A Toroidal Metamaterial Switch

Toroidal dipole is a localized electromagnetic excitation that plays an important role in determining the fundamental properties of matter due to its unique potential to excite nearly nonradiating charge–current configuration. Toroidal dipoles are recently discovered in metamaterial systems where it...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 30; no. 4
Main Authors Gupta, Manoj, Srivastava, Yogesh Kumar, Singh, Ranjan
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.01.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Toroidal dipole is a localized electromagnetic excitation that plays an important role in determining the fundamental properties of matter due to its unique potential to excite nearly nonradiating charge–current configuration. Toroidal dipoles are recently discovered in metamaterial systems where it is shown that these dipoles manifest as poloidal currents on the surface of a torus and are distinctly different from the traditional electric and magnetic dipoles. Here, an active toroidal metamaterial switch is demonstrated in which the toroidal dipole can be dynamically switched to the fundamental electric dipole or magnetic dipole, through selective inclusion of active elements in a hybrid metamolecule design. Active switching of nonradiating toroidal configuration into highly radiating electric and magnetic dipoles can have significant impact in controlling the electromagnetic excitations in free space and matter that can have potential applications in designing efficient lasers, sensors, filters, and modulators. Toroidal dipole excitation can be dynamically switched to the fundamental electric dipole or magnetic dipole, through selective inclusion of the active elements in a mirrored configuration of Fano resonators. Optical switching between various multipole excitations that range from nonradiating to strongly radiating configuration presents an innovative approach to implement more than one electromagnetic feature in a single device.
AbstractList Toroidal dipole is a localized electromagnetic excitation that plays an important role in determining the fundamental properties of matter due to its unique potential to excite nearly nonradiating charge-current configuration. Toroidal dipoles are recently discovered in metamaterial systems where it is shown that these dipoles manifest as poloidal currents on the surface of a torus and are distinctly different from the traditional electric and magnetic dipoles. Here, an active toroidal metamaterial switch is demonstrated in which the toroidal dipole can be dynamically switched to the fundamental electric dipole or magnetic dipole, through selective inclusion of active elements in a hybrid metamolecule design. Active switching of nonradiating toroidal configuration into highly radiating electric and magnetic dipoles can have significant impact in controlling the electromagnetic excitations in free space and matter that can have potential applications in designing efficient lasers, sensors, filters, and modulators.
Toroidal dipole is a localized electromagnetic excitation that plays an important role in determining the fundamental properties of matter due to its unique potential to excite nearly nonradiating charge–current configuration. Toroidal dipoles are recently discovered in metamaterial systems where it is shown that these dipoles manifest as poloidal currents on the surface of a torus and are distinctly different from the traditional electric and magnetic dipoles. Here, an active toroidal metamaterial switch is demonstrated in which the toroidal dipole can be dynamically switched to the fundamental electric dipole or magnetic dipole, through selective inclusion of active elements in a hybrid metamolecule design. Active switching of nonradiating toroidal configuration into highly radiating electric and magnetic dipoles can have significant impact in controlling the electromagnetic excitations in free space and matter that can have potential applications in designing efficient lasers, sensors, filters, and modulators. Toroidal dipole excitation can be dynamically switched to the fundamental electric dipole or magnetic dipole, through selective inclusion of the active elements in a mirrored configuration of Fano resonators. Optical switching between various multipole excitations that range from nonradiating to strongly radiating configuration presents an innovative approach to implement more than one electromagnetic feature in a single device.
