High‐Capacity Cathode Material with High Voltage for Li‐Ion Batteries

Electrochemical energy storage devices with a high energy density are an important technology in modern society, especially for electric vehicles. The most effective approach to improve the energy density of batteries is to search for high‐capacity electrode materials. According to the concept of en...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 30; no. 9
Main Authors Shi, Ji‐Lei, Xiao, Dong‐Dong, Ge, Mingyuan, Yu, Xiqian, Chu, Yong, Huang, Xiaojing, Zhang, Xu‐Dong, Yin, Ya‐Xia, Yang, Xiao‐Qing, Guo, Yu‐Guo, Gu, Lin, Wan, Li‐Jun
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.03.2018
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electrochemical energy storage devices with a high energy density are an important technology in modern society, especially for electric vehicles. The most effective approach to improve the energy density of batteries is to search for high‐capacity electrode materials. According to the concept of energy quality, a high‐voltage battery delivers a highly useful energy, thus providing a new insight to improve energy density. Based on this concept, a novel and successful strategy to increase the energy density and energy quality by increasing the discharge voltage of cathode materials and preserving high capacity is proposed. The proposal is realized in high‐capacity Li‐rich cathode materials. The average discharge voltage is increased from 3.5 to 3.8 V by increasing the nickel content and applying a simple after‐treatment, and the specific energy is improved from 912 to 1033 Wh kg−1. The current work provides an insightful universal principle for developing, designing, and screening electrode materials for high energy density and energy quality. Li‐ion batteries with high energy quality require a high capacity coupled with high operating voltage. This requires the electrode materials to not only have a high specific capacity but also a high discharge voltage for cathode materials and low charge voltage for anode materials.
AbstractList Electrochemical energy storage devices with a high energy density are an important technology in modern society, especially for electric vehicles. The most effective approach to improve the energy density of batteries is to search for high‐capacity electrode materials. According to the concept of energy quality, a high‐voltage battery delivers a highly useful energy, thus providing a new insight to improve energy density. Based on this concept, a novel and successful strategy to increase the energy density and energy quality by increasing the discharge voltage of cathode materials and preserving high capacity is proposed. The proposal is realized in high‐capacity Li‐rich cathode materials. The average discharge voltage is increased from 3.5 to 3.8 V by increasing the nickel content and applying a simple after‐treatment, and the specific energy is improved from 912 to 1033 Wh kg−1. The current work provides an insightful universal principle for developing, designing, and screening electrode materials for high energy density and energy quality. Li‐ion batteries with high energy quality require a high capacity coupled with high operating voltage. This requires the electrode materials to not only have a high specific capacity but also a high discharge voltage for cathode materials and low charge voltage for anode materials.
Electrochemical energy storage devices with a high energy density are an important technology in modern society, especially for electric vehicles. The most effective approach to improve the energy density of batteries is to search for high-capacity electrode materials. According to the concept of energy quality, a high-voltage battery delivers a highly useful energy, thus providing a new insight to improve energy density. Based on this concept, a novel and successful strategy to increase the energy density and energy quality by increasing the discharge voltage of cathode materials and preserving high capacity is proposed. The proposal is realized in high-capacity Li-rich cathode materials. The average discharge voltage is increased from 3.5 to 3.8 V by increasing the nickel content and applying a simple after-treatment, and the specific energy is improved from 912 to 1033 Wh kg-1. The current work provides an insightful universal principle for developing, designing, and screening electrode materials for high energy density and energy quality.
Electrochemical energy storage devices with a high energy density are an important technology in modern society, especially for electric vehicles. The most effective approach to improve the energy density of batteries is to search for high‐capacity electrode materials. According to the concept of energy quality, a high‐voltage battery delivers a highly useful energy, thus providing a new insight to improve energy density. Based on this concept, a novel and successful strategy to increase the energy density and energy quality by increasing the discharge voltage of cathode materials and preserving high capacity is proposed. The proposal is realized in high‐capacity Li‐rich cathode materials. The average discharge voltage is increased from 3.5 to 3.8 V by increasing the nickel content and applying a simple after‐treatment, and the specific energy is improved from 912 to 1033 Wh kg −1 . The current work provides an insightful universal principle for developing, designing, and screening electrode materials for high energy density and energy quality.
Electrochemical energy storage devices with a high energy density are an important technology in modern society, especially for electric vehicles. The most effective approach to improve the energy density of batteries is to search for high-capacity electrode materials. According to the concept of energy quality, a high-voltage battery delivers a highly useful energy, thus providing a new insight to improve energy density. Based on this concept, a novel and successful strategy to increase the energy density and energy quality by increasing the discharge voltage of cathode materials and preserving high capacity is proposed. The proposal is realized in high-capacity Li-rich cathode materials. The average discharge voltage is increased from 3.5 to 3.8 V by increasing the nickel content and applying a simple after-treatment, and the specific energy is improved from 912 to 1033 Wh kg . The current work provides an insightful universal principle for developing, designing, and screening electrode materials for high energy density and energy quality.
Electrochemical energy storage devices with a high energy density are an important technology in modern society, especially for electric vehicles. The most effective approach to improve the energy density of batteries is to search for high‐capacity electrode materials. According to the concept of energy quality, a high‐voltage battery delivers a highly useful energy, thus providing a new insight to improve energy density. Based on this concept, a novel and successful strategy to increase the energy density and energy quality by increasing the discharge voltage of cathode materials and preserving high capacity is proposed. The proposal is realized in high‐capacity Li‐rich cathode materials. The average discharge voltage is increased from 3.5 to 3.8 V by increasing the nickel content and applying a simple after‐treatment, and the specific energy is improved from 912 to 1033 Wh kg−1. The current work provides an insightful universal principle for developing, designing, and screening electrode materials for high energy density and energy quality.
Electrochemical energy storage devices with a high energy density are an important technology in modern society, especially for electric vehicles. The most effective approach to improve the energy density of batteries is to search for high-capacity electrode materials. According to the concept of energy quality, a high-voltage battery delivers a highly useful energy, thus providing a new insight to improve energy density. Based on this concept, a novel and successful strategy to increase the energy density and energy quality by increasing the discharge voltage of cathode materials and preserving high capacity is proposed. The proposal is realized in high-capacity Li-rich cathode materials. The average discharge voltage is increased from 3.5 to 3.8 V by increasing the nickel content and applying a simple after-treatment, and the specific energy is improved from 912 to 1033 Wh kg-1 . The current work provides an insightful universal principle for developing, designing, and screening electrode materials for high energy density and energy quality.Electrochemical energy storage devices with a high energy density are an important technology in modern society, especially for electric vehicles. The most effective approach to improve the energy density of batteries is to search for high-capacity electrode materials. According to the concept of energy quality, a high-voltage battery delivers a highly useful energy, thus providing a new insight to improve energy density. Based on this concept, a novel and successful strategy to increase the energy density and energy quality by increasing the discharge voltage of cathode materials and preserving high capacity is proposed. The proposal is realized in high-capacity Li-rich cathode materials. The average discharge voltage is increased from 3.5 to 3.8 V by increasing the nickel content and applying a simple after-treatment, and the specific energy is improved from 912 to 1033 Wh kg-1 . The current work provides an insightful universal principle for developing, designing, and screening electrode materials for high energy density and energy quality.
Author Huang, Xiaojing
Xiao, Dong‐Dong
Gu, Lin
Wan, Li‐Jun
Yin, Ya‐Xia
Yu, Xiqian
Yang, Xiao‐Qing
Guo, Yu‐Guo
Shi, Ji‐Lei
Chu, Yong
Zhang, Xu‐Dong
Ge, Mingyuan
Author_xml – sequence: 1
  givenname: Ji‐Lei
  surname: Shi
  fullname: Shi, Ji‐Lei
  organization: University of Chinese Academy of Sciences
– sequence: 2
  givenname: Dong‐Dong
  surname: Xiao
  fullname: Xiao, Dong‐Dong
  organization: Chinese Academy of Sciences (CAS)
– sequence: 3
  givenname: Mingyuan
  surname: Ge
  fullname: Ge, Mingyuan
  organization: Brookhaven National Laboratory
– sequence: 4
  givenname: Xiqian
  surname: Yu
  fullname: Yu, Xiqian
  organization: Chinese Academy of Sciences (CAS)
– sequence: 5
  givenname: Yong
  surname: Chu
  fullname: Chu, Yong
  organization: Brookhaven National Laboratory
– sequence: 6
  givenname: Xiaojing
  surname: Huang
  fullname: Huang, Xiaojing
  organization: Brookhaven National Laboratory
– sequence: 7
  givenname: Xu‐Dong
  surname: Zhang
  fullname: Zhang, Xu‐Dong
  organization: University of Chinese Academy of Sciences
– sequence: 8
  givenname: Ya‐Xia
  surname: Yin
  fullname: Yin, Ya‐Xia
  organization: University of Chinese Academy of Sciences
– sequence: 9
  givenname: Xiao‐Qing
  surname: Yang
  fullname: Yang, Xiao‐Qing
  organization: Brookhaven National Laboratory
– sequence: 10
  givenname: Yu‐Guo
  orcidid: 0000-0003-0322-8476
  surname: Guo
  fullname: Guo, Yu‐Guo
  email: ygguo@iccas.ac.cn
  organization: University of Chinese Academy of Sciences
– sequence: 11
  givenname: Lin
  surname: Gu
  fullname: Gu, Lin
  email: l.gu@iphy.ac.cn
  organization: Chinese Academy of Sciences (CAS)
– sequence: 12
  givenname: Li‐Jun
  surname: Wan
  fullname: Wan, Li‐Jun
  email: wanlijun@iccas.ac.cn
  organization: Chinese Academy of Sciences (CAS)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29333690$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1436262$$D View this record in Osti.gov
BookMark eNqFkbtu2zAUhokiReOkWTMGQrtkkcuLKOmMjpuLAQdd2qwERR3FDGTRJWkE3voIfcY8SSg4aYEARaezfN-5_UfkYHADEnLK6JRRyr_odq2nnLKKSlnJd2TCJGd5QUEekAkFIXMoi_qQHIXwQCmFkpYfyCEHIUQJdEIWN_Z-9fTr91xvtLFxl811XLkWs1sd0VvdZ482rrKRyu5cH_U9Zp3z2dImaeGG7ELHEcTwkbzvdB_w5KUekx9Xl9_nN_ny2_ViPlvmpqhA5kJC0xUVcpA1LSjjDGTZcsNZp6kWaFowUHfClE26qqk6KWVbcUBkjeC8Esfk076vC9GqkJZGszJuGNBExQpR8pIn6HwPbbz7ucUQ1doGg32vB3TboBjUIIELUSf08xv0wW39kE5QPD2MCwbVOPXshdo2a2zVxtu19jv1-skEFHvAeBeCx06lzXS0bohe214xqsbA1BiY-hNY0qZvtNfO_xRgLzzaHnf_odXs6-3sr_sM5XSmlA
CitedBy_id crossref_primary_10_1021_acsami_0c16755
crossref_primary_10_1088_1402_4896_ad799b
crossref_primary_10_1002_aenm_201801957
crossref_primary_10_3390_ijms24098035
crossref_primary_10_1016_j_compositesb_2021_109591
crossref_primary_10_1016_j_solidstatesciences_2019_05_019
crossref_primary_10_3390_catal12060584
crossref_primary_10_1016_j_jcis_2021_03_038
crossref_primary_10_1021_acsami_0c10410
crossref_primary_10_1021_acs_energyfuels_0c00995
crossref_primary_10_1002_er_6782
crossref_primary_10_1021_acs_jpcc_3c03661
crossref_primary_10_1088_1674_1056_ad01a3
crossref_primary_10_1002_eem2_12610
crossref_primary_10_1016_j_nanoen_2019_05_036
crossref_primary_10_1002_ente_202100183
crossref_primary_10_3390_en13195117
crossref_primary_10_1021_acsami_8b21201
crossref_primary_10_1016_j_electacta_2019_05_112
crossref_primary_10_1002_er_4918
crossref_primary_10_1016_j_compscitech_2023_110147
crossref_primary_10_1021_acsomega_9b01706
crossref_primary_10_1016_j_partic_2021_05_011
crossref_primary_10_1039_D0NA00593B
crossref_primary_10_1002_adfm_202201744
crossref_primary_10_1002_er_7068
crossref_primary_10_21923_jesd_726228
crossref_primary_10_1021_acsami_8b06271
crossref_primary_10_1002_cssc_202100595
crossref_primary_10_1149_2754_2726_ad15a0
crossref_primary_10_1021_acs_nanolett_1c02923
crossref_primary_10_1002_ange_202000262
crossref_primary_10_3390_ma13020334
crossref_primary_10_1016_j_jpowsour_2018_04_034
crossref_primary_10_3390_nano9030441
crossref_primary_10_1002_adma_202307617
crossref_primary_10_1016_j_est_2021_102695
crossref_primary_10_1016_j_ensm_2018_12_004
crossref_primary_10_1039_C8NJ05835K
crossref_primary_10_1016_j_jcis_2022_02_095
crossref_primary_10_1039_C9CP06545H
crossref_primary_10_1039_D0DT02405H
crossref_primary_10_1002_bkcs_12357
crossref_primary_10_1021_acsami_9b18493
crossref_primary_10_1021_acsami_1c00723
crossref_primary_10_1016_j_jallcom_2020_156202
crossref_primary_10_1016_j_ces_2023_119526
crossref_primary_10_1016_j_cej_2023_148503
crossref_primary_10_1016_j_ensm_2019_10_029
crossref_primary_10_1007_s10854_022_08391_7
crossref_primary_10_1016_j_jcis_2022_03_101
crossref_primary_10_1149_1945_7111_aceb33
crossref_primary_10_1002_batt_202100350
crossref_primary_10_1016_j_jpowsour_2019_03_073
crossref_primary_10_1021_acsaem_0c00479
crossref_primary_10_1002_adma_202208974
crossref_primary_10_1038_s41598_023_33383_w
crossref_primary_10_1002_adfm_201806706
crossref_primary_10_1039_D1MA00081K
crossref_primary_10_1016_j_mattod_2020_12_017
crossref_primary_10_12677_AEPE_2021_93013
crossref_primary_10_1021_acsami_8b18864
crossref_primary_10_1246_cl_200956
crossref_primary_10_1021_acsomega_9b02203
crossref_primary_10_1016_j_electacta_2018_12_111
crossref_primary_10_1039_D2NR04773J
crossref_primary_10_1016_j_electacta_2018_10_195
crossref_primary_10_1039_D1GC02802B
crossref_primary_10_1021_acs_chemmater_1c00962
crossref_primary_10_1016_j_jpowsour_2022_232398
crossref_primary_10_1002_adma_201901808
crossref_primary_10_3389_fenrg_2022_869404
crossref_primary_10_1021_acsaem_2c03758
crossref_primary_10_1149_2_0121908jes
crossref_primary_10_1002_inf2_12498
crossref_primary_10_1021_acsami_8b16319
crossref_primary_10_1149_2_0401911jes
crossref_primary_10_1002_smll_201800887
crossref_primary_10_1002_smll_202308011
crossref_primary_10_1016_j_matchar_2024_114684
crossref_primary_10_1002_aenm_202402061
crossref_primary_10_1007_s11581_019_03172_5
crossref_primary_10_1021_acsami_9b03905
crossref_primary_10_1021_acssuschemeng_1c03002
crossref_primary_10_1002_admi_202000684
crossref_primary_10_1021_acs_chemmater_2c01461
crossref_primary_10_1007_s10853_020_05246_6
crossref_primary_10_1016_j_seppur_2021_118433
crossref_primary_10_1002_mawe_202000090
crossref_primary_10_1021_acs_chemrev_8b00241
crossref_primary_10_1016_j_compositesa_2024_108696
crossref_primary_10_1039_D1CS00450F
crossref_primary_10_1016_j_ssi_2021_115820
crossref_primary_10_1021_acs_nanolett_0c01640
crossref_primary_10_1021_acsami_4c06570
crossref_primary_10_1080_19392699_2023_2168656
crossref_primary_10_1016_j_nanoen_2020_104942
crossref_primary_10_1002_adfm_202004302
crossref_primary_10_1002_aenm_201802322
crossref_primary_10_1021_acsami_9b09696
crossref_primary_10_1039_C8CC07660J
crossref_primary_10_1016_j_jallcom_2019_03_005
crossref_primary_10_1016_j_partic_2020_09_004
crossref_primary_10_1021_acsaem_1c01934
crossref_primary_10_1021_acs_energyfuels_3c02174
crossref_primary_10_1021_acs_iecr_9b05074
crossref_primary_10_1016_j_cej_2019_123268
crossref_primary_10_1021_acssuschemeng_0c05560
crossref_primary_10_1021_acsnano_2c05016
crossref_primary_10_1002_aenm_202002027
crossref_primary_10_1002_adfm_202500071
crossref_primary_10_1021_acsami_9b02827
crossref_primary_10_3390_en13071602
crossref_primary_10_1021_acsaem_0c00729
crossref_primary_10_1021_accountsmr_3c00217
crossref_primary_10_1021_acsami_1c12221
crossref_primary_10_1002_anie_201900444
crossref_primary_10_1016_j_nanoen_2020_104928
crossref_primary_10_1038_s41560_021_00817_6
crossref_primary_10_1016_j_ceramint_2019_02_132
crossref_primary_10_1021_acsami_1c02424
crossref_primary_10_1038_s41598_019_43639_z
crossref_primary_10_1016_j_electacta_2019_134807
crossref_primary_10_1039_D0TA05429A
crossref_primary_10_1021_acsami_0c08797
crossref_primary_10_1002_anie_202000262
crossref_primary_10_1002_celc_202001374
crossref_primary_10_1016_j_chempr_2022_04_012
crossref_primary_10_1002_slct_201903321
crossref_primary_10_1039_D3TA04373H
crossref_primary_10_1021_acsaem_8b01892
crossref_primary_10_1002_adfm_202422663
crossref_primary_10_1002_aenm_202000997
crossref_primary_10_1002_smll_202500940
crossref_primary_10_1021_acsami_0c06484
crossref_primary_10_1021_acssuschemeng_9b07478
crossref_primary_10_1021_acsami_1c08419
crossref_primary_10_1016_j_apsusc_2020_145741
crossref_primary_10_1016_j_cej_2022_139254
crossref_primary_10_1016_j_elecom_2020_106722
crossref_primary_10_1016_j_jpowsour_2021_230361
crossref_primary_10_1016_j_nanoen_2019_03_012
crossref_primary_10_1021_acsami_0c00386
crossref_primary_10_1016_j_cap_2019_07_001
crossref_primary_10_1016_j_jpowsour_2022_231752
crossref_primary_10_1002_aenm_202101820
crossref_primary_10_1016_j_jpcs_2021_110187
crossref_primary_10_1016_j_nanoen_2020_105459
crossref_primary_10_1007_s40843_019_9456_1
crossref_primary_10_1016_j_ceramint_2018_05_128
crossref_primary_10_1016_j_cej_2021_129042
crossref_primary_10_1016_j_est_2023_109759
crossref_primary_10_1002_adma_202000190
crossref_primary_10_1021_acs_jpcc_1c05810
crossref_primary_10_1002_adfm_202100783
crossref_primary_10_1021_acs_iecr_2c00181
crossref_primary_10_1039_D5TA00860C
crossref_primary_10_1149_1945_7111_ac2dca
crossref_primary_10_1007_s11705_020_1918_9
crossref_primary_10_1021_jacs_2c11640
crossref_primary_10_1021_acssuschemeng_9b07644
crossref_primary_10_1016_j_electacta_2024_144216
crossref_primary_10_1016_j_jallcom_2022_167395
crossref_primary_10_1021_acsaem_0c03135
crossref_primary_10_1016_j_cjche_2021_08_001
crossref_primary_10_1016_j_jpowsour_2021_230051
crossref_primary_10_1002_ange_201900444
crossref_primary_10_1016_j_cej_2019_123691
crossref_primary_10_1007_s42864_022_00173_2
crossref_primary_10_1016_j_electacta_2021_137757
crossref_primary_10_1016_j_tsep_2023_101677
crossref_primary_10_1007_s11581_022_04748_4
crossref_primary_10_1016_j_est_2022_105747
crossref_primary_10_1007_s40843_019_9442_x
crossref_primary_10_1016_j_cej_2019_123452
crossref_primary_10_1016_j_electacta_2019_134987
crossref_primary_10_1016_j_nanoen_2019_104102
crossref_primary_10_1002_aenm_201803609
crossref_primary_10_1039_C9CC02006C
crossref_primary_10_1007_s12598_024_02692_y
crossref_primary_10_1016_j_colsurfa_2021_127486
crossref_primary_10_1021_acsomega_3c09567
crossref_primary_10_1039_C8TA11415C
crossref_primary_10_1016_j_pecs_2019_03_002
crossref_primary_10_1002_adfm_202420104
crossref_primary_10_1039_D0CC00327A
crossref_primary_10_1039_D1CS00442E
crossref_primary_10_1016_j_ceramint_2019_04_250
crossref_primary_10_1021_acsami_8b10372
crossref_primary_10_1021_acssuschemeng_0c04828
crossref_primary_10_1016_j_ensm_2020_12_034
crossref_primary_10_1007_s40820_019_0291_z
crossref_primary_10_1039_C9DT00193J
crossref_primary_10_1016_j_jelechem_2019_02_051
crossref_primary_10_1021_acsami_1c14272
crossref_primary_10_1039_D2MH00635A
crossref_primary_10_1007_s11814_023_1433_z
crossref_primary_10_1016_j_electacta_2023_141912
crossref_primary_10_1021_acsami_1c01088
crossref_primary_10_1038_s41598_024_54509_8
crossref_primary_10_1039_D0NR08980J
crossref_primary_10_1039_C8TA10786F
crossref_primary_10_1021_acsami_0c14995
crossref_primary_10_1016_j_nanoen_2019_01_080
crossref_primary_10_1002_adfm_201803392
crossref_primary_10_1021_acsaem_2c02372
crossref_primary_10_1007_s11581_019_03202_2
crossref_primary_10_1016_j_jpowsour_2020_228235
crossref_primary_10_1016_j_electacta_2020_135959
crossref_primary_10_1002_celc_202100125
crossref_primary_10_1016_j_ceramint_2020_08_059
crossref_primary_10_1021_acs_jpcc_1c05350
crossref_primary_10_1016_j_cej_2022_139720
crossref_primary_10_1016_j_ssi_2022_115912
crossref_primary_10_1021_jacs_0c09602
crossref_primary_10_1021_acsami_8b00919
crossref_primary_10_1016_j_jpowsour_2019_05_069
crossref_primary_10_1016_j_ensm_2020_07_035
crossref_primary_10_1021_acsenergylett_8b01490
crossref_primary_10_1002_aenm_202401515
crossref_primary_10_1002_cssc_202301143
crossref_primary_10_4271_14_13_03_0019
crossref_primary_10_1016_j_comptc_2022_114008
crossref_primary_10_1002_cssc_202200479
crossref_primary_10_1021_acsami_0c01448
crossref_primary_10_1021_acsami_9b21271
crossref_primary_10_1080_10426914_2022_2075885
crossref_primary_10_1002_er_5159
crossref_primary_10_1021_acsami_3c00939
crossref_primary_10_1007_s43207_024_00445_2
crossref_primary_10_1016_j_apsusc_2023_158203
crossref_primary_10_1002_adma_202006019
crossref_primary_10_1016_j_mtener_2020_100518
crossref_primary_10_1016_j_mattod_2019_09_018
crossref_primary_10_1002_appl_202200096
crossref_primary_10_1002_adfm_202210184
crossref_primary_10_1007_s41918_022_00172_4
crossref_primary_10_1016_j_mtnano_2019_100057
crossref_primary_10_1039_C9TA01708A
crossref_primary_10_1002_adfm_202214422
crossref_primary_10_1021_acssuschemeng_3c07367
crossref_primary_10_1007_s40820_023_01065_x
crossref_primary_10_1016_j_jcis_2024_09_119
crossref_primary_10_1039_D0MA00614A
crossref_primary_10_1021_acsami_0c22356
crossref_primary_10_1007_s10854_018_9451_z
crossref_primary_10_1016_j_electacta_2020_136014
crossref_primary_10_1016_j_partic_2022_05_009
crossref_primary_10_1002_smll_202207328
crossref_primary_10_1016_j_jpowsour_2020_228856
crossref_primary_10_1039_C8ME00025E
crossref_primary_10_1021_acsenergylett_2c02669
crossref_primary_10_1007_s11581_020_03878_x
crossref_primary_10_1007_s12274_019_2603_5
crossref_primary_10_1016_j_cej_2020_126306
crossref_primary_10_1021_acs_energyfuels_3c01920
crossref_primary_10_1016_j_cej_2023_145986
crossref_primary_10_1016_j_ensm_2020_11_034
crossref_primary_10_1002_celc_202100465
crossref_primary_10_1016_j_jallcom_2019_07_034
crossref_primary_10_1021_acsami_0c10459
crossref_primary_10_1021_acsami_8b16049
crossref_primary_10_1021_acssuschemeng_9b05664
crossref_primary_10_1021_acsaem_0c01315
crossref_primary_10_1016_j_jechem_2021_10_038
crossref_primary_10_1039_D2CC04614H
crossref_primary_10_1021_acsami_3c11662
crossref_primary_10_1016_j_ensm_2019_07_032
crossref_primary_10_1002_celc_201901728
crossref_primary_10_1021_acssuschemeng_9b06999
crossref_primary_10_1016_j_ensm_2022_08_029
crossref_primary_10_1039_C9GC02348H
crossref_primary_10_1002_adma_201801751
crossref_primary_10_1021_acsami_4c05516
crossref_primary_10_1039_D0RA04023A
crossref_primary_10_1002_adma_202000496
crossref_primary_10_1016_j_jelechem_2021_115798
crossref_primary_10_1007_s11581_022_04645_w
crossref_primary_10_1038_s41467_021_23365_9
crossref_primary_10_1088_2053_1591_ab56cb
crossref_primary_10_1016_j_pmatsci_2020_100655
crossref_primary_10_1021_acsaem_2c01295
crossref_primary_10_1016_j_physb_2024_416790
crossref_primary_10_1002_aenm_202201653
crossref_primary_10_1016_j_jallcom_2020_153638
crossref_primary_10_1016_j_nanoen_2019_02_034
crossref_primary_10_1016_j_ensm_2021_06_024
crossref_primary_10_1039_C9TA04147H
crossref_primary_10_1021_acsami_3c15338
crossref_primary_10_1039_C8TA04852E
crossref_primary_10_1016_j_jcis_2022_12_142
crossref_primary_10_1002_ente_202100775
crossref_primary_10_1016_j_nanoen_2019_02_040
crossref_primary_10_1016_j_elecom_2020_106908
crossref_primary_10_1016_j_nanoen_2020_105194
crossref_primary_10_1021_acsami_4c13023
crossref_primary_10_1002_adma_202108947
crossref_primary_10_1016_j_cej_2021_134208
crossref_primary_10_1021_acs_energyfuels_9b04106
crossref_primary_10_1039_C9NR08722B
crossref_primary_10_1016_j_jpowsour_2021_230427
crossref_primary_10_1063_5_0182553
crossref_primary_10_1002_adfm_202100880
crossref_primary_10_1007_s11581_019_03432_4
crossref_primary_10_1016_j_apsusc_2024_159922
crossref_primary_10_3390_ma13010040
crossref_primary_10_1039_D2CC00477A
crossref_primary_10_1016_j_nanoen_2018_10_006
crossref_primary_10_1021_acs_jpcc_3c05812
crossref_primary_10_3390_polym16020254
crossref_primary_10_1002_adma_202312292
crossref_primary_10_1039_D0DT02780D
crossref_primary_10_1021_acs_inorgchem_9b01727
crossref_primary_10_1021_acsami_0c18758
crossref_primary_10_1021_acs_jpclett_4c03094
crossref_primary_10_1002_celc_201801739
crossref_primary_10_1007_s11426_022_1525_3
crossref_primary_10_1016_j_nanoen_2020_105622
crossref_primary_10_1016_j_eml_2020_101152
crossref_primary_10_1021_acsami_2c21312
crossref_primary_10_1002_advs_202417306
crossref_primary_10_1016_j_jallcom_2020_155152
crossref_primary_10_1016_j_comptc_2022_113757
crossref_primary_10_1021_acsaem_1c01746
crossref_primary_10_1007_s10694_022_01343_x
crossref_primary_10_1002_adma_202403307
crossref_primary_10_1021_acsami_9b04050
crossref_primary_10_1103_PhysRevE_111_015505
crossref_primary_10_1021_acsami_8b21621
crossref_primary_10_1021_acs_jpcc_9b07070
crossref_primary_10_1039_D2SE01519F
crossref_primary_10_1021_acsami_8b03657
crossref_primary_10_1021_acsaem_0c01402
crossref_primary_10_1021_acsami_9b03403
crossref_primary_10_1007_s12274_022_4852_y
crossref_primary_10_1002_adma_201906070
crossref_primary_10_1016_j_ceramint_2019_06_187
crossref_primary_10_1007_s40843_020_1327_8
crossref_primary_10_1021_acsami_9b12915
crossref_primary_10_1016_j_cej_2022_134645
crossref_primary_10_1149_2_0641916jes
crossref_primary_10_1016_j_jallcom_2021_159947
crossref_primary_10_1002_adem_202300694
crossref_primary_10_1021_acs_jpcc_9b05683
crossref_primary_10_1016_j_progsolidstchem_2020_100298
crossref_primary_10_1007_s11581_019_03247_3
crossref_primary_10_1016_j_gee_2020_09_011
crossref_primary_10_7498_aps_72_20230258
Cites_doi 10.1002/adma.201602262
10.1038/natrevmats.2016.13
10.1126/science.1246432
10.1149/2.0071514jes
10.1038/nenergy.2015.4
10.1021/cm060886r
10.1021/ar300088q
10.1002/adma.201402541
10.1021/cm501664y
10.1149/2.070403jes
10.1038/nmat3699
10.1021/nl502090z
10.1021/cr020731c
10.1002/adma.201104767
10.1002/adma.201605807
10.1021/jz400032v
10.1021/cm301140g
10.1021/nl5038598
10.1039/c1ee01598b
10.1038/nchem.2471
10.1021/acs.accounts.5b00277
10.1002/anie.201409262
10.1002/aenm.201501010
10.1021/ja108588y
10.1038/nmat4137
10.1021/nl4019275
10.1126/science.1212741
10.1002/adma.201603735
10.1021/ja062027
10.1021/acs.chemmater.5b00617
10.1038/ncomms9711
10.1002/aenm.201400631
10.1149/1.1471541
10.1021/ja410137s
10.1038/ncomms4529
10.1021/cm400193m
10.1038/ncomms12108
10.1038/nmat4479
10.1038/nenergy.2015.29
10.1149/1.1407994
10.1038/451652a
10.1021/cr5003003
10.1021/nl502980k
10.1002/aenm.201501914
10.1149/2.049403jes
10.1021/nl500486y
10.1002/aenm.201200068
10.1002/adma.201605578
10.1021/jz1015422
10.1021/acsami.6b06733
10.1149/1.2131401
10.1038/nchem.2524
10.1021/ja3091438
10.1039/b417616m
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
CorporateAuthor Brookhaven National Laboratory (BNL), Upton, NY (United States)
CorporateAuthor_xml – name: Brookhaven National Laboratory (BNL), Upton, NY (United States)
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
OIOZB
OTOTI
DOI 10.1002/adma.201705575
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList

CrossRef
PubMed
Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 1436262
29333690
10_1002_adma_201705575
ADMA201705575
Genre article
Journal Article
GrantInformation_xml – fundername: “Strategic Priority Research Program” of the Chinese Academy of Sciences
  funderid: XDA09010000
– fundername: National Key R&D Program of China
  funderid: 2016YFA0202500
– fundername: Brookhaven National Laboratory
  funderid: DE‐SC0012704
– fundername: National Natural Science Foundation of China
  funderid: 51225204; U1301244; 21127901
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
AAPBV
ABHUG
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
OIOZB
OTOTI
ID FETCH-LOGICAL-c4795-359bf47e2958040121956d2c21fa0a3ecd9c98f3c6b017b7f555d729ee1b32273
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Mon Jul 03 03:59:48 EDT 2023
Fri Jul 11 02:31:06 EDT 2025
Fri Jul 25 03:36:52 EDT 2025
Wed Feb 19 02:43:04 EST 2025
Thu Apr 24 23:06:55 EDT 2025
Tue Jul 01 00:44:38 EDT 2025
Wed Jan 22 17:04:06 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords cathode materials
energy quality
high capacity batteries
voltage decay
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#am
http://onlinelibrary.wiley.com/termsAndConditions#vor
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4795-359bf47e2958040121956d2c21fa0a3ecd9c98f3c6b017b7f555d729ee1b32273
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE Office of Science (SC), Basic Energy Sciences (BES)
BNL-203616-2018-JAAM
SC0012704
ORCID 0000-0003-0322-8476
0000000303228476
OpenAccessLink https://www.osti.gov/servlets/purl/1436262
PMID 29333690
PQID 2009231977
PQPubID 2045203
PageCount 8
ParticipantIDs osti_scitechconnect_1436262
proquest_miscellaneous_1989592338
proquest_journals_2009231977
pubmed_primary_29333690
crossref_citationtrail_10_1002_adma_201705575
crossref_primary_10_1002_adma_201705575
wiley_primary_10_1002_adma_201705575_ADMA201705575
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 1, 2018
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: March 1, 2018
  day: 01
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: United States
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley
References 2013 2012; 13 24
2016 2016 2011; 1 1 4
2015; 15
2006 2014 2013; 128 136 12
2011 2013; 2 135
2015; 6
2016; 1
2014 2014 2016 2015 2016 2014 2017 2017 2016; 5 114 6 54 15 343 29 29 28
2014; 4
2013; 25
2006 2012 2012; 18 24 2
2016 2016 2016 2013 2017; 8 8 7 4 29
2013 2015 2016 2014; 161 14 8 14
2014 2016; 26 6
2001 2002 2005; 4 149 15
2014; 14
2008 2004 2011 2016 1978; 451 104 334 28 125
2011 2014 2014 2015 2015; 133 26 14 48 162
2013 2015 2014; 46 27 161
e_1_2_5_15_1
e_1_2_5_9_3
e_1_2_5_13_2
e_1_2_5_9_2
e_1_2_5_15_3
e_1_2_5_17_1
e_1_2_5_7_3
e_1_2_5_9_1
e_1_2_5_15_2
e_1_2_5_7_2
e_1_2_5_11_1
e_1_2_5_5_3
e_1_2_5_7_1
e_1_2_5_5_2
e_1_2_5_13_1
e_1_2_5_1_5
e_1_2_5_5_1
e_1_2_5_1_4
e_1_2_5_1_3
Li B. (e_1_2_5_2_5) 2017; 29
e_1_2_5_3_1
e_1_2_5_1_2
e_1_2_5_1_1
e_1_2_5_19_1
e_1_2_5_15_4
e_1_2_5_17_2
e_1_2_5_4_9
e_1_2_5_8_5
e_1_2_5_14_2
e_1_2_5_4_8
e_1_2_5_8_4
e_1_2_5_14_1
e_1_2_5_4_7
e_1_2_5_8_3
e_1_2_5_4_6
e_1_2_5_8_2
e_1_2_5_14_3
e_1_2_5_16_1
e_1_2_5_4_5
e_1_2_5_8_1
e_1_2_5_10_2
e_1_2_5_4_4
e_1_2_5_6_2
e_1_2_5_10_1
e_1_2_5_4_3
e_1_2_5_6_1
e_1_2_5_2_4
e_1_2_5_4_2
e_1_2_5_10_3
e_1_2_5_12_1
e_1_2_5_2_3
e_1_2_5_4_1
e_1_2_5_2_2
e_1_2_5_2_1
e_1_2_5_18_1
References_xml – volume: 15
  start-page: 514
  year: 2015
  publication-title: Nano Lett.
– volume: 128 136 12
  start-page: 8694 999 827
  year: 2006 2014 2013
  publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc. Nat. Mater.
– volume: 4 149 15
  start-page: A191 A778 2257
  year: 2001 2002 2005
  publication-title: Electrochem. Solid‐State Lett. J. Electrochem. Soc. J. Mater. Chem.
– volume: 46 27 161
  start-page: 1226 3366 A355
  year: 2013 2015 2014
  publication-title: Acc. Chem. Res. Chem. Mater. J. Electrochem. Soc.
– volume: 6
  start-page: 8711
  year: 2015
  publication-title: Nat. Commun.
– volume: 13 24
  start-page: 3857 3558
  year: 2013 2012
  publication-title: Nano Lett. Chem. Mater.
– volume: 451 104 334 28 125
  start-page: 652 4271 928 9629 7
  year: 2008 2004 2011 2016 1978
  publication-title: Nature Chem. Rev. Science Adv. Mater. J. Electrochem. Soc.
– volume: 2 135
  start-page: 176 1167
  year: 2011 2013
  publication-title: J. Phys. Chem. Lett. J. Am. Chem. Soc.
– volume: 4
  start-page: 1400631
  year: 2014
  publication-title: Adv. Energy Mater.
– volume: 26 6
  start-page: 6919 1501914
  year: 2014 2016
  publication-title: Chem. Mater. Adv. Energy Mater.
– volume: 1 1 4
  start-page: 16013 15004 3243
  year: 2016 2016 2011
  publication-title: Nat. Rev. Mater. Nat. Energy Energy Environ. Sci.
– volume: 161 14 8 14
  start-page: A318 230 20138 2628
  year: 2013 2015 2016 2014
  publication-title: J. Electrochem. Soc. Nat. Mater. ACS Appl. Mater. Interfaces Nano Lett.
– volume: 25
  start-page: 1121
  year: 2013
  publication-title: Chem. Mater.
– volume: 8 8 7 4 29
  start-page: 692 684 12108 1268 170154
  year: 2016 2016 2016 2013 2017
  publication-title: Nat. Chem. Nat. Chem. Nat. Commun. J. Phys. Chem. Lett. Adv. Mater.
– volume: 133 26 14 48 162
  start-page: 4404 6756 5965 2813 A2447
  year: 2011 2014 2014 2015 2015
  publication-title: J. Am. Chem. Soc. Adv. Mater. Nano Lett. Acc. Chem. Res. J. Electrochem. Soc.
– volume: 1
  start-page: 15029
  year: 2016
  publication-title: Nat. Energy
– volume: 14
  start-page: 4334
  year: 2014
  publication-title: Nano Lett.
– volume: 18 24 2
  start-page: 4768 2109 922
  year: 2006 2012 2012
  publication-title: Chem. Mater. Adv. Mater. Adv. Energy Mater.
– volume: 5 114 6 54 15 343 29 29 28
  start-page: 3529 11414 1501010 4440 173 519 1605578 1605807 9979
  year: 2014 2014 2016 2015 2016 2014 2017 2017 2016
  publication-title: Nat. Commun. Chem. Rev. Adv. Energy Mater. Angew. Chem., Int. Ed. Nat. Mater. Science Adv. Mater. Adv. Mater. Adv. Mater.
– ident: e_1_2_5_1_4
  doi: 10.1002/adma.201602262
– ident: e_1_2_5_5_1
  doi: 10.1038/natrevmats.2016.13
– ident: e_1_2_5_4_6
  doi: 10.1126/science.1246432
– ident: e_1_2_5_8_5
  doi: 10.1149/2.0071514jes
– ident: e_1_2_5_5_2
  doi: 10.1038/nenergy.2015.4
– ident: e_1_2_5_10_1
  doi: 10.1021/cm060886r
– ident: e_1_2_5_9_1
  doi: 10.1021/ar300088q
– ident: e_1_2_5_8_2
  doi: 10.1002/adma.201402541
– ident: e_1_2_5_17_1
  doi: 10.1021/cm501664y
– ident: e_1_2_5_9_3
  doi: 10.1149/2.070403jes
– ident: e_1_2_5_14_3
  doi: 10.1038/nmat3699
– ident: e_1_2_5_12_1
  doi: 10.1021/nl502090z
– ident: e_1_2_5_1_2
  doi: 10.1021/cr020731c
– ident: e_1_2_5_10_2
  doi: 10.1002/adma.201104767
– ident: e_1_2_5_4_8
  doi: 10.1002/adma.201605807
– ident: e_1_2_5_2_4
  doi: 10.1021/jz400032v
– ident: e_1_2_5_13_2
  doi: 10.1021/cm301140g
– ident: e_1_2_5_11_1
  doi: 10.1021/nl5038598
– ident: e_1_2_5_5_3
  doi: 10.1039/c1ee01598b
– ident: e_1_2_5_2_2
  doi: 10.1038/nchem.2471
– ident: e_1_2_5_8_4
  doi: 10.1021/acs.accounts.5b00277
– ident: e_1_2_5_4_4
  doi: 10.1002/anie.201409262
– ident: e_1_2_5_4_3
  doi: 10.1002/aenm.201501010
– ident: e_1_2_5_8_1
  doi: 10.1021/ja108588y
– ident: e_1_2_5_15_2
  doi: 10.1038/nmat4137
– ident: e_1_2_5_13_1
  doi: 10.1021/nl4019275
– ident: e_1_2_5_1_3
  doi: 10.1126/science.1212741
– ident: e_1_2_5_4_9
  doi: 10.1002/adma.201603735
– ident: e_1_2_5_14_1
  doi: 10.1021/ja062027
– ident: e_1_2_5_9_2
  doi: 10.1021/acs.chemmater.5b00617
– ident: e_1_2_5_18_1
  doi: 10.1038/ncomms9711
– ident: e_1_2_5_16_1
  doi: 10.1002/aenm.201400631
– ident: e_1_2_5_7_2
  doi: 10.1149/1.1471541
– ident: e_1_2_5_14_2
  doi: 10.1021/ja410137s
– ident: e_1_2_5_4_1
  doi: 10.1038/ncomms4529
– ident: e_1_2_5_19_1
  doi: 10.1021/cm400193m
– ident: e_1_2_5_2_3
  doi: 10.1038/ncomms12108
– ident: e_1_2_5_4_5
  doi: 10.1038/nmat4479
– ident: e_1_2_5_3_1
  doi: 10.1038/nenergy.2015.29
– ident: e_1_2_5_7_1
  doi: 10.1149/1.1407994
– ident: e_1_2_5_1_1
  doi: 10.1038/451652a
– ident: e_1_2_5_4_2
  doi: 10.1021/cr5003003
– ident: e_1_2_5_8_3
  doi: 10.1021/nl502980k
– ident: e_1_2_5_17_2
  doi: 10.1002/aenm.201501914
– ident: e_1_2_5_15_1
  doi: 10.1149/2.049403jes
– ident: e_1_2_5_15_4
  doi: 10.1021/nl500486y
– volume: 29
  start-page: 170154
  year: 2017
  ident: e_1_2_5_2_5
  publication-title: Adv. Mater.
– ident: e_1_2_5_10_3
  doi: 10.1002/aenm.201200068
– ident: e_1_2_5_4_7
  doi: 10.1002/adma.201605578
– ident: e_1_2_5_6_1
  doi: 10.1021/jz1015422
– ident: e_1_2_5_15_3
  doi: 10.1021/acsami.6b06733
– ident: e_1_2_5_1_5
  doi: 10.1149/1.2131401
– ident: e_1_2_5_2_1
  doi: 10.1038/nchem.2524
– ident: e_1_2_5_6_2
  doi: 10.1021/ja3091438
– ident: e_1_2_5_7_3
  doi: 10.1039/b417616m
SSID ssj0009606
Score 2.661901
Snippet Electrochemical energy storage devices with a high energy density are an important technology in modern society, especially for electric vehicles. The most...
SourceID osti
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms cathode materials
Cathodes
Density
Electric potential
Electric vehicles
Electrode materials
Electrodes
Energy
energy quality
Energy storage
Flux density
high capacity batteries
Lithium
MATERIALS SCIENCE
Storage batteries
voltage decay
Title High‐Capacity Cathode Material with High Voltage for Li‐Ion Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201705575
https://www.ncbi.nlm.nih.gov/pubmed/29333690
https://www.proquest.com/docview/2009231977
https://www.proquest.com/docview/1989592338
https://www.osti.gov/servlets/purl/1436262
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6hPcEBWn7TFmQkJE5pd-04jo-rQtUiygFR1Jvlv0iIKkFs9tJTH4Fn5Ek6Y--mXQRCglui2NLE45n5xh5_Bng19bUXbbClD1UoK4nT2AYeSozE3tNOXJOrLT7Ux2fVu3N5fusUf-aHGBfcyDKSvyYDt25xcEMaakPiDUp0MIpOmVPBFqGijzf8UQTPE9mekKWuq2bN2jjlB5vdN6LSpEfr-h3i3ASwKQIdPQC7lj0XnnzdXw5u31_-Quv4Pz-3BfdX8JTN83zahjuxewj3bpEWPoITKg35efXjEMOsRwzP6BBhHyI7tUOazozWdhm1Yp_7iwEdFkNkzN5_wU4nfccypSdm6I_h7Ojtp8PjcnUhQ-krpWUppHZtpSLXskHjn3E6bBi457PWTq2IPmivm1b42qHoTrVSyoDoPcaZQ8ehxBOYdH0XnwHTyrmohKL6waqSAd0IZm4-ckz4Wj0LBZRrhRi_YiunSzMuTOZZ5oaGyIxDVMDrsf23zNPxx5a7pF-DCINocj3VE_kBUyAi5uEF7K3VblbWvDCJmQp9lVIFvBw_ox3S5ortYr9cGKo9k9hKNAU8zdNlFAQhlRC1nhbAk9L_IqGZvzmdj287_9JpF-7ic5OL5fZgMnxfxueIngb3IlnINdUfDns
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NbtQwEMdHsByAA98faQsYCYlT2l07juPjqqXahd0eUIu4WYntSBVVgmj2wqmP0GfkSTpjb1IWgZDgmMSWHNsz_tse_wzwZmxzK2pXptZlLs0kduPScZfiSGwt7cQVMdriKJ-dZO8_yz6akM7CRD7EsOBGlhH8NRk4LUjvXVNDSxfAQYEHo-RNuEXXehM-_-DjNUGKBHrA7QmZ6jwrem7jmO9t5t8Yl0Yt2tfvNOemhA1j0OF9qPrSx9CTL7urrtq1338BO_7X7z2Ae2uFyqaxSz2EG755BHd_4hY-hjlFh_y4uNzHkdaijGd0jrB1ni3LLvRoRsu7jFKxT-1Zhz6LoThmi1PMNG8bFqmeOEl_AieH7473Z-n6TobUZkrLVEhd1ZnyXMsC7X_C6byh45ZP6nJcCm-dtrqohc0rLHqlaimlQwHv_aRC36HEUxg1beOfA9OqqrwSikIIs0w69CQ4ebOe45yv1hOXQNq3iLFrYDndm3FmImqZG6oiM1RRAm-H9F8jquOPKbepgQ2KDCLlWgopsh3OgojNwxPY6dvdrA363AQ4FborpRJ4PXxGU6T9lbLx7ercUPiZxFSiSOBZ7C9DQVBVCZHrcQI8tPpfSmimB8vp8LT1L5lewe3Z8XJhFvOjD9twB98XMXZuB0bdt5V_gWKqq14Gc7kCxCYSlw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BIiE48KaEtmAkJE5ps37E8XHVZdWFtkKIot6sxHYk1CqpaPbCiZ_Ab-SXMOPspl1EhQTHJGPJ8Tz8jT3-DPA6c7kTtS9T56VPpUIzLj33Kc7EztFOXNFXWxzl-8fy3Yk6uXKKv-eHGBbcyDNivCYHP_f17iVpaOkjb1Ckg9HqJtySeWbo8obpx0sCKcLnkW1PqNTksljRNmZ8d7392rQ0atG9_gQ51xFsnIJm96Fcdb6vPDndWXTVjvv2G6_j__zdA7i3xKds0hvUQ7gRmkdw9wpr4WOYU23Iz-8_9nCedQjiGZ0ibH1gh2UX7ZnR4i4jKfa5PeswYjGExuzgCzaatw3rOT0xRX8Cx7O3n_b20-WNDKmT2qhUKFPVUgduVIHeP-Z02tBzx8d1mZUiOG-cKWrh8gq7XulaKeURvocwrjByaPEURk3bhGfAjK6qoIWmAkIplcc4gqmbCxwzvtqMfQLpSiHWLenK6daMM9sTLXNLQ2SHIUrgzSB_3hN1XCu5Sfq1CDGIJ9dRQZHrMAciZh6ewNZK7Xbpzhc2UlNhsNI6gVfDZ3RE2l0pm9AuLiwVnymUEkUCG725DB1BTCVEbrIEeFT6X3poJ9PDyfD0_F8avYTbH6YzezA_er8Jd_B10RfObcGo-7oI24ikuupFdJZfcWgRRg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High%E2%80%90Capacity+Cathode+Material+with+High+Voltage+for+Li%E2%80%90Ion+Batteries&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Ji%E2%80%90Lei+Shi&rft.au=Dong%E2%80%90Dong+Xiao&rft.au=Ge%2C+Mingyuan&rft.au=Yu%2C+Xiqian&rft.date=2018-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=30&rft.issue=9&rft_id=info:doi/10.1002%2Fadma.201705575&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon