Turning On Solid‐State Luminescence by Phototriggered Subtle Molecular Conformation Variations
The development of solid‐state intelligent materials, in particular those showing photoresponsive luminescence (PRL), is highly desirable for their cutting‐edge applications in sensors, displays, data‐storage, and anti‐counterfeiting, but is challenging. Few PRL materials are constructed by tetherin...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 33; no. 2; pp. e2006844 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The development of solid‐state intelligent materials, in particular those showing photoresponsive luminescence (PRL), is highly desirable for their cutting‐edge applications in sensors, displays, data‐storage, and anti‐counterfeiting, but is challenging. Few PRL materials are constructed by tethering the classic photochromic systems with newly‐emerged solid‐state emitters. Selective solid‐state photoreactions are demanded to precisely manipulate the luminescent behavior of these emitters, which require dramatic structural change and enough free space, thus limiting the scope of the PRL family. Here, a new PRL material, TPE‐4N, that features sensitive and reversible fluorescence switching is reported. The interesting on–off luminescent property of TPE‐4N can be facilely tuned through fast phototriggering and thermal annealing. Experimental and theoretical investigations reveal that subtle molecular conformation variation induces the corresponding PRL behavior. The crystalline and amorphous state endows an efficient and weak ISC process, respectively, to turn on and off the emission. The readily fabricated thin‐film of TPE‐4N exhibits non‐destructive PRL behavior with high contrast (>102), good light transmittance (>72.3%), and great durability and reversibility under room light for months. Remarkably, a uniform thin‐film with such fascinating PRL properties allows high‐tech applications in invisible anti‐counterfeiting and dynamic optical data storage with micro‐resolution.
Solid‐state intelligent materials, in particular those showing photoresponsive luminescence (PRL), is desirable for their cutting‐edge applications, but challenging. A PRL material that features sensitive and reversible fluorescence switching through phototriggering and thermal annealing is reported. The behavior is attributed to subtle molecular conformation variations. Excellent quality of thin‐films and high PRL performance allows interesting applications in invisible anti‐counterfeiting and dynamic optical data storage with micro‐resolution. |
---|---|
AbstractList | The development of solid-state intelligent materials, in particular those showing photoresponsive luminescence (PRL), is highly desirable for their cutting-edge applications in sensors, displays, data-storage, and anti-counterfeiting, but is challenging. Few PRL materials are constructed by tethering the classic photochromic systems with newly-emerged solid-state emitters. Selective solid-state photoreactions are demanded to precisely manipulate the luminescent behavior of these emitters, which require dramatic structural change and enough free space, thus limiting the scope of the PRL family. Here, a new PRL material, TPE-4N, that features sensitive and reversible fluorescence switching is reported. The interesting on-off luminescent property of TPE-4N can be facilely tuned through fast phototriggering and thermal annealing. Experimental and theoretical investigations reveal that subtle molecular conformation variation induces the corresponding PRL behavior. The crystalline and amorphous state endows an efficient and weak ISC process, respectively, to turn on and off the emission. The readily fabricated thin-film of TPE-4N exhibits non-destructive PRL behavior with high contrast (>102 ), good light transmittance (>72.3%), and great durability and reversibility under room light for months. Remarkably, a uniform thin-film with such fascinating PRL properties allows high-tech applications in invisible anti-counterfeiting and dynamic optical data storage with micro-resolution.The development of solid-state intelligent materials, in particular those showing photoresponsive luminescence (PRL), is highly desirable for their cutting-edge applications in sensors, displays, data-storage, and anti-counterfeiting, but is challenging. Few PRL materials are constructed by tethering the classic photochromic systems with newly-emerged solid-state emitters. Selective solid-state photoreactions are demanded to precisely manipulate the luminescent behavior of these emitters, which require dramatic structural change and enough free space, thus limiting the scope of the PRL family. Here, a new PRL material, TPE-4N, that features sensitive and reversible fluorescence switching is reported. The interesting on-off luminescent property of TPE-4N can be facilely tuned through fast phototriggering and thermal annealing. Experimental and theoretical investigations reveal that subtle molecular conformation variation induces the corresponding PRL behavior. The crystalline and amorphous state endows an efficient and weak ISC process, respectively, to turn on and off the emission. The readily fabricated thin-film of TPE-4N exhibits non-destructive PRL behavior with high contrast (>102 ), good light transmittance (>72.3%), and great durability and reversibility under room light for months. Remarkably, a uniform thin-film with such fascinating PRL properties allows high-tech applications in invisible anti-counterfeiting and dynamic optical data storage with micro-resolution. The development of solid‐state intelligent materials, in particular those showing photoresponsive luminescence (PRL), is highly desirable for their cutting‐edge applications in sensors, displays, data‐storage, and anti‐counterfeiting, but is challenging. Few PRL materials are constructed by tethering the classic photochromic systems with newly‐emerged solid‐state emitters. Selective solid‐state photoreactions are demanded to precisely manipulate the luminescent behavior of these emitters, which require dramatic structural change and enough free space, thus limiting the scope of the PRL family. Here, a new PRL material, TPE‐4N, that features sensitive and reversible fluorescence switching is reported. The interesting on–off luminescent property of TPE‐4N can be facilely tuned through fast phototriggering and thermal annealing. Experimental and theoretical investigations reveal that subtle molecular conformation variation induces the corresponding PRL behavior. The crystalline and amorphous state endows an efficient and weak ISC process, respectively, to turn on and off the emission. The readily fabricated thin‐film of TPE‐4N exhibits non‐destructive PRL behavior with high contrast (>102), good light transmittance (>72.3%), and great durability and reversibility under room light for months. Remarkably, a uniform thin‐film with such fascinating PRL properties allows high‐tech applications in invisible anti‐counterfeiting and dynamic optical data storage with micro‐resolution. The development of solid‐state intelligent materials, in particular those showing photoresponsive luminescence (PRL), is highly desirable for their cutting‐edge applications in sensors, displays, data‐storage, and anti‐counterfeiting, but is challenging. Few PRL materials are constructed by tethering the classic photochromic systems with newly‐emerged solid‐state emitters. Selective solid‐state photoreactions are demanded to precisely manipulate the luminescent behavior of these emitters, which require dramatic structural change and enough free space, thus limiting the scope of the PRL family. Here, a new PRL material, TPE‐4N, that features sensitive and reversible fluorescence switching is reported. The interesting on–off luminescent property of TPE‐4N can be facilely tuned through fast phototriggering and thermal annealing. Experimental and theoretical investigations reveal that subtle molecular conformation variation induces the corresponding PRL behavior. The crystalline and amorphous state endows an efficient and weak ISC process, respectively, to turn on and off the emission. The readily fabricated thin‐film of TPE‐4N exhibits non‐destructive PRL behavior with high contrast ( > 10 2 ), good light transmittance ( > 72.3%), and great durability and reversibility under room light for months. Remarkably, a uniform thin‐film with such fascinating PRL properties allows high‐tech applications in invisible anti‐counterfeiting and dynamic optical data storage with micro‐resolution. The development of solid-state intelligent materials, in particular those showing photoresponsive luminescence (PRL), is highly desirable for their cutting-edge applications in sensors, displays, data-storage, and anti-counterfeiting, but is challenging. Few PRL materials are constructed by tethering the classic photochromic systems with newly-emerged solid-state emitters. Selective solid-state photoreactions are demanded to precisely manipulate the luminescent behavior of these emitters, which require dramatic structural change and enough free space, thus limiting the scope of the PRL family. Here, a new PRL material, TPE-4N, that features sensitive and reversible fluorescence switching is reported. The interesting on-off luminescent property of TPE-4N can be facilely tuned through fast phototriggering and thermal annealing. Experimental and theoretical investigations reveal that subtle molecular conformation variation induces the corresponding PRL behavior. The crystalline and amorphous state endows an efficient and weak ISC process, respectively, to turn on and off the emission. The readily fabricated thin-film of TPE-4N exhibits non-destructive PRL behavior with high contrast (>10 ), good light transmittance (>72.3%), and great durability and reversibility under room light for months. Remarkably, a uniform thin-film with such fascinating PRL properties allows high-tech applications in invisible anti-counterfeiting and dynamic optical data storage with micro-resolution. The development of solid‐state intelligent materials, in particular those showing photoresponsive luminescence (PRL), is highly desirable for their cutting‐edge applications in sensors, displays, data‐storage, and anti‐counterfeiting, but is challenging. Few PRL materials are constructed by tethering the classic photochromic systems with newly‐emerged solid‐state emitters. Selective solid‐state photoreactions are demanded to precisely manipulate the luminescent behavior of these emitters, which require dramatic structural change and enough free space, thus limiting the scope of the PRL family. Here, a new PRL material, TPE‐4N, that features sensitive and reversible fluorescence switching is reported. The interesting on–off luminescent property of TPE‐4N can be facilely tuned through fast phototriggering and thermal annealing. Experimental and theoretical investigations reveal that subtle molecular conformation variation induces the corresponding PRL behavior. The crystalline and amorphous state endows an efficient and weak ISC process, respectively, to turn on and off the emission. The readily fabricated thin‐film of TPE‐4N exhibits non‐destructive PRL behavior with high contrast (>102), good light transmittance (>72.3%), and great durability and reversibility under room light for months. Remarkably, a uniform thin‐film with such fascinating PRL properties allows high‐tech applications in invisible anti‐counterfeiting and dynamic optical data storage with micro‐resolution. Solid‐state intelligent materials, in particular those showing photoresponsive luminescence (PRL), is desirable for their cutting‐edge applications, but challenging. A PRL material that features sensitive and reversible fluorescence switching through phototriggering and thermal annealing is reported. The behavior is attributed to subtle molecular conformation variations. Excellent quality of thin‐films and high PRL performance allows interesting applications in invisible anti‐counterfeiting and dynamic optical data storage with micro‐resolution. |
Author | Ma, Huili Zhao, Weijun Lam, Jacky W. Y. Lu, Xuefeng Yu, Jie He, Zikai Liu, Zhiyang Sun, Jinyan Tang, Ben Zhong |
Author_xml | – sequence: 1 givenname: Weijun surname: Zhao fullname: Zhao, Weijun organization: HKUST Shenzhen Research Institute – sequence: 2 givenname: Zhiyang surname: Liu fullname: Liu, Zhiyang organization: HKUST Shenzhen Research Institute – sequence: 3 givenname: Jie surname: Yu fullname: Yu, Jie organization: HIT Campus of University Town – sequence: 4 givenname: Xuefeng surname: Lu fullname: Lu, Xuefeng organization: The Hong Kong University of Science and Technology – sequence: 5 givenname: Jacky W. Y. surname: Lam fullname: Lam, Jacky W. Y. organization: The Hong Kong University of Science and Technology – sequence: 6 givenname: Jinyan surname: Sun fullname: Sun, Jinyan organization: HIT Campus of University Town – sequence: 7 givenname: Zikai surname: He fullname: He, Zikai email: hezikai@hit.edu.cn organization: HIT Campus of University Town – sequence: 8 givenname: Huili surname: Ma fullname: Ma, Huili email: iamhlma@njtech.edu.cn organization: Nanjing Tech University – sequence: 9 givenname: Ben Zhong orcidid: 0000-0002-0293-964X surname: Tang fullname: Tang, Ben Zhong email: tangbz@ust.hk organization: The Hong Kong University of Science and Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33270285$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcFu1DAQhi3Uim4XrhxRJC5cskwcJ7GPqy0FpK2KtIWrcezx4sqxi5Oo2lsfoc_Ik5B2WypVQpzGh--bGc9_TA5CDEjImwIWBQD9oEynFhQoQM0Ze0FmRUWLnIGoDsgMRFnlomb8iBz3_SUAiBrql-SoLGkDlFcz8uNiTMGFbXYesk30zvy-ud0MasBsPXYuYK8xaMzaXfb1ZxzikNx2iwlNthnbwWN2Fj3q0auUrWKwMXVqcDFk31Vy96_-FTm0yvf4-qHOybfTjxerz_n6_NOX1XKda9YIllNjaGuU0VZxFGgNQMu10GVdKq61ti1wZpCVFjW3jbAaBC10VRbMAja8nJP3-75XKf4asR9k56blvVcB49hLyuq6aSiHakLfPUMv43SFabuJampeNHQaOydvH6ix7dDIq-Q6lXby8XYTwPaATrHvE1qp3XD_6SEp52UB8i4ieReR_BvRpC2eaY-d_ymIvXDtPO7-Q8vlydnyyf0D6cCmHg |
CitedBy_id | crossref_primary_10_1039_D2NJ03457C crossref_primary_10_1002_anie_202114264 crossref_primary_10_1021_jacs_3c07478 crossref_primary_10_1039_D2SC02986C crossref_primary_10_1002_adfm_202211009 crossref_primary_10_1021_acs_cgd_2c00179 crossref_primary_10_1039_D3QI02559D crossref_primary_10_1021_acs_chemmater_2c01434 crossref_primary_10_1002_adhm_202101169 crossref_primary_10_1021_acs_accounts_2c00818 crossref_primary_10_3390_nano13182562 crossref_primary_10_1002_adom_202302854 crossref_primary_10_1002_anie_202406417 crossref_primary_10_1016_j_cej_2021_134055 crossref_primary_10_1007_s42114_025_01271_8 crossref_primary_10_1039_D1TC01713F crossref_primary_10_1002_ange_202110088 crossref_primary_10_1088_1361_665X_ac1d93 crossref_primary_10_3389_fmats_2024_1446307 crossref_primary_10_1021_jacs_2c01248 crossref_primary_10_1002_ange_202114264 crossref_primary_10_1002_anie_202111344 crossref_primary_10_1016_j_saa_2024_124500 crossref_primary_10_1039_D1CE00442E crossref_primary_10_1039_D5TC00180C crossref_primary_10_1002_adfm_202107145 crossref_primary_10_1021_acs_analchem_2c00510 crossref_primary_10_1002_adom_202301627 crossref_primary_10_1007_s11426_021_9978_1 crossref_primary_10_1002_ange_202204568 crossref_primary_10_1002_anie_202202655 crossref_primary_10_1038_s41467_024_48728_w crossref_primary_10_1039_D2CS00976E crossref_primary_10_1039_D2TC03072A crossref_primary_10_1002_ange_202413827 crossref_primary_10_1021_acsnano_3c00074 crossref_primary_10_1021_acs_cgd_4c00460 crossref_primary_10_1002_adom_202300386 crossref_primary_10_1002_adfm_202108365 crossref_primary_10_1002_ange_202406417 crossref_primary_10_1021_acs_jpca_4c06952 crossref_primary_10_1002_adma_202414188 crossref_primary_10_1039_D1TC04401J crossref_primary_10_6023_cjoc202403027 crossref_primary_10_26599_JAC_2024_9220865 crossref_primary_10_1002_anie_202214875 crossref_primary_10_1021_acsphotonics_3c01756 crossref_primary_10_1002_anie_202110088 crossref_primary_10_1016_j_cej_2021_130986 crossref_primary_10_1002_adma_202407268 crossref_primary_10_1039_D1TC00501D crossref_primary_10_1002_adma_202301914 crossref_primary_10_1016_j_dyepig_2022_110617 crossref_primary_10_1038_s41467_022_30121_0 crossref_primary_10_1016_j_cej_2021_132290 crossref_primary_10_1002_ange_202202655 crossref_primary_10_1002_anie_202204568 crossref_primary_10_1002_lpor_202100552 crossref_primary_10_1021_acs_analchem_2c05045 crossref_primary_10_1021_acs_analchem_4c03558 crossref_primary_10_1016_j_coco_2021_100816 crossref_primary_10_1016_j_jscs_2022_101502 crossref_primary_10_1039_D4TC03379E crossref_primary_10_1039_D2TA09630G crossref_primary_10_1002_adfm_202213927 crossref_primary_10_1002_ange_202214875 crossref_primary_10_1016_j_saa_2023_122968 crossref_primary_10_1002_lpor_202300925 crossref_primary_10_1016_j_cej_2023_144030 crossref_primary_10_1002_asia_202300124 crossref_primary_10_1016_j_cej_2023_141792 crossref_primary_10_1002_adma_202108163 crossref_primary_10_1016_j_cej_2024_148600 crossref_primary_10_1002_adfm_202106673 crossref_primary_10_1021_acsami_3c03183 crossref_primary_10_1021_acs_joc_4c00479 crossref_primary_10_1002_anie_202413827 crossref_primary_10_1016_j_cej_2023_141828 crossref_primary_10_1002_adom_202200629 crossref_primary_10_1016_j_cej_2024_156214 crossref_primary_10_1039_D3QO02116E crossref_primary_10_1039_D3QM00621B crossref_primary_10_1002_ange_202111344 crossref_primary_10_1021_acsami_1c06436 crossref_primary_10_1039_D4MA01015A crossref_primary_10_1021_acsami_4c02677 |
Cites_doi | 10.1002/adma.201805750 10.1002/adma.201503424 10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-9 10.1002/anie.201310438 10.1021/jacs.9b01870 10.1021/jacs.9b07057 10.1002/inf2.12125 10.1038/natrevmats.2016.100 10.1002/adma.201807328 10.1021/ja411689w 10.1016/j.cclet.2019.07.040 10.1038/nature10497 10.1002/adma.201605271 10.1039/C8TC02698J 10.1021/acsami.0c03122 10.1016/j.molstruc.2020.127987 10.1039/C8SC03740J 10.1021/acsnano.5b03367 10.1103/PhysRevB.62.10696 10.1021/ja306748k 10.1016/j.mtadv.2020.100058 10.1039/C1CS15205J 10.1021/ja512189a 10.1002/adma.201905866 10.1002/jrs.5073 10.1039/b804151m 10.1016/S0006-3495(80)85032-6 10.1002/adma.201803924 10.1021/acsami.8b10322 10.1002/asia.201601096 10.1201/9780429020841 10.1002/adma.201807751 10.1002/adma.201806727 10.1002/chem.201200354 10.1039/C7CS00206H 10.1126/science.291.5509.1769 10.1016/S0038-1098(96)00716-8 10.1039/C8QM00633D 10.1126/science.aaf6298 10.1002/adma.201704941 10.1039/C5CS00137D 10.1021/jacs.7b07738 10.1002/adma.201801726 10.1038/s41467-018-05476-y 10.1021/cr300179f 10.1039/C6SC03177C 10.1021/jacs.8b04900 10.1021/acs.chemrev.5b00263 10.1002/adma.201807333 10.1002/anie.201507197 10.1039/c2cp41502j 10.1039/b703092b 10.1126/science.1058847 10.1021/jacs.8b07108 10.1021/jacs.9b03932 10.1039/C8TC00145F 10.1002/adfm.201501224 10.1038/s41578-018-0040-9 10.1002/adma.201101059 10.1038/ncomms4601 10.1002/adma.200904102 10.1038/s41578-018-0016-9 10.1039/D0NR04584E 10.1021/jacs.9b01056 |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH GmbH 2020 Wiley-VCH GmbH. 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2020 Wiley‐VCH GmbH – notice: 2020 Wiley-VCH GmbH. – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202006844 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 33270285 10_1002_adma_202006844 ADMA202006844 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Science Foundation of China funderid: 21975061; 21788102; 51703042; 21973043 – fundername: Science and Technology Plan of Shenzhen funderid: JCYJ20190806142403535; JCYJ20180306174910791; JCYJ20170811155015918 – fundername: National Science Foundation of Guangdong Province – fundername: Research Grants Council of Hong Kong funderid: C6009‐17G; A‐HKUST605/16; ITC‐CNERC14SC01 – fundername: Natural Scientific Research Innovation Foundation in Harbin Institute of Technology funderid: HIT.NSRIF.2020062 – fundername: Science and Technology Plan of Shenzhen grantid: JCYJ20190806142403535 – fundername: National Science Foundation of China grantid: 21788102 – fundername: Research Grants Council of Hong Kong grantid: C6009-17G – fundername: Science and Technology Plan of Shenzhen grantid: JCYJ20180306174910791 – fundername: Research Grants Council of Hong Kong grantid: A-HKUST605/16 – fundername: National Science Foundation of China grantid: 21975061 – fundername: National Science Foundation of China grantid: 21973043 – fundername: Science and Technology Plan of Shenzhen grantid: JCYJ20170811155015918 – fundername: Research Grants Council of Hong Kong grantid: ITC-CNERC14SC01 – fundername: Natural Scientific Research Innovation Foundation in Harbin Institute of Technology grantid: HIT.NSRIF.2020062 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4794-2dd2bdadcfa8e9efd00b8c9c363a8cccfb084de43fec8f79fc0921c5314f0e783 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 00:13:32 EDT 2025 Fri Jul 25 03:13:55 EDT 2025 Wed Feb 19 02:29:53 EST 2025 Thu Apr 24 22:57:22 EDT 2025 Tue Jul 01 02:32:56 EDT 2025 Wed Jan 22 16:30:26 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | aggregation-induced emission anti-counterfeiting molecular conformation photoresponsive luminescent materials thin films |
Language | English |
License | 2020 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4794-2dd2bdadcfa8e9efd00b8c9c363a8cccfb084de43fec8f79fc0921c5314f0e783 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0293-964X |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adma.202006844 |
PMID | 33270285 |
PQID | 2476817236 |
PQPubID | 2045203 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2466772805 proquest_journals_2476817236 pubmed_primary_33270285 crossref_citationtrail_10_1002_adma_202006844 crossref_primary_10_1002_adma_202006844 wiley_primary_10_1002_adma_202006844_ADMA202006844 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015 2018 2020 2020 2020; 137 6 12 31 12 2011; 478 2015; 25 2018; 3 2014; 5 2018 2017; 9 8 2019 2017; 141 2 2019; 31 2018 2019 2012 2014 2018 2019 2009 2014; 140 141 134 53 6 141 38 136 2019 2016 2017 2020; 3 11 139 6 2019 2019 2008 2010 2001 2019 2012; 31 31 37 22 291 31 41 2019 2017 2020 1980; 141 46 32 2018; 30 2003 2016 2018 2015 2019 2015 2018 2012; 30 44 31 27 10 18 2012 2017; 14 48 2013 2015 2017 2018 2016 2018 2018 2020; 113 9 29 9 352 140 30 32 2018 2018 2002; 14 2011 2015 2016; 23 115 55 2000 1997 2001 2018; 62 102 292 3 Piegari A. (e_1_2_5_19_1) 2018 e_1_2_5_7_6 e_1_2_5_9_4 e_1_2_5_13_3 e_1_2_5_15_1 e_1_2_5_7_5 e_1_2_5_9_3 e_1_2_5_11_4 e_1_2_5_13_2 e_1_2_5_7_4 e_1_2_5_17_1 e_1_2_5_7_3 e_1_2_5_7_2 e_1_2_5_11_1 e_1_2_5_7_1 e_1_2_5_11_3 e_1_2_5_13_1 e_1_2_5_5_1 e_1_2_5_11_2 e_1_2_5_3_1 e_1_2_5_1_1 e_1_2_5_17_2 e_1_2_5_19_3 e_1_2_5_19_2 e_1_2_5_9_8 e_1_2_5_9_7 e_1_2_5_7_8 e_1_2_5_9_6 e_1_2_5_7_7 e_1_2_5_9_5 Tian H. (e_1_2_5_9_2) 2016 Dürr H. (e_1_2_5_9_1) 2003 e_1_2_5_6_7 e_1_2_5_10_6 e_1_2_5_12_4 e_1_2_5_14_2 e_1_2_5_6_6 e_1_2_5_8_4 e_1_2_5_10_5 e_1_2_5_12_3 e_1_2_5_14_1 e_1_2_5_6_5 e_1_2_5_8_3 e_1_2_5_10_8 e_1_2_5_12_6 e_1_2_5_6_4 e_1_2_5_8_2 e_1_2_5_10_7 e_1_2_5_12_5 e_1_2_5_16_1 e_1_2_5_6_3 e_1_2_5_8_1 e_1_2_5_10_2 e_1_2_5_6_2 e_1_2_5_10_1 e_1_2_5_6_1 e_1_2_5_10_4 e_1_2_5_12_2 e_1_2_5_10_3 e_1_2_5_12_1 e_1_2_5_4_1 e_1_2_5_2_2 e_1_2_5_2_1 e_1_2_5_18_2 e_1_2_5_18_1 e_1_2_5_18_4 e_1_2_5_18_3 |
References_xml | – volume: 3 11 139 6 start-page: 620 3205 year: 2019 2016 2017 2020 publication-title: Mater. Chem. Front. Chem. ‐ Asian J. J. Am. Chem. Soc. Mater. Today Adv. – volume: 140 141 134 53 6 141 38 136 start-page: 8364 4603 2270 5650 1859 1643 year: 2018 2019 2012 2014 2018 2019 2009 2014 publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc. J. Am. Chem. Soc. Angew. Chem., Int. Ed. J. Mater. Chem. C J. Am. Chem. Soc. Chem. Soc. Rev. J. Am. Chem. Soc. – volume: 9 8 start-page: 3044 1163 year: 2018 2017 publication-title: Nat. Commun. Chem. Sci. – volume: 5 start-page: 3601 year: 2014 publication-title: Nat. Commun. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 23 115 55 start-page: 3261 519 year: 2011 2015 2016 publication-title: Adv. Mater. Chem. Rev. Angew. Chem., Int. Ed. – volume: 141 2 start-page: 7385 year: 2019 2017 publication-title: J. Am. Chem. Soc. Nat. Rev. Mater. – volume: 478 start-page: 204 year: 2011 publication-title: Nature – volume: 25 start-page: 4005 year: 2015 publication-title: Adv. Funct. Mater. – volume: 137 6 12 31 12 start-page: 2436 8832 361 year: 2015 2018 2020 2020 2020 publication-title: J. Am. Chem. Soc. J. Mater. Chem. C ACS Appl. Mater. Interfaces Chin. Chem. Lett. Nanoscale – volume: 14 start-page: 99 year: 2018 2018 2002 publication-title: Adv. Mater. – volume: 14 48 start-page: 538 year: 2012 2017 publication-title: Phys. Chem. Chem. Phys. J. Raman Spectrosc. – volume: 31 31 37 22 291 31 41 start-page: 1520 3348 1769 1754 year: 2019 2019 2008 2010 2001 2019 2012 publication-title: Adv. Mater. Adv. Mater. Chem. Soc. Rev. Adv. Mater. Science Adv. Mater. Chem. Soc. Rev. – volume: 3 start-page: 113 year: 2018 publication-title: Nat. Rev. Mater. – volume: 30 44 31 27 10 18 start-page: 3719 6469 year: 2003 2016 2018 2015 2019 2015 2018 2012 publication-title: Adv. Mater. Chem. Soc. Rev. Adv. Mater. Adv. Mater. ACS Appl. Mater. Interfaces Chem. ‐ Eur. J. – volume: 62 102 292 3 start-page: 165 77 392 year: 2000 1997 2001 2018 publication-title: Phys. Rev. B Solid State Commun. Science Nat. Rev. Mater. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 141 46 32 start-page: 4020 1007 year: 2019 2017 2020 1980 publication-title: J. Am. Chem. Soc. Chem. Soc. Rev. J. Mol. Struct. Biophys. J. – volume: 113 9 29 9 352 140 30 32 start-page: 6114 7746 8990 1443 year: 2013 2015 2017 2018 2016 2018 2018 2020 publication-title: Chem. Rev. ACS Nano Adv. Mater. Chem. Sci. Science J. Am. Chem. Soc. Adv. Mater. Adv. Mater. – ident: e_1_2_5_6_1 doi: 10.1002/adma.201805750 – ident: e_1_2_5_9_6 doi: 10.1002/adma.201503424 – ident: e_1_2_5_19_3 doi: 10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-9 – ident: e_1_2_5_10_4 doi: 10.1002/anie.201310438 – ident: e_1_2_5_10_6 doi: 10.1021/jacs.9b01870 – ident: e_1_2_5_18_1 doi: 10.1021/jacs.9b07057 – ident: e_1_2_5_12_6 doi: 10.1002/inf2.12125 – ident: e_1_2_5_2_2 doi: 10.1038/natrevmats.2016.100 – volume-title: Optical Thin Films and Coatings: From Materials to Applications year: 2018 ident: e_1_2_5_19_1 – ident: e_1_2_5_6_6 doi: 10.1002/adma.201807328 – ident: e_1_2_5_10_8 doi: 10.1021/ja411689w – ident: e_1_2_5_12_4 doi: 10.1016/j.cclet.2019.07.040 – ident: e_1_2_5_3_1 doi: 10.1038/nature10497 – ident: e_1_2_5_7_3 doi: 10.1002/adma.201605271 – ident: e_1_2_5_12_2 doi: 10.1039/C8TC02698J – ident: e_1_2_5_12_3 doi: 10.1021/acsami.0c03122 – ident: e_1_2_5_18_3 doi: 10.1016/j.molstruc.2020.127987 – ident: e_1_2_5_7_4 doi: 10.1039/C8SC03740J – ident: e_1_2_5_7_2 doi: 10.1021/acsnano.5b03367 – volume-title: Photochromic Materials: Preparation, Properties and Applications year: 2016 ident: e_1_2_5_9_2 – ident: e_1_2_5_8_1 doi: 10.1103/PhysRevB.62.10696 – ident: e_1_2_5_10_3 doi: 10.1021/ja306748k – ident: e_1_2_5_11_4 doi: 10.1016/j.mtadv.2020.100058 – ident: e_1_2_5_6_7 doi: 10.1039/C1CS15205J – ident: e_1_2_5_12_1 doi: 10.1021/ja512189a – ident: e_1_2_5_7_8 doi: 10.1002/adma.201905866 – ident: e_1_2_5_17_2 doi: 10.1002/jrs.5073 – ident: e_1_2_5_10_7 doi: 10.1039/b804151m – ident: e_1_2_5_18_4 doi: 10.1016/S0006-3495(80)85032-6 – ident: e_1_2_5_15_1 doi: 10.1002/adma.201803924 – ident: e_1_2_5_9_7 doi: 10.1021/acsami.8b10322 – ident: e_1_2_5_11_2 doi: 10.1002/asia.201601096 – ident: e_1_2_5_19_2 doi: 10.1201/9780429020841 – ident: e_1_2_5_4_1 doi: 10.1002/adma.201807751 – ident: e_1_2_5_6_2 doi: 10.1002/adma.201806727 – ident: e_1_2_5_9_8 doi: 10.1002/chem.201200354 – ident: e_1_2_5_18_2 doi: 10.1039/C7CS00206H – ident: e_1_2_5_6_5 doi: 10.1126/science.291.5509.1769 – ident: e_1_2_5_8_2 doi: 10.1016/S0038-1098(96)00716-8 – ident: e_1_2_5_11_1 doi: 10.1039/C8QM00633D – ident: e_1_2_5_7_5 doi: 10.1126/science.aaf6298 – ident: e_1_2_5_9_3 doi: 10.1002/adma.201704941 – ident: e_1_2_5_9_4 doi: 10.1039/C5CS00137D – ident: e_1_2_5_11_3 doi: 10.1021/jacs.7b07738 – ident: e_1_2_5_7_7 doi: 10.1002/adma.201801726 – ident: e_1_2_5_14_1 doi: 10.1038/s41467-018-05476-y – ident: e_1_2_5_7_1 doi: 10.1021/cr300179f – ident: e_1_2_5_14_2 doi: 10.1039/C6SC03177C – ident: e_1_2_5_7_6 doi: 10.1021/jacs.8b04900 – ident: e_1_2_5_13_2 doi: 10.1021/acs.chemrev.5b00263 – ident: e_1_2_5_9_5 doi: 10.1002/adma.201807333 – ident: e_1_2_5_13_3 doi: 10.1002/anie.201507197 – ident: e_1_2_5_17_1 doi: 10.1039/c2cp41502j – ident: e_1_2_5_6_3 doi: 10.1039/b703092b – volume-title: Photochromism: Molecules and Systems year: 2003 ident: e_1_2_5_9_1 – ident: e_1_2_5_8_3 doi: 10.1126/science.1058847 – ident: e_1_2_5_10_1 doi: 10.1021/jacs.8b07108 – ident: e_1_2_5_10_2 doi: 10.1021/jacs.9b03932 – ident: e_1_2_5_10_5 doi: 10.1039/C8TC00145F – ident: e_1_2_5_16_1 doi: 10.1002/adfm.201501224 – ident: e_1_2_5_8_4 doi: 10.1038/s41578-018-0040-9 – ident: e_1_2_5_13_1 doi: 10.1002/adma.201101059 – ident: e_1_2_5_5_1 doi: 10.1038/ncomms4601 – ident: e_1_2_5_6_4 doi: 10.1002/adma.200904102 – ident: e_1_2_5_1_1 doi: 10.1038/s41578-018-0016-9 – ident: e_1_2_5_12_5 doi: 10.1039/D0NR04584E – ident: e_1_2_5_2_1 doi: 10.1021/jacs.9b01056 |
SSID | ssj0009606 |
Score | 2.6029062 |
Snippet | The development of solid‐state intelligent materials, in particular those showing photoresponsive luminescence (PRL), is highly desirable for their... The development of solid-state intelligent materials, in particular those showing photoresponsive luminescence (PRL), is highly desirable for their... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2006844 |
SubjectTerms | aggregation‐induced emission anti‐counterfeiting Construction materials Counterfeiting Data storage Emitters Fluorescence Light transmittance Luminescence Materials science Molecular conformation photoresponsive luminescent materials Smart materials Tethering thin films Turning (machining) |
Title | Turning On Solid‐State Luminescence by Phototriggered Subtle Molecular Conformation Variations |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202006844 https://www.ncbi.nlm.nih.gov/pubmed/33270285 https://www.proquest.com/docview/2476817236 https://www.proquest.com/docview/2466772805 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9UwFG8IT_KgCKgXkJTEhKdCbXu37vEGJIRwkSAY3uZ62qoRNgLbAzz5EfyMfBJ6urvBlRgTfVzaZlvb0_7Ov98h5F24kywo7plVQ8uUB8HQecSUksZjaqOMHvzxYbJ3qvbPhmePsvhbfoje4IaSEc9rFPDCXG89kIYWNvIGoUqsFRKCYsAWoqLjB_4ohOeRbE8OWZYo3bE2crE1PXz6VnoCNaeRa7x6dl-QovvoNuLkx2ZTm024_Y3P8X_-ap48n-BSOmo30ksy48oFMveIrXCRfDlpohWFfizpp-r8u737-StiVXrQXGD0POApQc0NPfpW1VUd9P6vWAmUhsMp7Eg67irxUkwz7JIm6eegrbdmwyVyuvvhZHuPTQo0MEBieiasFcYWFnyhXea85dxoyEAmstAA4A3XyjolvQPt08wDz8R7CGKvPHeplq_IbFmV7g2hVnJvbeZTw6UCSILWgx5eZ1MjiwAhBoR1C5TDhL0ci2ic5y3vsshx5vJ-5gZko-9_2fJ2_LHnarfe-UR-r3OhghoWsJ1MBmS9bw6Sh-6UonRVg32SJMXqXsMBed3uk_5VUmKenw4tIq72X74hH-2MR_3T8r8MWiHPBIbbROvQKpmtrxr3NuCl2qxFmbgHRv0N1g |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL2CsoAuKI9ShhYwEhIrt8b2JM5y1IcGmCmITlF3IX4BoiQIkkW76if0G_kSfJ1JyhQhJFhGtpXE9rXPfZ0L8DTcSdZI5qmVQ0ulN5yi84hKKbTH1EYRPfjT_WR8KF8eDbtoQsyFafkheoMbSkY8r1HA0SC9dcEaWthIHIQ6sZLyKlzDst5In7_z9oJBCgF6pNsTQ5olUnW8jYxvLY5fvJd-A5uL2DVePnsroLvPbmNOPm82td40p5cYHf_rv27BzTk0JaN2L92GK668A8u_EBbehfezJhpSyOuSHFTHn-yPs_MIV8mk-YIB9AYPCqJPyJuPVV3VQfX_gMVASTifwqYk064YL8FMwy5vkrwLCntrOVyFw73d2faYzms0UIPc9JRby7UtrPGFcpnzljGtTGZEIgpljPGaKWmdFN4Z5dPMG5bx5yZIvvTMpUrcg6WyKt19IFYwb23mU82ENCYJig86eZ1NtSgCihgA7VYoN3MCc6yjcZy31Ms8x5nL-5kbwLO-_9eWuuOPPTe6Bc_nIvw95zJoYgHeiWQAT_rmIHzoUSlKVzXYJ0lSLPA1HMBau1H6VwmBqX4qtPC43H_5hny0Mx31Tw_-ZdBjuD6eTSf55MX-q3W4wTH6JhqLNmCp_ta4hwE-1fpRFJCfHWIR8g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VVkJwKOV_SwtGQuLk1rW9iXNcsV210C0VtKi3EP8VRJtUkBzKiUfgGXkSPM4m7YIQEhwj27Jje-xvZjzfADwLd5I1knlq5dBS6Q2n6DyiUgrtMbRRRA_-dD_ZOZIvj4fHV6L4W36I3uCGkhHPaxTwc-s3L0lDCxt5g1AlVlJegyWZsAyTN4zfXBJIIT6PbHtiSLNEqo62kfHN-fbz19JvWHMeusa7Z3ILim7U7ZOTTxtNrTfM118IHf_nt1ZgeQZMyajdSbdhwZV34OYVusK78P6wiWYU8rokb6vTj_bHt-8RrJK95gyfzxs8Joi-IAcfqrqqg-J_gqlASTidwpYk0y4VL8E4wy5qkrwL6nprN7wHR5Ptwxc7dJahgRpkpqfcWq5tYY0vlMuct4xpZTIjElEoY4zXTEnrpPDOKJ9m3rCMb5kg99IzlypxHxbLqnQPgVjBvLWZTzUT0pgkqD3o4nU21aIIGGIAtFug3MzoyzGLxmneEi_zHGcu72duAM_7-uctcccfa651653PBPhLzmXQwwK4E8kAnvbFQfTQn1KUrmqwTpKkmN5rOIAH7T7puxICA_1UKOFxtf8yhnw0no76r9V_afQErh-MJ_ne7v6rR3CD49ObaClag8X6c-PWA3aq9eMoHj8B2IQQoQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Turning+On+Solid%E2%80%90State+Luminescence+by+Phototriggered+Subtle+Molecular+Conformation+Variations&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhao%2C+Weijun&rft.au=Liu%2C+Zhiyang&rft.au=Yu%2C+Jie&rft.au=Lu%2C+Xuefeng&rft.date=2021-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=33&rft.issue=2&rft_id=info:doi/10.1002%2Fadma.202006844&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |