brien, K.; Seno, E. T.; Nagaraja Rao, R.; Schoner, B. E., Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp publication-title: Gene – volume: 26 start-page: 516 year: 2013 end-page: 525 ident: bib18 article-title: Aminoglycosides: how should we use them in the 21st century? publication-title: Curr. Opin. Infect. Dis. – volume: 8 start-page: 105 year: 2013 end-page: 115 ident: bib5 article-title: Aminoglycoside antibiotics in the 21st century publication-title: ACS Chem. Biol. – volume: 16 start-page: 4 year: 2016 end-page: 18 ident: bib24 article-title: Aminoglycoside antibiotics: new insights into the biosynthetic machinery of old drugs publication-title: Chem. Rec. – volume: 10 start-page: 563 year: 2013 end-page: 569 ident: bib8 article-title: Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data publication-title: Nat. Methods – volume: 203 start-page: 40 year: 2017 end-page: 46 ident: bib47 article-title: Improving gentamicin B and gentamicin C1a production by engineering the glycosyltransferases that transfer primary metabolites into secondary metabolites biosynthesis publication-title: Microbiol. Res. – volume: 6 year: 2017 ident: bib49 article-title: Parallel pathways in the biosynthesis of aminoglycoside antibiotics publication-title: F1000Research – volume: 20 start-page: 678 year: 2010 end-page: 682 ident: bib16 article-title: Two pHZ1358 derivative vectors for efficient gene knockout in streptomyces publication-title: J. Microbiol. Biotechnol. – volume: 14 start-page: 223 year: 2012 end-page: 232 ident: bib6 article-title: Parts plus pipes: synthetic biology approaches to metabolic engineering publication-title: Metab. Eng. – volume: 13 start-page: 151 year: 2010 end-page: 171 ident: bib36 article-title: Aminoglycoside modifying enzymes publication-title: Drug Resist. Updates – volume: 31 start-page: 681 year: 1978 end-page: 687 ident: bib32 article-title: Syntheses and biological properties of 1-N-(S-4-Amino-2-Hydroxybutyryl)-Gentamicin-B and 1-N-(S-3-Amino-2-Hydroxypropionyl)-Gentamicin-B publication-title: J. Antibiot. – volume: 48 start-page: 33 year: 2017 ident: 10.1016/j.mec.2019.e00096_bib34 article-title: Biosynthetic pathways of aminoglycosides and their engineering publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2017.03.019 – volume: 9 year: 2018 ident: 10.1016/j.mec.2019.e00096_bib42 article-title: CRISPR/Cas9-Based editing of Streptomyces for discovery, characterization, and production of natural products publication-title: Front. Microbiol. doi: 10.3389/fmicb.2018.01660 – volume: 23 start-page: 1438 year: 2013 ident: 10.1016/j.mec.2019.e00096_bib38 article-title: Characterization of a key aminoglycoside phosphotransferase in gentamicin biosynthesis publication-title: Bioorg. Med. Chem. Lett doi: 10.1016/j.bmcl.2012.12.064 – volume: 6 start-page: 463 year: 1963 ident: 10.1016/j.mec.2019.e00096_bib46 article-title: Gentamicin, a new antibiotic complex from micromonspora publication-title: J. Med. Chem. doi: 10.1021/jm00340a034 – year: 2007 ident: 10.1016/j.mec.2019.e00096_bib1 – volume: 19 start-page: 98 year: 2013 ident: 10.1016/j.mec.2019.e00096_bib39 article-title: Design, construction and characterisation of a synthetic promoter library for fine-tuned gene expression in actinomycetes publication-title: Metab. Eng. doi: 10.1016/j.ymben.2013.07.006 – volume: 327 start-page: 389 year: 1987 ident: 10.1016/j.mec.2019.e00096_bib30 article-title: Interaction of antibiotics with functional sites in 16s ribosomal-rna publication-title: Nature doi: 10.1038/327389a0 – volume: 14 start-page: 205 year: 2012 ident: 10.1016/j.mec.2019.e00096_bib28 article-title: Synthetic biology: new strategies for directing design publication-title: Metab. Eng. doi: 10.1016/j.ymben.2011.12.007 – volume: 24 start-page: 53 year: 2006 ident: 10.1016/j.mec.2019.e00096_bib15 article-title: Synthetic promoter libraries--tuning of gene expression publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2005.12.003 – volume: 28 start-page: 173 year: 2008 ident: 10.1016/j.mec.2019.e00096_bib25 article-title: Microbial biosynthesis and applications of gentamicin: a critical appraisal publication-title: Crit. Rev. Biotechnol. doi: 10.1080/07388550802262197 – volume: 15 year: 2016 ident: 10.1016/j.mec.2019.e00096_bib33 article-title: Assembly of a novel biosynthetic pathway for gentamicin B production in Micromonospora echinospora publication-title: Microb. Cell Factories doi: 10.1186/s12934-015-0402-6 – volume: 21 start-page: 608 year: 2014 ident: 10.1016/j.mec.2019.e00096_bib14 article-title: Specificity and promiscuity at the branch point in gentamicin biosynthesis publication-title: Chem. Biol. doi: 10.1016/j.chembiol.2014.03.005 – volume: 16 start-page: 4 year: 2016 ident: 10.1016/j.mec.2019.e00096_bib24 article-title: Aminoglycoside antibiotics: new insights into the biosynthetic machinery of old drugs publication-title: Chem. Rec. doi: 10.1002/tcr.201500210 – volume: 7 start-page: 11 year: 2016 ident: 10.1016/j.mec.2019.e00096_bib11 article-title: Mechanisms of resistance to aminoglycoside antibiotics: overview and perspectives publication-title: Medchemcomm doi: 10.1039/C5MD00344J – volume: 31 start-page: 449 issue: 3 year: 2009 ident: 10.1016/j.mec.2019.e00096_bib50 article-title: Molecular cloning and sequence analysis of the sisomicin biosynthetic gene cluster from Micromonospora inyoensis publication-title: Biotechnol. Lett. doi: 10.1007/s10529-008-9887-y – volume: 22 start-page: 251 year: 2015 ident: 10.1016/j.mec.2019.e00096_bib17 article-title: Delineating the biosynthesis of gentamicin x2, the common precursor of the gentamicin C antibiotic complex publication-title: Chem. Biol. doi: 10.1016/j.chembiol.2014.12.012 – volume: 16 start-page: 1933 issue: 13 year: 2015 ident: 10.1016/j.mec.2019.e00096_bib13 article-title: Biosynthesis of epimers C2 and C2a in the gentamicin C complex publication-title: Chembiochem doi: 10.1002/cbic.201500258 – volume: 26 start-page: 516 year: 2013 ident: 10.1016/j.mec.2019.e00096_bib18 article-title: Aminoglycosides: how should we use them in the 21st century? publication-title: Curr. Opin. Infect. Dis. doi: 10.1097/QCO.0000000000000012 – volume: 10 start-page: 563 year: 2013 ident: 10.1016/j.mec.2019.e00096_bib8 article-title: Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data publication-title: Nat. Methods doi: 10.1038/nmeth.2474 – volume: 29 start-page: 140 year: 1976 ident: 10.1016/j.mec.2019.e00096_bib43 article-title: Biotransformation, a new approach to aminoglycoside biosynthesis .2. Gentamicin publication-title: J. Antibiot. doi: 10.7164/antibiotics.29.140 – volume: 90 start-page: 1089 year: 2006 ident: 10.1016/j.mec.2019.e00096_bib9 article-title: New uses for older antibiotics: nitrofurantoin, amikacin, colistin, polymyxin B, doxycycline, and minocycline revisited publication-title: Med. Clin. N. Am. doi: 10.1016/j.mcna.2006.07.006 – volume: 105 start-page: 477 year: 2005 ident: 10.1016/j.mec.2019.e00096_bib29 article-title: Molecular insights into aminoglycoside action and resistance publication-title: Chem. Rev. doi: 10.1021/cr0301088 – volume: 62 start-page: 471 year: 2009 ident: 10.1016/j.mec.2019.e00096_bib23 article-title: Biosynthetic genes for aminoglycoside antibiotics publication-title: J. Antibiot. doi: 10.1038/ja.2009.76 – start-page: 15 year: 2007 ident: 10.1016/j.mec.2019.e00096_bib35 article-title: The biochemistry and genetics of aminoglycoside producers – volume: 5 start-page: 1 issue: 1 year: 1999 ident: 10.1016/j.mec.2019.e00096_bib52 article-title: Semisynthetic aminoglycoside antibiotics: Development and enzymatic modifications publication-title: J. Infect. Chemother. doi: 10.1007/s101560050001 – volume: 6 start-page: 995 year: 2017 ident: 10.1016/j.mec.2019.e00096_bib41 article-title: Heterologous biosynthesis of spinosad: an omics-guided large, polyketide synthase gene cluster reconstitution in streptomyces publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.6b00330 – volume: 27 start-page: 4636 year: 1999 ident: 10.1016/j.mec.2019.e00096_bib10 article-title: Improved microbial gene identification with GLIMMER publication-title: Nucleic Acids Res. doi: 10.1093/nar/27.23.4636 – volume: 13 start-page: 151 year: 2010 ident: 10.1016/j.mec.2019.e00096_bib36 article-title: Aminoglycoside modifying enzymes publication-title: Drug Resist. Updates doi: 10.1016/j.drup.2010.08.003 – volume: 7 start-page: 7 year: 1995 ident: 10.1016/j.mec.2019.e00096_bib20 article-title: Isepamicin (Sch-21420, 1-N-hapa gentamicin-B) - microbiological characteristics including antimicrobial potency and spectrum of activity publication-title: J. Chemother. – volume: 6 year: 2017 ident: 10.1016/j.mec.2019.e00096_bib49 article-title: Parallel pathways in the biosynthesis of aminoglycoside antibiotics publication-title: F1000Research doi: 10.12688/f1000research.11104.1 – volume: 15 start-page: 295 year: 2019 ident: 10.1016/j.mec.2019.e00096_bib4 article-title: Complete reconstitution of the diverse pathways of gentamicin B biosynthesis publication-title: Nat. Chem. Biol. doi: 10.1038/s41589-018-0203-4 – volume: 31 start-page: 681 year: 1978 ident: 10.1016/j.mec.2019.e00096_bib32 article-title: Syntheses and biological properties of 1-N-(S-4-Amino-2-Hydroxybutyryl)-Gentamicin-B and 1-N-(S-3-Amino-2-Hydroxypropionyl)-Gentamicin-B publication-title: J. Antibiot. doi: 10.7164/antibiotics.31.681 – volume: 1 start-page: 207 year: 2016 ident: 10.1016/j.mec.2019.e00096_bib27 article-title: Development of Streptomyces sp. FR-008 as an emerging chassis publication-title: Synth. Syst. Biotechnol. doi: 10.1016/j.synbio.2016.07.002 – volume: 203 start-page: 40 year: 2017 ident: 10.1016/j.mec.2019.e00096_bib47 article-title: Improving gentamicin B and gentamicin C1a production by engineering the glycosyltransferases that transfer primary metabolites into secondary metabolites biosynthesis publication-title: Microbiol. Res. doi: 10.1016/j.micres.2017.06.006 – volume: 20 start-page: 678 year: 2010 ident: 10.1016/j.mec.2019.e00096_bib16 article-title: Two pHZ1358 derivative vectors for efficient gene knockout in streptomyces publication-title: J. Microbiol. Biotechnol. doi: 10.4014/jmb.0910.10031 – volume: 2 start-page: 295 year: 2017 ident: 10.1016/j.mec.2019.e00096_bib19 article-title: Rapid evolution of regulatory element libraries for tunable transcriptional and translational control of gene expression publication-title: Synth. Syst. Biotechnol. doi: 10.1016/j.synbio.2017.10.003 – volume: 115 start-page: 1340 year: 2018 ident: 10.1016/j.mec.2019.e00096_bib26 article-title: Methyltransferases of gentamicin biosynthesis publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1711603115 – volume: 14 start-page: R101 year: 2013 ident: 10.1016/j.mec.2019.e00096_bib22 article-title: Reducing assembly complexity of microbial genomes with single-molecule sequencing publication-title: Genome Biol. doi: 10.1186/gb-2013-14-9-r101 – volume: 407 start-page: 340 year: 2000 ident: 10.1016/j.mec.2019.e00096_bib7 article-title: Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics publication-title: Nature doi: 10.1038/35030019 – volume: 46 start-page: 607 year: 2005 ident: 10.1016/j.mec.2019.e00096_bib31 article-title: A semisynthesis of isepamicin by fragmentation method publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2004.11.130 – volume: 14 start-page: 223 year: 2012 ident: 10.1016/j.mec.2019.e00096_bib6 article-title: Parts plus pipes: synthetic biology approaches to metabolic engineering publication-title: Metab. Eng. doi: 10.1016/j.ymben.2011.10.003 – volume: 4 start-page: 1020 year: 2015 ident: 10.1016/j.mec.2019.e00096_bib44 article-title: CRISPR-Cas9 based engineering of actinomycetal genomes publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.5b00038 – volume: 43 start-page: W237 issue: Web Server issue year: 2015 ident: 10.1016/j.mec.2019.e00096_bib53 article-title: antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters publication-title: Nucleic Acids Research. doi: 10.1093/nar/gkv437 – volume: 112 start-page: 12181 year: 2015 ident: 10.1016/j.mec.2019.e00096_bib2 article-title: Exploiting a precise design of universal synthetic modular regulatory elements to unlock the microbial natural products in streptomyces publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1511027112 – volume: 8 start-page: 105 year: 2013 ident: 10.1016/j.mec.2019.e00096_bib5 article-title: Aminoglycoside antibiotics in the 21st century publication-title: ACS Chem. Biol. doi: 10.1021/cb3005116 – volume: 51 start-page: 3428 year: 2012 ident: 10.1016/j.mec.2019.e00096_bib40 article-title: The last step of kanamycin biosynthesis: unique deamination reaction catalyzed by the alpha-ketoglutarate-dependent nonheme iron dioxygenase KanJ and the NADPH-dependent reductase KanK publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201108122 – volume: 24 start-page: 291 year: 2013 ident: 10.1016/j.mec.2019.e00096_bib48 article-title: Engineering plant metabolism into microbes: from systems biology to synthetic biology publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2012.08.010 – volume: 105 start-page: 20404 year: 2008 ident: 10.1016/j.mec.2019.e00096_bib12 article-title: One-step assembly in yeast of 25 overlapping DNA fragments to form a complete synthetic Mycoplasma genitalium genome publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0811011106 – volume: 38 start-page: 3094 year: 2010 ident: 10.1016/j.mec.2019.e00096_bib37 article-title: Binding of aminoglycoside antibiotics to helix 69 of 23S rRNA publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkp1253 – volume: 116 start-page: 43 issue: 1 year: 1992 ident: 10.1016/j.mec.2019.e00096_bib51 article-title: Bierman, M.; Logan, R.; O’Brien, K.; Seno, E. T.; Nagaraja Rao, R.; Schoner, B. E., Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp publication-title: Gene doi: 10.1016/0378-1119(92)90627-2 |
SSID | ssj0001361411 |
Score | 2.1668522 |
Snippet | In pharmaceutical industry, isepamicin is mainly manufactured from gentamicin B, which is produced by Micromonospora echinospora as a minor component of the... In pharmaceutical industry, isepamicin is mainly manufactured from gentamicin B, which is produced by Micromonospora echinospora as a minor component of the... |
SourceID | doaj pubmedcentral proquest crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e00096 |
SubjectTerms | biochemical pathways biosynthesis CRISPR/Cas9 deamination gene targeting genome mining GenR GenS gentamicin Gentamicin B manufacturing metabolic engineering Micromonospora echinospora multigene family mutants pharmaceutical industry |
Title | Overproduction of gentamicin B in industrial strain Micromonospora echinospora CCTCC M 2018898 by cloning of the missing genes genR and genS |
URI | https://dx.doi.org/10.1016/j.mec.2019.e00096 https://www.proquest.com/docview/2305224822 https://www.proquest.com/docview/2314250892 https://pubmed.ncbi.nlm.nih.gov/PMC6838515 https://doaj.org/article/fa1f7168c9464ab7894210e5ddd6ef2f |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUlvbSH0jYN3X4EFXIKOJFl2ZaOiWkIDdtAmpDchCyP6IbEW7pJof-hP7ozsr3Yl-2lF2Ns2fJoRtIbafyGsT0iy9EimERolydKO-xSpnAJ1CFXypUp1PS_8_xrcXqlvtzkN6NUXxQT1tEDdw13GFwaENNrb1ShXF1qo9BLgbxpmgKCDDT6CiNGzlRcXclw2onJd6VMVUK4f9jSjMFd90D0hak5gAjiJ5NS5O6fzE0j7DmNnBxNRScv2YseQ_Kj7ttfsSfQvmbPR8yC2-zP-S-KJYxsrtjyfBl4_IfqnjbS-THHw2KdtIOvYqIIPu-C84g9HA2DA4VZ9udVdVlVfM5RGq2N5vVv7u_iSi69GkEkR3uhZQeqBlZ0vOCubejk2xt2dfL5sjpN-sQLiVelKZI0SCkceOzL2udC1AYaRTqQKqtlcD6QM6u9CsbjECEBW9Jjz86dlC6HItthW-2yhbeMlw71XWdoEpApEZQGV6Izb0qXGpe6csbE0PLW96zkJPOdHcLPbi0qy5KybKesGdtfP_Kjo-TYVPiY1LkuSGza8QLamO1tzP7LxmZMDcZge2DSAQ581WJT3Z8Gw7GoBNqJcS0sH1cW_T7EvQrB2aYyKY6nQhssU06sbiLM9E67-B4pwgudIZTO3_0P6d-zZyRUF8PzgW09_HyEj4jEHupd9vTo7OL6bDd2vr8XzjKV |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Overproduction+of+gentamicin+B+in+industrial+strain+Micromonospora+echinospora+CCTCC+M+2018898+by+cloning+of+the+missing+genes+genR+and+genS&rft.jtitle=Metabolic+engineering+communications&rft.au=Yingying+Chang&rft.au=Baozhong+Chai&rft.au=Yunkun+Ding&rft.au=Min+He&rft.date=2019-12-01&rft.pub=Elsevier&rft.issn=2214-0301&rft.eissn=2214-0301&rft.volume=9&rft_id=info:doi/10.1016%2Fj.mec.2019.e00096&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_fa1f7168c9464ab7894210e5ddd6ef2f |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-0301&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-0301&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-0301&client=summon |