Photo‐Iniferter RAFT Polymerization

Light‐mediated polymerization techniques offer distinct advantages over polymerization reactions fueled by thermal energy, such as high spatial and temporal control as well as the possibility to work under mild reaction conditions. Reversible addition‐fragmentation chain‐transfer (RAFT) polymerizati...

Full description

Saved in:
Bibliographic Details
Published inMacromolecular rapid communications. Vol. 43; no. 1; pp. e2100514 - n/a
Main Author Hartlieb, Matthias
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Light‐mediated polymerization techniques offer distinct advantages over polymerization reactions fueled by thermal energy, such as high spatial and temporal control as well as the possibility to work under mild reaction conditions. Reversible addition‐fragmentation chain‐transfer (RAFT) polymerization is a highly versatile radical polymerization method that can be utilized to control a variety of monomers and produce a vast number of complex macromolecular structures. The use of light to drive a RAFT‐polymerization is possible via multiple routes. Besides the use of photo‐initiators, or photo‐catalysts, the direct activation of the chain transfer agent controlling the RAFT process in a photo‐iniferter (PI) process is an elegant way to initiate and control polymerization reactions. Within this review, PI‐RAFT polymerization and its advantages over the conventional RAFT process are discussed in detail. The direct activation of chain transfer agents controlling a radical polymerization process by light is called a photo‐iniferter reversible addition‐fragmentation chain‐transfer (RAFT) polymerization. This method possesses a number of advantages compared to the conventional RAFT methodology. The origin, mechanistic, and applications of this technique are discussed in this review.
AbstractList Light-mediated polymerization techniques offer distinct advantages over polymerization reactions fueled by thermal energy, such as high spatial and temporal control as well as the possibility to work under mild reaction conditions. Reversible addition-fragmentation chain-transfer (RAFT) polymerization is a highly versatile radical polymerization method that can be utilized to control a variety of monomers and produce a vast number of complex macromolecular structures. The use of light to drive a RAFT-polymerization is possible via multiple routes. Besides the use of photo-initiators, or photo-catalysts, the direct activation of the chain transfer agent controlling the RAFT process in a photo-iniferter (PI) process is an elegant way to initiate and control polymerization reactions. Within this review, PI-RAFT polymerization and its advantages over the conventional RAFT process are discussed in detail.Light-mediated polymerization techniques offer distinct advantages over polymerization reactions fueled by thermal energy, such as high spatial and temporal control as well as the possibility to work under mild reaction conditions. Reversible addition-fragmentation chain-transfer (RAFT) polymerization is a highly versatile radical polymerization method that can be utilized to control a variety of monomers and produce a vast number of complex macromolecular structures. The use of light to drive a RAFT-polymerization is possible via multiple routes. Besides the use of photo-initiators, or photo-catalysts, the direct activation of the chain transfer agent controlling the RAFT process in a photo-iniferter (PI) process is an elegant way to initiate and control polymerization reactions. Within this review, PI-RAFT polymerization and its advantages over the conventional RAFT process are discussed in detail.
Light-mediated polymerization techniques offer distinct advantages over polymerization reactions fueled by thermal energy, such as high spatial and temporal control as well as the possibility to work under mild reaction conditions. Reversible addition-fragmentation chain-transfer (RAFT) polymerization is a highly versatile radical polymerization method that can be utilized to control a variety of monomers and produce a vast number of complex macromolecular structures. The use of light to drive a RAFT-polymerization is possible via multiple routes. Besides the use of photo-initiators, or photo-catalysts, the direct activation of the chain transfer agent controlling the RAFT process in a photo-iniferter (PI) process is an elegant way to initiate and control polymerization reactions. Within this review, PI-RAFT polymerization and its advantages over the conventional RAFT process are discussed in detail.
Light‐mediated polymerization techniques offer distinct advantages over polymerization reactions fueled by thermal energy, such as high spatial and temporal control as well as the possibility to work under mild reaction conditions. Reversible addition‐fragmentation chain‐transfer (RAFT) polymerization is a highly versatile radical polymerization method that can be utilized to control a variety of monomers and produce a vast number of complex macromolecular structures. The use of light to drive a RAFT‐polymerization is possible via multiple routes. Besides the use of photo‐initiators, or photo‐catalysts, the direct activation of the chain transfer agent controlling the RAFT process in a photo‐iniferter (PI) process is an elegant way to initiate and control polymerization reactions. Within this review, PI‐RAFT polymerization and its advantages over the conventional RAFT process are discussed in detail. The direct activation of chain transfer agents controlling a radical polymerization process by light is called a photo‐iniferter reversible addition‐fragmentation chain‐transfer (RAFT) polymerization. This method possesses a number of advantages compared to the conventional RAFT methodology. The origin, mechanistic, and applications of this technique are discussed in this review.
Author Hartlieb, Matthias
Author_xml – sequence: 1
  givenname: Matthias
  orcidid: 0000-0001-5330-7186
  surname: Hartlieb
  fullname: Hartlieb, Matthias
  email: mhartlieb@uni-potsdam.de
  organization: Fraunhofer Institute for Applied Polymer Research (IAP)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34750911$$D View this record in MEDLINE/PubMed
BookMark eNqFkMtKAzEUQINU7EO3LqUggpupuUnmkWUpVgsVS6nrkJm5g1Omk5qZInXlJ_iNfompbRUK4iYPOOeSnDZplKZEQs6B9oBSdrPQNukxytzFB3FEWuAz8LhkYcOdKWMecB40Sbuq5pTSSFB2QppchD6VAC1yNXk2tfl8_xiVeYa2Rtud9oez7sQU6wXa_E3XuSlPyXGmiwrPdnuHPA1vZ4N7b_x4Nxr0x14iQim8OJQaESmPpIggY4HQHFiEccR0LFNIogSSzLEYRpkWEtIgzqIURZoBcKC8Q663c5fWvKywqtUirxIsCl2iWVWK-dL3AxEK4dDLA3RuVrZ0r1MsgJAxt3JHXeyoVbzAVC1t7oqt1T6AA8QWSKypKouZSvL6-8-11XmhgKpNZ7XprH46O613oO0n_ynIrfCaF7j-h1YP_eng1_0CAOmOWg
CitedBy_id crossref_primary_10_1039_D3PY01307C
crossref_primary_10_1002_ange_202408592
crossref_primary_10_1002_adma_202313961
crossref_primary_10_1002_anie_202403026
crossref_primary_10_1002_pol_20230591
crossref_primary_10_1002_ange_202408225
crossref_primary_10_1039_D3PY01036H
crossref_primary_10_1038_s44160_024_00710_6
crossref_primary_10_1039_D2PY01166B
crossref_primary_10_1002_marc_202300108
crossref_primary_10_1038_s44160_023_00463_8
crossref_primary_10_1039_D4PY00409D
crossref_primary_10_1039_D4PY01123F
crossref_primary_10_1021_acsapm_3c02150
crossref_primary_10_1002_cptc_202300090
crossref_primary_10_1039_D4PY01377H
crossref_primary_10_1002_pol_20230077
crossref_primary_10_1039_D3SC06736J
crossref_primary_10_1002_anie_202314729
crossref_primary_10_1016_j_polymer_2023_125728
crossref_primary_10_1016_j_eurpolymj_2023_112450
crossref_primary_10_1039_D3TC03373B
crossref_primary_10_3390_polym16243493
crossref_primary_10_1002_marc_202200729
crossref_primary_10_1002_ange_202309951
crossref_primary_10_1039_D4PY01323A
crossref_primary_10_1002_marc_202400851
crossref_primary_10_1002_pol_20230889
crossref_primary_10_1021_jacs_3c00589
crossref_primary_10_1002_anie_202408225
crossref_primary_10_1002_anie_202424225
crossref_primary_10_1002_pol_20241148
crossref_primary_10_1002_ajoc_202400032
crossref_primary_10_1021_acs_macromol_2c00119
crossref_primary_10_1021_acsmacrolett_2c00683
crossref_primary_10_1002_marc_202300408
crossref_primary_10_1021_acsmacrolett_5c00023
crossref_primary_10_1002_marc_202400100
crossref_primary_10_1039_D3NA00793F
crossref_primary_10_3390_polym16010134
crossref_primary_10_1021_acsami_3c15002
crossref_primary_10_1002_anie_202309951
crossref_primary_10_1021_acs_macromol_4c02489
crossref_primary_10_1002_pi_6424
crossref_primary_10_1021_acs_macromol_4c01277
crossref_primary_10_1039_D5PY00151J
crossref_primary_10_1016_j_polymer_2023_125944
crossref_primary_10_1002_ange_202309582
crossref_primary_10_1002_anie_202422975
crossref_primary_10_3390_polym14132708
crossref_primary_10_1021_acsmacrolett_3c00431
crossref_primary_10_1021_acs_macromol_2c02307
crossref_primary_10_1039_D2CS00115B
crossref_primary_10_1002_cjoc_202200814
crossref_primary_10_1016_j_progpolymsci_2023_101648
crossref_primary_10_1039_D4CS00663A
crossref_primary_10_1021_acs_macromol_4c00976
crossref_primary_10_1002_smll_202301761
crossref_primary_10_1021_acs_biomac_4c00767
crossref_primary_10_1002_ange_202422975
crossref_primary_10_1016_j_jcat_2023_07_015
crossref_primary_10_1039_D2PY00982J
crossref_primary_10_1021_acs_macromol_4c00192
crossref_primary_10_1002_mabi_202200474
crossref_primary_10_1002_smsc_202400146
crossref_primary_10_1021_acs_macromol_4c03060
crossref_primary_10_1002_admt_202201054
crossref_primary_10_1021_jacs_4c15553
crossref_primary_10_1039_D4SC01409J
crossref_primary_10_3390_polym16101408
crossref_primary_10_1039_D3SC04052F
crossref_primary_10_1002_adma_202403048
crossref_primary_10_1039_D3PY00241A
crossref_primary_10_1002_macp_202300274
crossref_primary_10_1002_marc_202200414
crossref_primary_10_1039_D3OB00958K
crossref_primary_10_1021_jacs_3c05373
crossref_primary_10_1021_acs_macromol_4c00366
crossref_primary_10_1002_anie_202408592
crossref_primary_10_1021_acs_macromol_4c01610
crossref_primary_10_1002_ange_202424225
crossref_primary_10_1016_j_chempr_2023_07_004
crossref_primary_10_1021_jacs_3c12174
crossref_primary_10_3390_ma17091947
crossref_primary_10_1016_j_pmatsci_2023_101113
crossref_primary_10_1007_s11426_023_1733_0
crossref_primary_10_4236_ojpchem_2024_143008
crossref_primary_10_1002_ange_202403026
crossref_primary_10_1002_anie_202309582
crossref_primary_10_1021_acsami_3c14483
crossref_primary_10_1002_pls2_10116
crossref_primary_10_3390_polym14225013
crossref_primary_10_1002_cphc_202400291
crossref_primary_10_1002_pi_6475
crossref_primary_10_1016_j_progpolymsci_2024_101871
crossref_primary_10_1002_ange_202314729
crossref_primary_10_1039_D2SC05197D
crossref_primary_10_1021_acs_macromol_3c02346
crossref_primary_10_1039_D3SC05143A
crossref_primary_10_1021_acs_macromol_3c01928
crossref_primary_10_1039_D5SC00997A
crossref_primary_10_1039_D1CS00069A
crossref_primary_10_1039_D1PY01530C
crossref_primary_10_1038_s44160_023_00462_9
crossref_primary_10_1007_s42765_023_00329_w
crossref_primary_10_1016_j_progpolymsci_2022_101555
crossref_primary_10_1002_mabi_202400316
crossref_primary_10_1002_adfm_202411319
crossref_primary_10_1021_acs_macromol_1c02521
crossref_primary_10_1002_cjoc_202200620
crossref_primary_10_1016_j_eurpolymj_2023_112631
crossref_primary_10_1039_D3PY00042G
crossref_primary_10_1016_j_polymer_2023_126036
crossref_primary_10_1038_s41428_022_00698_w
crossref_primary_10_1021_acs_macromol_2c00841
crossref_primary_10_1021_acs_macromol_2c02585
crossref_primary_10_1021_acsapm_3c00168
Cites_doi 10.1002/adma.201503870
10.1002/pola.20394
10.1021/acsmacrolett.8b00290
10.1002/pola.21216
10.1002/pola.29405
10.1016/j.polymer.2013.06.059
10.1021/acsmacrolett.9b00716
10.1002/app.13493
10.1039/D0PY01086C
10.1002/1099-0518(20001001)38:19<3596::AID-POLA150>3.0.CO;2-F
10.1039/C4PY01251H
10.1021/acs.macromol.5b01893
10.1039/C6PY01433J
10.1002/pi.1187
10.1016/j.radphyschem.2015.03.013
10.1016/S0032-3861(03)00525-1
10.1021/bm700526j
10.1002/advs.202001656
10.1002/(SICI)1099-0518(20000615)38:12<2121::AID-POLA10>3.0.CO;2-X
10.1016/S0040-4020(01)91341-9
10.1002/pola.10513
10.1021/cm0510864
10.1021/acs.macromol.9b00112
10.1002/1521-3935(20010601)202:9<1970::AID-MACP1970>3.0.CO;2-Q
10.1021/acs.macromol.0c02715
10.1002/1521-3935(20010601)202:9<1980::AID-MACP1980>3.0.CO;2-O
10.1016/0014-3057(90)90014-U
10.1039/D0PY01413C
10.1016/j.colsurfa.2006.02.032
10.1039/C7CC07241D
10.1021/acs.macromol.1c00565
10.1002/mats.201500076
10.1002/macp.200600026
10.1016/S0014-3057(02)00247-1
10.1002/anie.202106418
10.1021/ja983239c
10.1002/pola.22005
10.1002/marc.201300578
10.1002/9783527622757.ch3
10.1002/macp.200300191
10.1021/ma500883y
10.1021/acs.macromol.5b00965
10.1002/pola.29199
10.1016/j.eurpolymj.2006.12.022
10.1016/j.progpolymsci.2018.08.003
10.1002/anie.201809759
10.1039/C6PY00808A
10.1007/s10570-014-0416-y
10.1016/j.progpolymsci.2016.06.005
10.1016/j.progpolymsci.2019.101183
10.1002/pi.6130
10.1002/pi.2307
10.1021/bk-2015-1187.ch013
10.1007/BF00264156
10.1039/C7PY01752A
10.1021/ma0509661
10.1002/pola.22686
10.1002/marc.201800240
10.1039/C7PY00939A
10.1021/ma050131q
10.1002/app.21622
10.1002/macp.200400131
10.1021/ma9804951
10.1038/ncomms10514
10.1039/C7PY00787F
10.1021/ma021729q
10.1039/C4PY01317D
10.1002/pi.1039
10.1002/marc.1982.030030208
10.1002/app.45270
10.1002/macp.201600141
10.1002/anie.201810384
10.1021/acsmacrolett.6b00818
10.1002/app.25357
10.1021/ma060157x
10.1021/ja501745g
10.1021/ma047373v
10.1021/ma951914m
10.1021/acsmacrolett.6b00828
10.1002/pola.22684
10.3390/polym11101722
10.1016/j.polymer.2007.11.020
10.1002/pola.10194
10.1021/ma300410v
10.1039/C9PY00022D
10.1039/D0PY01104E
10.1039/C5PY01257K
10.1002/marc.200600115
10.1021/ma5002244
10.1039/C6MH00265J
10.1021/acs.macromol.9b01365
10.1039/D0PY00054J
10.1016/j.trechm.2020.05.001
10.1021/ma00156a007
10.1021/ma070984d
10.1039/C5CC01562F
10.1016/j.tet.2010.05.107
10.1002/marc.201600004
10.1002/adma.200601554
10.1039/C7CS00587C
10.1021/ma702406b
10.1002/app.21417
10.1016/j.polymer.2007.08.043
10.1039/C7PY00713B
10.1021/acsmacrolett.6b00235
10.1039/D0PY01651A
10.1002/pola.10042
10.1021/ma0703094
10.1021/ma202007h
10.1039/C7PY01741C
10.1021/ma402435n
10.1039/C8PY00970H
10.1039/c39880000308
10.1002/anie.199706721
10.1007/BF01216666
10.1002/marc.1982.030030209
10.1039/C6PY01994C
10.1039/C9PY01763A
10.1039/B9PY00340A
10.1002/1521-3935(20020201)203:3<477::AID-MACP477>3.0.CO;2-M
10.1002/anie.200604922
10.1071/CH20260
10.1039/C3CS60290G
10.1039/C5PY00840A
10.1021/acs.macromol.7b00767
10.1002/app.25581
10.1016/j.polymer.2018.07.054
10.1021/ma0204296
10.1002/pola.21868
10.1021/ma051997z
10.3762/bjoc.9.61
10.1016/j.polymer.2014.12.007
10.1021/cr990124y
10.1016/j.radphyschem.2014.11.010
10.1016/j.chempr.2016.12.007
10.1021/ma021371y
10.1002/pola.20395
10.1016/0014-3057(89)90023-2
10.1021/acsapm.9b00458
10.1021/ma400208j
10.1021/acs.macromol.8b01708
10.1002/pola.10982
10.1039/C8PY00050F
10.1016/j.radphyschem.2013.07.016
10.1016/j.eurpolymj.2015.05.019
10.1002/anie.201003888
10.1002/marc.201600482
10.1002/pola.1993.080310308
10.1039/C9PY01419E
10.1002/adma.201201928
10.1021/acsphotonics.7b00206
10.1039/C5PY00608B
10.1016/j.eurpolymj.2008.03.012
10.1016/j.polymer.2005.10.111
10.1021/ma00208a050
10.1039/C8CC02783H
10.1002/admi.201801042
10.1002/marc.202000058
10.1002/marc.201500427
10.1002/advs.201500394
10.1038/ncomms3505
10.1002/anie.201912608
10.1021/ma101893u
10.1021/acsmacrolett.5b00530
10.1002/1521-3927(20020801)23:12<717::AID-MARC717>3.0.CO;2-I
10.1039/b512057h
10.1021/acsapm.0c00888
10.1039/C9PY00213H
10.1039/C7PY01531C
10.1039/C6PY02220K
10.1021/acsmacrolett.0c00203
10.1039/C5PY00478K
10.1002/pola.10086
10.1021/jo201385b
10.1016/j.reactfunctpolym.2017.02.003
10.1021/bk-2009-1024.ch001
10.1016/j.progpolymsci.2020.101311
10.1021/acs.chemrev.5b00671
10.1021/ma971166w
10.1039/C7PY01157A
10.1002/anie.201207966
10.1351/PAC-CON-10-08-07
10.1002/anie.201610223
10.1039/C6PY01849A
10.1039/cs9720100465
10.1039/C6CC06010B
10.1021/ma8014678
10.1021/acsmacrolett.9b00643
10.1039/C8PY00571K
10.1016/j.radphyschem.2017.01.041
10.1038/nchem.2713
10.1016/j.polymer.2008.12.027
10.1021/ma0701484
10.1021/ma070825u
ContentType Journal Article
Copyright 2021 The Authors. Macromolecular Rapid Communications published by Wiley‐VCH GmbH
2021 The Authors. Macromolecular Rapid Communications published by Wiley-VCH GmbH.
2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. Macromolecular Rapid Communications published by Wiley‐VCH GmbH
– notice: 2021 The Authors. Macromolecular Rapid Communications published by Wiley-VCH GmbH.
– notice: 2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8FD
JG9
JQ2
L7M
7X8
DOI 10.1002/marc.202100514
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Materials Research Database
CrossRef

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3927
EndPage n/a
ExternalDocumentID 34750911
10_1002_marc_202100514
MARC202100514
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft (DFG)
  funderid: HA 7725/2‐1
– fundername: Deutsche Forschungsgemeinschaft (DFG)
  grantid: HA 7725/2-1
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
GYXMG
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6T
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWB
RWI
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZY4
ZZTAW
~IA
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
JQ2
L7M
7X8
ID FETCH-LOGICAL-c4794-b79aeee0389481f264a3128eb82ab9d1c8c1cfc47e78fa491d6bf8de4df113103
IEDL.DBID DR2
ISSN 1022-1336
1521-3927
IngestDate Thu Jul 10 18:24:03 EDT 2025
Sun Jul 13 04:31:47 EDT 2025
Wed Feb 19 02:28:26 EST 2025
Tue Jul 01 03:31:45 EDT 2025
Thu Apr 24 22:55:55 EDT 2025
Wed Jan 22 16:26:28 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords reversible addition-fragmentation chain-transfer polymerization
photo-mediated polymerization
photo-iniferter reversible addition-fragmentation chain-transfer
light
radical polymerization
Language English
License Attribution-NonCommercial
2021 The Authors. Macromolecular Rapid Communications published by Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4794-b79aeee0389481f264a3128eb82ab9d1c8c1cfc47e78fa491d6bf8de4df113103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-5330-7186
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmarc.202100514
PMID 34750911
PQID 2617222613
PQPubID 1016394
PageCount 25
ParticipantIDs proquest_miscellaneous_2595564744
proquest_journals_2617222613
pubmed_primary_34750911
crossref_citationtrail_10_1002_marc_202100514
crossref_primary_10_1002_marc_202100514
wiley_primary_10_1002_marc_202100514_MARC202100514
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2022
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Macromolecular rapid communications.
PublicationTitleAlternate Macromol Rapid Commun
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2007; 103
2013; 4
2007; 105
2019; 11
2019; 10
2006; 39
2020; 11
2021; 74
2004; 205
2003; 52
2016; 37
2014; 136
2021; 70
2018; 47
2013; 9
2014; 21
2018; 7
2018; 9
2018; 39
2006; 207
2010; 1
2018; 5
2013; 54
2006; 27
1993; 31
2013; 52
2007; 8
2006; 281
2012; 24
2014; 94
2003; 44
2019; 8
2015; 57
2007; 19
2004; 42
2020; 41
2015; 51
2019; 1
2003; 36
2014; 47
1986; 19
2008; 57
2011; 76
2003; 39
2017; 134
2001; 202
2014; 43
2015; 68
2017; 50
2016; 5
2017; 53
2016; 7
2021; 54
1990; 23
2016; 3
1990; 26
2016; 217
2006; 44
2015; 112
1997; 36
2008; 49
2017; 56
2005; 95
2005; 96
2008; 46
2014; 35
2008; 44
2001; 39
2008; 41
2021; 60
2012; 45
2005; 17
2016; 25
2017; 8
2001; 101
2015; 36
2017; 2
2009; 42
2017; 4
2019; 52
2019; 57
2019; 58
1999; 121
2015; 108
2017; 113
2017; 9
2020; 7
2010; 66
2015; 48
1996; 29
2020; 2
2009; 50
2002; 40
2017; 38
1984; 11
1982; 3
2020; 9
1982; 7
2016; 116
2005; 38
2018; 142
2015; 6
2015; 4
2013; 46
2002; 35
2009
2008
2005; 42
2016; 52
2005; 43
1969; 57
2020; 100
1985; 41
2004; 91
1989; 25
1972; 1
2005; 46
2010; 83
1988; 4
2015; 27
2000; 38
2021; 12
2018; 151
2019; 88
2002; 23
2011; 50
2002; 203
2011; 44
2016; 62
2020; 111
2015
2018; 51
2007; 40
2007; 43
2018; 54
1998; 31
2007; 45
2007; 46
2007; 48
2018; 57
e_1_2_12_130_1
e_1_2_12_191_1
e_1_2_12_2_1
e_1_2_12_138_1
e_1_2_12_115_1
e_1_2_12_153_1
e_1_2_12_176_1
e_1_2_12_85_1
e_1_2_12_24_1
e_1_2_12_62_1
e_1_2_12_180_1
e_1_2_12_104_1
e_1_2_12_127_1
e_1_2_12_142_1
e_1_2_12_165_1
e_1_2_12_188_1
e_1_2_12_96_1
e_1_2_12_139_1
e_1_2_12_35_1
e_1_2_12_58_1
e_1_2_12_12_1
e_1_2_12_73_1
e_1_2_12_50_1
e_1_2_12_3_1
e_1_2_12_152_1
e_1_2_12_190_1
e_1_2_12_137_1
e_1_2_12_114_1
e_1_2_12_175_1
e_1_2_12_63_1
e_1_2_12_86_1
e_1_2_12_25_1
e_1_2_12_48_1
Otsu T. (e_1_2_12_44_1) 1982; 7
e_1_2_12_141_1
e_1_2_12_149_1
e_1_2_12_126_1
e_1_2_12_164_1
e_1_2_12_103_1
e_1_2_12_187_1
e_1_2_12_74_1
e_1_2_12_97_1
e_1_2_12_36_1
e_1_2_12_59_1
e_1_2_12_13_1
e_1_2_12_51_1
e_1_2_12_193_1
e_1_2_12_19_1
e_1_2_12_170_1
e_1_2_12_132_1
e_1_2_12_178_1
e_1_2_12_155_1
e_1_2_12_106_1
e_1_2_12_129_1
e_1_2_12_22_1
e_1_2_12_45_1
e_1_2_12_68_1
e_1_2_12_83_1
e_1_2_12_60_1
e_1_2_12_182_1
e_1_2_12_121_1
e_1_2_12_144_1
e_1_2_12_167_1
e_1_2_12_118_1
e_1_2_12_33_1
e_1_2_12_56_1
e_1_2_12_79_1
e_1_2_12_8_1
e_1_2_12_10_1
e_1_2_12_94_1
e_1_2_12_71_1
e_1_2_12_192_1
e_1_2_12_1_1
e_1_2_12_116_1
e_1_2_12_131_1
e_1_2_12_154_1
e_1_2_12_177_1
e_1_2_12_128_1
e_1_2_12_23_1
e_1_2_12_46_1
e_1_2_12_69_1
e_1_2_12_61_1
e_1_2_12_84_1
e_1_2_12_181_1
e_1_2_12_120_1
e_1_2_12_105_1
e_1_2_12_143_1
e_1_2_12_189_1
e_1_2_12_166_1
e_1_2_12_117_1
e_1_2_12_34_1
e_1_2_12_57_1
e_1_2_12_11_1
e_1_2_12_72_1
e_1_2_12_95_1
e_1_2_12_9_1
e_1_2_12_195_1
e_1_2_12_6_1
e_1_2_12_172_1
e_1_2_12_17_1
e_1_2_12_111_1
e_1_2_12_157_1
e_1_2_12_134_1
e_1_2_12_108_1
e_1_2_12_20_1
e_1_2_12_66_1
e_1_2_12_43_1
e_1_2_12_89_1
Xu J. (e_1_2_12_40_1) 2015
e_1_2_12_81_1
e_1_2_12_161_1
e_1_2_12_184_1
e_1_2_12_100_1
e_1_2_12_123_1
e_1_2_12_146_1
e_1_2_12_169_1
e_1_2_12_28_1
e_1_2_12_31_1
e_1_2_12_77_1
e_1_2_12_54_1
e_1_2_12_92_1
e_1_2_12_171_1
e_1_2_12_194_1
e_1_2_12_18_1
e_1_2_12_110_1
e_1_2_12_179_1
e_1_2_12_133_1
e_1_2_12_156_1
e_1_2_12_21_1
e_1_2_12_107_1
e_1_2_12_67_1
Otsu T. (e_1_2_12_47_1) 1984; 11
e_1_2_12_82_1
e_1_2_12_160_1
e_1_2_12_183_1
e_1_2_12_122_1
e_1_2_12_168_1
e_1_2_12_29_1
e_1_2_12_145_1
e_1_2_12_119_1
e_1_2_12_32_1
e_1_2_12_55_1
e_1_2_12_78_1
e_1_2_12_7_1
e_1_2_12_70_1
e_1_2_12_93_1
e_1_2_12_4_1
e_1_2_12_174_1
e_1_2_12_151_1
e_1_2_12_38_1
e_1_2_12_136_1
e_1_2_12_159_1
e_1_2_12_113_1
e_1_2_12_41_1
e_1_2_12_87_1
e_1_2_12_64_1
e_1_2_12_26_1
e_1_2_12_140_1
e_1_2_12_163_1
e_1_2_12_49_1
e_1_2_12_148_1
e_1_2_12_102_1
e_1_2_12_125_1
e_1_2_12_186_1
e_1_2_12_52_1
e_1_2_12_98_1
e_1_2_12_75_1
e_1_2_12_37_1
e_1_2_12_14_1
e_1_2_12_90_1
e_1_2_12_150_1
e_1_2_12_173_1
e_1_2_12_196_1
e_1_2_12_5_1
e_1_2_12_16_1
e_1_2_12_112_1
e_1_2_12_135_1
e_1_2_12_158_1
e_1_2_12_39_1
e_1_2_12_42_1
e_1_2_12_65_1
e_1_2_12_88_1
e_1_2_12_109_1
e_1_2_12_80_1
e_1_2_12_185_1
e_1_2_12_162_1
e_1_2_12_27_1
e_1_2_12_101_1
e_1_2_12_147_1
e_1_2_12_124_1
e_1_2_12_30_1
e_1_2_12_53_1
e_1_2_12_76_1
e_1_2_12_99_1
e_1_2_12_15_1
e_1_2_12_91_1
34994488 - Macromol Rapid Commun. 2022 Jan;43(1):e2100856
References_xml – volume: 8
  start-page: 3965
  year: 2017
  publication-title: Polym. Chem.
– volume: 8
  start-page: 4637
  year: 2017
  publication-title: Polym. Chem.
– volume: 44
  start-page: 5119
  year: 2003
  publication-title: Polymer
– volume: 52
  start-page: 1479
  year: 2019
  publication-title: Macromolecules
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 57
  start-page: 2002
  year: 2019
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
– volume: 12
  start-page: 1105
  year: 2021
  publication-title: Polym. Chem.
– volume: 46
  start-page: 3099
  year: 2007
  publication-title: Angew. Chem., Int. Ed.
– volume: 39
  start-page: 1384
  year: 2006
  publication-title: Macromolecules
– volume: 203
  start-page: 477
  year: 2002
  publication-title: Macromol. Chem. Phys.
– volume: 52
  start-page: 2235
  year: 2013
  publication-title: Angew. Chem., Int. Ed.
– volume: 50
  start-page: 973
  year: 2009
  publication-title: Polymer
– volume: 8
  start-page: 1519
  year: 2017
  publication-title: Polym. Chem.
– volume: 6
  start-page: 1502
  year: 2015
  publication-title: Polym. Chem.
– volume: 51
  start-page: 7776
  year: 2018
  publication-title: Macromolecules
– volume: 10
  start-page: 2477
  year: 2019
  publication-title: Polym. Chem.
– volume: 35
  start-page: 234
  year: 2014
  publication-title: Macromol. Rapid Commun.
– volume: 29
  start-page: 7310
  year: 1996
  publication-title: Macromolecules
– start-page: 247
  year: 2015
  end-page: 267
– volume: 19
  start-page: 287
  year: 1986
  publication-title: Macromolecules
– volume: 95
  start-page: 413
  year: 2005
  publication-title: J. Appl. Polym. Sci.
– volume: 3
  start-page: 471
  year: 2016
  publication-title: Mater. Horiz.
– volume: 11
  start-page: 6129
  year: 2020
  publication-title: Polym. Chem.
– volume: 9
  start-page: 4947
  year: 2018
  publication-title: Polym. Chem.
– volume: 62
  start-page: 73
  year: 2016
  publication-title: Prog. Polym. Sci.
– volume: 36
  start-page: 2181
  year: 2015
  publication-title: Macromol. Rapid Commun.
– volume: 47
  start-page: 4217
  year: 2014
  publication-title: Macromolecules
– volume: 23
  start-page: 717
  year: 2002
  publication-title: Macromol. Rapid Commun.
– volume: 50
  start-page: 1660
  year: 2011
  publication-title: Angew. Chem., Int. Ed.
– volume: 52
  start-page: 1010
  year: 2003
  publication-title: Polym. Int.
– volume: 74
  start-page: 56
  year: 2021
  publication-title: Aust. J. Chem.
– volume: 9
  start-page: 2897
  year: 2018
  publication-title: Polym. Chem.
– volume: 42
  start-page: 1640
  year: 2009
  publication-title: Macromolecules
– volume: 8
  start-page: 177
  year: 2017
  publication-title: Polym. Chem.
– volume: 24
  start-page: 3975
  year: 2012
  publication-title: Adv. Mater.
– volume: 27
  start-page: 821
  year: 2006
  publication-title: Macromol. Rapid Commun.
– volume: 43
  start-page: 230
  year: 2005
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
– volume: 8
  start-page: 1461
  year: 2019
  publication-title: ACS Macro Lett.
– volume: 38
  year: 2017
  publication-title: Macromol. Rapid Commun.
– volume: 96
  start-page: 1810
  year: 2005
  publication-title: J. Appl. Polym. Sci.
– volume: 36
  start-page: 5960
  year: 2003
  publication-title: Macromolecules
– volume: 57
  start-page: 12
  year: 2015
  publication-title: Polymer
– volume: 45
  start-page: 2436
  year: 2007
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
– volume: 54
  start-page: 6591
  year: 2018
  publication-title: Chem. Commun.
– volume: 12
  start-page: 581
  year: 2021
  publication-title: Polym. Chem.
– volume: 57
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 49
  start-page: 1079
  year: 2008
  publication-title: Polymer
– volume: 151
  start-page: 6
  year: 2018
  publication-title: Polymer
– volume: 26
  start-page: 1125
  year: 1990
  publication-title: Eur. Polym. J.
– volume: 52
  start-page: 98
  year: 2003
  publication-title: Polym. Int.
– volume: 1
  start-page: 465
  year: 1972
  publication-title: Chem. Soc. Rev.
– volume: 9
  start-page: 613
  year: 2020
  publication-title: ACS Macro Lett.
– volume: 8
  start-page: 4152
  year: 2017
  publication-title: Polym. Chem.
– volume: 41
  year: 2020
  publication-title: Macromol. Rapid Commun.
– volume: 21
  start-page: 4067
  year: 2014
  publication-title: Cellulose
– volume: 4
  start-page: 2505
  year: 2013
  publication-title: Nat. Commun.
– volume: 136
  start-page: 5508
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 3
  year: 2016
  publication-title: Adv. Sci.
– start-page: 51
  year: 2008
  end-page: 104
– start-page: 3
  year: 2009
  end-page: 18
– volume: 8
  start-page: 2404
  year: 2007
  publication-title: Biomacromolecules
– volume: 83
  start-page: 519
  year: 2010
  publication-title: Pure Appl. Chem.
– volume: 9
  start-page: 60
  year: 2018
  publication-title: Polym. Chem.
– volume: 281
  start-page: 156
  year: 2006
  publication-title: Colloids Surf., A
– volume: 207
  start-page: 836
  year: 2006
  publication-title: Macromol. Chem. Phys.
– volume: 10
  start-page: 1585
  year: 2019
  publication-title: Polym. Chem.
– volume: 44
  start-page: 1849
  year: 2008
  publication-title: Eur. Polym. J.
– volume: 11
  start-page: 5962
  year: 2020
  publication-title: Polym. Chem.
– volume: 5
  start-page: 1278
  year: 2016
  publication-title: ACS Macro Lett.
– volume: 6
  start-page: 5766
  year: 2015
  publication-title: Polym. Chem.
– volume: 7
  start-page: 4246
  year: 2016
  publication-title: Polym. Chem.
– volume: 31
  start-page: 5559
  year: 1998
  publication-title: Macromolecules
– volume: 47
  start-page: 4357
  year: 2018
  publication-title: Chem. Soc. Rev.
– volume: 40
  start-page: 4180
  year: 2002
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
– volume: 111
  year: 2020
  publication-title: Prog. Polym. Sci.
– volume: 27
  start-page: 8007
  year: 2015
  publication-title: Adv. Mater.
– volume: 40
  start-page: 7171
  year: 2007
  publication-title: Macromolecules
– volume: 58
  start-page: 3183
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 1
  start-page: 149
  year: 2010
  publication-title: Polym. Chem.
– volume: 103
  start-page: 1769
  year: 2007
  publication-title: J. Appl. Polym. Sci.
– volume: 2
  start-page: 689
  year: 2020
  publication-title: Trends Chem.
– volume: 38
  start-page: 4901
  year: 2005
  publication-title: Macromolecules
– volume: 47
  start-page: 1929
  year: 2014
  publication-title: Macromolecules
– volume: 112
  start-page: 76
  year: 2015
  publication-title: Radiat. Phys. Chem.
– volume: 54
  start-page: 3430
  year: 2021
  publication-title: Macromolecules
– volume: 8
  start-page: 7452
  year: 2017
  publication-title: Polym. Chem.
– volume: 54
  start-page: 6649
  year: 2021
  publication-title: Macromolecules
– volume: 38
  start-page: 2121
  year: 2000
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
– volume: 11
  start-page: 1722
  year: 2019
  publication-title: Polymers
– volume: 48
  start-page: 7792
  year: 2015
  publication-title: Macromolecules
– volume: 35
  start-page: 7620
  year: 2002
  publication-title: Macromolecules
– volume: 51
  start-page: 6742
  year: 2015
  publication-title: Chem. Commun.
– volume: 23
  start-page: 1856
  year: 1990
  publication-title: Macromolecules
– volume: 57
  start-page: 62
  year: 1969
  publication-title: Microchim. Acta
– volume: 113
  start-page: 1
  year: 2017
  publication-title: React. Funct. Polym.
– volume: 31
  start-page: 653
  year: 1993
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
– volume: 44
  start-page: 166
  year: 2011
  publication-title: Macromolecules
– volume: 4
  start-page: 308
  year: 1988
  publication-title: J. Chem. Soc., Chem. Commun.
– volume: 46
  start-page: 2576
  year: 2013
  publication-title: Macromolecules
– volume: 205
  start-page: 1125
  year: 2004
  publication-title: Macromol. Chem. Phys.
– volume: 108
  start-page: 95
  year: 2015
  publication-title: Radiat. Phys. Chem.
– volume: 25
  start-page: 104
  year: 2016
  publication-title: Macromol. Theory Simul.
– volume: 9
  start-page: 537
  year: 2017
  publication-title: Nat. Chem.
– volume: 217
  start-page: 1777
  year: 2016
  publication-title: Macromol. Chem. Phys.
– volume: 45
  start-page: 1074
  year: 2007
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
– volume: 121
  start-page: 6599
  year: 1999
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 1896
  year: 2019
  publication-title: ACS Appl. Polym. Mater.
– volume: 6
  start-page: 5615
  year: 2015
  publication-title: Polym. Chem.
– volume: 5
  start-page: 558
  year: 2016
  publication-title: ACS Macro Lett.
– volume: 100
  year: 2020
  publication-title: Prog. Polym. Sci.
– volume: 7
  start-page: 45
  year: 1982
  publication-title: Polym. Bull.
– volume: 7
  start-page: 745
  year: 2018
  publication-title: ACS Macro Lett.
– volume: 39
  start-page: 3934
  year: 2001
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
– volume: 37
  start-page: 799
  year: 2016
  publication-title: Macromol. Rapid Commun.
– volume: 205
  start-page: 1793
  year: 2004
  publication-title: Macromol. Chem. Phys.
– volume: 48
  start-page: 6467
  year: 2007
  publication-title: Polymer
– volume: 202
  start-page: 1970
  year: 2001
  publication-title: Macromol. Chem. Phys.
– volume: 38
  start-page: 3051
  year: 2005
  publication-title: Macromolecules
– volume: 45
  start-page: 5321
  year: 2012
  publication-title: Macromolecules
– volume: 3
  start-page: 127
  year: 1982
  publication-title: Macromol. Rapid Commun.
– volume: 41
  start-page: 5393
  year: 1985
  publication-title: Tetrahedron
– volume: 7
  start-page: 6626
  year: 2016
  publication-title: Polym. Chem.
– volume: 40
  start-page: 1058
  year: 2002
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
– volume: 3
  start-page: 133
  year: 1982
  publication-title: Macromol. Rapid Commun.
– volume: 11
  start-page: 2080
  year: 2020
  publication-title: Polym. Chem.
– volume: 40
  start-page: 19
  year: 2002
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
– volume: 41
  start-page: 2347
  year: 2008
  publication-title: Macromolecules
– volume: 47
  start-page: 3451
  year: 2014
  publication-title: Macromolecules
– volume: 44
  start-page: 857
  year: 2006
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
– volume: 4
  start-page: 1453
  year: 2017
  publication-title: ACS Photonics
– volume: 11
  start-page: 135
  year: 1984
  publication-title: Polym. Bull.
– volume: 25
  start-page: 643
  year: 1989
  publication-title: Eur. Polym. J.
– volume: 76
  start-page: 8232
  year: 2011
  publication-title: J. Org. Chem.
– volume: 8
  start-page: 6496
  year: 2017
  publication-title: Polym. Chem.
– volume: 66
  start-page: 6656
  year: 2010
  publication-title: Tetrahedron
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 46
  year: 2005
  publication-title: Polymer
– volume: 48
  start-page: 3864
  year: 2015
  publication-title: Macromolecules
– volume: 38
  start-page: 3596
  year: 2000
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
– volume: 94
  start-page: 98
  year: 2014
  publication-title: Radiat. Phys. Chem.
– volume: 5
  year: 2018
  publication-title: Adv. Mater. Interfaces
– volume: 40
  start-page: 2978
  year: 2007
  publication-title: Macromolecules
– volume: 43
  start-page: 847
  year: 2007
  publication-title: Eur. Polym. J.
– volume: 11
  start-page: 641
  year: 2020
  publication-title: Polym. Chem.
– volume: 134
  year: 2017
  publication-title: J. Appl. Polym. Sci.
– volume: 2
  start-page: 5327
  year: 2020
  publication-title: ACS Appl. Polym. Mater.
– volume: 8
  start-page: 1291
  year: 2019
  publication-title: ACS Macro Lett.
– volume: 101
  start-page: 3581
  year: 2001
  publication-title: Chem. Rev.
– volume: 202
  start-page: 1980
  year: 2001
  publication-title: Macromol. Chem. Phys.
– volume: 2
  start-page: 93
  year: 2017
  publication-title: Chem
– volume: 11
  start-page: 1830
  year: 2020
  publication-title: Polym. Chem.
– volume: 8
  start-page: 6024
  year: 2017
  publication-title: Polym. Chem.
– volume: 39
  start-page: 449
  year: 2003
  publication-title: Eur. Polym. J.
– volume: 19
  start-page: 268
  year: 2007
  publication-title: Adv. Mater.
– volume: 5
  start-page: 1287
  year: 2016
  publication-title: ACS Macro Lett.
– volume: 54
  start-page: 4838
  year: 2013
  publication-title: Polymer
– volume: 39
  year: 2018
  publication-title: Macromol. Rapid Commun.
– volume: 36
  start-page: 3505
  year: 2003
  publication-title: Macromolecules
– volume: 57
  start-page: 28
  year: 2008
  publication-title: Polym. Int.
– volume: 57
  start-page: 216
  year: 2019
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
– volume: 105
  start-page: 398
  year: 2007
  publication-title: J. Appl. Polym. Sci.
– volume: 40
  start-page: 7140
  year: 2007
  publication-title: Macromolecules
– volume: 58
  year: 2019
– volume: 7
  year: 2020
  publication-title: Adv. Sci.
– volume: 91
  start-page: 3233
  year: 2004
  publication-title: J. Appl. Polym. Sci.
– volume: 6
  start-page: 7717
  year: 2015
  publication-title: Polym. Chem.
– volume: 36
  start-page: 672
  year: 1997
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  start-page: 3388
  year: 2018
  publication-title: Polym. Chem.
– volume: 17
  start-page: 4574
  year: 2005
  publication-title: Chem. Mater.
– volume: 68
  start-page: 398
  year: 2015
  publication-title: Eur. Polym. J.
– volume: 42
  start-page: 5670
  year: 2004
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
– volume: 8
  start-page: 1760
  year: 2017
  publication-title: Polym. Chem.
– volume: 53
  year: 2017
  publication-title: Chem. Commun.
– volume: 88
  start-page: 130
  year: 2019
  publication-title: Prog. Polym. Sci.
– volume: 142
  start-page: 77
  year: 2018
  publication-title: Radiat. Phys. Chem.
– volume: 38
  start-page: 8202
  year: 2005
  publication-title: Macromolecules
– volume: 52
  start-page: 9068
  year: 2019
  publication-title: Macromolecules
– volume: 39
  start-page: 3770
  year: 2006
  publication-title: Macromolecules
– volume: 44
  start-page: 9213
  year: 2011
  publication-title: Macromolecules
– volume: 46
  start-page: 3155
  year: 2008
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
– volume: 46
  start-page: 3387
  year: 2008
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
– volume: 40
  start-page: 4142
  year: 2007
  publication-title: Macromolecules
– volume: 4
  start-page: 1012
  year: 2015
  publication-title: ACS Macro Lett.
– volume: 42
  start-page: 76
  year: 2004
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
– volume: 6
  start-page: 4875
  year: 2015
  publication-title: Polym. Chem.
– volume: 31
  start-page: 1436
  year: 1998
  publication-title: Macromolecules
– volume: 43
  start-page: 496
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 7
  start-page: 197
  year: 1982
  publication-title: Polym. Bull.
– volume: 42
  start-page: 5287
  year: 2005
  publication-title: Chem. Commun.
– volume: 70
  start-page: 918
  year: 2021
  publication-title: Polym. Int.
– volume: 116
  year: 2016
  publication-title: Chem. Rev.
– volume: 52
  year: 2016
  publication-title: Chem. Commun.
– volume: 50
  start-page: 7433
  year: 2017
  publication-title: Macromolecules
– volume: 6
  start-page: 5362
  year: 2015
  publication-title: Polym. Chem.
– volume: 56
  start-page: 8376
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  start-page: 557
  year: 2013
  publication-title: Beilstein J. Org. Chem.
– ident: e_1_2_12_177_1
  doi: 10.1002/adma.201503870
– volume: 11
  start-page: 135
  year: 1984
  ident: e_1_2_12_47_1
  publication-title: Polym. Bull.
– ident: e_1_2_12_64_1
  doi: 10.1002/pola.20394
– ident: e_1_2_12_171_1
  doi: 10.1021/acsmacrolett.8b00290
– ident: e_1_2_12_178_1
  doi: 10.1002/pola.21216
– ident: e_1_2_12_119_1
  doi: 10.1002/pola.29405
– ident: e_1_2_12_180_1
  doi: 10.1016/j.polymer.2013.06.059
– ident: e_1_2_12_117_1
  doi: 10.1021/acsmacrolett.9b00716
– ident: e_1_2_12_93_1
  doi: 10.1002/app.13493
– ident: e_1_2_12_126_1
  doi: 10.1039/D0PY01086C
– ident: e_1_2_12_88_1
  doi: 10.1002/1099-0518(20001001)38:19<3596::AID-POLA150>3.0.CO;2-F
– ident: e_1_2_12_128_1
  doi: 10.1039/C4PY01251H
– ident: e_1_2_12_13_1
  doi: 10.1021/acs.macromol.5b01893
– ident: e_1_2_12_125_1
  doi: 10.1039/C6PY01433J
– ident: e_1_2_12_90_1
  doi: 10.1002/pi.1187
– ident: e_1_2_12_84_1
  doi: 10.1016/j.radphyschem.2015.03.013
– ident: e_1_2_12_97_1
  doi: 10.1016/S0032-3861(03)00525-1
– ident: e_1_2_12_75_1
  doi: 10.1021/bm700526j
– ident: e_1_2_12_9_1
  doi: 10.1002/advs.202001656
– ident: e_1_2_12_32_1
  doi: 10.1002/(SICI)1099-0518(20000615)38:12<2121::AID-POLA10>3.0.CO;2-X
– ident: e_1_2_12_41_1
  doi: 10.1016/S0040-4020(01)91341-9
– ident: e_1_2_12_87_1
  doi: 10.1002/pola.10513
– ident: e_1_2_12_68_1
  doi: 10.1021/cm0510864
– ident: e_1_2_12_11_1
  doi: 10.1021/acs.macromol.9b00112
– ident: e_1_2_12_62_1
  doi: 10.1002/1521-3935(20010601)202:9<1970::AID-MACP1970>3.0.CO;2-Q
– ident: e_1_2_12_167_1
  doi: 10.1021/acs.macromol.0c02715
– ident: e_1_2_12_61_1
  doi: 10.1002/1521-3935(20010601)202:9<1980::AID-MACP1980>3.0.CO;2-O
– ident: e_1_2_12_36_1
  doi: 10.1016/0014-3057(90)90014-U
– ident: e_1_2_12_159_1
  doi: 10.1039/D0PY01413C
– ident: e_1_2_12_78_1
  doi: 10.1016/j.colsurfa.2006.02.032
– ident: e_1_2_12_195_1
  doi: 10.1039/C7CC07241D
– ident: e_1_2_12_34_1
  doi: 10.1021/acs.macromol.1c00565
– ident: e_1_2_12_26_1
  doi: 10.1002/mats.201500076
– ident: e_1_2_12_82_1
  doi: 10.1002/macp.200600026
– ident: e_1_2_12_86_1
  doi: 10.1016/S0014-3057(02)00247-1
– ident: e_1_2_12_118_1
  doi: 10.1002/anie.202106418
– ident: e_1_2_12_54_1
  doi: 10.1021/ja983239c
– ident: e_1_2_12_110_1
  doi: 10.1002/pola.22005
– ident: e_1_2_12_196_1
  doi: 10.1002/marc.201300578
– ident: e_1_2_12_25_1
  doi: 10.1002/9783527622757.ch3
– ident: e_1_2_12_63_1
  doi: 10.1002/macp.200300191
– ident: e_1_2_12_130_1
  doi: 10.1021/ma500883y
– ident: e_1_2_12_42_1
  doi: 10.1021/acs.macromol.5b00965
– ident: e_1_2_12_50_1
  doi: 10.1002/pola.29199
– ident: e_1_2_12_81_1
  doi: 10.1016/j.eurpolymj.2006.12.022
– ident: e_1_2_12_28_1
  doi: 10.1016/j.progpolymsci.2018.08.003
– ident: e_1_2_12_108_1
  doi: 10.1002/anie.201809759
– ident: e_1_2_12_122_1
  doi: 10.1039/C6PY00808A
– ident: e_1_2_12_185_1
  doi: 10.1007/s10570-014-0416-y
– ident: e_1_2_12_16_1
  doi: 10.1016/j.progpolymsci.2016.06.005
– ident: e_1_2_12_17_1
  doi: 10.1016/j.progpolymsci.2019.101183
– ident: e_1_2_12_23_1
  doi: 10.1002/pi.6130
– ident: e_1_2_12_101_1
  doi: 10.1002/pi.2307
– start-page: 247
  volume-title: Controlled Radical Polymerization: Mechanisms
  year: 2015
  ident: e_1_2_12_40_1
  doi: 10.1021/bk-2015-1187.ch013
– ident: e_1_2_12_45_1
  doi: 10.1007/BF00264156
– ident: e_1_2_12_127_1
  doi: 10.1039/C7PY01752A
– ident: e_1_2_12_98_1
  doi: 10.1021/ma0509661
– ident: e_1_2_12_99_1
  doi: 10.1002/pola.22686
– ident: e_1_2_12_161_1
  doi: 10.1002/marc.201800240
– ident: e_1_2_12_170_1
  doi: 10.1039/C7PY00939A
– ident: e_1_2_12_67_1
  doi: 10.1021/ma050131q
– ident: e_1_2_12_91_1
  doi: 10.1002/app.21622
– ident: e_1_2_12_66_1
  doi: 10.1002/macp.200400131
– ident: e_1_2_12_1_1
  doi: 10.1021/ma9804951
– ident: e_1_2_12_29_1
  doi: 10.1038/ncomms10514
– ident: e_1_2_12_149_1
  doi: 10.1039/C7PY00787F
– ident: e_1_2_12_56_1
  doi: 10.1021/ma021729q
– ident: e_1_2_12_134_1
  doi: 10.1039/C4PY01317D
– ident: e_1_2_12_89_1
  doi: 10.1002/pi.1039
– ident: e_1_2_12_35_1
  doi: 10.1002/marc.1982.030030208
– ident: e_1_2_12_182_1
  doi: 10.1002/app.45270
– ident: e_1_2_12_123_1
  doi: 10.1002/macp.201600141
– ident: e_1_2_12_138_1
  doi: 10.1002/anie.201810384
– ident: e_1_2_12_131_1
  doi: 10.1021/acsmacrolett.6b00818
– ident: e_1_2_12_65_1
  doi: 10.1002/app.25357
– ident: e_1_2_12_43_1
  doi: 10.1021/ma060157x
– ident: e_1_2_12_121_1
  doi: 10.1021/ja501745g
– ident: e_1_2_12_73_1
  doi: 10.1021/ma047373v
– ident: e_1_2_12_51_1
  doi: 10.1021/ma951914m
– ident: e_1_2_12_147_1
  doi: 10.1021/acsmacrolett.6b00828
– ident: e_1_2_12_38_1
  doi: 10.1002/pola.22684
– ident: e_1_2_12_124_1
  doi: 10.3390/polym11101722
– ident: e_1_2_12_27_1
  doi: 10.1016/j.polymer.2007.11.020
– ident: e_1_2_12_72_1
  doi: 10.1002/pola.10194
– ident: e_1_2_12_24_1
  doi: 10.1021/ma300410v
– ident: e_1_2_12_135_1
  doi: 10.1039/C9PY00022D
– ident: e_1_2_12_162_1
  doi: 10.1039/D0PY01104E
– ident: e_1_2_12_188_1
  doi: 10.1039/C5PY01257K
– ident: e_1_2_12_76_1
  doi: 10.1002/marc.200600115
– ident: e_1_2_12_113_1
  doi: 10.1021/ma5002244
– ident: e_1_2_12_3_1
  doi: 10.1039/C6MH00265J
– ident: e_1_2_12_148_1
  doi: 10.1021/acs.macromol.9b01365
– ident: e_1_2_12_18_1
  doi: 10.1039/D0PY00054J
– ident: e_1_2_12_19_1
  doi: 10.1016/j.trechm.2020.05.001
– ident: e_1_2_12_48_1
  doi: 10.1021/ma00156a007
– ident: e_1_2_12_39_1
  doi: 10.1021/ma070984d
– ident: e_1_2_12_106_1
  doi: 10.1039/C5CC01562F
– ident: e_1_2_12_156_1
  doi: 10.1016/j.tet.2010.05.107
– ident: e_1_2_12_136_1
  doi: 10.1002/marc.201600004
– ident: e_1_2_12_189_1
  doi: 10.1002/adma.200601554
– ident: e_1_2_12_129_1
  doi: 10.1039/C7CS00587C
– ident: e_1_2_12_111_1
  doi: 10.1021/ma702406b
– ident: e_1_2_12_94_1
  doi: 10.1002/app.21417
– ident: e_1_2_12_85_1
  doi: 10.1016/j.polymer.2007.08.043
– ident: e_1_2_12_160_1
  doi: 10.1039/C7PY00713B
– ident: e_1_2_12_169_1
  doi: 10.1021/acsmacrolett.6b00235
– ident: e_1_2_12_146_1
  doi: 10.1039/D0PY01651A
– ident: e_1_2_12_60_1
  doi: 10.1002/pola.10042
– ident: e_1_2_12_102_1
  doi: 10.1021/ma0703094
– ident: e_1_2_12_190_1
  doi: 10.1021/ma202007h
– ident: e_1_2_12_165_1
  doi: 10.1039/C7PY01741C
– ident: e_1_2_12_31_1
  doi: 10.1021/ma402435n
– ident: e_1_2_12_8_1
  doi: 10.1039/C8PY00970H
– ident: e_1_2_12_152_1
  doi: 10.1039/c39880000308
– ident: e_1_2_12_153_1
  doi: 10.1002/anie.199706721
– ident: e_1_2_12_96_1
  doi: 10.1007/BF01216666
– ident: e_1_2_12_46_1
  doi: 10.1002/marc.1982.030030209
– ident: e_1_2_12_133_1
  doi: 10.1039/C6PY01994C
– ident: e_1_2_12_145_1
  doi: 10.1039/C9PY01763A
– ident: e_1_2_12_2_1
  doi: 10.1039/B9PY00340A
– ident: e_1_2_12_57_1
  doi: 10.1002/1521-3935(20020201)203:3<477::AID-MACP477>3.0.CO;2-M
– ident: e_1_2_12_79_1
  doi: 10.1002/anie.200604922
– ident: e_1_2_12_12_1
  doi: 10.1071/CH20260
– ident: e_1_2_12_4_1
  doi: 10.1039/C3CS60290G
– ident: e_1_2_12_107_1
  doi: 10.1039/C5PY00840A
– ident: e_1_2_12_6_1
  doi: 10.1021/acs.macromol.7b00767
– ident: e_1_2_12_100_1
  doi: 10.1002/app.25581
– ident: e_1_2_12_194_1
  doi: 10.1016/j.polymer.2018.07.054
– ident: e_1_2_12_58_1
  doi: 10.1021/ma0204296
– ident: e_1_2_12_179_1
  doi: 10.1002/pola.21868
– ident: e_1_2_12_80_1
  doi: 10.1021/ma051997z
– ident: e_1_2_12_155_1
  doi: 10.3762/bjoc.9.61
– ident: e_1_2_12_193_1
  doi: 10.1016/j.polymer.2014.12.007
– ident: e_1_2_12_33_1
  doi: 10.1021/cr990124y
– ident: e_1_2_12_77_1
  doi: 10.1016/j.radphyschem.2014.11.010
– ident: e_1_2_12_37_1
  doi: 10.1016/j.chempr.2016.12.007
– ident: e_1_2_12_71_1
  doi: 10.1021/ma021371y
– ident: e_1_2_12_95_1
  doi: 10.1002/pola.20395
– ident: e_1_2_12_49_1
  doi: 10.1016/0014-3057(89)90023-2
– ident: e_1_2_12_172_1
  doi: 10.1021/acsapm.9b00458
– ident: e_1_2_12_104_1
  doi: 10.1021/ma400208j
– ident: e_1_2_12_166_1
  doi: 10.1021/acs.macromol.8b01708
– ident: e_1_2_12_92_1
  doi: 10.1002/pola.10982
– ident: e_1_2_12_144_1
  doi: 10.1039/C8PY00050F
– ident: e_1_2_12_186_1
  doi: 10.1016/j.radphyschem.2013.07.016
– ident: e_1_2_12_183_1
  doi: 10.1016/j.eurpolymj.2015.05.019
– ident: e_1_2_12_175_1
  doi: 10.1002/anie.201003888
– ident: e_1_2_12_143_1
  doi: 10.1002/marc.201600482
– ident: e_1_2_12_53_1
  doi: 10.1002/pola.1993.080310308
– ident: e_1_2_12_174_1
  doi: 10.1039/C9PY01419E
– ident: e_1_2_12_176_1
  doi: 10.1002/adma.201201928
– ident: e_1_2_12_192_1
  doi: 10.1021/acsphotonics.7b00206
– ident: e_1_2_12_114_1
  doi: 10.1039/C5PY00608B
– ident: e_1_2_12_59_1
  doi: 10.1016/j.eurpolymj.2008.03.012
– ident: e_1_2_12_83_1
  doi: 10.1016/j.polymer.2005.10.111
– ident: e_1_2_12_52_1
  doi: 10.1021/ma00208a050
– ident: e_1_2_12_20_1
  doi: 10.1039/C8CC02783H
– ident: e_1_2_12_191_1
  doi: 10.1002/admi.201801042
– ident: e_1_2_12_109_1
  doi: 10.1002/marc.202000058
– ident: e_1_2_12_140_1
  doi: 10.1002/marc.201500427
– ident: e_1_2_12_15_1
  doi: 10.1002/advs.201500394
– ident: e_1_2_12_30_1
  doi: 10.1038/ncomms3505
– ident: e_1_2_12_173_1
  doi: 10.1002/anie.201912608
– ident: e_1_2_12_157_1
  doi: 10.1021/ma101893u
– ident: e_1_2_12_163_1
  doi: 10.1021/acsmacrolett.5b00530
– ident: e_1_2_12_70_1
  doi: 10.1002/1521-3927(20020801)23:12<717::AID-MARC717>3.0.CO;2-I
– ident: e_1_2_12_103_1
  doi: 10.1039/b512057h
– ident: e_1_2_12_22_1
  doi: 10.1021/acsapm.0c00888
– ident: e_1_2_12_168_1
  doi: 10.1039/C9PY00213H
– ident: e_1_2_12_141_1
  doi: 10.1039/C7PY01531C
– ident: e_1_2_12_142_1
  doi: 10.1039/C6PY02220K
– ident: e_1_2_12_116_1
  doi: 10.1021/acsmacrolett.0c00203
– ident: e_1_2_12_10_1
  doi: 10.1039/C5PY00478K
– ident: e_1_2_12_69_1
  doi: 10.1002/pola.10086
– ident: e_1_2_12_112_1
  doi: 10.1021/jo201385b
– ident: e_1_2_12_139_1
  doi: 10.1016/j.reactfunctpolym.2017.02.003
– ident: e_1_2_12_151_1
  doi: 10.1021/bk-2009-1024.ch001
– ident: e_1_2_12_21_1
  doi: 10.1016/j.progpolymsci.2020.101311
– ident: e_1_2_12_14_1
  doi: 10.1021/acs.chemrev.5b00671
– ident: e_1_2_12_55_1
  doi: 10.1021/ma971166w
– ident: e_1_2_12_137_1
  doi: 10.1039/C7PY01157A
– ident: e_1_2_12_105_1
  doi: 10.1002/anie.201207966
– ident: e_1_2_12_154_1
  doi: 10.1351/PAC-CON-10-08-07
– ident: e_1_2_12_158_1
  doi: 10.1002/anie.201610223
– ident: e_1_2_12_5_1
  doi: 10.1039/C6PY01849A
– ident: e_1_2_12_115_1
  doi: 10.1039/cs9720100465
– ident: e_1_2_12_150_1
  doi: 10.1039/C6CC06010B
– ident: e_1_2_12_120_1
  doi: 10.1021/ma8014678
– ident: e_1_2_12_164_1
  doi: 10.1021/acsmacrolett.9b00643
– volume: 7
  start-page: 197
  year: 1982
  ident: e_1_2_12_44_1
  publication-title: Polym. Bull.
– ident: e_1_2_12_132_1
  doi: 10.1039/C8PY00571K
– ident: e_1_2_12_181_1
  doi: 10.1016/j.radphyschem.2017.01.041
– ident: e_1_2_12_7_1
  doi: 10.1038/nchem.2713
– ident: e_1_2_12_187_1
  doi: 10.1016/j.polymer.2008.12.027
– ident: e_1_2_12_74_1
  doi: 10.1021/ma0701484
– ident: e_1_2_12_184_1
  doi: 10.1021/ma070825u
– reference: 34994488 - Macromol Rapid Commun. 2022 Jan;43(1):e2100856
SSID ssj0008402
Score 2.6438234
SecondaryResourceType review_article
Snippet Light‐mediated polymerization techniques offer distinct advantages over polymerization reactions fueled by thermal energy, such as high spatial and temporal...
Light-mediated polymerization techniques offer distinct advantages over polymerization reactions fueled by thermal energy, such as high spatial and temporal...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2100514
SubjectTerms Addition polymerization
Catalysis
Catalysts
Chain transfer
light
Macromolecules
Molecular Structure
Monomers
photo‐iniferter reversible addition‐fragmentation chain‐transfer
photo‐mediated polymerization
Polyimide resins
Polymerization
radical polymerization
reversible addition‐fragmentation chain‐transfer polymerization
Thermal energy
Title Photo‐Iniferter RAFT Polymerization
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmarc.202100514
https://www.ncbi.nlm.nih.gov/pubmed/34750911
https://www.proquest.com/docview/2617222613
https://www.proquest.com/docview/2595564744
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60F734flRrqaB42naTZh85lmKpQqWUFnpbsmmCYOmK3R705E_wN_pLnOyrVhFBj8tOdpNMkvkmk3wDcMGFlmjHpKVspiymNbO463FLup7mNvMUUSai27tzuyN2O3bGn27xp_wQxYabmRnJem0muAjnjSVpqKF6QP8OXRZD4Y2LsDmwZVDRYMkfhd5LGu5EjwudMTdnbbRpY7X4qlX6BjVXkWtiejrbIPJKpydOHuqLOKzLly98jv9p1Q5sZbi01koH0i6sqdkebLTzdHD7cNm_j-Lo_fXtJjkNg-qoDVqdYa0fTZ9N1Ce9znkAo871sN21shwLljTc8lbocaGUMjR7zCca4ZFooslSoU9FyCdE-pJIjbLK87VgnEzcUPsTxSaaEJOj7BBKs2imjqHmYmdTItElQpNHlOC2LT2lqaTaIV5ol8HK-ziQGQG5yYMxDVLqZBqYxgdF48twVcg_ptQbP0pWcpUF2RScB4ZqHsEPwpUynBevsdNMRETMVLRAGYc7jss8hp84SlVd_KrJEjBFykAThf1Sh6DXGrSLp5O_FDqFTWpGarLBU4FS_LRQZwh54rAK65T1q8ng_gDaAvY-
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEJ4oHvDi-4GiYqLxtLJduo8eCUpAgRACibfNbmljImGNwkFP_gR_o7_EmV12CRpjosfNTrttp935ptN-A3AmAi3RjklDmVwZXGtuCMcVhnRcLUzuKqYootvuOI0Bv7mz09OEdBcm4YfINtxoZcT_a1rgtCFdnrOGEtcDOnjosxCH9zKsUFpvos-_6s0ZpNB_SQKe6HOhO-akvI2mVV4sv2iXvoHNRewaG5_6OoRps5MzJw-X00l4KV-_MDr-q18bsDaDpqVqMpc2YUmNtyBfSzPCbcN59z6aRB9v7834QAxqpNSr1vulbjR6ocBPcqNzBwb1636tYczSLBiS6OWN0BWBUoqY9rjHNCKkoIJWS4WeFYRiyKQnmdQoq1xPB1ywoRNqb6j4UDNGacp2ITeOxmofSg6OtsUkekVo9ZgKhGlKV2lLWtpmbmgWwEgH2ZczDnJKhTHyE_Zky6fO-1nnC3CRyT8m7Bs_ShZTnfmzVfjsE9s84h9ELAU4zV7joFFQJBiraIoytrBth7scq9hLdJ19qsJjPMUKYMUa-6UNfrvaq2VPB38pdAL5Rr_d8lvNzu0hrFo0beP9niLkJk9TdYQIaBIex3P8E4JW-YM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fS8MwED90gvoi_nc6dYLiU7HJ0qZ5HNOyqRtlbLC30qYJPox26Pbgmx_Bz-gn8dJu1SEi-Fh66Z-7JPe7XPI7gEsRaYl-TFrKZspiWjNLuFxY0uVa2IwrokxGt9tz20N2P3JG307xF_wQ5YKbGRn5fG0G-CTRN1-koYbqAeM7DFkMhfcqrJmMn9nURVlQzsUYvhT5Tgy5MBpzF7SNNr1Zbr_sln5gzWXomvsefxu25qCx3iysvAMrKt2FjdaiVtseXAVP2TT7eHvv5FtVUFf1ftMf1INs_GpSMsVZy30Y-neDVtuaF0CwpCF-t2IuIqWU4cBjHtGIXaIG-hMVezSKRUKkJ4nUKKu4pyMmSOLG2ksUSzQhpoDYAVTSLFVHUHdREZRIjFfQHxEVCduWXGkqqXYIj-0qWIv_D-WcHdwUqRiHBa8xDY2-wlJfVbgu5ScFL8avkrWFOsP5-HgJDQ88IhPEElW4KG-j0ky6IkpVNkMZRziOyzjDRxwWZihf1WA50iFVoLld_viGsNvst8qr4_80Oof14NYPHzu9hxPYpKZD5QsxNahMn2fqFKHJND7Le98nQIPW2g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photo%E2%80%90Iniferter+RAFT+Polymerization&rft.jtitle=Macromolecular+rapid+communications.&rft.au=Hartlieb%2C+Matthias&rft.date=2022-01-01&rft.issn=1022-1336&rft.eissn=1521-3927&rft.volume=43&rft.issue=1&rft_id=info:doi/10.1002%2Fmarc.202100514&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_marc_202100514
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-1336&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-1336&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-1336&client=summon