Toroidal dipole is a localized electromagnetic excitation that plays an important role in determining the fundamental properties of matter due to its unique potential to excite nearly nonradiating charge-current configuration. Toroidal dipoles are recently discovered in metamaterial systems where it is shown that these dipoles manifest as poloidal currents on the surface of a torus and are distinctly different from the traditional electric and magnetic dipoles. Here, an active toroidal metamaterial switch is demonstrated in which the toroidal dipole can be dynamically switched to the fundamental electric dipole or magnetic dipole, through selective inclusion of active elements in a hybrid metamolecule design. Active switching of nonradiating toroidal configuration into highly radiating electric and magnetic dipoles can have significant impact in controlling the electromagnetic excitations in free space and matter that can have potential applications in designing efficient lasers, sensors, filters, and modulators.Toroidal dipole is a localized electromagnetic excitation that plays an important role in determining the fundamental properties of matter due to its unique potential to excite nearly nonradiating charge-current configuration. Toroidal dipoles are recently discovered in metamaterial systems where it is shown that these dipoles manifest as poloidal currents on the surface of a torus and are distinctly different from the traditional electric and magnetic dipoles. Here, an active toroidal metamaterial switch is demonstrated in which the toroidal dipole can be dynamically switched to the fundamental electric dipole or magnetic dipole, through selective inclusion of active elements in a hybrid metamolecule design. Active switching of nonradiating toroidal configuration into highly radiating electric and magnetic dipoles can have significant impact in controlling the electromagnetic excitations in free space and matter that can have potential applications in designing efficient lasers, sensors, filters, and modulators.
Author Srivastava, Yogesh Kumar
Singh, Ranjan
Gupta, Manoj
Author_xml – sequence: 1
  givenname: Manoj
  surname: Gupta
  fullname: Gupta, Manoj
  organization: Nanyang Technological University
– sequence: 2
  givenname: Yogesh Kumar
  surname: Srivastava
  fullname: Srivastava, Yogesh Kumar
  organization: Nanyang Technological University
– sequence: 3
  givenname: Ranjan
  surname: Singh
  fullname: Singh, Ranjan
  email: ranjans@ntu.edu.sg
  organization: Nanyang Technological University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29210481$$D View this record in MEDLINE/PubMed
BookMark eNqFkM1LwzAYh4NM3IdePY6BFy-dSZo0ybH4DRsenOeQpilmtM1MOsb-ezM2JwzE08sLz_N-_Iag17rWAHCN4BRBiO9U2agphohBwgk9AwNEMUoIFLQHBlCkNBEZ4X0wDGEJIRQZzC5AHwuMooAGYJxPFs47W6p6MjedalRnvI3N-8Z2-vMSnFeqDubqUEfg4-lxcf-SzN6eX-_zWaIJEzTBKhMMUmMMoRVOC1QJpTBVVBdaaK6rVENkiBIlLuNaxhgqSElJqjIuNEvTEbjdz11597U2oZONDdrUtWqNWweJBEtJhhjfoTcn6NKtfRuvixQXNM045JEaH6h10ZhSrrxtlN_Kn88jMN0D2rsQvKmOCIJyF63cRSuP0UaBnAjadqqzru28svXfmthrG1ub7T9LZP4wz3_dbxDOilA
CitedBy_id crossref_primary_10_1103_PhysRevApplied_22_044017
crossref_primary_10_1016_j_rinp_2023_107088
crossref_primary_10_1002_adom_201800257
crossref_primary_10_1088_2053_1591_ad4102
crossref_primary_10_1364_OE_534499
crossref_primary_10_1109_JSEN_2023_3347223
crossref_primary_10_1016_j_ijleo_2019_163502
crossref_primary_10_1088_1361_6463_ac5190
crossref_primary_10_1088_1361_6463_abaced
crossref_primary_10_1016_j_jmrt_2020_02_019
crossref_primary_10_1364_OME_8_002197
crossref_primary_10_1002_adom_202100024
crossref_primary_10_1002_inf2_12174
crossref_primary_10_1007_s11467_019_0928_x
crossref_primary_10_1021_acs_chemrev_2c00048
crossref_primary_10_1007_s11664_022_10039_5
crossref_primary_10_1088_2053_1591_ab6400
crossref_primary_10_1364_JOSAB_481376
crossref_primary_10_1002_lpor_202100328
crossref_primary_10_1063_5_0007997
crossref_primary_10_1364_BOE_510149
crossref_primary_10_1002_lpor_201900326
crossref_primary_10_1016_j_isci_2021_103708
crossref_primary_10_1088_1367_2630_ac55b4
crossref_primary_10_1016_j_infrared_2024_105189
crossref_primary_10_1364_OE_27_005792
crossref_primary_10_3389_fphy_2023_1189388
crossref_primary_10_1002_lpor_202200740
crossref_primary_10_1364_OE_419941
crossref_primary_10_3390_photonics11010068
crossref_primary_10_1021_acsanm_0c02421
crossref_primary_10_1364_OE_417367
crossref_primary_10_1515_nanoph_2023_0010
crossref_primary_10_1002_adom_201900315
crossref_primary_10_1002_adom_201801166
crossref_primary_10_1002_adom_202101688
crossref_primary_10_1016_j_rinp_2022_105484
crossref_primary_10_1002_pssb_201900406
crossref_primary_10_1002_adom_201801206
crossref_primary_10_1364_OE_409664
crossref_primary_10_1039_D4TC02160F
crossref_primary_10_1364_OE_383781
crossref_primary_10_3103_S1541308X22040045
crossref_primary_10_1007_s11468_024_02513_z
crossref_primary_10_1016_j_matdes_2024_113294
crossref_primary_10_1088_2053_1591_ab422d
crossref_primary_10_1088_1361_6463_ac0f21
crossref_primary_10_1088_2053_1591_ab7f11
crossref_primary_10_1021_acsaelm_0c00107
crossref_primary_10_1002_adom_202303045
crossref_primary_10_1088_1402_4896_ad8192
crossref_primary_10_1364_OSAC_2_002818
crossref_primary_10_1016_j_apsusc_2023_156408
crossref_primary_10_1088_1402_4896_ad7a28
crossref_primary_10_1016_j_optcom_2021_127621
crossref_primary_10_2139_ssrn_3997857
crossref_primary_10_1063_1_5041485
crossref_primary_10_1002_adom_202101215
crossref_primary_10_3390_nano12213765
crossref_primary_10_1002_adpr_202100103
crossref_primary_10_1088_1361_6463_ad7bc6
crossref_primary_10_1088_1361_6463_ab5983
crossref_primary_10_1364_OME_9_000826
crossref_primary_10_1088_1361_6463_abf8f0
crossref_primary_10_1016_j_optcom_2024_130557
crossref_primary_10_7567_APEX_11_062001
crossref_primary_10_1002_adpr_202400070
crossref_primary_10_1002_lpor_202000456
crossref_primary_10_1039_C8RA04329A
crossref_primary_10_1103_PhysRevB_104_075408
crossref_primary_10_1016_j_ijleo_2019_163071
crossref_primary_10_1364_JOSAB_537123
crossref_primary_10_1515_nanoph_2020_0045
crossref_primary_10_1016_j_rinp_2019_102897
crossref_primary_10_1039_D2MA00497F
crossref_primary_10_1016_j_optmat_2020_110060
crossref_primary_10_1109_LPT_2023_3344484
crossref_primary_10_3390_photonics6020043
crossref_primary_10_1002_advs_202416951
crossref_primary_10_1016_j_optcom_2019_124919
crossref_primary_10_1002_adom_202401333
crossref_primary_10_1109_JSEN_2023_3339126
crossref_primary_10_1016_j_rinp_2021_105146
crossref_primary_10_3389_fphy_2021_739465
crossref_primary_10_1016_j_matlet_2018_09_084
crossref_primary_10_1002_lpor_202100404
crossref_primary_10_1007_s11468_024_02466_3
crossref_primary_10_1002_dro2_79
crossref_primary_10_1016_j_photonics_2018_10_008
crossref_primary_10_1002_adom_201800502
crossref_primary_10_1088_1361_6463_abccf1
crossref_primary_10_1007_s11468_020_01241_4
crossref_primary_10_1364_OE_453190
crossref_primary_10_1007_s11664_021_09214_x
crossref_primary_10_1016_j_rinp_2020_103133
crossref_primary_10_1364_OE_525196
crossref_primary_10_1364_OE_455807
crossref_primary_10_1088_1402_4896_ace481
crossref_primary_10_1063_5_0012575
crossref_primary_10_1002_adom_202200327
crossref_primary_10_1364_JOSAB_499287
crossref_primary_10_1080_10584587_2021_1911340
crossref_primary_10_1016_j_mtchem_2019_100206
crossref_primary_10_3390_s24123943
crossref_primary_10_1088_1367_2630_abc497
crossref_primary_10_1007_s11082_022_03753_1
crossref_primary_10_1364_OL_388722
crossref_primary_10_1002_adom_202101007
crossref_primary_10_1021_acs_jpcc_8b08184
crossref_primary_10_1364_OME_383437
crossref_primary_10_1364_OME_414340
crossref_primary_10_1364_OL_481063
crossref_primary_10_7567_APEX_11_117302
crossref_primary_10_1039_D3CP00341H
crossref_primary_10_1209_0295_5075_ac83e8
crossref_primary_10_1364_OE_389968
crossref_primary_10_1007_s10762_019_00575_3
crossref_primary_10_1038_s41598_021_98498_4
crossref_primary_10_1016_j_photonics_2022_101041
crossref_primary_10_1088_1402_4896_ad3e41
crossref_primary_10_1364_OE_26_017056
crossref_primary_10_1109_JPHOT_2019_2907617
crossref_primary_10_1364_PRJ_420876
crossref_primary_10_1039_D2NR05038B
crossref_primary_10_1002_adts_201900123
crossref_primary_10_1016_j_physb_2024_416458
crossref_primary_10_1364_OL_492913
crossref_primary_10_3389_fphy_2020_00306
crossref_primary_10_1007_s11468_021_01427_4
crossref_primary_10_1016_j_fmre_2024_11_008
crossref_primary_10_1002_adpr_202000175
crossref_primary_10_1109_TMTT_2020_3027016
crossref_primary_10_1002_adma_201802458
crossref_primary_10_1364_OE_500058
crossref_primary_10_1039_D2NR01561G
Cites_doi 10.1109/22.798002
10.1038/srep02967
10.1126/science.1094025
10.1088/1367-2630/9/9/324
10.1103/PhysRevLett.85.3966
10.1126/science.1125907
10.1038/ncomms15535
10.1002/adma.201605881
10.1002/adma.201100163
10.1063/1.4745790
10.1103/PhysRevE.65.046609
10.1126/science.1197172
10.1103/PhysRevB.87.115417
10.1002/adma.201601611
10.1103/PhysRevB.80.125129
10.1038/nmat4563
10.1364/OL.42.001700
10.1038/srep23186
10.1126/science.1096796
10.1063/1.5001246
10.1103/PhysRevB.94.035119
10.1038/nmat2141
10.1126/science.1133628
10.1088/0305-4470/28/16/014
10.1038/ncomms9069
10.1063/1.4993670
10.1002/adma.201606298
10.1364/OL.42.002034
10.1038/nmat2810
10.1002/adom.201600553
10.1038/nature04242
10.1038/ncomms13236
10.1021/acs.nanolett.6b05285
10.1103/PhysRevB.95.035104
10.1103/PhysRevB.89.205112
10.1103/PhysRevA.78.043811
10.1038/srep01237
10.1038/s41598-017-01127-2
10.1103/PhysRevLett.115.195504
10.1038/nphoton.2008.82
10.1103/PhysRevLett.112.183903
ContentType Journal Article
Copyright 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201704845
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed
Materials Research Database
CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 29210481
10_1002_adma_201704845
ADMA201704845
Genre article
Journal Article
GrantInformation_xml – fundername: Singapore Ministry of Education
  funderid: MOE2015‐T2‐2‐103
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4795-2a69705eee45f23b1f9aa25a5cbc9c8cf3c01e4a9d2d4817771b4d543a689c733
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 05:37:23 EDT 2025
Fri Jul 25 02:53:19 EDT 2025
Wed Feb 19 02:42:10 EST 2025
Tue Jul 01 00:44:37 EDT 2025
Thu Apr 24 22:50:21 EDT 2025
Wed Jan 22 16:45:07 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords toroidal dipoles
anapoles
electric dipoles
magnetic dipoles
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4795-2a69705eee45f23b1f9aa25a5cbc9c8cf3c01e4a9d2d4817771b4d543a689c733
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adma.201704845
PMID 29210481
PQID 1989536808
PQPubID 2045203
PageCount 8
ParticipantIDs proquest_miscellaneous_1973461783
proquest_journals_1989536808
pubmed_primary_29210481
crossref_primary_10_1002_adma_201704845
crossref_citationtrail_10_1002_adma_201704845
wiley_primary_10_1002_adma_201704845_ADMA201704845
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-Jan
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-Jan
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 42
2017; 7
2017; 8
2004; 303
2013; 3
2015; 6
2012; 101
2009; 80
2013; 87
2000; 85
1999; 47
2005; 438
2008; 7
2008; 78
2016; 94
2017; 29
2006; 314
2017; 111
2008; 2
2004; 305
2016; 15
2014; 89
2006; 312
2014; 112
2017; 95
2016; 4
2016; 6
2016; 7
2015; 115
1995; 28
2017; 17
2002; 65
2010; 330
2007; 9
2016
2011; 23
2017; 122
2016; 28
2010; 9
e_1_2_4_40_1
e_1_2_4_21_1
e_1_2_4_20_1
e_1_2_4_23_1
e_1_2_4_42_1
e_1_2_4_22_1
e_1_2_4_25_1
e_1_2_4_24_1
e_1_2_4_27_1
e_1_2_4_26_1
e_1_2_4_29_1
e_1_2_4_28_1
e_1_2_4_1_1
Ekinci G. (e_1_2_4_41_1) 2016
e_1_2_4_3_1
e_1_2_4_2_1
e_1_2_4_5_1
e_1_2_4_4_1
e_1_2_4_7_1
e_1_2_4_6_1
e_1_2_4_9_1
e_1_2_4_8_1
e_1_2_4_30_1
e_1_2_4_32_1
e_1_2_4_10_1
e_1_2_4_31_1
e_1_2_4_11_1
e_1_2_4_34_1
e_1_2_4_12_1
e_1_2_4_33_1
e_1_2_4_13_1
e_1_2_4_36_1
e_1_2_4_14_1
e_1_2_4_35_1
e_1_2_4_15_1
e_1_2_4_16_1
e_1_2_4_38_1
e_1_2_4_37_1
e_1_2_4_18_1
e_1_2_4_17_1
e_1_2_4_39_1
e_1_2_4_19_1
References_xml – volume: 89
  start-page: 205112
  year: 2014
  publication-title: Phys. Rev. B
– volume: 42
  start-page: 2034
  year: 2017
  publication-title: Opt. Lett.
– volume: 47
  start-page: 2075
  year: 1999
  publication-title: IEEE Trans. Microwave Theory Tech.
– volume: 42
  start-page: 1700
  year: 2017
  publication-title: Opt. Lett.
– volume: 7
  start-page: 1064
  year: 2017
  publication-title: Sci. Rep.
– volume: 3
  start-page: 2967
  year: 2013
  publication-title: Sci. Rep.
– volume: 122
  start-page: 113105
  year: 2017
  publication-title: J. Appl. Phys.
– volume: 65
  start-page: 046609
  year: 2002
  publication-title: Phys. Rev. E
– volume: 314
  start-page: 977
  year: 2006
  publication-title: Science
– volume: 6
  start-page: 8069
  year: 2015
  publication-title: Nat. Commun.
– volume: 94
  start-page: 035119
  year: 2016
  publication-title: Phys. Rev. B
– volume: 17
  start-page: 1931
  year: 2017
  publication-title: Nano Lett.
– volume: 438
  start-page: 335
  year: 2005
  publication-title: Nature
– volume: 3
  start-page: 1237
  year: 2013
  publication-title: Sci. Rep.
– volume: 4
  start-page: 2119
  year: 2016
  publication-title: Adv. Opt. Mater.
– volume: 112
  start-page: 183903
  year: 2014
  publication-title: Phys. Rev. Lett.
– volume: 8
  start-page: 15535
  year: 2017
  publication-title: Nat. Commun.
– volume: 115
  start-page: 195504
  year: 2015
  publication-title: Phys. Rev. Lett.
– volume: 312
  start-page: 1780
  year: 2006
  publication-title: Science
– volume: 85
  start-page: 3966
  year: 2000
  publication-title: Phys. Rev. Lett.
– volume: 330
  start-page: 1510
  year: 2010
  publication-title: Science
– volume: 29
  start-page: 1605881
  year: 2017
  publication-title: Adv. Mater.
– volume: 23
  start-page: 3197
  year: 2011
  publication-title: Adv. Mater.
– year: 2016
– volume: 15
  start-page: 263
  year: 2016
  publication-title: Nat. Mater.
– volume: 7
  start-page: 13236
  year: 2016
  publication-title: Nat. Commun.
– volume: 2
  start-page: 351
  year: 2008
  publication-title: Nat. Photonics
– volume: 9
  start-page: 324
  year: 2007
  publication-title: New J. Phys.
– volume: 6
  start-page: 23186
  year: 2016
  publication-title: Sci. Rep.
– volume: 28
  start-page: 4565
  year: 1995
  publication-title: J. Phys. A: Math. Gen.
– volume: 95
  start-page: 035104
  year: 2017
  publication-title: Phys. Rev. B
– volume: 29
  start-page: 1606298
  year: 2017
  publication-title: Adv. Mater.
– volume: 111
  start-page: 081108
  year: 2017
  publication-title: Appl. Phys. Lett.
– volume: 78
  start-page: 043811
  year: 2008
  publication-title: Phys. Rev. A
– volume: 9
  start-page: 707
  year: 2010
  publication-title: Nat. Mater.
– volume: 7
  start-page: 435
  year: 2008
  publication-title: Nat. Mater.
– volume: 101
  start-page: 071108
  year: 2012
  publication-title: Appl. Phys. Lett.
– volume: 87
  start-page: 115417
  year: 2013
  publication-title: Phys. Rev. B
– volume: 28
  start-page: 8206
  year: 2016
  publication-title: Adv. Mater.
– volume: 303
  start-page: 1494
  year: 2004
  publication-title: Science
– volume: 80
  start-page: 125129
  year: 2009
  publication-title: Phys. Rev. B
– volume: 305
  start-page: 788
  year: 2004
  publication-title: Science
– ident: e_1_2_4_1_1
  doi: 10.1109/22.798002
– ident: e_1_2_4_31_1
  doi: 10.1038/srep02967
– ident: e_1_2_4_4_1
  doi: 10.1126/science.1094025
– ident: e_1_2_4_17_1
  doi: 10.1088/1367-2630/9/9/324
– volume-title: 27th Micromechanics and Microsystems Europe Workshop
  year: 2016
  ident: e_1_2_4_41_1
– ident: e_1_2_4_3_1
  doi: 10.1103/PhysRevLett.85.3966
– ident: e_1_2_4_14_1
  doi: 10.1126/science.1125907
– ident: e_1_2_4_30_1
  doi: 10.1038/ncomms15535
– ident: e_1_2_4_6_1
  doi: 10.1002/adma.201605881
– ident: e_1_2_4_40_1
  doi: 10.1002/adma.201100163
– ident: e_1_2_4_20_1
  doi: 10.1063/1.4745790
– ident: e_1_2_4_19_1
  doi: 10.1103/PhysRevE.65.046609
– ident: e_1_2_4_25_1
  doi: 10.1126/science.1197172
– ident: e_1_2_4_35_1
  doi: 10.1103/PhysRevB.87.115417
– ident: e_1_2_4_36_1
  doi: 10.1002/adma.201601611
– ident: e_1_2_4_22_1
  doi: 10.1103/PhysRevB.80.125129
– ident: e_1_2_4_24_1
  doi: 10.1038/nmat4563
– ident: e_1_2_4_11_1
  doi: 10.1364/OL.42.001700
– ident: e_1_2_4_9_1
  doi: 10.1038/srep23186
– ident: e_1_2_4_2_1
  doi: 10.1126/science.1096796
– ident: e_1_2_4_38_1
  doi: 10.1063/1.5001246
– ident: e_1_2_4_32_1
  doi: 10.1103/PhysRevB.94.035119
– ident: e_1_2_4_7_1
  doi: 10.1038/nmat2141
– ident: e_1_2_4_15_1
  doi: 10.1126/science.1133628
– ident: e_1_2_4_18_1
  doi: 10.1088/0305-4470/28/16/014
– ident: e_1_2_4_27_1
  doi: 10.1038/ncomms9069
– ident: e_1_2_4_37_1
  doi: 10.1063/1.4993670
– ident: e_1_2_4_26_1
  doi: 10.1002/adma.201606298
– ident: e_1_2_4_34_1
  doi: 10.1364/OL.42.002034
– ident: e_1_2_4_23_1
  doi: 10.1038/nmat2810
– ident: e_1_2_4_33_1
  doi: 10.1002/adom.201600553
– ident: e_1_2_4_5_1
  doi: 10.1038/nature04242
– ident: e_1_2_4_10_1
  doi: 10.1038/ncomms13236
– ident: e_1_2_4_39_1
  doi: 10.1021/acs.nanolett.6b05285
– ident: e_1_2_4_28_1
  doi: 10.1103/PhysRevB.95.035104
– ident: e_1_2_4_42_1
  doi: 10.1103/PhysRevB.89.205112
– ident: e_1_2_4_16_1
  doi: 10.1103/PhysRevA.78.043811
– ident: e_1_2_4_13_1
  doi: 10.1038/srep01237
– ident: e_1_2_4_29_1
  doi: 10.1038/s41598-017-01127-2
– ident: e_1_2_4_8_1
  doi: 10.1103/PhysRevLett.115.195504
– ident: e_1_2_4_12_1
  doi: 10.1038/nphoton.2008.82
– ident: e_1_2_4_21_1
  doi: 10.1103/PhysRevLett.112.183903
SSID ssj0009606
Score 2.5728393
Snippet Toroidal dipole is a localized electromagnetic excitation that plays an important role in determining the fundamental properties of matter due to its unique...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms anapoles
Configuration management
Configurations
Electric dipoles
Electric filters
Magnetic dipoles
Magnetism
Materials science
Metamaterials
Modulators
toroidal dipoles
Toruses
Title A Toroidal Metamaterial Switch
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201704845
https://www.ncbi.nlm.nih.gov/pubmed/29210481
https://www.proquest.com/docview/1989536808
https://www.proquest.com/docview/1973461783
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA6yJ33wfqnOMUHwqVuba_M41DGE-aAb7K0kaQpDWWUXBH-9OW3XbYoI-taSE5qTc07z5XK-IHSteZRCmQskw32qpPQjLLSvwxQ24ozSIeQ79x95b0gfRmy0lsVf8ENUC24QGfn_GgJc6Vl7RRqqkpw3KBTOBylkmcOBLUBFTyv-KIDnOdkeYb7kNFqyNga4vVl9c1T6BjU3kWs-9HT3kFo2ujhx8tJazHXLfHzhc_yPVvtot8SlzU7hSAdoy04O0c4aW-ERanSag2yajRMn17dz5bBu7r7N5_exs_0xGnbvB7c9v7xewTdUSOZjxaUImLWWshQTZx2pFGaKGW2kiUxKTBBaZ74EJzQKhRChpgmjRPFIGkHICapNsok9Q80gMSmjONEsCWjKjOJu0h2o1HCAAJp4yF92b2xK7nG4AuM1LliTcQx6x5XeHrqp5N8K1o0fJetLa8Vl9M1iOAfGCFwq4qGrqtjFDWyGqInNFiAjCIX8SNe408LK1aewdBNhp7KHcG6rX9oQd-76nert_C-VLtC2e46KtZ06qs2nC3vp0M5cN3KP_gRuOfNE
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BOQAH9qUspUhInAKJlzg-VkBVlnKAVuIW2Y4jIVCLSiskvh5P0qQUhJDgmHiseDwz8fP2BuBIh1GKZS6QTOgxJaUXEaE9HaS4EWeUDvC-c_s2bHXZ1QMvThPiXZicH6JccMPIyP7XGOC4IH06YQ1VSUYcFAjnhIzPwhym9c5mVXcTBikE6BndHuWeDFlU8Db65HS6_vS49A1sTmPXbPBpLoMump2fOXk6GQ31iXn_wuj4L71WYGkMTeuN3JdWYcb21mDxE2HhOtQa9U5_0H9MnFzbDpWDu5kH1-_fHp35N6DbvOictbxxhgXPMCG5R1Qohc-ttYynhDoDSaUIV9xoI01kUmr8wDoLJiRhUSCECDRLOKMqjKQRlG5Cpdfv2W2o-4lJOSOJ5onPUm5U6ObdvkpNiChA0yp4Rf_GZkw_jlkwnuOcOJnEqHdc6l2F41L-JSfe-FFyrzBXPA7A1xiPgnGKeUWqcFgWu9DB_RDVs_0RygjK8Iqka9xWbubyU0S6ubBTuQokM9YvbYgb5-1G-bTzl0oHMN_qtG_im8vb611YcO-jfKlnDyrDwcjuO_Az1LXMvT8At4b3Xw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEB60guiD91HPCoJPscme2cdiLfVoEW3Bt7BXQJRWaovgr3c3aaNVRNDHZGfJzs5M9ttjvgU4VixOfZkLJM0CIoUIYsRVoKLUb8RpqSKf79xqs2aXXN7T-09Z_Dk_RLHg5iMj-1_7AH82afWDNFSajDco4s4HCZ2FOcLC2Pt1_faDQMrj84xtD9NAMBJPaBtDVJ2uPz0sfcOa09A1G3sayyAnrc6PnDyejobqVL99IXT8j1orsDQGppVa7kmrMGN7a7D4ia5wHQ5qlU5_0H8wTq5lh9KB3cx_K3evD874G9BtnHfOmsH4foVAEy5ogCQTPKTWWkJThJ15hJSISqqVFjrWKdZhZJ39DDIkjjjnkSKGEixZLDTHeBNKvX7PbkMlNDqlBBlFTUhSqiVzs-5Qppp5DKBwGYJJ9yZ6TD7u78B4SnLaZJR4vZNC7zKcFPLPOe3Gj5J7E2sl4_B7SfxBMIr9rSJlOCqKXeD43RDZs_2Rl-GY-ARJ17it3MrFp5BwM2GnchlQZqtf2pDU6q1a8bTzl0qHMH9TbyTXF-2rXVhwr-N8nWcPSsPByO475DNUB5lzvwPkR_YX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Toroidal+Metamaterial+Switch&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Gupta%2C+Manoj&rft.au=Srivastava%2C+Yogesh+Kumar&rft.au=Singh%2C+Ranjan&rft.date=2018-01-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=30&rft.issue=4&rft_id=info:doi/10.1002%2Fadma.201704845&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_201704845
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon