A Toroidal Metamaterial Switch
Toroidal dipole is a localized electromagnetic excitation that plays an important role in determining the fundamental properties of matter due to its unique potential to excite nearly nonradiating charge–current configuration. Toroidal dipoles are recently discovered in metamaterial systems where it...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 30; no. 4 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.01.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Toroidal dipole is a localized electromagnetic excitation that plays an important role in determining the fundamental properties of matter due to its unique potential to excite nearly nonradiating charge–current configuration. Toroidal dipoles are recently discovered in metamaterial systems where it is shown that these dipoles manifest as poloidal currents on the surface of a torus and are distinctly different from the traditional electric and magnetic dipoles. Here, an active toroidal metamaterial switch is demonstrated in which the toroidal dipole can be dynamically switched to the fundamental electric dipole or magnetic dipole, through selective inclusion of active elements in a hybrid metamolecule design. Active switching of nonradiating toroidal configuration into highly radiating electric and magnetic dipoles can have significant impact in controlling the electromagnetic excitations in free space and matter that can have potential applications in designing efficient lasers, sensors, filters, and modulators.
Toroidal dipole excitation can be dynamically switched to the fundamental electric dipole or magnetic dipole, through selective inclusion of the active elements in a mirrored configuration of Fano resonators. Optical switching between various multipole excitations that range from nonradiating to strongly radiating configuration presents an innovative approach to implement more than one electromagnetic feature in a single device. |
---|---|
AbstractList | Toroidal dipole is a localized electromagnetic excitation that plays an important role in determining the fundamental properties of matter due to its unique potential to excite nearly nonradiating charge-current configuration. Toroidal dipoles are recently discovered in metamaterial systems where it is shown that these dipoles manifest as poloidal currents on the surface of a torus and are distinctly different from the traditional electric and magnetic dipoles. Here, an active toroidal metamaterial switch is demonstrated in which the toroidal dipole can be dynamically switched to the fundamental electric dipole or magnetic dipole, through selective inclusion of active elements in a hybrid metamolecule design. Active switching of nonradiating toroidal configuration into highly radiating electric and magnetic dipoles can have significant impact in controlling the electromagnetic excitations in free space and matter that can have potential applications in designing efficient lasers, sensors, filters, and modulators. Toroidal dipole is a localized electromagnetic excitation that plays an important role in determining the fundamental properties of matter due to its unique potential to excite nearly nonradiating charge–current configuration. Toroidal dipoles are recently discovered in metamaterial systems where it is shown that these dipoles manifest as poloidal currents on the surface of a torus and are distinctly different from the traditional electric and magnetic dipoles. Here, an active toroidal metamaterial switch is demonstrated in which the toroidal dipole can be dynamically switched to the fundamental electric dipole or magnetic dipole, through selective inclusion of active elements in a hybrid metamolecule design. Active switching of nonradiating toroidal configuration into highly radiating electric and magnetic dipoles can have significant impact in controlling the electromagnetic excitations in free space and matter that can have potential applications in designing efficient lasers, sensors, filters, and modulators. Toroidal dipole excitation can be dynamically switched to the fundamental electric dipole or magnetic dipole, through selective inclusion of the active elements in a mirrored configuration of Fano resonators. Optical switching between various multipole excitations that range from nonradiating to strongly radiating configuration presents an innovative approach to implement more than one electromagnetic feature in a single device. Toroidal dipole is a localized electromagnetic excitation that plays an important role in determining the fundamental properties of matter due to its unique potential to excite nearly nonradiating charge-current configuration. Toroidal dipoles are recently discovered in metamaterial systems where it is shown that these dipoles manifest as poloidal currents on the surface of a torus and are distinctly different from the traditional electric and magnetic dipoles. Here, an active toroidal metamaterial switch is demonstrated in which the toroidal dipole can be dynamically switched to the fundamental electric dipole or magnetic dipole, through selective inclusion of active elements in a hybrid metamolecule design. Active switching of nonradiating toroidal configuration into highly radiating electric and magnetic dipoles can have significant impact in controlling the electromagnetic excitations in free space and matter that can have potential applications in designing efficient lasers, sensors, filters, and modulators.Toroidal dipole is a localized electromagnetic excitation that plays an important role in determining the fundamental properties of matter due to its unique potential to excite nearly nonradiating charge-current configuration. Toroidal dipoles are recently discovered in metamaterial systems where it is shown that these dipoles manifest as poloidal currents on the surface of a torus and are distinctly different from the traditional electric and magnetic dipoles. Here, an active toroidal metamaterial switch is demonstrated in which the toroidal dipole can be dynamically switched to the fundamental electric dipole or magnetic dipole, through selective inclusion of active elements in a hybrid metamolecule design. Active switching of nonradiating toroidal configuration into highly radiating electric and magnetic dipoles can have significant impact in controlling the electromagnetic excitations in free space and matter that can have potential applications in designing efficient lasers, sensors, filters, and modulators. |
Author | Srivastava, Yogesh Kumar Singh, Ranjan Gupta, Manoj |
Author_xml | – sequence: 1 givenname: Manoj surname: Gupta fullname: Gupta, Manoj organization: Nanyang Technological University – sequence: 2 givenname: Yogesh Kumar surname: Srivastava fullname: Srivastava, Yogesh Kumar organization: Nanyang Technological University – sequence: 3 givenname: Ranjan surname: Singh fullname: Singh, Ranjan email: ranjans@ntu.edu.sg organization: Nanyang Technological University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29210481$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkM1LwzAYh4NM3IdePY6BFy-dSZo0ybH4DRsenOeQpilmtM1MOsb-ezM2JwzE08sLz_N-_Iag17rWAHCN4BRBiO9U2agphohBwgk9AwNEMUoIFLQHBlCkNBEZ4X0wDGEJIRQZzC5AHwuMooAGYJxPFs47W6p6MjedalRnvI3N-8Z2-vMSnFeqDubqUEfg4-lxcf-SzN6eX-_zWaIJEzTBKhMMUmMMoRVOC1QJpTBVVBdaaK6rVENkiBIlLuNaxhgqSElJqjIuNEvTEbjdz11597U2oZONDdrUtWqNWweJBEtJhhjfoTcn6NKtfRuvixQXNM045JEaH6h10ZhSrrxtlN_Kn88jMN0D2rsQvKmOCIJyF63cRSuP0UaBnAjadqqzru28svXfmthrG1ub7T9LZP4wz3_dbxDOilA |
CitedBy_id | crossref_primary_10_1103_PhysRevApplied_22_044017 crossref_primary_10_1016_j_rinp_2023_107088 crossref_primary_10_1002_adom_201800257 crossref_primary_10_1088_2053_1591_ad4102 crossref_primary_10_1364_OE_534499 crossref_primary_10_1109_JSEN_2023_3347223 crossref_primary_10_1016_j_ijleo_2019_163502 crossref_primary_10_1088_1361_6463_ac5190 crossref_primary_10_1088_1361_6463_abaced crossref_primary_10_1016_j_jmrt_2020_02_019 crossref_primary_10_1364_OME_8_002197 crossref_primary_10_1002_adom_202100024 crossref_primary_10_1002_inf2_12174 crossref_primary_10_1007_s11467_019_0928_x crossref_primary_10_1021_acs_chemrev_2c00048 crossref_primary_10_1007_s11664_022_10039_5 crossref_primary_10_1088_2053_1591_ab6400 crossref_primary_10_1364_JOSAB_481376 crossref_primary_10_1002_lpor_202100328 crossref_primary_10_1063_5_0007997 crossref_primary_10_1364_BOE_510149 crossref_primary_10_1002_lpor_201900326 crossref_primary_10_1016_j_isci_2021_103708 crossref_primary_10_1088_1367_2630_ac55b4 crossref_primary_10_1016_j_infrared_2024_105189 crossref_primary_10_1364_OE_27_005792 crossref_primary_10_3389_fphy_2023_1189388 crossref_primary_10_1002_lpor_202200740 crossref_primary_10_1364_OE_419941 crossref_primary_10_3390_photonics11010068 crossref_primary_10_1021_acsanm_0c02421 crossref_primary_10_1364_OE_417367 crossref_primary_10_1515_nanoph_2023_0010 crossref_primary_10_1002_adom_201900315 crossref_primary_10_1002_adom_201801166 crossref_primary_10_1002_adom_202101688 crossref_primary_10_1016_j_rinp_2022_105484 crossref_primary_10_1002_pssb_201900406 crossref_primary_10_1002_adom_201801206 crossref_primary_10_1364_OE_409664 crossref_primary_10_1039_D4TC02160F crossref_primary_10_1364_OE_383781 crossref_primary_10_3103_S1541308X22040045 crossref_primary_10_1007_s11468_024_02513_z crossref_primary_10_1016_j_matdes_2024_113294 crossref_primary_10_1088_2053_1591_ab422d crossref_primary_10_1088_1361_6463_ac0f21 crossref_primary_10_1088_2053_1591_ab7f11 crossref_primary_10_1021_acsaelm_0c00107 crossref_primary_10_1002_adom_202303045 crossref_primary_10_1088_1402_4896_ad8192 crossref_primary_10_1364_OSAC_2_002818 crossref_primary_10_1016_j_apsusc_2023_156408 crossref_primary_10_1088_1402_4896_ad7a28 crossref_primary_10_1016_j_optcom_2021_127621 crossref_primary_10_2139_ssrn_3997857 crossref_primary_10_1063_1_5041485 crossref_primary_10_1002_adom_202101215 crossref_primary_10_3390_nano12213765 crossref_primary_10_1002_adpr_202100103 crossref_primary_10_1088_1361_6463_ad7bc6 crossref_primary_10_1088_1361_6463_ab5983 crossref_primary_10_1364_OME_9_000826 crossref_primary_10_1088_1361_6463_abf8f0 crossref_primary_10_1016_j_optcom_2024_130557 crossref_primary_10_7567_APEX_11_062001 crossref_primary_10_1002_adpr_202400070 crossref_primary_10_1002_lpor_202000456 crossref_primary_10_1039_C8RA04329A crossref_primary_10_1103_PhysRevB_104_075408 crossref_primary_10_1016_j_ijleo_2019_163071 crossref_primary_10_1364_JOSAB_537123 crossref_primary_10_1515_nanoph_2020_0045 crossref_primary_10_1016_j_rinp_2019_102897 crossref_primary_10_1039_D2MA00497F crossref_primary_10_1016_j_optmat_2020_110060 crossref_primary_10_1109_LPT_2023_3344484 crossref_primary_10_3390_photonics6020043 crossref_primary_10_1002_advs_202416951 crossref_primary_10_1016_j_optcom_2019_124919 crossref_primary_10_1002_adom_202401333 crossref_primary_10_1109_JSEN_2023_3339126 crossref_primary_10_1016_j_rinp_2021_105146 crossref_primary_10_3389_fphy_2021_739465 crossref_primary_10_1016_j_matlet_2018_09_084 crossref_primary_10_1002_lpor_202100404 crossref_primary_10_1007_s11468_024_02466_3 crossref_primary_10_1002_dro2_79 crossref_primary_10_1016_j_photonics_2018_10_008 crossref_primary_10_1002_adom_201800502 crossref_primary_10_1088_1361_6463_abccf1 crossref_primary_10_1007_s11468_020_01241_4 crossref_primary_10_1364_OE_453190 crossref_primary_10_1007_s11664_021_09214_x crossref_primary_10_1016_j_rinp_2020_103133 crossref_primary_10_1364_OE_525196 crossref_primary_10_1364_OE_455807 crossref_primary_10_1088_1402_4896_ace481 crossref_primary_10_1063_5_0012575 crossref_primary_10_1002_adom_202200327 crossref_primary_10_1364_JOSAB_499287 crossref_primary_10_1080_10584587_2021_1911340 crossref_primary_10_1016_j_mtchem_2019_100206 crossref_primary_10_3390_s24123943 crossref_primary_10_1088_1367_2630_abc497 crossref_primary_10_1007_s11082_022_03753_1 crossref_primary_10_1364_OL_388722 crossref_primary_10_1002_adom_202101007 crossref_primary_10_1021_acs_jpcc_8b08184 crossref_primary_10_1364_OME_383437 crossref_primary_10_1364_OME_414340 crossref_primary_10_1364_OL_481063 crossref_primary_10_7567_APEX_11_117302 crossref_primary_10_1039_D3CP00341H crossref_primary_10_1209_0295_5075_ac83e8 crossref_primary_10_1364_OE_389968 crossref_primary_10_1007_s10762_019_00575_3 crossref_primary_10_1038_s41598_021_98498_4 crossref_primary_10_1016_j_photonics_2022_101041 crossref_primary_10_1088_1402_4896_ad3e41 crossref_primary_10_1364_OE_26_017056 crossref_primary_10_1109_JPHOT_2019_2907617 crossref_primary_10_1364_PRJ_420876 crossref_primary_10_1039_D2NR05038B crossref_primary_10_1002_adts_201900123 crossref_primary_10_1016_j_physb_2024_416458 crossref_primary_10_1364_OL_492913 crossref_primary_10_3389_fphy_2020_00306 crossref_primary_10_1007_s11468_021_01427_4 crossref_primary_10_1016_j_fmre_2024_11_008 crossref_primary_10_1002_adpr_202000175 crossref_primary_10_1109_TMTT_2020_3027016 crossref_primary_10_1002_adma_201802458 crossref_primary_10_1364_OE_500058 crossref_primary_10_1039_D2NR01561G |
Cites_doi | 10.1109/22.798002 10.1038/srep02967 10.1126/science.1094025 10.1088/1367-2630/9/9/324 10.1103/PhysRevLett.85.3966 10.1126/science.1125907 10.1038/ncomms15535 10.1002/adma.201605881 10.1002/adma.201100163 10.1063/1.4745790 10.1103/PhysRevE.65.046609 10.1126/science.1197172 10.1103/PhysRevB.87.115417 10.1002/adma.201601611 10.1103/PhysRevB.80.125129 10.1038/nmat4563 10.1364/OL.42.001700 10.1038/srep23186 10.1126/science.1096796 10.1063/1.5001246 10.1103/PhysRevB.94.035119 10.1038/nmat2141 10.1126/science.1133628 10.1088/0305-4470/28/16/014 10.1038/ncomms9069 10.1063/1.4993670 10.1002/adma.201606298 10.1364/OL.42.002034 10.1038/nmat2810 10.1002/adom.201600553 10.1038/nature04242 10.1038/ncomms13236 10.1021/acs.nanolett.6b05285 10.1103/PhysRevB.95.035104 10.1103/PhysRevB.89.205112 10.1103/PhysRevA.78.043811 10.1038/srep01237 10.1038/s41598-017-01127-2 10.1103/PhysRevLett.115.195504 10.1038/nphoton.2008.82 10.1103/PhysRevLett.112.183903 |
ContentType | Journal Article |
Copyright | 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201704845 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 29210481 10_1002_adma_201704845 ADMA201704845 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Singapore Ministry of Education funderid: MOE2015‐T2‐2‐103 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4795-2a69705eee45f23b1f9aa25a5cbc9c8cf3c01e4a9d2d4817771b4d543a689c733 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 05:37:23 EDT 2025 Fri Jul 25 02:53:19 EDT 2025 Wed Feb 19 02:42:10 EST 2025 Tue Jul 01 00:44:37 EDT 2025 Thu Apr 24 22:50:21 EDT 2025 Wed Jan 22 16:45:07 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | toroidal dipoles anapoles electric dipoles magnetic dipoles |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4795-2a69705eee45f23b1f9aa25a5cbc9c8cf3c01e4a9d2d4817771b4d543a689c733 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adma.201704845 |
PMID | 29210481 |
PQID | 1989536808 |
PQPubID | 2045203 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1973461783 proquest_journals_1989536808 pubmed_primary_29210481 crossref_primary_10_1002_adma_201704845 crossref_citationtrail_10_1002_adma_201704845 wiley_primary_10_1002_adma_201704845_ADMA201704845 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-Jan |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-Jan |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 42 2017; 7 2017; 8 2004; 303 2013; 3 2015; 6 2012; 101 2009; 80 2013; 87 2000; 85 1999; 47 2005; 438 2008; 7 2008; 78 2016; 94 2017; 29 2006; 314 2017; 111 2008; 2 2004; 305 2016; 15 2014; 89 2006; 312 2014; 112 2017; 95 2016; 4 2016; 6 2016; 7 2015; 115 1995; 28 2017; 17 2002; 65 2010; 330 2007; 9 2016 2011; 23 2017; 122 2016; 28 2010; 9 e_1_2_4_40_1 e_1_2_4_21_1 e_1_2_4_20_1 e_1_2_4_23_1 e_1_2_4_42_1 e_1_2_4_22_1 e_1_2_4_25_1 e_1_2_4_24_1 e_1_2_4_27_1 e_1_2_4_26_1 e_1_2_4_29_1 e_1_2_4_28_1 e_1_2_4_1_1 Ekinci G. (e_1_2_4_41_1) 2016 e_1_2_4_3_1 e_1_2_4_2_1 e_1_2_4_5_1 e_1_2_4_4_1 e_1_2_4_7_1 e_1_2_4_6_1 e_1_2_4_9_1 e_1_2_4_8_1 e_1_2_4_30_1 e_1_2_4_32_1 e_1_2_4_10_1 e_1_2_4_31_1 e_1_2_4_11_1 e_1_2_4_34_1 e_1_2_4_12_1 e_1_2_4_33_1 e_1_2_4_13_1 e_1_2_4_36_1 e_1_2_4_14_1 e_1_2_4_35_1 e_1_2_4_15_1 e_1_2_4_16_1 e_1_2_4_38_1 e_1_2_4_37_1 e_1_2_4_18_1 e_1_2_4_17_1 e_1_2_4_39_1 e_1_2_4_19_1 |
References_xml | – volume: 89 start-page: 205112 year: 2014 publication-title: Phys. Rev. B – volume: 42 start-page: 2034 year: 2017 publication-title: Opt. Lett. – volume: 47 start-page: 2075 year: 1999 publication-title: IEEE Trans. Microwave Theory Tech. – volume: 42 start-page: 1700 year: 2017 publication-title: Opt. Lett. – volume: 7 start-page: 1064 year: 2017 publication-title: Sci. Rep. – volume: 3 start-page: 2967 year: 2013 publication-title: Sci. Rep. – volume: 122 start-page: 113105 year: 2017 publication-title: J. Appl. Phys. – volume: 65 start-page: 046609 year: 2002 publication-title: Phys. Rev. E – volume: 314 start-page: 977 year: 2006 publication-title: Science – volume: 6 start-page: 8069 year: 2015 publication-title: Nat. Commun. – volume: 94 start-page: 035119 year: 2016 publication-title: Phys. Rev. B – volume: 17 start-page: 1931 year: 2017 publication-title: Nano Lett. – volume: 438 start-page: 335 year: 2005 publication-title: Nature – volume: 3 start-page: 1237 year: 2013 publication-title: Sci. Rep. – volume: 4 start-page: 2119 year: 2016 publication-title: Adv. Opt. Mater. – volume: 112 start-page: 183903 year: 2014 publication-title: Phys. Rev. Lett. – volume: 8 start-page: 15535 year: 2017 publication-title: Nat. Commun. – volume: 115 start-page: 195504 year: 2015 publication-title: Phys. Rev. Lett. – volume: 312 start-page: 1780 year: 2006 publication-title: Science – volume: 85 start-page: 3966 year: 2000 publication-title: Phys. Rev. Lett. – volume: 330 start-page: 1510 year: 2010 publication-title: Science – volume: 29 start-page: 1605881 year: 2017 publication-title: Adv. Mater. – volume: 23 start-page: 3197 year: 2011 publication-title: Adv. Mater. – year: 2016 – volume: 15 start-page: 263 year: 2016 publication-title: Nat. Mater. – volume: 7 start-page: 13236 year: 2016 publication-title: Nat. Commun. – volume: 2 start-page: 351 year: 2008 publication-title: Nat. Photonics – volume: 9 start-page: 324 year: 2007 publication-title: New J. Phys. – volume: 6 start-page: 23186 year: 2016 publication-title: Sci. Rep. – volume: 28 start-page: 4565 year: 1995 publication-title: J. Phys. A: Math. Gen. – volume: 95 start-page: 035104 year: 2017 publication-title: Phys. Rev. B – volume: 29 start-page: 1606298 year: 2017 publication-title: Adv. Mater. – volume: 111 start-page: 081108 year: 2017 publication-title: Appl. Phys. Lett. – volume: 78 start-page: 043811 year: 2008 publication-title: Phys. Rev. A – volume: 9 start-page: 707 year: 2010 publication-title: Nat. Mater. – volume: 7 start-page: 435 year: 2008 publication-title: Nat. Mater. – volume: 101 start-page: 071108 year: 2012 publication-title: Appl. Phys. Lett. – volume: 87 start-page: 115417 year: 2013 publication-title: Phys. Rev. B – volume: 28 start-page: 8206 year: 2016 publication-title: Adv. Mater. – volume: 303 start-page: 1494 year: 2004 publication-title: Science – volume: 80 start-page: 125129 year: 2009 publication-title: Phys. Rev. B – volume: 305 start-page: 788 year: 2004 publication-title: Science – ident: e_1_2_4_1_1 doi: 10.1109/22.798002 – ident: e_1_2_4_31_1 doi: 10.1038/srep02967 – ident: e_1_2_4_4_1 doi: 10.1126/science.1094025 – ident: e_1_2_4_17_1 doi: 10.1088/1367-2630/9/9/324 – volume-title: 27th Micromechanics and Microsystems Europe Workshop year: 2016 ident: e_1_2_4_41_1 – ident: e_1_2_4_3_1 doi: 10.1103/PhysRevLett.85.3966 – ident: e_1_2_4_14_1 doi: 10.1126/science.1125907 – ident: e_1_2_4_30_1 doi: 10.1038/ncomms15535 – ident: e_1_2_4_6_1 doi: 10.1002/adma.201605881 – ident: e_1_2_4_40_1 doi: 10.1002/adma.201100163 – ident: e_1_2_4_20_1 doi: 10.1063/1.4745790 – ident: e_1_2_4_19_1 doi: 10.1103/PhysRevE.65.046609 – ident: e_1_2_4_25_1 doi: 10.1126/science.1197172 – ident: e_1_2_4_35_1 doi: 10.1103/PhysRevB.87.115417 – ident: e_1_2_4_36_1 doi: 10.1002/adma.201601611 – ident: e_1_2_4_22_1 doi: 10.1103/PhysRevB.80.125129 – ident: e_1_2_4_24_1 doi: 10.1038/nmat4563 – ident: e_1_2_4_11_1 doi: 10.1364/OL.42.001700 – ident: e_1_2_4_9_1 doi: 10.1038/srep23186 – ident: e_1_2_4_2_1 doi: 10.1126/science.1096796 – ident: e_1_2_4_38_1 doi: 10.1063/1.5001246 – ident: e_1_2_4_32_1 doi: 10.1103/PhysRevB.94.035119 – ident: e_1_2_4_7_1 doi: 10.1038/nmat2141 – ident: e_1_2_4_15_1 doi: 10.1126/science.1133628 – ident: e_1_2_4_18_1 doi: 10.1088/0305-4470/28/16/014 – ident: e_1_2_4_27_1 doi: 10.1038/ncomms9069 – ident: e_1_2_4_37_1 doi: 10.1063/1.4993670 – ident: e_1_2_4_26_1 doi: 10.1002/adma.201606298 – ident: e_1_2_4_34_1 doi: 10.1364/OL.42.002034 – ident: e_1_2_4_23_1 doi: 10.1038/nmat2810 – ident: e_1_2_4_33_1 doi: 10.1002/adom.201600553 – ident: e_1_2_4_5_1 doi: 10.1038/nature04242 – ident: e_1_2_4_10_1 doi: 10.1038/ncomms13236 – ident: e_1_2_4_39_1 doi: 10.1021/acs.nanolett.6b05285 – ident: e_1_2_4_28_1 doi: 10.1103/PhysRevB.95.035104 – ident: e_1_2_4_42_1 doi: 10.1103/PhysRevB.89.205112 – ident: e_1_2_4_16_1 doi: 10.1103/PhysRevA.78.043811 – ident: e_1_2_4_13_1 doi: 10.1038/srep01237 – ident: e_1_2_4_29_1 doi: 10.1038/s41598-017-01127-2 – ident: e_1_2_4_8_1 doi: 10.1103/PhysRevLett.115.195504 – ident: e_1_2_4_12_1 doi: 10.1038/nphoton.2008.82 – ident: e_1_2_4_21_1 doi: 10.1103/PhysRevLett.112.183903 |
SSID | ssj0009606 |
Score | 2.5728393 |
Snippet | Toroidal dipole is a localized electromagnetic excitation that plays an important role in determining the fundamental properties of matter due to its unique... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | anapoles Configuration management Configurations Electric dipoles Electric filters Magnetic dipoles Magnetism Materials science Metamaterials Modulators toroidal dipoles Toruses |
Title | A Toroidal Metamaterial Switch |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201704845 https://www.ncbi.nlm.nih.gov/pubmed/29210481 https://www.proquest.com/docview/1989536808 https://www.proquest.com/docview/1973461783 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA6yJ33wfqnOMUHwqVuba_M41DGE-aAb7K0kaQpDWWUXBH-9OW3XbYoI-taSE5qTc07z5XK-IHSteZRCmQskw32qpPQjLLSvwxQ24ozSIeQ79x95b0gfRmy0lsVf8ENUC24QGfn_GgJc6Vl7RRqqkpw3KBTOBylkmcOBLUBFTyv-KIDnOdkeYb7kNFqyNga4vVl9c1T6BjU3kWs-9HT3kFo2ujhx8tJazHXLfHzhc_yPVvtot8SlzU7hSAdoy04O0c4aW-ERanSag2yajRMn17dz5bBu7r7N5_exs_0xGnbvB7c9v7xewTdUSOZjxaUImLWWshQTZx2pFGaKGW2kiUxKTBBaZ74EJzQKhRChpgmjRPFIGkHICapNsok9Q80gMSmjONEsCWjKjOJu0h2o1HCAAJp4yF92b2xK7nG4AuM1LliTcQx6x5XeHrqp5N8K1o0fJetLa8Vl9M1iOAfGCFwq4qGrqtjFDWyGqInNFiAjCIX8SNe408LK1aewdBNhp7KHcG6rX9oQd-76nert_C-VLtC2e46KtZ06qs2nC3vp0M5cN3KP_gRuOfNE |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BOQAH9qUspUhInAKJlzg-VkBVlnKAVuIW2Y4jIVCLSiskvh5P0qQUhJDgmHiseDwz8fP2BuBIh1GKZS6QTOgxJaUXEaE9HaS4EWeUDvC-c_s2bHXZ1QMvThPiXZicH6JccMPIyP7XGOC4IH06YQ1VSUYcFAjnhIzPwhym9c5mVXcTBikE6BndHuWeDFlU8Db65HS6_vS49A1sTmPXbPBpLoMump2fOXk6GQ31iXn_wuj4L71WYGkMTeuN3JdWYcb21mDxE2HhOtQa9U5_0H9MnFzbDpWDu5kH1-_fHp35N6DbvOictbxxhgXPMCG5R1Qohc-ttYynhDoDSaUIV9xoI01kUmr8wDoLJiRhUSCECDRLOKMqjKQRlG5Cpdfv2W2o-4lJOSOJ5onPUm5U6ObdvkpNiChA0yp4Rf_GZkw_jlkwnuOcOJnEqHdc6l2F41L-JSfe-FFyrzBXPA7A1xiPgnGKeUWqcFgWu9DB_RDVs_0RygjK8Iqka9xWbubyU0S6ubBTuQokM9YvbYgb5-1G-bTzl0oHMN_qtG_im8vb611YcO-jfKlnDyrDwcjuO_Az1LXMvT8At4b3Xw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEB60guiD91HPCoJPscme2cdiLfVoEW3Bt7BXQJRWaovgr3c3aaNVRNDHZGfJzs5M9ttjvgU4VixOfZkLJM0CIoUIYsRVoKLUb8RpqSKf79xqs2aXXN7T-09Z_Dk_RLHg5iMj-1_7AH82afWDNFSajDco4s4HCZ2FOcLC2Pt1_faDQMrj84xtD9NAMBJPaBtDVJ2uPz0sfcOa09A1G3sayyAnrc6PnDyejobqVL99IXT8j1orsDQGppVa7kmrMGN7a7D4ia5wHQ5qlU5_0H8wTq5lh9KB3cx_K3evD874G9BtnHfOmsH4foVAEy5ogCQTPKTWWkJThJ15hJSISqqVFjrWKdZhZJ39DDIkjjjnkSKGEixZLDTHeBNKvX7PbkMlNDqlBBlFTUhSqiVzs-5Qppp5DKBwGYJJ9yZ6TD7u78B4SnLaZJR4vZNC7zKcFPLPOe3Gj5J7E2sl4_B7SfxBMIr9rSJlOCqKXeD43RDZs_2Rl-GY-ARJ17it3MrFp5BwM2GnchlQZqtf2pDU6q1a8bTzl0qHMH9TbyTXF-2rXVhwr-N8nWcPSsPByO475DNUB5lzvwPkR_YX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Toroidal+Metamaterial+Switch&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Gupta%2C+Manoj&rft.au=Srivastava%2C+Yogesh+Kumar&rft.au=Singh%2C+Ranjan&rft.date=2018-01-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=30&rft.issue=4&rft_id=info:doi/10.1002%2Fadma.201704845&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_201704845 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |