High‐Capacity Cathode Material with High Voltage for Li‐Ion Batteries
Electrochemical energy storage devices with a high energy density are an important technology in modern society, especially for electric vehicles. The most effective approach to improve the energy density of batteries is to search for high‐capacity electrode materials. According to the concept of en...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 30; no. 9 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.03.2018
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electrochemical energy storage devices with a high energy density are an important technology in modern society, especially for electric vehicles. The most effective approach to improve the energy density of batteries is to search for high‐capacity electrode materials. According to the concept of energy quality, a high‐voltage battery delivers a highly useful energy, thus providing a new insight to improve energy density. Based on this concept, a novel and successful strategy to increase the energy density and energy quality by increasing the discharge voltage of cathode materials and preserving high capacity is proposed. The proposal is realized in high‐capacity Li‐rich cathode materials. The average discharge voltage is increased from 3.5 to 3.8 V by increasing the nickel content and applying a simple after‐treatment, and the specific energy is improved from 912 to 1033 Wh kg−1. The current work provides an insightful universal principle for developing, designing, and screening electrode materials for high energy density and energy quality.
Li‐ion batteries with high energy quality require a high capacity coupled with high operating voltage. This requires the electrode materials to not only have a high specific capacity but also a high discharge voltage for cathode materials and low charge voltage for anode materials. |
---|---|
AbstractList | Electrochemical energy storage devices with a high energy density are an important technology in modern society, especially for electric vehicles. The most effective approach to improve the energy density of batteries is to search for high‐capacity electrode materials. According to the concept of energy quality, a high‐voltage battery delivers a highly useful energy, thus providing a new insight to improve energy density. Based on this concept, a novel and successful strategy to increase the energy density and energy quality by increasing the discharge voltage of cathode materials and preserving high capacity is proposed. The proposal is realized in high‐capacity Li‐rich cathode materials. The average discharge voltage is increased from 3.5 to 3.8 V by increasing the nickel content and applying a simple after‐treatment, and the specific energy is improved from 912 to 1033 Wh kg−1. The current work provides an insightful universal principle for developing, designing, and screening electrode materials for high energy density and energy quality.
Li‐ion batteries with high energy quality require a high capacity coupled with high operating voltage. This requires the electrode materials to not only have a high specific capacity but also a high discharge voltage for cathode materials and low charge voltage for anode materials. Electrochemical energy storage devices with a high energy density are an important technology in modern society, especially for electric vehicles. The most effective approach to improve the energy density of batteries is to search for high-capacity electrode materials. According to the concept of energy quality, a high-voltage battery delivers a highly useful energy, thus providing a new insight to improve energy density. Based on this concept, a novel and successful strategy to increase the energy density and energy quality by increasing the discharge voltage of cathode materials and preserving high capacity is proposed. The proposal is realized in high-capacity Li-rich cathode materials. The average discharge voltage is increased from 3.5 to 3.8 V by increasing the nickel content and applying a simple after-treatment, and the specific energy is improved from 912 to 1033 Wh kg-1. The current work provides an insightful universal principle for developing, designing, and screening electrode materials for high energy density and energy quality. Electrochemical energy storage devices with a high energy density are an important technology in modern society, especially for electric vehicles. The most effective approach to improve the energy density of batteries is to search for high‐capacity electrode materials. According to the concept of energy quality, a high‐voltage battery delivers a highly useful energy, thus providing a new insight to improve energy density. Based on this concept, a novel and successful strategy to increase the energy density and energy quality by increasing the discharge voltage of cathode materials and preserving high capacity is proposed. The proposal is realized in high‐capacity Li‐rich cathode materials. The average discharge voltage is increased from 3.5 to 3.8 V by increasing the nickel content and applying a simple after‐treatment, and the specific energy is improved from 912 to 1033 Wh kg −1 . The current work provides an insightful universal principle for developing, designing, and screening electrode materials for high energy density and energy quality. Electrochemical energy storage devices with a high energy density are an important technology in modern society, especially for electric vehicles. The most effective approach to improve the energy density of batteries is to search for high-capacity electrode materials. According to the concept of energy quality, a high-voltage battery delivers a highly useful energy, thus providing a new insight to improve energy density. Based on this concept, a novel and successful strategy to increase the energy density and energy quality by increasing the discharge voltage of cathode materials and preserving high capacity is proposed. The proposal is realized in high-capacity Li-rich cathode materials. The average discharge voltage is increased from 3.5 to 3.8 V by increasing the nickel content and applying a simple after-treatment, and the specific energy is improved from 912 to 1033 Wh kg . The current work provides an insightful universal principle for developing, designing, and screening electrode materials for high energy density and energy quality. Electrochemical energy storage devices with a high energy density are an important technology in modern society, especially for electric vehicles. The most effective approach to improve the energy density of batteries is to search for high‐capacity electrode materials. According to the concept of energy quality, a high‐voltage battery delivers a highly useful energy, thus providing a new insight to improve energy density. Based on this concept, a novel and successful strategy to increase the energy density and energy quality by increasing the discharge voltage of cathode materials and preserving high capacity is proposed. The proposal is realized in high‐capacity Li‐rich cathode materials. The average discharge voltage is increased from 3.5 to 3.8 V by increasing the nickel content and applying a simple after‐treatment, and the specific energy is improved from 912 to 1033 Wh kg−1. The current work provides an insightful universal principle for developing, designing, and screening electrode materials for high energy density and energy quality. Electrochemical energy storage devices with a high energy density are an important technology in modern society, especially for electric vehicles. The most effective approach to improve the energy density of batteries is to search for high-capacity electrode materials. According to the concept of energy quality, a high-voltage battery delivers a highly useful energy, thus providing a new insight to improve energy density. Based on this concept, a novel and successful strategy to increase the energy density and energy quality by increasing the discharge voltage of cathode materials and preserving high capacity is proposed. The proposal is realized in high-capacity Li-rich cathode materials. The average discharge voltage is increased from 3.5 to 3.8 V by increasing the nickel content and applying a simple after-treatment, and the specific energy is improved from 912 to 1033 Wh kg-1 . The current work provides an insightful universal principle for developing, designing, and screening electrode materials for high energy density and energy quality.Electrochemical energy storage devices with a high energy density are an important technology in modern society, especially for electric vehicles. The most effective approach to improve the energy density of batteries is to search for high-capacity electrode materials. According to the concept of energy quality, a high-voltage battery delivers a highly useful energy, thus providing a new insight to improve energy density. Based on this concept, a novel and successful strategy to increase the energy density and energy quality by increasing the discharge voltage of cathode materials and preserving high capacity is proposed. The proposal is realized in high-capacity Li-rich cathode materials. The average discharge voltage is increased from 3.5 to 3.8 V by increasing the nickel content and applying a simple after-treatment, and the specific energy is improved from 912 to 1033 Wh kg-1 . The current work provides an insightful universal principle for developing, designing, and screening electrode materials for high energy density and energy quality. |
Author | Huang, Xiaojing Xiao, Dong‐Dong Gu, Lin Wan, Li‐Jun Yin, Ya‐Xia Yu, Xiqian Yang, Xiao‐Qing Guo, Yu‐Guo Shi, Ji‐Lei Chu, Yong Zhang, Xu‐Dong Ge, Mingyuan |
Author_xml | – sequence: 1 givenname: Ji‐Lei surname: Shi fullname: Shi, Ji‐Lei organization: University of Chinese Academy of Sciences – sequence: 2 givenname: Dong‐Dong surname: Xiao fullname: Xiao, Dong‐Dong organization: Chinese Academy of Sciences (CAS) – sequence: 3 givenname: Mingyuan surname: Ge fullname: Ge, Mingyuan organization: Brookhaven National Laboratory – sequence: 4 givenname: Xiqian surname: Yu fullname: Yu, Xiqian organization: Chinese Academy of Sciences (CAS) – sequence: 5 givenname: Yong surname: Chu fullname: Chu, Yong organization: Brookhaven National Laboratory – sequence: 6 givenname: Xiaojing surname: Huang fullname: Huang, Xiaojing organization: Brookhaven National Laboratory – sequence: 7 givenname: Xu‐Dong surname: Zhang fullname: Zhang, Xu‐Dong organization: University of Chinese Academy of Sciences – sequence: 8 givenname: Ya‐Xia surname: Yin fullname: Yin, Ya‐Xia organization: University of Chinese Academy of Sciences – sequence: 9 givenname: Xiao‐Qing surname: Yang fullname: Yang, Xiao‐Qing organization: Brookhaven National Laboratory – sequence: 10 givenname: Yu‐Guo orcidid: 0000-0003-0322-8476 surname: Guo fullname: Guo, Yu‐Guo email: ygguo@iccas.ac.cn organization: University of Chinese Academy of Sciences – sequence: 11 givenname: Lin surname: Gu fullname: Gu, Lin email: l.gu@iphy.ac.cn organization: Chinese Academy of Sciences (CAS) – sequence: 12 givenname: Li‐Jun surname: Wan fullname: Wan, Li‐Jun email: wanlijun@iccas.ac.cn organization: Chinese Academy of Sciences (CAS) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29333690$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1436262$$D View this record in Osti.gov |
BookMark | eNqFkbtu2zAUhokiReOkWTMGQrtkkcuLKOmMjpuLAQdd2qwERR3FDGTRJWkE3voIfcY8SSg4aYEARaezfN-5_UfkYHADEnLK6JRRyr_odq2nnLKKSlnJd2TCJGd5QUEekAkFIXMoi_qQHIXwQCmFkpYfyCEHIUQJdEIWN_Z-9fTr91xvtLFxl811XLkWs1sd0VvdZ482rrKRyu5cH_U9Zp3z2dImaeGG7ELHEcTwkbzvdB_w5KUekx9Xl9_nN_ny2_ViPlvmpqhA5kJC0xUVcpA1LSjjDGTZcsNZp6kWaFowUHfClE26qqk6KWVbcUBkjeC8Esfk076vC9GqkJZGszJuGNBExQpR8pIn6HwPbbz7ucUQ1doGg32vB3TboBjUIIELUSf08xv0wW39kE5QPD2MCwbVOPXshdo2a2zVxtu19jv1-skEFHvAeBeCx06lzXS0bohe214xqsbA1BiY-hNY0qZvtNfO_xRgLzzaHnf_odXs6-3sr_sM5XSmlA |
CitedBy_id | crossref_primary_10_1021_acsami_0c16755 crossref_primary_10_1088_1402_4896_ad799b crossref_primary_10_1002_aenm_201801957 crossref_primary_10_3390_ijms24098035 crossref_primary_10_1016_j_compositesb_2021_109591 crossref_primary_10_1016_j_solidstatesciences_2019_05_019 crossref_primary_10_3390_catal12060584 crossref_primary_10_1016_j_jcis_2021_03_038 crossref_primary_10_1021_acsami_0c10410 crossref_primary_10_1021_acs_energyfuels_0c00995 crossref_primary_10_1002_er_6782 crossref_primary_10_1021_acs_jpcc_3c03661 crossref_primary_10_1088_1674_1056_ad01a3 crossref_primary_10_1002_eem2_12610 crossref_primary_10_1016_j_nanoen_2019_05_036 crossref_primary_10_1002_ente_202100183 crossref_primary_10_3390_en13195117 crossref_primary_10_1021_acsami_8b21201 crossref_primary_10_1016_j_electacta_2019_05_112 crossref_primary_10_1002_er_4918 crossref_primary_10_1016_j_compscitech_2023_110147 crossref_primary_10_1021_acsomega_9b01706 crossref_primary_10_1016_j_partic_2021_05_011 crossref_primary_10_1039_D0NA00593B crossref_primary_10_1002_adfm_202201744 crossref_primary_10_1002_er_7068 crossref_primary_10_21923_jesd_726228 crossref_primary_10_1021_acsami_8b06271 crossref_primary_10_1002_cssc_202100595 crossref_primary_10_1149_2754_2726_ad15a0 crossref_primary_10_1021_acs_nanolett_1c02923 crossref_primary_10_1002_ange_202000262 crossref_primary_10_3390_ma13020334 crossref_primary_10_1016_j_jpowsour_2018_04_034 crossref_primary_10_3390_nano9030441 crossref_primary_10_1002_adma_202307617 crossref_primary_10_1016_j_est_2021_102695 crossref_primary_10_1016_j_ensm_2018_12_004 crossref_primary_10_1039_C8NJ05835K crossref_primary_10_1016_j_jcis_2022_02_095 crossref_primary_10_1039_C9CP06545H crossref_primary_10_1039_D0DT02405H crossref_primary_10_1002_bkcs_12357 crossref_primary_10_1021_acsami_9b18493 crossref_primary_10_1021_acsami_1c00723 crossref_primary_10_1016_j_jallcom_2020_156202 crossref_primary_10_1016_j_ces_2023_119526 crossref_primary_10_1016_j_cej_2023_148503 crossref_primary_10_1016_j_ensm_2019_10_029 crossref_primary_10_1007_s10854_022_08391_7 crossref_primary_10_1016_j_jcis_2022_03_101 crossref_primary_10_1149_1945_7111_aceb33 crossref_primary_10_1002_batt_202100350 crossref_primary_10_1016_j_jpowsour_2019_03_073 crossref_primary_10_1021_acsaem_0c00479 crossref_primary_10_1002_adma_202208974 crossref_primary_10_1038_s41598_023_33383_w crossref_primary_10_1002_adfm_201806706 crossref_primary_10_1039_D1MA00081K crossref_primary_10_1016_j_mattod_2020_12_017 crossref_primary_10_12677_AEPE_2021_93013 crossref_primary_10_1021_acsami_8b18864 crossref_primary_10_1246_cl_200956 crossref_primary_10_1021_acsomega_9b02203 crossref_primary_10_1016_j_electacta_2018_12_111 crossref_primary_10_1039_D2NR04773J crossref_primary_10_1016_j_electacta_2018_10_195 crossref_primary_10_1039_D1GC02802B crossref_primary_10_1021_acs_chemmater_1c00962 crossref_primary_10_1016_j_jpowsour_2022_232398 crossref_primary_10_1002_adma_201901808 crossref_primary_10_3389_fenrg_2022_869404 crossref_primary_10_1021_acsaem_2c03758 crossref_primary_10_1149_2_0121908jes crossref_primary_10_1002_inf2_12498 crossref_primary_10_1021_acsami_8b16319 crossref_primary_10_1149_2_0401911jes crossref_primary_10_1002_smll_201800887 crossref_primary_10_1002_smll_202308011 crossref_primary_10_1016_j_matchar_2024_114684 crossref_primary_10_1002_aenm_202402061 crossref_primary_10_1007_s11581_019_03172_5 crossref_primary_10_1021_acsami_9b03905 crossref_primary_10_1021_acssuschemeng_1c03002 crossref_primary_10_1002_admi_202000684 crossref_primary_10_1021_acs_chemmater_2c01461 crossref_primary_10_1007_s10853_020_05246_6 crossref_primary_10_1016_j_seppur_2021_118433 crossref_primary_10_1002_mawe_202000090 crossref_primary_10_1021_acs_chemrev_8b00241 crossref_primary_10_1016_j_compositesa_2024_108696 crossref_primary_10_1039_D1CS00450F crossref_primary_10_1016_j_ssi_2021_115820 crossref_primary_10_1021_acs_nanolett_0c01640 crossref_primary_10_1021_acsami_4c06570 crossref_primary_10_1080_19392699_2023_2168656 crossref_primary_10_1016_j_nanoen_2020_104942 crossref_primary_10_1002_adfm_202004302 crossref_primary_10_1002_aenm_201802322 crossref_primary_10_1021_acsami_9b09696 crossref_primary_10_1039_C8CC07660J crossref_primary_10_1016_j_jallcom_2019_03_005 crossref_primary_10_1016_j_partic_2020_09_004 crossref_primary_10_1021_acsaem_1c01934 crossref_primary_10_1021_acs_energyfuels_3c02174 crossref_primary_10_1021_acs_iecr_9b05074 crossref_primary_10_1016_j_cej_2019_123268 crossref_primary_10_1021_acssuschemeng_0c05560 crossref_primary_10_1021_acsnano_2c05016 crossref_primary_10_1002_aenm_202002027 crossref_primary_10_1002_adfm_202500071 crossref_primary_10_1021_acsami_9b02827 crossref_primary_10_3390_en13071602 crossref_primary_10_1021_acsaem_0c00729 crossref_primary_10_1021_accountsmr_3c00217 crossref_primary_10_1021_acsami_1c12221 crossref_primary_10_1002_anie_201900444 crossref_primary_10_1016_j_nanoen_2020_104928 crossref_primary_10_1038_s41560_021_00817_6 crossref_primary_10_1016_j_ceramint_2019_02_132 crossref_primary_10_1021_acsami_1c02424 crossref_primary_10_1038_s41598_019_43639_z crossref_primary_10_1016_j_electacta_2019_134807 crossref_primary_10_1039_D0TA05429A crossref_primary_10_1021_acsami_0c08797 crossref_primary_10_1002_anie_202000262 crossref_primary_10_1002_celc_202001374 crossref_primary_10_1016_j_chempr_2022_04_012 crossref_primary_10_1002_slct_201903321 crossref_primary_10_1039_D3TA04373H crossref_primary_10_1021_acsaem_8b01892 crossref_primary_10_1002_adfm_202422663 crossref_primary_10_1002_aenm_202000997 crossref_primary_10_1002_smll_202500940 crossref_primary_10_1021_acsami_0c06484 crossref_primary_10_1021_acssuschemeng_9b07478 crossref_primary_10_1021_acsami_1c08419 crossref_primary_10_1016_j_apsusc_2020_145741 crossref_primary_10_1016_j_cej_2022_139254 crossref_primary_10_1016_j_elecom_2020_106722 crossref_primary_10_1016_j_jpowsour_2021_230361 crossref_primary_10_1016_j_nanoen_2019_03_012 crossref_primary_10_1021_acsami_0c00386 crossref_primary_10_1016_j_cap_2019_07_001 crossref_primary_10_1016_j_jpowsour_2022_231752 crossref_primary_10_1002_aenm_202101820 crossref_primary_10_1016_j_jpcs_2021_110187 crossref_primary_10_1016_j_nanoen_2020_105459 crossref_primary_10_1007_s40843_019_9456_1 crossref_primary_10_1016_j_ceramint_2018_05_128 crossref_primary_10_1016_j_cej_2021_129042 crossref_primary_10_1016_j_est_2023_109759 crossref_primary_10_1002_adma_202000190 crossref_primary_10_1021_acs_jpcc_1c05810 crossref_primary_10_1002_adfm_202100783 crossref_primary_10_1021_acs_iecr_2c00181 crossref_primary_10_1039_D5TA00860C crossref_primary_10_1149_1945_7111_ac2dca crossref_primary_10_1007_s11705_020_1918_9 crossref_primary_10_1021_jacs_2c11640 crossref_primary_10_1021_acssuschemeng_9b07644 crossref_primary_10_1016_j_electacta_2024_144216 crossref_primary_10_1016_j_jallcom_2022_167395 crossref_primary_10_1021_acsaem_0c03135 crossref_primary_10_1016_j_cjche_2021_08_001 crossref_primary_10_1016_j_jpowsour_2021_230051 crossref_primary_10_1002_ange_201900444 crossref_primary_10_1016_j_cej_2019_123691 crossref_primary_10_1007_s42864_022_00173_2 crossref_primary_10_1016_j_electacta_2021_137757 crossref_primary_10_1016_j_tsep_2023_101677 crossref_primary_10_1007_s11581_022_04748_4 crossref_primary_10_1016_j_est_2022_105747 crossref_primary_10_1007_s40843_019_9442_x crossref_primary_10_1016_j_cej_2019_123452 crossref_primary_10_1016_j_electacta_2019_134987 crossref_primary_10_1016_j_nanoen_2019_104102 crossref_primary_10_1002_aenm_201803609 crossref_primary_10_1039_C9CC02006C crossref_primary_10_1007_s12598_024_02692_y crossref_primary_10_1016_j_colsurfa_2021_127486 crossref_primary_10_1021_acsomega_3c09567 crossref_primary_10_1039_C8TA11415C crossref_primary_10_1016_j_pecs_2019_03_002 crossref_primary_10_1002_adfm_202420104 crossref_primary_10_1039_D0CC00327A crossref_primary_10_1039_D1CS00442E crossref_primary_10_1016_j_ceramint_2019_04_250 crossref_primary_10_1021_acsami_8b10372 crossref_primary_10_1021_acssuschemeng_0c04828 crossref_primary_10_1016_j_ensm_2020_12_034 crossref_primary_10_1007_s40820_019_0291_z crossref_primary_10_1039_C9DT00193J crossref_primary_10_1016_j_jelechem_2019_02_051 crossref_primary_10_1021_acsami_1c14272 crossref_primary_10_1039_D2MH00635A crossref_primary_10_1007_s11814_023_1433_z crossref_primary_10_1016_j_electacta_2023_141912 crossref_primary_10_1021_acsami_1c01088 crossref_primary_10_1038_s41598_024_54509_8 crossref_primary_10_1039_D0NR08980J crossref_primary_10_1039_C8TA10786F crossref_primary_10_1021_acsami_0c14995 crossref_primary_10_1016_j_nanoen_2019_01_080 crossref_primary_10_1002_adfm_201803392 crossref_primary_10_1021_acsaem_2c02372 crossref_primary_10_1007_s11581_019_03202_2 crossref_primary_10_1016_j_jpowsour_2020_228235 crossref_primary_10_1016_j_electacta_2020_135959 crossref_primary_10_1002_celc_202100125 crossref_primary_10_1016_j_ceramint_2020_08_059 crossref_primary_10_1021_acs_jpcc_1c05350 crossref_primary_10_1016_j_cej_2022_139720 crossref_primary_10_1016_j_ssi_2022_115912 crossref_primary_10_1021_jacs_0c09602 crossref_primary_10_1021_acsami_8b00919 crossref_primary_10_1016_j_jpowsour_2019_05_069 crossref_primary_10_1016_j_ensm_2020_07_035 crossref_primary_10_1021_acsenergylett_8b01490 crossref_primary_10_1002_aenm_202401515 crossref_primary_10_1002_cssc_202301143 crossref_primary_10_4271_14_13_03_0019 crossref_primary_10_1016_j_comptc_2022_114008 crossref_primary_10_1002_cssc_202200479 crossref_primary_10_1021_acsami_0c01448 crossref_primary_10_1021_acsami_9b21271 crossref_primary_10_1080_10426914_2022_2075885 crossref_primary_10_1002_er_5159 crossref_primary_10_1021_acsami_3c00939 crossref_primary_10_1007_s43207_024_00445_2 crossref_primary_10_1016_j_apsusc_2023_158203 crossref_primary_10_1002_adma_202006019 crossref_primary_10_1016_j_mtener_2020_100518 crossref_primary_10_1016_j_mattod_2019_09_018 crossref_primary_10_1002_appl_202200096 crossref_primary_10_1002_adfm_202210184 crossref_primary_10_1007_s41918_022_00172_4 crossref_primary_10_1016_j_mtnano_2019_100057 crossref_primary_10_1039_C9TA01708A crossref_primary_10_1002_adfm_202214422 crossref_primary_10_1021_acssuschemeng_3c07367 crossref_primary_10_1007_s40820_023_01065_x crossref_primary_10_1016_j_jcis_2024_09_119 crossref_primary_10_1039_D0MA00614A crossref_primary_10_1021_acsami_0c22356 crossref_primary_10_1007_s10854_018_9451_z crossref_primary_10_1016_j_electacta_2020_136014 crossref_primary_10_1016_j_partic_2022_05_009 crossref_primary_10_1002_smll_202207328 crossref_primary_10_1016_j_jpowsour_2020_228856 crossref_primary_10_1039_C8ME00025E crossref_primary_10_1021_acsenergylett_2c02669 crossref_primary_10_1007_s11581_020_03878_x crossref_primary_10_1007_s12274_019_2603_5 crossref_primary_10_1016_j_cej_2020_126306 crossref_primary_10_1021_acs_energyfuels_3c01920 crossref_primary_10_1016_j_cej_2023_145986 crossref_primary_10_1016_j_ensm_2020_11_034 crossref_primary_10_1002_celc_202100465 crossref_primary_10_1016_j_jallcom_2019_07_034 crossref_primary_10_1021_acsami_0c10459 crossref_primary_10_1021_acsami_8b16049 crossref_primary_10_1021_acssuschemeng_9b05664 crossref_primary_10_1021_acsaem_0c01315 crossref_primary_10_1016_j_jechem_2021_10_038 crossref_primary_10_1039_D2CC04614H crossref_primary_10_1021_acsami_3c11662 crossref_primary_10_1016_j_ensm_2019_07_032 crossref_primary_10_1002_celc_201901728 crossref_primary_10_1021_acssuschemeng_9b06999 crossref_primary_10_1016_j_ensm_2022_08_029 crossref_primary_10_1039_C9GC02348H crossref_primary_10_1002_adma_201801751 crossref_primary_10_1021_acsami_4c05516 crossref_primary_10_1039_D0RA04023A crossref_primary_10_1002_adma_202000496 crossref_primary_10_1016_j_jelechem_2021_115798 crossref_primary_10_1007_s11581_022_04645_w crossref_primary_10_1038_s41467_021_23365_9 crossref_primary_10_1088_2053_1591_ab56cb crossref_primary_10_1016_j_pmatsci_2020_100655 crossref_primary_10_1021_acsaem_2c01295 crossref_primary_10_1016_j_physb_2024_416790 crossref_primary_10_1002_aenm_202201653 crossref_primary_10_1016_j_jallcom_2020_153638 crossref_primary_10_1016_j_nanoen_2019_02_034 crossref_primary_10_1016_j_ensm_2021_06_024 crossref_primary_10_1039_C9TA04147H crossref_primary_10_1021_acsami_3c15338 crossref_primary_10_1039_C8TA04852E crossref_primary_10_1016_j_jcis_2022_12_142 crossref_primary_10_1002_ente_202100775 crossref_primary_10_1016_j_nanoen_2019_02_040 crossref_primary_10_1016_j_elecom_2020_106908 crossref_primary_10_1016_j_nanoen_2020_105194 crossref_primary_10_1021_acsami_4c13023 crossref_primary_10_1002_adma_202108947 crossref_primary_10_1016_j_cej_2021_134208 crossref_primary_10_1021_acs_energyfuels_9b04106 crossref_primary_10_1039_C9NR08722B crossref_primary_10_1016_j_jpowsour_2021_230427 crossref_primary_10_1063_5_0182553 crossref_primary_10_1002_adfm_202100880 crossref_primary_10_1007_s11581_019_03432_4 crossref_primary_10_1016_j_apsusc_2024_159922 crossref_primary_10_3390_ma13010040 crossref_primary_10_1039_D2CC00477A crossref_primary_10_1016_j_nanoen_2018_10_006 crossref_primary_10_1021_acs_jpcc_3c05812 crossref_primary_10_3390_polym16020254 crossref_primary_10_1002_adma_202312292 crossref_primary_10_1039_D0DT02780D crossref_primary_10_1021_acs_inorgchem_9b01727 crossref_primary_10_1021_acsami_0c18758 crossref_primary_10_1021_acs_jpclett_4c03094 crossref_primary_10_1002_celc_201801739 crossref_primary_10_1007_s11426_022_1525_3 crossref_primary_10_1016_j_nanoen_2020_105622 crossref_primary_10_1016_j_eml_2020_101152 crossref_primary_10_1021_acsami_2c21312 crossref_primary_10_1002_advs_202417306 crossref_primary_10_1016_j_jallcom_2020_155152 crossref_primary_10_1016_j_comptc_2022_113757 crossref_primary_10_1021_acsaem_1c01746 crossref_primary_10_1007_s10694_022_01343_x crossref_primary_10_1002_adma_202403307 crossref_primary_10_1021_acsami_9b04050 crossref_primary_10_1103_PhysRevE_111_015505 crossref_primary_10_1021_acsami_8b21621 crossref_primary_10_1021_acs_jpcc_9b07070 crossref_primary_10_1039_D2SE01519F crossref_primary_10_1021_acsami_8b03657 crossref_primary_10_1021_acsaem_0c01402 crossref_primary_10_1021_acsami_9b03403 crossref_primary_10_1007_s12274_022_4852_y crossref_primary_10_1002_adma_201906070 crossref_primary_10_1016_j_ceramint_2019_06_187 crossref_primary_10_1007_s40843_020_1327_8 crossref_primary_10_1021_acsami_9b12915 crossref_primary_10_1016_j_cej_2022_134645 crossref_primary_10_1149_2_0641916jes crossref_primary_10_1016_j_jallcom_2021_159947 crossref_primary_10_1002_adem_202300694 crossref_primary_10_1021_acs_jpcc_9b05683 crossref_primary_10_1016_j_progsolidstchem_2020_100298 crossref_primary_10_1007_s11581_019_03247_3 crossref_primary_10_1016_j_gee_2020_09_011 crossref_primary_10_7498_aps_72_20230258 |
Cites_doi | 10.1002/adma.201602262 10.1038/natrevmats.2016.13 10.1126/science.1246432 10.1149/2.0071514jes 10.1038/nenergy.2015.4 10.1021/cm060886r 10.1021/ar300088q 10.1002/adma.201402541 10.1021/cm501664y 10.1149/2.070403jes 10.1038/nmat3699 10.1021/nl502090z 10.1021/cr020731c 10.1002/adma.201104767 10.1002/adma.201605807 10.1021/jz400032v 10.1021/cm301140g 10.1021/nl5038598 10.1039/c1ee01598b 10.1038/nchem.2471 10.1021/acs.accounts.5b00277 10.1002/anie.201409262 10.1002/aenm.201501010 10.1021/ja108588y 10.1038/nmat4137 10.1021/nl4019275 10.1126/science.1212741 10.1002/adma.201603735 10.1021/ja062027 10.1021/acs.chemmater.5b00617 10.1038/ncomms9711 10.1002/aenm.201400631 10.1149/1.1471541 10.1021/ja410137s 10.1038/ncomms4529 10.1021/cm400193m 10.1038/ncomms12108 10.1038/nmat4479 10.1038/nenergy.2015.29 10.1149/1.1407994 10.1038/451652a 10.1021/cr5003003 10.1021/nl502980k 10.1002/aenm.201501914 10.1149/2.049403jes 10.1021/nl500486y 10.1002/aenm.201200068 10.1002/adma.201605578 10.1021/jz1015422 10.1021/acsami.6b06733 10.1149/1.2131401 10.1038/nchem.2524 10.1021/ja3091438 10.1039/b417616m |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
CorporateAuthor | Brookhaven National Laboratory (BNL), Upton, NY (United States) |
CorporateAuthor_xml | – name: Brookhaven National Laboratory (BNL), Upton, NY (United States) |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 OIOZB OTOTI |
DOI | 10.1002/adma.201705575 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 1436262 29333690 10_1002_adma_201705575 ADMA201705575 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: “Strategic Priority Research Program” of the Chinese Academy of Sciences funderid: XDA09010000 – fundername: National Key R&D Program of China funderid: 2016YFA0202500 – fundername: Brookhaven National Laboratory funderid: DE‐SC0012704 – fundername: National Natural Science Foundation of China funderid: 51225204; U1301244; 21127901 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 AAPBV ABHUG ACXME ADAWD ADDAD AFVGU AGJLS OIOZB OTOTI |
ID | FETCH-LOGICAL-c4795-359bf47e2958040121956d2c21fa0a3ecd9c98f3c6b017b7f555d729ee1b32273 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Mon Jul 03 03:59:48 EDT 2023 Fri Jul 11 02:31:06 EDT 2025 Fri Jul 25 03:36:52 EDT 2025 Wed Feb 19 02:43:04 EST 2025 Thu Apr 24 23:06:55 EDT 2025 Tue Jul 01 00:44:38 EDT 2025 Wed Jan 22 17:04:06 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | cathode materials energy quality high capacity batteries voltage decay |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#am http://onlinelibrary.wiley.com/termsAndConditions#vor 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4795-359bf47e2958040121956d2c21fa0a3ecd9c98f3c6b017b7f555d729ee1b32273 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE Office of Science (SC), Basic Energy Sciences (BES) BNL-203616-2018-JAAM SC0012704 |
ORCID | 0000-0003-0322-8476 0000000303228476 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1436262 |
PMID | 29333690 |
PQID | 2009231977 |
PQPubID | 2045203 |
PageCount | 8 |
ParticipantIDs | osti_scitechconnect_1436262 proquest_miscellaneous_1989592338 proquest_journals_2009231977 pubmed_primary_29333690 crossref_citationtrail_10_1002_adma_201705575 crossref_primary_10_1002_adma_201705575 wiley_primary_10_1002_adma_201705575_ADMA201705575 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 1, 2018 |
PublicationDateYYYYMMDD | 2018-03-01 |
PublicationDate_xml | – month: 03 year: 2018 text: March 1, 2018 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: United States |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc Wiley |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley |
References | 2013 2012; 13 24 2016 2016 2011; 1 1 4 2015; 15 2006 2014 2013; 128 136 12 2011 2013; 2 135 2015; 6 2016; 1 2014 2014 2016 2015 2016 2014 2017 2017 2016; 5 114 6 54 15 343 29 29 28 2014; 4 2013; 25 2006 2012 2012; 18 24 2 2016 2016 2016 2013 2017; 8 8 7 4 29 2013 2015 2016 2014; 161 14 8 14 2014 2016; 26 6 2001 2002 2005; 4 149 15 2014; 14 2008 2004 2011 2016 1978; 451 104 334 28 125 2011 2014 2014 2015 2015; 133 26 14 48 162 2013 2015 2014; 46 27 161 e_1_2_5_15_1 e_1_2_5_9_3 e_1_2_5_13_2 e_1_2_5_9_2 e_1_2_5_15_3 e_1_2_5_17_1 e_1_2_5_7_3 e_1_2_5_9_1 e_1_2_5_15_2 e_1_2_5_7_2 e_1_2_5_11_1 e_1_2_5_5_3 e_1_2_5_7_1 e_1_2_5_5_2 e_1_2_5_13_1 e_1_2_5_1_5 e_1_2_5_5_1 e_1_2_5_1_4 e_1_2_5_1_3 Li B. (e_1_2_5_2_5) 2017; 29 e_1_2_5_3_1 e_1_2_5_1_2 e_1_2_5_1_1 e_1_2_5_19_1 e_1_2_5_15_4 e_1_2_5_17_2 e_1_2_5_4_9 e_1_2_5_8_5 e_1_2_5_14_2 e_1_2_5_4_8 e_1_2_5_8_4 e_1_2_5_14_1 e_1_2_5_4_7 e_1_2_5_8_3 e_1_2_5_4_6 e_1_2_5_8_2 e_1_2_5_14_3 e_1_2_5_16_1 e_1_2_5_4_5 e_1_2_5_8_1 e_1_2_5_10_2 e_1_2_5_4_4 e_1_2_5_6_2 e_1_2_5_10_1 e_1_2_5_4_3 e_1_2_5_6_1 e_1_2_5_2_4 e_1_2_5_4_2 e_1_2_5_10_3 e_1_2_5_12_1 e_1_2_5_2_3 e_1_2_5_4_1 e_1_2_5_2_2 e_1_2_5_2_1 e_1_2_5_18_1 |
References_xml | – volume: 15 start-page: 514 year: 2015 publication-title: Nano Lett. – volume: 128 136 12 start-page: 8694 999 827 year: 2006 2014 2013 publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc. Nat. Mater. – volume: 4 149 15 start-page: A191 A778 2257 year: 2001 2002 2005 publication-title: Electrochem. Solid‐State Lett. J. Electrochem. Soc. J. Mater. Chem. – volume: 46 27 161 start-page: 1226 3366 A355 year: 2013 2015 2014 publication-title: Acc. Chem. Res. Chem. Mater. J. Electrochem. Soc. – volume: 6 start-page: 8711 year: 2015 publication-title: Nat. Commun. – volume: 13 24 start-page: 3857 3558 year: 2013 2012 publication-title: Nano Lett. Chem. Mater. – volume: 451 104 334 28 125 start-page: 652 4271 928 9629 7 year: 2008 2004 2011 2016 1978 publication-title: Nature Chem. Rev. Science Adv. Mater. J. Electrochem. Soc. – volume: 2 135 start-page: 176 1167 year: 2011 2013 publication-title: J. Phys. Chem. Lett. J. Am. Chem. Soc. – volume: 4 start-page: 1400631 year: 2014 publication-title: Adv. Energy Mater. – volume: 26 6 start-page: 6919 1501914 year: 2014 2016 publication-title: Chem. Mater. Adv. Energy Mater. – volume: 1 1 4 start-page: 16013 15004 3243 year: 2016 2016 2011 publication-title: Nat. Rev. Mater. Nat. Energy Energy Environ. Sci. – volume: 161 14 8 14 start-page: A318 230 20138 2628 year: 2013 2015 2016 2014 publication-title: J. Electrochem. Soc. Nat. Mater. ACS Appl. Mater. Interfaces Nano Lett. – volume: 25 start-page: 1121 year: 2013 publication-title: Chem. Mater. – volume: 8 8 7 4 29 start-page: 692 684 12108 1268 170154 year: 2016 2016 2016 2013 2017 publication-title: Nat. Chem. Nat. Chem. Nat. Commun. J. Phys. Chem. Lett. Adv. Mater. – volume: 133 26 14 48 162 start-page: 4404 6756 5965 2813 A2447 year: 2011 2014 2014 2015 2015 publication-title: J. Am. Chem. Soc. Adv. Mater. Nano Lett. Acc. Chem. Res. J. Electrochem. Soc. – volume: 1 start-page: 15029 year: 2016 publication-title: Nat. Energy – volume: 14 start-page: 4334 year: 2014 publication-title: Nano Lett. – volume: 18 24 2 start-page: 4768 2109 922 year: 2006 2012 2012 publication-title: Chem. Mater. Adv. Mater. Adv. Energy Mater. – volume: 5 114 6 54 15 343 29 29 28 start-page: 3529 11414 1501010 4440 173 519 1605578 1605807 9979 year: 2014 2014 2016 2015 2016 2014 2017 2017 2016 publication-title: Nat. Commun. Chem. Rev. Adv. Energy Mater. Angew. Chem., Int. Ed. Nat. Mater. Science Adv. Mater. Adv. Mater. Adv. Mater. – ident: e_1_2_5_1_4 doi: 10.1002/adma.201602262 – ident: e_1_2_5_5_1 doi: 10.1038/natrevmats.2016.13 – ident: e_1_2_5_4_6 doi: 10.1126/science.1246432 – ident: e_1_2_5_8_5 doi: 10.1149/2.0071514jes – ident: e_1_2_5_5_2 doi: 10.1038/nenergy.2015.4 – ident: e_1_2_5_10_1 doi: 10.1021/cm060886r – ident: e_1_2_5_9_1 doi: 10.1021/ar300088q – ident: e_1_2_5_8_2 doi: 10.1002/adma.201402541 – ident: e_1_2_5_17_1 doi: 10.1021/cm501664y – ident: e_1_2_5_9_3 doi: 10.1149/2.070403jes – ident: e_1_2_5_14_3 doi: 10.1038/nmat3699 – ident: e_1_2_5_12_1 doi: 10.1021/nl502090z – ident: e_1_2_5_1_2 doi: 10.1021/cr020731c – ident: e_1_2_5_10_2 doi: 10.1002/adma.201104767 – ident: e_1_2_5_4_8 doi: 10.1002/adma.201605807 – ident: e_1_2_5_2_4 doi: 10.1021/jz400032v – ident: e_1_2_5_13_2 doi: 10.1021/cm301140g – ident: e_1_2_5_11_1 doi: 10.1021/nl5038598 – ident: e_1_2_5_5_3 doi: 10.1039/c1ee01598b – ident: e_1_2_5_2_2 doi: 10.1038/nchem.2471 – ident: e_1_2_5_8_4 doi: 10.1021/acs.accounts.5b00277 – ident: e_1_2_5_4_4 doi: 10.1002/anie.201409262 – ident: e_1_2_5_4_3 doi: 10.1002/aenm.201501010 – ident: e_1_2_5_8_1 doi: 10.1021/ja108588y – ident: e_1_2_5_15_2 doi: 10.1038/nmat4137 – ident: e_1_2_5_13_1 doi: 10.1021/nl4019275 – ident: e_1_2_5_1_3 doi: 10.1126/science.1212741 – ident: e_1_2_5_4_9 doi: 10.1002/adma.201603735 – ident: e_1_2_5_14_1 doi: 10.1021/ja062027 – ident: e_1_2_5_9_2 doi: 10.1021/acs.chemmater.5b00617 – ident: e_1_2_5_18_1 doi: 10.1038/ncomms9711 – ident: e_1_2_5_16_1 doi: 10.1002/aenm.201400631 – ident: e_1_2_5_7_2 doi: 10.1149/1.1471541 – ident: e_1_2_5_14_2 doi: 10.1021/ja410137s – ident: e_1_2_5_4_1 doi: 10.1038/ncomms4529 – ident: e_1_2_5_19_1 doi: 10.1021/cm400193m – ident: e_1_2_5_2_3 doi: 10.1038/ncomms12108 – ident: e_1_2_5_4_5 doi: 10.1038/nmat4479 – ident: e_1_2_5_3_1 doi: 10.1038/nenergy.2015.29 – ident: e_1_2_5_7_1 doi: 10.1149/1.1407994 – ident: e_1_2_5_1_1 doi: 10.1038/451652a – ident: e_1_2_5_4_2 doi: 10.1021/cr5003003 – ident: e_1_2_5_8_3 doi: 10.1021/nl502980k – ident: e_1_2_5_17_2 doi: 10.1002/aenm.201501914 – ident: e_1_2_5_15_1 doi: 10.1149/2.049403jes – ident: e_1_2_5_15_4 doi: 10.1021/nl500486y – volume: 29 start-page: 170154 year: 2017 ident: e_1_2_5_2_5 publication-title: Adv. Mater. – ident: e_1_2_5_10_3 doi: 10.1002/aenm.201200068 – ident: e_1_2_5_4_7 doi: 10.1002/adma.201605578 – ident: e_1_2_5_6_1 doi: 10.1021/jz1015422 – ident: e_1_2_5_15_3 doi: 10.1021/acsami.6b06733 – ident: e_1_2_5_1_5 doi: 10.1149/1.2131401 – ident: e_1_2_5_2_1 doi: 10.1038/nchem.2524 – ident: e_1_2_5_6_2 doi: 10.1021/ja3091438 – ident: e_1_2_5_7_3 doi: 10.1039/b417616m |
SSID | ssj0009606 |
Score | 2.661901 |
Snippet | Electrochemical energy storage devices with a high energy density are an important technology in modern society, especially for electric vehicles. The most... |
SourceID | osti proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | cathode materials Cathodes Density Electric potential Electric vehicles Electrode materials Electrodes Energy energy quality Energy storage Flux density high capacity batteries Lithium MATERIALS SCIENCE Storage batteries voltage decay |
Title | High‐Capacity Cathode Material with High Voltage for Li‐Ion Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201705575 https://www.ncbi.nlm.nih.gov/pubmed/29333690 https://www.proquest.com/docview/2009231977 https://www.proquest.com/docview/1989592338 https://www.osti.gov/servlets/purl/1436262 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6hPcEBWn7TFmQkJE5pd-04jo-rQtUiygFR1Jvlv0iIKkFs9tJTH4Fn5Ek6Y--mXQRCglui2NLE45n5xh5_Bng19bUXbbClD1UoK4nT2AYeSozE3tNOXJOrLT7Ux2fVu3N5fusUf-aHGBfcyDKSvyYDt25xcEMaakPiDUp0MIpOmVPBFqGijzf8UQTPE9mekKWuq2bN2jjlB5vdN6LSpEfr-h3i3ASwKQIdPQC7lj0XnnzdXw5u31_-Quv4Pz-3BfdX8JTN83zahjuxewj3bpEWPoITKg35efXjEMOsRwzP6BBhHyI7tUOazozWdhm1Yp_7iwEdFkNkzN5_wU4nfccypSdm6I_h7Ojtp8PjcnUhQ-krpWUppHZtpSLXskHjn3E6bBi457PWTq2IPmivm1b42qHoTrVSyoDoPcaZQ8ehxBOYdH0XnwHTyrmohKL6waqSAd0IZm4-ckz4Wj0LBZRrhRi_YiunSzMuTOZZ5oaGyIxDVMDrsf23zNPxx5a7pF-DCINocj3VE_kBUyAi5uEF7K3VblbWvDCJmQp9lVIFvBw_ox3S5ortYr9cGKo9k9hKNAU8zdNlFAQhlRC1nhbAk9L_IqGZvzmdj287_9JpF-7ic5OL5fZgMnxfxueIngb3IlnINdUfDns |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NbtQwEMdHsByAA98faQsYCYlT2l07juPjqqXahd0eUIu4WYntSBVVgmj2wqmP0GfkSTpjb1IWgZDgmMSWHNsz_tse_wzwZmxzK2pXptZlLs0kduPScZfiSGwt7cQVMdriKJ-dZO8_yz6akM7CRD7EsOBGlhH8NRk4LUjvXVNDSxfAQYEHo-RNuEXXehM-_-DjNUGKBHrA7QmZ6jwrem7jmO9t5t8Yl0Yt2tfvNOemhA1j0OF9qPrSx9CTL7urrtq1338BO_7X7z2Ae2uFyqaxSz2EG755BHd_4hY-hjlFh_y4uNzHkdaijGd0jrB1ni3LLvRoRsu7jFKxT-1Zhz6LoThmi1PMNG8bFqmeOEl_AieH7473Z-n6TobUZkrLVEhd1ZnyXMsC7X_C6byh45ZP6nJcCm-dtrqohc0rLHqlaimlQwHv_aRC36HEUxg1beOfA9OqqrwSikIIs0w69CQ4ebOe45yv1hOXQNq3iLFrYDndm3FmImqZG6oiM1RRAm-H9F8jquOPKbepgQ2KDCLlWgopsh3OgojNwxPY6dvdrA363AQ4FborpRJ4PXxGU6T9lbLx7ercUPiZxFSiSOBZ7C9DQVBVCZHrcQI8tPpfSmimB8vp8LT1L5lewe3Z8XJhFvOjD9twB98XMXZuB0bdt5V_gWKqq14Gc7kCxCYSlw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BIiE48KaEtmAkJE5ps37E8XHVZdWFtkKIot6sxHYk1CqpaPbCiZ_Ab-SXMOPspl1EhQTHJGPJ8Tz8jT3-DPA6c7kTtS9T56VPpUIzLj33Kc7EztFOXNFXWxzl-8fy3Yk6uXKKv-eHGBbcyDNivCYHP_f17iVpaOkjb1Ckg9HqJtySeWbo8obpx0sCKcLnkW1PqNTksljRNmZ8d7392rQ0atG9_gQ51xFsnIJm96Fcdb6vPDndWXTVjvv2G6_j__zdA7i3xKds0hvUQ7gRmkdw9wpr4WOYU23Iz-8_9nCedQjiGZ0ibH1gh2UX7ZnR4i4jKfa5PeswYjGExuzgCzaatw3rOT0xRX8Cx7O3n_b20-WNDKmT2qhUKFPVUgduVIHeP-Z02tBzx8d1mZUiOG-cKWrh8gq7XulaKeURvocwrjByaPEURk3bhGfAjK6qoIWmAkIplcc4gqmbCxwzvtqMfQLpSiHWLenK6daMM9sTLXNLQ2SHIUrgzSB_3hN1XCu5Sfq1CDGIJ9dRQZHrMAciZh6ewNZK7Xbpzhc2UlNhsNI6gVfDZ3RE2l0pm9AuLiwVnymUEkUCG725DB1BTCVEbrIEeFT6X3poJ9PDyfD0_F8avYTbH6YzezA_er8Jd_B10RfObcGo-7oI24ikuupFdJZfcWgRRg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High%E2%80%90Capacity+Cathode+Material+with+High+Voltage+for+Li%E2%80%90Ion+Batteries&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Ji%E2%80%90Lei+Shi&rft.au=Dong%E2%80%90Dong+Xiao&rft.au=Ge%2C+Mingyuan&rft.au=Yu%2C+Xiqian&rft.date=2018-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=30&rft.issue=9&rft_id=info:doi/10.1002%2Fadma.201705575&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |