Photo‐Iniferter RAFT Polymerization
Light‐mediated polymerization techniques offer distinct advantages over polymerization reactions fueled by thermal energy, such as high spatial and temporal control as well as the possibility to work under mild reaction conditions. Reversible addition‐fragmentation chain‐transfer (RAFT) polymerizati...
Saved in:
Published in | Macromolecular rapid communications. Vol. 43; no. 1; pp. e2100514 - n/a |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Light‐mediated polymerization techniques offer distinct advantages over polymerization reactions fueled by thermal energy, such as high spatial and temporal control as well as the possibility to work under mild reaction conditions. Reversible addition‐fragmentation chain‐transfer (RAFT) polymerization is a highly versatile radical polymerization method that can be utilized to control a variety of monomers and produce a vast number of complex macromolecular structures. The use of light to drive a RAFT‐polymerization is possible via multiple routes. Besides the use of photo‐initiators, or photo‐catalysts, the direct activation of the chain transfer agent controlling the RAFT process in a photo‐iniferter (PI) process is an elegant way to initiate and control polymerization reactions. Within this review, PI‐RAFT polymerization and its advantages over the conventional RAFT process are discussed in detail.
The direct activation of chain transfer agents controlling a radical polymerization process by light is called a photo‐iniferter reversible addition‐fragmentation chain‐transfer (RAFT) polymerization. This method possesses a number of advantages compared to the conventional RAFT methodology. The origin, mechanistic, and applications of this technique are discussed in this review. |
---|---|
AbstractList | Light-mediated polymerization techniques offer distinct advantages over polymerization reactions fueled by thermal energy, such as high spatial and temporal control as well as the possibility to work under mild reaction conditions. Reversible addition-fragmentation chain-transfer (RAFT) polymerization is a highly versatile radical polymerization method that can be utilized to control a variety of monomers and produce a vast number of complex macromolecular structures. The use of light to drive a RAFT-polymerization is possible via multiple routes. Besides the use of photo-initiators, or photo-catalysts, the direct activation of the chain transfer agent controlling the RAFT process in a photo-iniferter (PI) process is an elegant way to initiate and control polymerization reactions. Within this review, PI-RAFT polymerization and its advantages over the conventional RAFT process are discussed in detail.Light-mediated polymerization techniques offer distinct advantages over polymerization reactions fueled by thermal energy, such as high spatial and temporal control as well as the possibility to work under mild reaction conditions. Reversible addition-fragmentation chain-transfer (RAFT) polymerization is a highly versatile radical polymerization method that can be utilized to control a variety of monomers and produce a vast number of complex macromolecular structures. The use of light to drive a RAFT-polymerization is possible via multiple routes. Besides the use of photo-initiators, or photo-catalysts, the direct activation of the chain transfer agent controlling the RAFT process in a photo-iniferter (PI) process is an elegant way to initiate and control polymerization reactions. Within this review, PI-RAFT polymerization and its advantages over the conventional RAFT process are discussed in detail. Light-mediated polymerization techniques offer distinct advantages over polymerization reactions fueled by thermal energy, such as high spatial and temporal control as well as the possibility to work under mild reaction conditions. Reversible addition-fragmentation chain-transfer (RAFT) polymerization is a highly versatile radical polymerization method that can be utilized to control a variety of monomers and produce a vast number of complex macromolecular structures. The use of light to drive a RAFT-polymerization is possible via multiple routes. Besides the use of photo-initiators, or photo-catalysts, the direct activation of the chain transfer agent controlling the RAFT process in a photo-iniferter (PI) process is an elegant way to initiate and control polymerization reactions. Within this review, PI-RAFT polymerization and its advantages over the conventional RAFT process are discussed in detail. Light‐mediated polymerization techniques offer distinct advantages over polymerization reactions fueled by thermal energy, such as high spatial and temporal control as well as the possibility to work under mild reaction conditions. Reversible addition‐fragmentation chain‐transfer (RAFT) polymerization is a highly versatile radical polymerization method that can be utilized to control a variety of monomers and produce a vast number of complex macromolecular structures. The use of light to drive a RAFT‐polymerization is possible via multiple routes. Besides the use of photo‐initiators, or photo‐catalysts, the direct activation of the chain transfer agent controlling the RAFT process in a photo‐iniferter (PI) process is an elegant way to initiate and control polymerization reactions. Within this review, PI‐RAFT polymerization and its advantages over the conventional RAFT process are discussed in detail. The direct activation of chain transfer agents controlling a radical polymerization process by light is called a photo‐iniferter reversible addition‐fragmentation chain‐transfer (RAFT) polymerization. This method possesses a number of advantages compared to the conventional RAFT methodology. The origin, mechanistic, and applications of this technique are discussed in this review. |
Author | Hartlieb, Matthias |
Author_xml | – sequence: 1 givenname: Matthias orcidid: 0000-0001-5330-7186 surname: Hartlieb fullname: Hartlieb, Matthias email: mhartlieb@uni-potsdam.de organization: Fraunhofer Institute for Applied Polymer Research (IAP) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34750911$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkMtKAzEUQINU7EO3LqUggpupuUnmkWUpVgsVS6nrkJm5g1Omk5qZInXlJ_iNfompbRUK4iYPOOeSnDZplKZEQs6B9oBSdrPQNukxytzFB3FEWuAz8LhkYcOdKWMecB40Sbuq5pTSSFB2QppchD6VAC1yNXk2tfl8_xiVeYa2Rtud9oez7sQU6wXa_E3XuSlPyXGmiwrPdnuHPA1vZ4N7b_x4Nxr0x14iQim8OJQaESmPpIggY4HQHFiEccR0LFNIogSSzLEYRpkWEtIgzqIURZoBcKC8Q663c5fWvKywqtUirxIsCl2iWVWK-dL3AxEK4dDLA3RuVrZ0r1MsgJAxt3JHXeyoVbzAVC1t7oqt1T6AA8QWSKypKouZSvL6-8-11XmhgKpNZ7XprH46O613oO0n_ynIrfCaF7j-h1YP_eng1_0CAOmOWg |
CitedBy_id | crossref_primary_10_1039_D3PY01307C crossref_primary_10_1002_ange_202408592 crossref_primary_10_1002_adma_202313961 crossref_primary_10_1002_anie_202403026 crossref_primary_10_1002_pol_20230591 crossref_primary_10_1002_ange_202408225 crossref_primary_10_1039_D3PY01036H crossref_primary_10_1038_s44160_024_00710_6 crossref_primary_10_1039_D2PY01166B crossref_primary_10_1002_marc_202300108 crossref_primary_10_1038_s44160_023_00463_8 crossref_primary_10_1039_D4PY00409D crossref_primary_10_1039_D4PY01123F crossref_primary_10_1021_acsapm_3c02150 crossref_primary_10_1002_cptc_202300090 crossref_primary_10_1039_D4PY01377H crossref_primary_10_1002_pol_20230077 crossref_primary_10_1039_D3SC06736J crossref_primary_10_1002_anie_202314729 crossref_primary_10_1016_j_polymer_2023_125728 crossref_primary_10_1016_j_eurpolymj_2023_112450 crossref_primary_10_1039_D3TC03373B crossref_primary_10_3390_polym16243493 crossref_primary_10_1002_marc_202200729 crossref_primary_10_1002_ange_202309951 crossref_primary_10_1039_D4PY01323A crossref_primary_10_1002_marc_202400851 crossref_primary_10_1002_pol_20230889 crossref_primary_10_1021_jacs_3c00589 crossref_primary_10_1002_anie_202408225 crossref_primary_10_1002_anie_202424225 crossref_primary_10_1002_pol_20241148 crossref_primary_10_1002_ajoc_202400032 crossref_primary_10_1021_acs_macromol_2c00119 crossref_primary_10_1021_acsmacrolett_2c00683 crossref_primary_10_1002_marc_202300408 crossref_primary_10_1021_acsmacrolett_5c00023 crossref_primary_10_1002_marc_202400100 crossref_primary_10_1039_D3NA00793F crossref_primary_10_3390_polym16010134 crossref_primary_10_1021_acsami_3c15002 crossref_primary_10_1002_anie_202309951 crossref_primary_10_1021_acs_macromol_4c02489 crossref_primary_10_1002_pi_6424 crossref_primary_10_1021_acs_macromol_4c01277 crossref_primary_10_1039_D5PY00151J crossref_primary_10_1016_j_polymer_2023_125944 crossref_primary_10_1002_ange_202309582 crossref_primary_10_1002_anie_202422975 crossref_primary_10_3390_polym14132708 crossref_primary_10_1021_acsmacrolett_3c00431 crossref_primary_10_1021_acs_macromol_2c02307 crossref_primary_10_1039_D2CS00115B crossref_primary_10_1002_cjoc_202200814 crossref_primary_10_1016_j_progpolymsci_2023_101648 crossref_primary_10_1039_D4CS00663A crossref_primary_10_1021_acs_macromol_4c00976 crossref_primary_10_1002_smll_202301761 crossref_primary_10_1021_acs_biomac_4c00767 crossref_primary_10_1002_ange_202422975 crossref_primary_10_1016_j_jcat_2023_07_015 crossref_primary_10_1039_D2PY00982J crossref_primary_10_1021_acs_macromol_4c00192 crossref_primary_10_1002_mabi_202200474 crossref_primary_10_1002_smsc_202400146 crossref_primary_10_1021_acs_macromol_4c03060 crossref_primary_10_1002_admt_202201054 crossref_primary_10_1021_jacs_4c15553 crossref_primary_10_1039_D4SC01409J crossref_primary_10_3390_polym16101408 crossref_primary_10_1039_D3SC04052F crossref_primary_10_1002_adma_202403048 crossref_primary_10_1039_D3PY00241A crossref_primary_10_1002_macp_202300274 crossref_primary_10_1002_marc_202200414 crossref_primary_10_1039_D3OB00958K crossref_primary_10_1021_jacs_3c05373 crossref_primary_10_1021_acs_macromol_4c00366 crossref_primary_10_1002_anie_202408592 crossref_primary_10_1021_acs_macromol_4c01610 crossref_primary_10_1002_ange_202424225 crossref_primary_10_1016_j_chempr_2023_07_004 crossref_primary_10_1021_jacs_3c12174 crossref_primary_10_3390_ma17091947 crossref_primary_10_1016_j_pmatsci_2023_101113 crossref_primary_10_1007_s11426_023_1733_0 crossref_primary_10_4236_ojpchem_2024_143008 crossref_primary_10_1002_ange_202403026 crossref_primary_10_1002_anie_202309582 crossref_primary_10_1021_acsami_3c14483 crossref_primary_10_1002_pls2_10116 crossref_primary_10_3390_polym14225013 crossref_primary_10_1002_cphc_202400291 crossref_primary_10_1002_pi_6475 crossref_primary_10_1016_j_progpolymsci_2024_101871 crossref_primary_10_1002_ange_202314729 crossref_primary_10_1039_D2SC05197D crossref_primary_10_1021_acs_macromol_3c02346 crossref_primary_10_1039_D3SC05143A crossref_primary_10_1021_acs_macromol_3c01928 crossref_primary_10_1039_D5SC00997A crossref_primary_10_1039_D1CS00069A crossref_primary_10_1039_D1PY01530C crossref_primary_10_1038_s44160_023_00462_9 crossref_primary_10_1007_s42765_023_00329_w crossref_primary_10_1016_j_progpolymsci_2022_101555 crossref_primary_10_1002_mabi_202400316 crossref_primary_10_1002_adfm_202411319 crossref_primary_10_1021_acs_macromol_1c02521 crossref_primary_10_1002_cjoc_202200620 crossref_primary_10_1016_j_eurpolymj_2023_112631 crossref_primary_10_1039_D3PY00042G crossref_primary_10_1016_j_polymer_2023_126036 crossref_primary_10_1038_s41428_022_00698_w crossref_primary_10_1021_acs_macromol_2c00841 crossref_primary_10_1021_acs_macromol_2c02585 crossref_primary_10_1021_acsapm_3c00168 |
Cites_doi | 10.1002/adma.201503870 10.1002/pola.20394 10.1021/acsmacrolett.8b00290 10.1002/pola.21216 10.1002/pola.29405 10.1016/j.polymer.2013.06.059 10.1021/acsmacrolett.9b00716 10.1002/app.13493 10.1039/D0PY01086C 10.1002/1099-0518(20001001)38:19<3596::AID-POLA150>3.0.CO;2-F 10.1039/C4PY01251H 10.1021/acs.macromol.5b01893 10.1039/C6PY01433J 10.1002/pi.1187 10.1016/j.radphyschem.2015.03.013 10.1016/S0032-3861(03)00525-1 10.1021/bm700526j 10.1002/advs.202001656 10.1002/(SICI)1099-0518(20000615)38:12<2121::AID-POLA10>3.0.CO;2-X 10.1016/S0040-4020(01)91341-9 10.1002/pola.10513 10.1021/cm0510864 10.1021/acs.macromol.9b00112 10.1002/1521-3935(20010601)202:9<1970::AID-MACP1970>3.0.CO;2-Q 10.1021/acs.macromol.0c02715 10.1002/1521-3935(20010601)202:9<1980::AID-MACP1980>3.0.CO;2-O 10.1016/0014-3057(90)90014-U 10.1039/D0PY01413C 10.1016/j.colsurfa.2006.02.032 10.1039/C7CC07241D 10.1021/acs.macromol.1c00565 10.1002/mats.201500076 10.1002/macp.200600026 10.1016/S0014-3057(02)00247-1 10.1002/anie.202106418 10.1021/ja983239c 10.1002/pola.22005 10.1002/marc.201300578 10.1002/9783527622757.ch3 10.1002/macp.200300191 10.1021/ma500883y 10.1021/acs.macromol.5b00965 10.1002/pola.29199 10.1016/j.eurpolymj.2006.12.022 10.1016/j.progpolymsci.2018.08.003 10.1002/anie.201809759 10.1039/C6PY00808A 10.1007/s10570-014-0416-y 10.1016/j.progpolymsci.2016.06.005 10.1016/j.progpolymsci.2019.101183 10.1002/pi.6130 10.1002/pi.2307 10.1021/bk-2015-1187.ch013 10.1007/BF00264156 10.1039/C7PY01752A 10.1021/ma0509661 10.1002/pola.22686 10.1002/marc.201800240 10.1039/C7PY00939A 10.1021/ma050131q 10.1002/app.21622 10.1002/macp.200400131 10.1021/ma9804951 10.1038/ncomms10514 10.1039/C7PY00787F 10.1021/ma021729q 10.1039/C4PY01317D 10.1002/pi.1039 10.1002/marc.1982.030030208 10.1002/app.45270 10.1002/macp.201600141 10.1002/anie.201810384 10.1021/acsmacrolett.6b00818 10.1002/app.25357 10.1021/ma060157x 10.1021/ja501745g 10.1021/ma047373v 10.1021/ma951914m 10.1021/acsmacrolett.6b00828 10.1002/pola.22684 10.3390/polym11101722 10.1016/j.polymer.2007.11.020 10.1002/pola.10194 10.1021/ma300410v 10.1039/C9PY00022D 10.1039/D0PY01104E 10.1039/C5PY01257K 10.1002/marc.200600115 10.1021/ma5002244 10.1039/C6MH00265J 10.1021/acs.macromol.9b01365 10.1039/D0PY00054J 10.1016/j.trechm.2020.05.001 10.1021/ma00156a007 10.1021/ma070984d 10.1039/C5CC01562F 10.1016/j.tet.2010.05.107 10.1002/marc.201600004 10.1002/adma.200601554 10.1039/C7CS00587C 10.1021/ma702406b 10.1002/app.21417 10.1016/j.polymer.2007.08.043 10.1039/C7PY00713B 10.1021/acsmacrolett.6b00235 10.1039/D0PY01651A 10.1002/pola.10042 10.1021/ma0703094 10.1021/ma202007h 10.1039/C7PY01741C 10.1021/ma402435n 10.1039/C8PY00970H 10.1039/c39880000308 10.1002/anie.199706721 10.1007/BF01216666 10.1002/marc.1982.030030209 10.1039/C6PY01994C 10.1039/C9PY01763A 10.1039/B9PY00340A 10.1002/1521-3935(20020201)203:3<477::AID-MACP477>3.0.CO;2-M 10.1002/anie.200604922 10.1071/CH20260 10.1039/C3CS60290G 10.1039/C5PY00840A 10.1021/acs.macromol.7b00767 10.1002/app.25581 10.1016/j.polymer.2018.07.054 10.1021/ma0204296 10.1002/pola.21868 10.1021/ma051997z 10.3762/bjoc.9.61 10.1016/j.polymer.2014.12.007 10.1021/cr990124y 10.1016/j.radphyschem.2014.11.010 10.1016/j.chempr.2016.12.007 10.1021/ma021371y 10.1002/pola.20395 10.1016/0014-3057(89)90023-2 10.1021/acsapm.9b00458 10.1021/ma400208j 10.1021/acs.macromol.8b01708 10.1002/pola.10982 10.1039/C8PY00050F 10.1016/j.radphyschem.2013.07.016 10.1016/j.eurpolymj.2015.05.019 10.1002/anie.201003888 10.1002/marc.201600482 10.1002/pola.1993.080310308 10.1039/C9PY01419E 10.1002/adma.201201928 10.1021/acsphotonics.7b00206 10.1039/C5PY00608B 10.1016/j.eurpolymj.2008.03.012 10.1016/j.polymer.2005.10.111 10.1021/ma00208a050 10.1039/C8CC02783H 10.1002/admi.201801042 10.1002/marc.202000058 10.1002/marc.201500427 10.1002/advs.201500394 10.1038/ncomms3505 10.1002/anie.201912608 10.1021/ma101893u 10.1021/acsmacrolett.5b00530 10.1002/1521-3927(20020801)23:12<717::AID-MARC717>3.0.CO;2-I 10.1039/b512057h 10.1021/acsapm.0c00888 10.1039/C9PY00213H 10.1039/C7PY01531C 10.1039/C6PY02220K 10.1021/acsmacrolett.0c00203 10.1039/C5PY00478K 10.1002/pola.10086 10.1021/jo201385b 10.1016/j.reactfunctpolym.2017.02.003 10.1021/bk-2009-1024.ch001 10.1016/j.progpolymsci.2020.101311 10.1021/acs.chemrev.5b00671 10.1021/ma971166w 10.1039/C7PY01157A 10.1002/anie.201207966 10.1351/PAC-CON-10-08-07 10.1002/anie.201610223 10.1039/C6PY01849A 10.1039/cs9720100465 10.1039/C6CC06010B 10.1021/ma8014678 10.1021/acsmacrolett.9b00643 10.1039/C8PY00571K 10.1016/j.radphyschem.2017.01.041 10.1038/nchem.2713 10.1016/j.polymer.2008.12.027 10.1021/ma0701484 10.1021/ma070825u |
ContentType | Journal Article |
Copyright | 2021 The Authors. Macromolecular Rapid Communications published by Wiley‐VCH GmbH 2021 The Authors. Macromolecular Rapid Communications published by Wiley-VCH GmbH. 2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 The Authors. Macromolecular Rapid Communications published by Wiley‐VCH GmbH – notice: 2021 The Authors. Macromolecular Rapid Communications published by Wiley-VCH GmbH. – notice: 2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8FD JG9 JQ2 L7M 7X8 |
DOI | 10.1002/marc.202100514 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace ProQuest Computer Science Collection MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3927 |
EndPage | n/a |
ExternalDocumentID | 34750911 10_1002_marc_202100514 MARC202100514 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft (DFG) funderid: HA 7725/2‐1 – fundername: Deutsche Forschungsgemeinschaft (DFG) grantid: HA 7725/2-1 |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA GYXMG H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6T MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RWB RWI RX1 RYL SAMSI SUPJJ TUS UB1 V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZY4 ZZTAW ~IA ~WT AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 JQ2 L7M 7X8 |
ID | FETCH-LOGICAL-c4794-b79aeee0389481f264a3128eb82ab9d1c8c1cfc47e78fa491d6bf8de4df113103 |
IEDL.DBID | DR2 |
ISSN | 1022-1336 1521-3927 |
IngestDate | Thu Jul 10 18:24:03 EDT 2025 Sun Jul 13 04:31:47 EDT 2025 Wed Feb 19 02:28:26 EST 2025 Tue Jul 01 03:31:45 EDT 2025 Thu Apr 24 22:55:55 EDT 2025 Wed Jan 22 16:26:28 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | reversible addition-fragmentation chain-transfer polymerization photo-mediated polymerization photo-iniferter reversible addition-fragmentation chain-transfer light radical polymerization |
Language | English |
License | Attribution-NonCommercial 2021 The Authors. Macromolecular Rapid Communications published by Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4794-b79aeee0389481f264a3128eb82ab9d1c8c1cfc47e78fa491d6bf8de4df113103 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-5330-7186 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmarc.202100514 |
PMID | 34750911 |
PQID | 2617222613 |
PQPubID | 1016394 |
PageCount | 25 |
ParticipantIDs | proquest_miscellaneous_2595564744 proquest_journals_2617222613 pubmed_primary_34750911 crossref_citationtrail_10_1002_marc_202100514 crossref_primary_10_1002_marc_202100514 wiley_primary_10_1002_marc_202100514_MARC202100514 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2022 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: January 2022 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Macromolecular rapid communications. |
PublicationTitleAlternate | Macromol Rapid Commun |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2007; 103 2013; 4 2007; 105 2019; 11 2019; 10 2006; 39 2020; 11 2021; 74 2004; 205 2003; 52 2016; 37 2014; 136 2021; 70 2018; 47 2013; 9 2014; 21 2018; 7 2018; 9 2018; 39 2006; 207 2010; 1 2018; 5 2013; 54 2006; 27 1993; 31 2013; 52 2007; 8 2006; 281 2012; 24 2014; 94 2003; 44 2019; 8 2015; 57 2007; 19 2004; 42 2020; 41 2015; 51 2019; 1 2003; 36 2014; 47 1986; 19 2008; 57 2011; 76 2003; 39 2017; 134 2001; 202 2014; 43 2015; 68 2017; 50 2016; 5 2017; 53 2016; 7 2021; 54 1990; 23 2016; 3 1990; 26 2016; 217 2006; 44 2015; 112 1997; 36 2008; 49 2017; 56 2005; 95 2005; 96 2008; 46 2014; 35 2008; 44 2001; 39 2008; 41 2021; 60 2012; 45 2005; 17 2016; 25 2017; 8 2001; 101 2015; 36 2017; 2 2009; 42 2017; 4 2019; 52 2019; 57 2019; 58 1999; 121 2015; 108 2017; 113 2017; 9 2020; 7 2010; 66 2015; 48 1996; 29 2020; 2 2009; 50 2002; 40 2017; 38 1984; 11 1982; 3 2020; 9 1982; 7 2016; 116 2005; 38 2018; 142 2015; 6 2015; 4 2013; 46 2002; 35 2009 2008 2005; 42 2016; 52 2005; 43 1969; 57 2020; 100 1985; 41 2004; 91 1989; 25 1972; 1 2005; 46 2010; 83 1988; 4 2015; 27 2000; 38 2021; 12 2018; 151 2019; 88 2002; 23 2011; 50 2002; 203 2011; 44 2016; 62 2020; 111 2015 2018; 51 2007; 40 2007; 43 2018; 54 1998; 31 2007; 45 2007; 46 2007; 48 2018; 57 e_1_2_12_130_1 e_1_2_12_191_1 e_1_2_12_2_1 e_1_2_12_138_1 e_1_2_12_115_1 e_1_2_12_153_1 e_1_2_12_176_1 e_1_2_12_85_1 e_1_2_12_24_1 e_1_2_12_62_1 e_1_2_12_180_1 e_1_2_12_104_1 e_1_2_12_127_1 e_1_2_12_142_1 e_1_2_12_165_1 e_1_2_12_188_1 e_1_2_12_96_1 e_1_2_12_139_1 e_1_2_12_35_1 e_1_2_12_58_1 e_1_2_12_12_1 e_1_2_12_73_1 e_1_2_12_50_1 e_1_2_12_3_1 e_1_2_12_152_1 e_1_2_12_190_1 e_1_2_12_137_1 e_1_2_12_114_1 e_1_2_12_175_1 e_1_2_12_63_1 e_1_2_12_86_1 e_1_2_12_25_1 e_1_2_12_48_1 Otsu T. (e_1_2_12_44_1) 1982; 7 e_1_2_12_141_1 e_1_2_12_149_1 e_1_2_12_126_1 e_1_2_12_164_1 e_1_2_12_103_1 e_1_2_12_187_1 e_1_2_12_74_1 e_1_2_12_97_1 e_1_2_12_36_1 e_1_2_12_59_1 e_1_2_12_13_1 e_1_2_12_51_1 e_1_2_12_193_1 e_1_2_12_19_1 e_1_2_12_170_1 e_1_2_12_132_1 e_1_2_12_178_1 e_1_2_12_155_1 e_1_2_12_106_1 e_1_2_12_129_1 e_1_2_12_22_1 e_1_2_12_45_1 e_1_2_12_68_1 e_1_2_12_83_1 e_1_2_12_60_1 e_1_2_12_182_1 e_1_2_12_121_1 e_1_2_12_144_1 e_1_2_12_167_1 e_1_2_12_118_1 e_1_2_12_33_1 e_1_2_12_56_1 e_1_2_12_79_1 e_1_2_12_8_1 e_1_2_12_10_1 e_1_2_12_94_1 e_1_2_12_71_1 e_1_2_12_192_1 e_1_2_12_1_1 e_1_2_12_116_1 e_1_2_12_131_1 e_1_2_12_154_1 e_1_2_12_177_1 e_1_2_12_128_1 e_1_2_12_23_1 e_1_2_12_46_1 e_1_2_12_69_1 e_1_2_12_61_1 e_1_2_12_84_1 e_1_2_12_181_1 e_1_2_12_120_1 e_1_2_12_105_1 e_1_2_12_143_1 e_1_2_12_189_1 e_1_2_12_166_1 e_1_2_12_117_1 e_1_2_12_34_1 e_1_2_12_57_1 e_1_2_12_11_1 e_1_2_12_72_1 e_1_2_12_95_1 e_1_2_12_9_1 e_1_2_12_195_1 e_1_2_12_6_1 e_1_2_12_172_1 e_1_2_12_17_1 e_1_2_12_111_1 e_1_2_12_157_1 e_1_2_12_134_1 e_1_2_12_108_1 e_1_2_12_20_1 e_1_2_12_66_1 e_1_2_12_43_1 e_1_2_12_89_1 Xu J. (e_1_2_12_40_1) 2015 e_1_2_12_81_1 e_1_2_12_161_1 e_1_2_12_184_1 e_1_2_12_100_1 e_1_2_12_123_1 e_1_2_12_146_1 e_1_2_12_169_1 e_1_2_12_28_1 e_1_2_12_31_1 e_1_2_12_77_1 e_1_2_12_54_1 e_1_2_12_92_1 e_1_2_12_171_1 e_1_2_12_194_1 e_1_2_12_18_1 e_1_2_12_110_1 e_1_2_12_179_1 e_1_2_12_133_1 e_1_2_12_156_1 e_1_2_12_21_1 e_1_2_12_107_1 e_1_2_12_67_1 Otsu T. (e_1_2_12_47_1) 1984; 11 e_1_2_12_82_1 e_1_2_12_160_1 e_1_2_12_183_1 e_1_2_12_122_1 e_1_2_12_168_1 e_1_2_12_29_1 e_1_2_12_145_1 e_1_2_12_119_1 e_1_2_12_32_1 e_1_2_12_55_1 e_1_2_12_78_1 e_1_2_12_7_1 e_1_2_12_70_1 e_1_2_12_93_1 e_1_2_12_4_1 e_1_2_12_174_1 e_1_2_12_151_1 e_1_2_12_38_1 e_1_2_12_136_1 e_1_2_12_159_1 e_1_2_12_113_1 e_1_2_12_41_1 e_1_2_12_87_1 e_1_2_12_64_1 e_1_2_12_26_1 e_1_2_12_140_1 e_1_2_12_163_1 e_1_2_12_49_1 e_1_2_12_148_1 e_1_2_12_102_1 e_1_2_12_125_1 e_1_2_12_186_1 e_1_2_12_52_1 e_1_2_12_98_1 e_1_2_12_75_1 e_1_2_12_37_1 e_1_2_12_14_1 e_1_2_12_90_1 e_1_2_12_150_1 e_1_2_12_173_1 e_1_2_12_196_1 e_1_2_12_5_1 e_1_2_12_16_1 e_1_2_12_112_1 e_1_2_12_135_1 e_1_2_12_158_1 e_1_2_12_39_1 e_1_2_12_42_1 e_1_2_12_65_1 e_1_2_12_88_1 e_1_2_12_109_1 e_1_2_12_80_1 e_1_2_12_185_1 e_1_2_12_162_1 e_1_2_12_27_1 e_1_2_12_101_1 e_1_2_12_147_1 e_1_2_12_124_1 e_1_2_12_30_1 e_1_2_12_53_1 e_1_2_12_76_1 e_1_2_12_99_1 e_1_2_12_15_1 e_1_2_12_91_1 34994488 - Macromol Rapid Commun. 2022 Jan;43(1):e2100856 |
References_xml | – volume: 8 start-page: 3965 year: 2017 publication-title: Polym. Chem. – volume: 8 start-page: 4637 year: 2017 publication-title: Polym. Chem. – volume: 44 start-page: 5119 year: 2003 publication-title: Polymer – volume: 52 start-page: 1479 year: 2019 publication-title: Macromolecules – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 57 start-page: 2002 year: 2019 publication-title: J. Polym. Sci., Part A: Polym. Chem. – volume: 12 start-page: 1105 year: 2021 publication-title: Polym. Chem. – volume: 46 start-page: 3099 year: 2007 publication-title: Angew. Chem., Int. Ed. – volume: 39 start-page: 1384 year: 2006 publication-title: Macromolecules – volume: 203 start-page: 477 year: 2002 publication-title: Macromol. Chem. Phys. – volume: 52 start-page: 2235 year: 2013 publication-title: Angew. Chem., Int. Ed. – volume: 50 start-page: 973 year: 2009 publication-title: Polymer – volume: 8 start-page: 1519 year: 2017 publication-title: Polym. Chem. – volume: 6 start-page: 1502 year: 2015 publication-title: Polym. Chem. – volume: 51 start-page: 7776 year: 2018 publication-title: Macromolecules – volume: 10 start-page: 2477 year: 2019 publication-title: Polym. Chem. – volume: 35 start-page: 234 year: 2014 publication-title: Macromol. Rapid Commun. – volume: 29 start-page: 7310 year: 1996 publication-title: Macromolecules – start-page: 247 year: 2015 end-page: 267 – volume: 19 start-page: 287 year: 1986 publication-title: Macromolecules – volume: 95 start-page: 413 year: 2005 publication-title: J. Appl. Polym. Sci. – volume: 3 start-page: 471 year: 2016 publication-title: Mater. Horiz. – volume: 11 start-page: 6129 year: 2020 publication-title: Polym. Chem. – volume: 9 start-page: 4947 year: 2018 publication-title: Polym. Chem. – volume: 62 start-page: 73 year: 2016 publication-title: Prog. Polym. Sci. – volume: 36 start-page: 2181 year: 2015 publication-title: Macromol. Rapid Commun. – volume: 47 start-page: 4217 year: 2014 publication-title: Macromolecules – volume: 23 start-page: 717 year: 2002 publication-title: Macromol. Rapid Commun. – volume: 50 start-page: 1660 year: 2011 publication-title: Angew. Chem., Int. Ed. – volume: 52 start-page: 1010 year: 2003 publication-title: Polym. Int. – volume: 74 start-page: 56 year: 2021 publication-title: Aust. J. Chem. – volume: 9 start-page: 2897 year: 2018 publication-title: Polym. Chem. – volume: 42 start-page: 1640 year: 2009 publication-title: Macromolecules – volume: 8 start-page: 177 year: 2017 publication-title: Polym. Chem. – volume: 24 start-page: 3975 year: 2012 publication-title: Adv. Mater. – volume: 27 start-page: 821 year: 2006 publication-title: Macromol. Rapid Commun. – volume: 43 start-page: 230 year: 2005 publication-title: J. Polym. Sci., Part A: Polym. Chem. – volume: 8 start-page: 1461 year: 2019 publication-title: ACS Macro Lett. – volume: 38 year: 2017 publication-title: Macromol. Rapid Commun. – volume: 96 start-page: 1810 year: 2005 publication-title: J. Appl. Polym. Sci. – volume: 36 start-page: 5960 year: 2003 publication-title: Macromolecules – volume: 57 start-page: 12 year: 2015 publication-title: Polymer – volume: 45 start-page: 2436 year: 2007 publication-title: J. Polym. Sci., Part A: Polym. Chem. – volume: 54 start-page: 6591 year: 2018 publication-title: Chem. Commun. – volume: 12 start-page: 581 year: 2021 publication-title: Polym. Chem. – volume: 57 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 49 start-page: 1079 year: 2008 publication-title: Polymer – volume: 151 start-page: 6 year: 2018 publication-title: Polymer – volume: 26 start-page: 1125 year: 1990 publication-title: Eur. Polym. J. – volume: 52 start-page: 98 year: 2003 publication-title: Polym. Int. – volume: 1 start-page: 465 year: 1972 publication-title: Chem. Soc. Rev. – volume: 9 start-page: 613 year: 2020 publication-title: ACS Macro Lett. – volume: 8 start-page: 4152 year: 2017 publication-title: Polym. Chem. – volume: 41 year: 2020 publication-title: Macromol. Rapid Commun. – volume: 21 start-page: 4067 year: 2014 publication-title: Cellulose – volume: 4 start-page: 2505 year: 2013 publication-title: Nat. Commun. – volume: 136 start-page: 5508 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 3 year: 2016 publication-title: Adv. Sci. – start-page: 51 year: 2008 end-page: 104 – start-page: 3 year: 2009 end-page: 18 – volume: 8 start-page: 2404 year: 2007 publication-title: Biomacromolecules – volume: 83 start-page: 519 year: 2010 publication-title: Pure Appl. Chem. – volume: 9 start-page: 60 year: 2018 publication-title: Polym. Chem. – volume: 281 start-page: 156 year: 2006 publication-title: Colloids Surf., A – volume: 207 start-page: 836 year: 2006 publication-title: Macromol. Chem. Phys. – volume: 10 start-page: 1585 year: 2019 publication-title: Polym. Chem. – volume: 44 start-page: 1849 year: 2008 publication-title: Eur. Polym. J. – volume: 11 start-page: 5962 year: 2020 publication-title: Polym. Chem. – volume: 5 start-page: 1278 year: 2016 publication-title: ACS Macro Lett. – volume: 6 start-page: 5766 year: 2015 publication-title: Polym. Chem. – volume: 7 start-page: 4246 year: 2016 publication-title: Polym. Chem. – volume: 31 start-page: 5559 year: 1998 publication-title: Macromolecules – volume: 47 start-page: 4357 year: 2018 publication-title: Chem. Soc. Rev. – volume: 40 start-page: 4180 year: 2002 publication-title: J. Polym. Sci., Part A: Polym. Chem. – volume: 111 year: 2020 publication-title: Prog. Polym. Sci. – volume: 27 start-page: 8007 year: 2015 publication-title: Adv. Mater. – volume: 40 start-page: 7171 year: 2007 publication-title: Macromolecules – volume: 58 start-page: 3183 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 1 start-page: 149 year: 2010 publication-title: Polym. Chem. – volume: 103 start-page: 1769 year: 2007 publication-title: J. Appl. Polym. Sci. – volume: 2 start-page: 689 year: 2020 publication-title: Trends Chem. – volume: 38 start-page: 4901 year: 2005 publication-title: Macromolecules – volume: 47 start-page: 1929 year: 2014 publication-title: Macromolecules – volume: 112 start-page: 76 year: 2015 publication-title: Radiat. Phys. Chem. – volume: 54 start-page: 3430 year: 2021 publication-title: Macromolecules – volume: 8 start-page: 7452 year: 2017 publication-title: Polym. Chem. – volume: 54 start-page: 6649 year: 2021 publication-title: Macromolecules – volume: 38 start-page: 2121 year: 2000 publication-title: J. Polym. Sci., Part A: Polym. Chem. – volume: 11 start-page: 1722 year: 2019 publication-title: Polymers – volume: 48 start-page: 7792 year: 2015 publication-title: Macromolecules – volume: 35 start-page: 7620 year: 2002 publication-title: Macromolecules – volume: 51 start-page: 6742 year: 2015 publication-title: Chem. Commun. – volume: 23 start-page: 1856 year: 1990 publication-title: Macromolecules – volume: 57 start-page: 62 year: 1969 publication-title: Microchim. Acta – volume: 113 start-page: 1 year: 2017 publication-title: React. Funct. Polym. – volume: 31 start-page: 653 year: 1993 publication-title: J. Polym. Sci., Part A: Polym. Chem. – volume: 44 start-page: 166 year: 2011 publication-title: Macromolecules – volume: 4 start-page: 308 year: 1988 publication-title: J. Chem. Soc., Chem. Commun. – volume: 46 start-page: 2576 year: 2013 publication-title: Macromolecules – volume: 205 start-page: 1125 year: 2004 publication-title: Macromol. Chem. Phys. – volume: 108 start-page: 95 year: 2015 publication-title: Radiat. Phys. Chem. – volume: 25 start-page: 104 year: 2016 publication-title: Macromol. Theory Simul. – volume: 9 start-page: 537 year: 2017 publication-title: Nat. Chem. – volume: 217 start-page: 1777 year: 2016 publication-title: Macromol. Chem. Phys. – volume: 45 start-page: 1074 year: 2007 publication-title: J. Polym. Sci., Part A: Polym. Chem. – volume: 121 start-page: 6599 year: 1999 publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 1896 year: 2019 publication-title: ACS Appl. Polym. Mater. – volume: 6 start-page: 5615 year: 2015 publication-title: Polym. Chem. – volume: 5 start-page: 558 year: 2016 publication-title: ACS Macro Lett. – volume: 100 year: 2020 publication-title: Prog. Polym. Sci. – volume: 7 start-page: 45 year: 1982 publication-title: Polym. Bull. – volume: 7 start-page: 745 year: 2018 publication-title: ACS Macro Lett. – volume: 39 start-page: 3934 year: 2001 publication-title: J. Polym. Sci., Part A: Polym. Chem. – volume: 37 start-page: 799 year: 2016 publication-title: Macromol. Rapid Commun. – volume: 205 start-page: 1793 year: 2004 publication-title: Macromol. Chem. Phys. – volume: 48 start-page: 6467 year: 2007 publication-title: Polymer – volume: 202 start-page: 1970 year: 2001 publication-title: Macromol. Chem. Phys. – volume: 38 start-page: 3051 year: 2005 publication-title: Macromolecules – volume: 45 start-page: 5321 year: 2012 publication-title: Macromolecules – volume: 3 start-page: 127 year: 1982 publication-title: Macromol. Rapid Commun. – volume: 41 start-page: 5393 year: 1985 publication-title: Tetrahedron – volume: 7 start-page: 6626 year: 2016 publication-title: Polym. Chem. – volume: 40 start-page: 1058 year: 2002 publication-title: J. Polym. Sci., Part A: Polym. Chem. – volume: 3 start-page: 133 year: 1982 publication-title: Macromol. Rapid Commun. – volume: 11 start-page: 2080 year: 2020 publication-title: Polym. Chem. – volume: 40 start-page: 19 year: 2002 publication-title: J. Polym. Sci., Part A: Polym. Chem. – volume: 41 start-page: 2347 year: 2008 publication-title: Macromolecules – volume: 47 start-page: 3451 year: 2014 publication-title: Macromolecules – volume: 44 start-page: 857 year: 2006 publication-title: J. Polym. Sci., Part A: Polym. Chem. – volume: 4 start-page: 1453 year: 2017 publication-title: ACS Photonics – volume: 11 start-page: 135 year: 1984 publication-title: Polym. Bull. – volume: 25 start-page: 643 year: 1989 publication-title: Eur. Polym. J. – volume: 76 start-page: 8232 year: 2011 publication-title: J. Org. Chem. – volume: 8 start-page: 6496 year: 2017 publication-title: Polym. Chem. – volume: 66 start-page: 6656 year: 2010 publication-title: Tetrahedron – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 46 year: 2005 publication-title: Polymer – volume: 48 start-page: 3864 year: 2015 publication-title: Macromolecules – volume: 38 start-page: 3596 year: 2000 publication-title: J. Polym. Sci., Part A: Polym. Chem. – volume: 94 start-page: 98 year: 2014 publication-title: Radiat. Phys. Chem. – volume: 5 year: 2018 publication-title: Adv. Mater. Interfaces – volume: 40 start-page: 2978 year: 2007 publication-title: Macromolecules – volume: 43 start-page: 847 year: 2007 publication-title: Eur. Polym. J. – volume: 11 start-page: 641 year: 2020 publication-title: Polym. Chem. – volume: 134 year: 2017 publication-title: J. Appl. Polym. Sci. – volume: 2 start-page: 5327 year: 2020 publication-title: ACS Appl. Polym. Mater. – volume: 8 start-page: 1291 year: 2019 publication-title: ACS Macro Lett. – volume: 101 start-page: 3581 year: 2001 publication-title: Chem. Rev. – volume: 202 start-page: 1980 year: 2001 publication-title: Macromol. Chem. Phys. – volume: 2 start-page: 93 year: 2017 publication-title: Chem – volume: 11 start-page: 1830 year: 2020 publication-title: Polym. Chem. – volume: 8 start-page: 6024 year: 2017 publication-title: Polym. Chem. – volume: 39 start-page: 449 year: 2003 publication-title: Eur. Polym. J. – volume: 19 start-page: 268 year: 2007 publication-title: Adv. Mater. – volume: 5 start-page: 1287 year: 2016 publication-title: ACS Macro Lett. – volume: 54 start-page: 4838 year: 2013 publication-title: Polymer – volume: 39 year: 2018 publication-title: Macromol. Rapid Commun. – volume: 36 start-page: 3505 year: 2003 publication-title: Macromolecules – volume: 57 start-page: 28 year: 2008 publication-title: Polym. Int. – volume: 57 start-page: 216 year: 2019 publication-title: J. Polym. Sci., Part A: Polym. Chem. – volume: 105 start-page: 398 year: 2007 publication-title: J. Appl. Polym. Sci. – volume: 40 start-page: 7140 year: 2007 publication-title: Macromolecules – volume: 58 year: 2019 – volume: 7 year: 2020 publication-title: Adv. Sci. – volume: 91 start-page: 3233 year: 2004 publication-title: J. Appl. Polym. Sci. – volume: 6 start-page: 7717 year: 2015 publication-title: Polym. Chem. – volume: 36 start-page: 672 year: 1997 publication-title: Angew. Chem., Int. Ed. – volume: 9 start-page: 3388 year: 2018 publication-title: Polym. Chem. – volume: 17 start-page: 4574 year: 2005 publication-title: Chem. Mater. – volume: 68 start-page: 398 year: 2015 publication-title: Eur. Polym. J. – volume: 42 start-page: 5670 year: 2004 publication-title: J. Polym. Sci., Part A: Polym. Chem. – volume: 8 start-page: 1760 year: 2017 publication-title: Polym. Chem. – volume: 53 year: 2017 publication-title: Chem. Commun. – volume: 88 start-page: 130 year: 2019 publication-title: Prog. Polym. Sci. – volume: 142 start-page: 77 year: 2018 publication-title: Radiat. Phys. Chem. – volume: 38 start-page: 8202 year: 2005 publication-title: Macromolecules – volume: 52 start-page: 9068 year: 2019 publication-title: Macromolecules – volume: 39 start-page: 3770 year: 2006 publication-title: Macromolecules – volume: 44 start-page: 9213 year: 2011 publication-title: Macromolecules – volume: 46 start-page: 3155 year: 2008 publication-title: J. Polym. Sci., Part A: Polym. Chem. – volume: 46 start-page: 3387 year: 2008 publication-title: J. Polym. Sci., Part A: Polym. Chem. – volume: 40 start-page: 4142 year: 2007 publication-title: Macromolecules – volume: 4 start-page: 1012 year: 2015 publication-title: ACS Macro Lett. – volume: 42 start-page: 76 year: 2004 publication-title: J. Polym. Sci., Part A: Polym. Chem. – volume: 6 start-page: 4875 year: 2015 publication-title: Polym. Chem. – volume: 31 start-page: 1436 year: 1998 publication-title: Macromolecules – volume: 43 start-page: 496 year: 2014 publication-title: Chem. Soc. Rev. – volume: 7 start-page: 197 year: 1982 publication-title: Polym. Bull. – volume: 42 start-page: 5287 year: 2005 publication-title: Chem. Commun. – volume: 70 start-page: 918 year: 2021 publication-title: Polym. Int. – volume: 116 year: 2016 publication-title: Chem. Rev. – volume: 52 year: 2016 publication-title: Chem. Commun. – volume: 50 start-page: 7433 year: 2017 publication-title: Macromolecules – volume: 6 start-page: 5362 year: 2015 publication-title: Polym. Chem. – volume: 56 start-page: 8376 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 9 start-page: 557 year: 2013 publication-title: Beilstein J. Org. Chem. – ident: e_1_2_12_177_1 doi: 10.1002/adma.201503870 – volume: 11 start-page: 135 year: 1984 ident: e_1_2_12_47_1 publication-title: Polym. Bull. – ident: e_1_2_12_64_1 doi: 10.1002/pola.20394 – ident: e_1_2_12_171_1 doi: 10.1021/acsmacrolett.8b00290 – ident: e_1_2_12_178_1 doi: 10.1002/pola.21216 – ident: e_1_2_12_119_1 doi: 10.1002/pola.29405 – ident: e_1_2_12_180_1 doi: 10.1016/j.polymer.2013.06.059 – ident: e_1_2_12_117_1 doi: 10.1021/acsmacrolett.9b00716 – ident: e_1_2_12_93_1 doi: 10.1002/app.13493 – ident: e_1_2_12_126_1 doi: 10.1039/D0PY01086C – ident: e_1_2_12_88_1 doi: 10.1002/1099-0518(20001001)38:19<3596::AID-POLA150>3.0.CO;2-F – ident: e_1_2_12_128_1 doi: 10.1039/C4PY01251H – ident: e_1_2_12_13_1 doi: 10.1021/acs.macromol.5b01893 – ident: e_1_2_12_125_1 doi: 10.1039/C6PY01433J – ident: e_1_2_12_90_1 doi: 10.1002/pi.1187 – ident: e_1_2_12_84_1 doi: 10.1016/j.radphyschem.2015.03.013 – ident: e_1_2_12_97_1 doi: 10.1016/S0032-3861(03)00525-1 – ident: e_1_2_12_75_1 doi: 10.1021/bm700526j – ident: e_1_2_12_9_1 doi: 10.1002/advs.202001656 – ident: e_1_2_12_32_1 doi: 10.1002/(SICI)1099-0518(20000615)38:12<2121::AID-POLA10>3.0.CO;2-X – ident: e_1_2_12_41_1 doi: 10.1016/S0040-4020(01)91341-9 – ident: e_1_2_12_87_1 doi: 10.1002/pola.10513 – ident: e_1_2_12_68_1 doi: 10.1021/cm0510864 – ident: e_1_2_12_11_1 doi: 10.1021/acs.macromol.9b00112 – ident: e_1_2_12_62_1 doi: 10.1002/1521-3935(20010601)202:9<1970::AID-MACP1970>3.0.CO;2-Q – ident: e_1_2_12_167_1 doi: 10.1021/acs.macromol.0c02715 – ident: e_1_2_12_61_1 doi: 10.1002/1521-3935(20010601)202:9<1980::AID-MACP1980>3.0.CO;2-O – ident: e_1_2_12_36_1 doi: 10.1016/0014-3057(90)90014-U – ident: e_1_2_12_159_1 doi: 10.1039/D0PY01413C – ident: e_1_2_12_78_1 doi: 10.1016/j.colsurfa.2006.02.032 – ident: e_1_2_12_195_1 doi: 10.1039/C7CC07241D – ident: e_1_2_12_34_1 doi: 10.1021/acs.macromol.1c00565 – ident: e_1_2_12_26_1 doi: 10.1002/mats.201500076 – ident: e_1_2_12_82_1 doi: 10.1002/macp.200600026 – ident: e_1_2_12_86_1 doi: 10.1016/S0014-3057(02)00247-1 – ident: e_1_2_12_118_1 doi: 10.1002/anie.202106418 – ident: e_1_2_12_54_1 doi: 10.1021/ja983239c – ident: e_1_2_12_110_1 doi: 10.1002/pola.22005 – ident: e_1_2_12_196_1 doi: 10.1002/marc.201300578 – ident: e_1_2_12_25_1 doi: 10.1002/9783527622757.ch3 – ident: e_1_2_12_63_1 doi: 10.1002/macp.200300191 – ident: e_1_2_12_130_1 doi: 10.1021/ma500883y – ident: e_1_2_12_42_1 doi: 10.1021/acs.macromol.5b00965 – ident: e_1_2_12_50_1 doi: 10.1002/pola.29199 – ident: e_1_2_12_81_1 doi: 10.1016/j.eurpolymj.2006.12.022 – ident: e_1_2_12_28_1 doi: 10.1016/j.progpolymsci.2018.08.003 – ident: e_1_2_12_108_1 doi: 10.1002/anie.201809759 – ident: e_1_2_12_122_1 doi: 10.1039/C6PY00808A – ident: e_1_2_12_185_1 doi: 10.1007/s10570-014-0416-y – ident: e_1_2_12_16_1 doi: 10.1016/j.progpolymsci.2016.06.005 – ident: e_1_2_12_17_1 doi: 10.1016/j.progpolymsci.2019.101183 – ident: e_1_2_12_23_1 doi: 10.1002/pi.6130 – ident: e_1_2_12_101_1 doi: 10.1002/pi.2307 – start-page: 247 volume-title: Controlled Radical Polymerization: Mechanisms year: 2015 ident: e_1_2_12_40_1 doi: 10.1021/bk-2015-1187.ch013 – ident: e_1_2_12_45_1 doi: 10.1007/BF00264156 – ident: e_1_2_12_127_1 doi: 10.1039/C7PY01752A – ident: e_1_2_12_98_1 doi: 10.1021/ma0509661 – ident: e_1_2_12_99_1 doi: 10.1002/pola.22686 – ident: e_1_2_12_161_1 doi: 10.1002/marc.201800240 – ident: e_1_2_12_170_1 doi: 10.1039/C7PY00939A – ident: e_1_2_12_67_1 doi: 10.1021/ma050131q – ident: e_1_2_12_91_1 doi: 10.1002/app.21622 – ident: e_1_2_12_66_1 doi: 10.1002/macp.200400131 – ident: e_1_2_12_1_1 doi: 10.1021/ma9804951 – ident: e_1_2_12_29_1 doi: 10.1038/ncomms10514 – ident: e_1_2_12_149_1 doi: 10.1039/C7PY00787F – ident: e_1_2_12_56_1 doi: 10.1021/ma021729q – ident: e_1_2_12_134_1 doi: 10.1039/C4PY01317D – ident: e_1_2_12_89_1 doi: 10.1002/pi.1039 – ident: e_1_2_12_35_1 doi: 10.1002/marc.1982.030030208 – ident: e_1_2_12_182_1 doi: 10.1002/app.45270 – ident: e_1_2_12_123_1 doi: 10.1002/macp.201600141 – ident: e_1_2_12_138_1 doi: 10.1002/anie.201810384 – ident: e_1_2_12_131_1 doi: 10.1021/acsmacrolett.6b00818 – ident: e_1_2_12_65_1 doi: 10.1002/app.25357 – ident: e_1_2_12_43_1 doi: 10.1021/ma060157x – ident: e_1_2_12_121_1 doi: 10.1021/ja501745g – ident: e_1_2_12_73_1 doi: 10.1021/ma047373v – ident: e_1_2_12_51_1 doi: 10.1021/ma951914m – ident: e_1_2_12_147_1 doi: 10.1021/acsmacrolett.6b00828 – ident: e_1_2_12_38_1 doi: 10.1002/pola.22684 – ident: e_1_2_12_124_1 doi: 10.3390/polym11101722 – ident: e_1_2_12_27_1 doi: 10.1016/j.polymer.2007.11.020 – ident: e_1_2_12_72_1 doi: 10.1002/pola.10194 – ident: e_1_2_12_24_1 doi: 10.1021/ma300410v – ident: e_1_2_12_135_1 doi: 10.1039/C9PY00022D – ident: e_1_2_12_162_1 doi: 10.1039/D0PY01104E – ident: e_1_2_12_188_1 doi: 10.1039/C5PY01257K – ident: e_1_2_12_76_1 doi: 10.1002/marc.200600115 – ident: e_1_2_12_113_1 doi: 10.1021/ma5002244 – ident: e_1_2_12_3_1 doi: 10.1039/C6MH00265J – ident: e_1_2_12_148_1 doi: 10.1021/acs.macromol.9b01365 – ident: e_1_2_12_18_1 doi: 10.1039/D0PY00054J – ident: e_1_2_12_19_1 doi: 10.1016/j.trechm.2020.05.001 – ident: e_1_2_12_48_1 doi: 10.1021/ma00156a007 – ident: e_1_2_12_39_1 doi: 10.1021/ma070984d – ident: e_1_2_12_106_1 doi: 10.1039/C5CC01562F – ident: e_1_2_12_156_1 doi: 10.1016/j.tet.2010.05.107 – ident: e_1_2_12_136_1 doi: 10.1002/marc.201600004 – ident: e_1_2_12_189_1 doi: 10.1002/adma.200601554 – ident: e_1_2_12_129_1 doi: 10.1039/C7CS00587C – ident: e_1_2_12_111_1 doi: 10.1021/ma702406b – ident: e_1_2_12_94_1 doi: 10.1002/app.21417 – ident: e_1_2_12_85_1 doi: 10.1016/j.polymer.2007.08.043 – ident: e_1_2_12_160_1 doi: 10.1039/C7PY00713B – ident: e_1_2_12_169_1 doi: 10.1021/acsmacrolett.6b00235 – ident: e_1_2_12_146_1 doi: 10.1039/D0PY01651A – ident: e_1_2_12_60_1 doi: 10.1002/pola.10042 – ident: e_1_2_12_102_1 doi: 10.1021/ma0703094 – ident: e_1_2_12_190_1 doi: 10.1021/ma202007h – ident: e_1_2_12_165_1 doi: 10.1039/C7PY01741C – ident: e_1_2_12_31_1 doi: 10.1021/ma402435n – ident: e_1_2_12_8_1 doi: 10.1039/C8PY00970H – ident: e_1_2_12_152_1 doi: 10.1039/c39880000308 – ident: e_1_2_12_153_1 doi: 10.1002/anie.199706721 – ident: e_1_2_12_96_1 doi: 10.1007/BF01216666 – ident: e_1_2_12_46_1 doi: 10.1002/marc.1982.030030209 – ident: e_1_2_12_133_1 doi: 10.1039/C6PY01994C – ident: e_1_2_12_145_1 doi: 10.1039/C9PY01763A – ident: e_1_2_12_2_1 doi: 10.1039/B9PY00340A – ident: e_1_2_12_57_1 doi: 10.1002/1521-3935(20020201)203:3<477::AID-MACP477>3.0.CO;2-M – ident: e_1_2_12_79_1 doi: 10.1002/anie.200604922 – ident: e_1_2_12_12_1 doi: 10.1071/CH20260 – ident: e_1_2_12_4_1 doi: 10.1039/C3CS60290G – ident: e_1_2_12_107_1 doi: 10.1039/C5PY00840A – ident: e_1_2_12_6_1 doi: 10.1021/acs.macromol.7b00767 – ident: e_1_2_12_100_1 doi: 10.1002/app.25581 – ident: e_1_2_12_194_1 doi: 10.1016/j.polymer.2018.07.054 – ident: e_1_2_12_58_1 doi: 10.1021/ma0204296 – ident: e_1_2_12_179_1 doi: 10.1002/pola.21868 – ident: e_1_2_12_80_1 doi: 10.1021/ma051997z – ident: e_1_2_12_155_1 doi: 10.3762/bjoc.9.61 – ident: e_1_2_12_193_1 doi: 10.1016/j.polymer.2014.12.007 – ident: e_1_2_12_33_1 doi: 10.1021/cr990124y – ident: e_1_2_12_77_1 doi: 10.1016/j.radphyschem.2014.11.010 – ident: e_1_2_12_37_1 doi: 10.1016/j.chempr.2016.12.007 – ident: e_1_2_12_71_1 doi: 10.1021/ma021371y – ident: e_1_2_12_95_1 doi: 10.1002/pola.20395 – ident: e_1_2_12_49_1 doi: 10.1016/0014-3057(89)90023-2 – ident: e_1_2_12_172_1 doi: 10.1021/acsapm.9b00458 – ident: e_1_2_12_104_1 doi: 10.1021/ma400208j – ident: e_1_2_12_166_1 doi: 10.1021/acs.macromol.8b01708 – ident: e_1_2_12_92_1 doi: 10.1002/pola.10982 – ident: e_1_2_12_144_1 doi: 10.1039/C8PY00050F – ident: e_1_2_12_186_1 doi: 10.1016/j.radphyschem.2013.07.016 – ident: e_1_2_12_183_1 doi: 10.1016/j.eurpolymj.2015.05.019 – ident: e_1_2_12_175_1 doi: 10.1002/anie.201003888 – ident: e_1_2_12_143_1 doi: 10.1002/marc.201600482 – ident: e_1_2_12_53_1 doi: 10.1002/pola.1993.080310308 – ident: e_1_2_12_174_1 doi: 10.1039/C9PY01419E – ident: e_1_2_12_176_1 doi: 10.1002/adma.201201928 – ident: e_1_2_12_192_1 doi: 10.1021/acsphotonics.7b00206 – ident: e_1_2_12_114_1 doi: 10.1039/C5PY00608B – ident: e_1_2_12_59_1 doi: 10.1016/j.eurpolymj.2008.03.012 – ident: e_1_2_12_83_1 doi: 10.1016/j.polymer.2005.10.111 – ident: e_1_2_12_52_1 doi: 10.1021/ma00208a050 – ident: e_1_2_12_20_1 doi: 10.1039/C8CC02783H – ident: e_1_2_12_191_1 doi: 10.1002/admi.201801042 – ident: e_1_2_12_109_1 doi: 10.1002/marc.202000058 – ident: e_1_2_12_140_1 doi: 10.1002/marc.201500427 – ident: e_1_2_12_15_1 doi: 10.1002/advs.201500394 – ident: e_1_2_12_30_1 doi: 10.1038/ncomms3505 – ident: e_1_2_12_173_1 doi: 10.1002/anie.201912608 – ident: e_1_2_12_157_1 doi: 10.1021/ma101893u – ident: e_1_2_12_163_1 doi: 10.1021/acsmacrolett.5b00530 – ident: e_1_2_12_70_1 doi: 10.1002/1521-3927(20020801)23:12<717::AID-MARC717>3.0.CO;2-I – ident: e_1_2_12_103_1 doi: 10.1039/b512057h – ident: e_1_2_12_22_1 doi: 10.1021/acsapm.0c00888 – ident: e_1_2_12_168_1 doi: 10.1039/C9PY00213H – ident: e_1_2_12_141_1 doi: 10.1039/C7PY01531C – ident: e_1_2_12_142_1 doi: 10.1039/C6PY02220K – ident: e_1_2_12_116_1 doi: 10.1021/acsmacrolett.0c00203 – ident: e_1_2_12_10_1 doi: 10.1039/C5PY00478K – ident: e_1_2_12_69_1 doi: 10.1002/pola.10086 – ident: e_1_2_12_112_1 doi: 10.1021/jo201385b – ident: e_1_2_12_139_1 doi: 10.1016/j.reactfunctpolym.2017.02.003 – ident: e_1_2_12_151_1 doi: 10.1021/bk-2009-1024.ch001 – ident: e_1_2_12_21_1 doi: 10.1016/j.progpolymsci.2020.101311 – ident: e_1_2_12_14_1 doi: 10.1021/acs.chemrev.5b00671 – ident: e_1_2_12_55_1 doi: 10.1021/ma971166w – ident: e_1_2_12_137_1 doi: 10.1039/C7PY01157A – ident: e_1_2_12_105_1 doi: 10.1002/anie.201207966 – ident: e_1_2_12_154_1 doi: 10.1351/PAC-CON-10-08-07 – ident: e_1_2_12_158_1 doi: 10.1002/anie.201610223 – ident: e_1_2_12_5_1 doi: 10.1039/C6PY01849A – ident: e_1_2_12_115_1 doi: 10.1039/cs9720100465 – ident: e_1_2_12_150_1 doi: 10.1039/C6CC06010B – ident: e_1_2_12_120_1 doi: 10.1021/ma8014678 – ident: e_1_2_12_164_1 doi: 10.1021/acsmacrolett.9b00643 – volume: 7 start-page: 197 year: 1982 ident: e_1_2_12_44_1 publication-title: Polym. Bull. – ident: e_1_2_12_132_1 doi: 10.1039/C8PY00571K – ident: e_1_2_12_181_1 doi: 10.1016/j.radphyschem.2017.01.041 – ident: e_1_2_12_7_1 doi: 10.1038/nchem.2713 – ident: e_1_2_12_187_1 doi: 10.1016/j.polymer.2008.12.027 – ident: e_1_2_12_74_1 doi: 10.1021/ma0701484 – ident: e_1_2_12_184_1 doi: 10.1021/ma070825u – reference: 34994488 - Macromol Rapid Commun. 2022 Jan;43(1):e2100856 |
SSID | ssj0008402 |
Score | 2.6438234 |
SecondaryResourceType | review_article |
Snippet | Light‐mediated polymerization techniques offer distinct advantages over polymerization reactions fueled by thermal energy, such as high spatial and temporal... Light-mediated polymerization techniques offer distinct advantages over polymerization reactions fueled by thermal energy, such as high spatial and temporal... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2100514 |
SubjectTerms | Addition polymerization Catalysis Catalysts Chain transfer light Macromolecules Molecular Structure Monomers photo‐iniferter reversible addition‐fragmentation chain‐transfer photo‐mediated polymerization Polyimide resins Polymerization radical polymerization reversible addition‐fragmentation chain‐transfer polymerization Thermal energy |
Title | Photo‐Iniferter RAFT Polymerization |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmarc.202100514 https://www.ncbi.nlm.nih.gov/pubmed/34750911 https://www.proquest.com/docview/2617222613 https://www.proquest.com/docview/2595564744 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60F734flRrqaB42naTZh85lmKpQqWUFnpbsmmCYOmK3R705E_wN_pLnOyrVhFBj8tOdpNMkvkmk3wDcMGFlmjHpKVspiymNbO463FLup7mNvMUUSai27tzuyN2O3bGn27xp_wQxYabmRnJem0muAjnjSVpqKF6QP8OXRZD4Y2LsDmwZVDRYMkfhd5LGu5EjwudMTdnbbRpY7X4qlX6BjVXkWtiejrbIPJKpydOHuqLOKzLly98jv9p1Q5sZbi01koH0i6sqdkebLTzdHD7cNm_j-Lo_fXtJjkNg-qoDVqdYa0fTZ9N1Ce9znkAo871sN21shwLljTc8lbocaGUMjR7zCca4ZFooslSoU9FyCdE-pJIjbLK87VgnEzcUPsTxSaaEJOj7BBKs2imjqHmYmdTItElQpNHlOC2LT2lqaTaIV5ol8HK-ziQGQG5yYMxDVLqZBqYxgdF48twVcg_ptQbP0pWcpUF2RScB4ZqHsEPwpUynBevsdNMRETMVLRAGYc7jss8hp84SlVd_KrJEjBFykAThf1Sh6DXGrSLp5O_FDqFTWpGarLBU4FS_LRQZwh54rAK65T1q8ng_gDaAvY- |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEJ4oHvDi-4GiYqLxtLJduo8eCUpAgRACibfNbmljImGNwkFP_gR_o7_EmV12CRpjosfNTrttp935ptN-A3AmAi3RjklDmVwZXGtuCMcVhnRcLUzuKqYootvuOI0Bv7mz09OEdBcm4YfINtxoZcT_a1rgtCFdnrOGEtcDOnjosxCH9zKsUFpvos-_6s0ZpNB_SQKe6HOhO-akvI2mVV4sv2iXvoHNRewaG5_6OoRps5MzJw-X00l4KV-_MDr-q18bsDaDpqVqMpc2YUmNtyBfSzPCbcN59z6aRB9v7834QAxqpNSr1vulbjR6ocBPcqNzBwb1636tYczSLBiS6OWN0BWBUoqY9rjHNCKkoIJWS4WeFYRiyKQnmdQoq1xPB1ywoRNqb6j4UDNGacp2ITeOxmofSg6OtsUkekVo9ZgKhGlKV2lLWtpmbmgWwEgH2ZczDnJKhTHyE_Zky6fO-1nnC3CRyT8m7Bs_ShZTnfmzVfjsE9s84h9ELAU4zV7joFFQJBiraIoytrBth7scq9hLdJ19qsJjPMUKYMUa-6UNfrvaq2VPB38pdAL5Rr_d8lvNzu0hrFo0beP9niLkJk9TdYQIaBIex3P8E4JW-YM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fS8MwED90gvoi_nc6dYLiU7HJ0qZ5HNOyqRtlbLC30qYJPox26Pbgmx_Bz-gn8dJu1SEi-Fh66Z-7JPe7XPI7gEsRaYl-TFrKZspiWjNLuFxY0uVa2IwrokxGt9tz20N2P3JG307xF_wQ5YKbGRn5fG0G-CTRN1-koYbqAeM7DFkMhfcqrJmMn9nURVlQzsUYvhT5Tgy5MBpzF7SNNr1Zbr_sln5gzWXomvsefxu25qCx3iysvAMrKt2FjdaiVtseXAVP2TT7eHvv5FtVUFf1ftMf1INs_GpSMsVZy30Y-neDVtuaF0CwpCF-t2IuIqWU4cBjHtGIXaIG-hMVezSKRUKkJ4nUKKu4pyMmSOLG2ksUSzQhpoDYAVTSLFVHUHdREZRIjFfQHxEVCduWXGkqqXYIj-0qWIv_D-WcHdwUqRiHBa8xDY2-wlJfVbgu5ScFL8avkrWFOsP5-HgJDQ88IhPEElW4KG-j0ky6IkpVNkMZRziOyzjDRxwWZihf1WA50iFVoLld_viGsNvst8qr4_80Oof14NYPHzu9hxPYpKZD5QsxNahMn2fqFKHJND7Le98nQIPW2g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photo%E2%80%90Iniferter+RAFT+Polymerization&rft.jtitle=Macromolecular+rapid+communications.&rft.au=Hartlieb%2C+Matthias&rft.date=2022-01-01&rft.issn=1022-1336&rft.eissn=1521-3927&rft.volume=43&rft.issue=1&rft_id=info:doi/10.1002%2Fmarc.202100514&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_marc_202100514 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-1336&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-1336&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-1336&client=summon |