Turning On Solid‐State Luminescence by Phototriggered Subtle Molecular Conformation Variations

The development of solid‐state intelligent materials, in particular those showing photoresponsive luminescence (PRL), is highly desirable for their cutting‐edge applications in sensors, displays, data‐storage, and anti‐counterfeiting, but is challenging. Few PRL materials are constructed by tetherin...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 33; no. 2; pp. e2006844 - n/a
Main Authors Zhao, Weijun, Liu, Zhiyang, Yu, Jie, Lu, Xuefeng, Lam, Jacky W. Y., Sun, Jinyan, He, Zikai, Ma, Huili, Tang, Ben Zhong
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The development of solid‐state intelligent materials, in particular those showing photoresponsive luminescence (PRL), is highly desirable for their cutting‐edge applications in sensors, displays, data‐storage, and anti‐counterfeiting, but is challenging. Few PRL materials are constructed by tethering the classic photochromic systems with newly‐emerged solid‐state emitters. Selective solid‐state photoreactions are demanded to precisely manipulate the luminescent behavior of these emitters, which require dramatic structural change and enough free space, thus limiting the scope of the PRL family. Here, a new PRL material, TPE‐4N, that features sensitive and reversible fluorescence switching is reported. The interesting on–off luminescent property of TPE‐4N can be facilely tuned through fast phototriggering and thermal annealing. Experimental and theoretical investigations reveal that subtle molecular conformation variation induces the corresponding PRL behavior. The crystalline and amorphous state endows an efficient and weak ISC process, respectively, to turn on and off the emission. The readily fabricated thin‐film of TPE‐4N exhibits non‐destructive PRL behavior with high contrast (>102), good light transmittance (>72.3%), and great durability and reversibility under room light for months. Remarkably, a uniform thin‐film with such fascinating PRL properties allows high‐tech applications in invisible anti‐counterfeiting and dynamic optical data storage with micro‐resolution. Solid‐state intelligent materials, in particular those showing photoresponsive luminescence (PRL), is desirable for their cutting‐edge applications, but challenging. A PRL material that features sensitive and reversible fluorescence switching through phototriggering and thermal annealing is reported. The behavior is attributed to subtle molecular conformation variations. Excellent quality of thin‐films and high PRL performance allows interesting applications in invisible anti‐counterfeiting and dynamic optical data storage with micro‐resolution.
AbstractList The development of solid-state intelligent materials, in particular those showing photoresponsive luminescence (PRL), is highly desirable for their cutting-edge applications in sensors, displays, data-storage, and anti-counterfeiting, but is challenging. Few PRL materials are constructed by tethering the classic photochromic systems with newly-emerged solid-state emitters. Selective solid-state photoreactions are demanded to precisely manipulate the luminescent behavior of these emitters, which require dramatic structural change and enough free space, thus limiting the scope of the PRL family. Here, a new PRL material, TPE-4N, that features sensitive and reversible fluorescence switching is reported. The interesting on-off luminescent property of TPE-4N can be facilely tuned through fast phototriggering and thermal annealing. Experimental and theoretical investigations reveal that subtle molecular conformation variation induces the corresponding PRL behavior. The crystalline and amorphous state endows an efficient and weak ISC process, respectively, to turn on and off the emission. The readily fabricated thin-film of TPE-4N exhibits non-destructive PRL behavior with high contrast (>102 ), good light transmittance (>72.3%), and great durability and reversibility under room light for months. Remarkably, a uniform thin-film with such fascinating PRL properties allows high-tech applications in invisible anti-counterfeiting and dynamic optical data storage with micro-resolution.The development of solid-state intelligent materials, in particular those showing photoresponsive luminescence (PRL), is highly desirable for their cutting-edge applications in sensors, displays, data-storage, and anti-counterfeiting, but is challenging. Few PRL materials are constructed by tethering the classic photochromic systems with newly-emerged solid-state emitters. Selective solid-state photoreactions are demanded to precisely manipulate the luminescent behavior of these emitters, which require dramatic structural change and enough free space, thus limiting the scope of the PRL family. Here, a new PRL material, TPE-4N, that features sensitive and reversible fluorescence switching is reported. The interesting on-off luminescent property of TPE-4N can be facilely tuned through fast phototriggering and thermal annealing. Experimental and theoretical investigations reveal that subtle molecular conformation variation induces the corresponding PRL behavior. The crystalline and amorphous state endows an efficient and weak ISC process, respectively, to turn on and off the emission. The readily fabricated thin-film of TPE-4N exhibits non-destructive PRL behavior with high contrast (>102 ), good light transmittance (>72.3%), and great durability and reversibility under room light for months. Remarkably, a uniform thin-film with such fascinating PRL properties allows high-tech applications in invisible anti-counterfeiting and dynamic optical data storage with micro-resolution.
The development of solid‐state intelligent materials, in particular those showing photoresponsive luminescence (PRL), is highly desirable for their cutting‐edge applications in sensors, displays, data‐storage, and anti‐counterfeiting, but is challenging. Few PRL materials are constructed by tethering the classic photochromic systems with newly‐emerged solid‐state emitters. Selective solid‐state photoreactions are demanded to precisely manipulate the luminescent behavior of these emitters, which require dramatic structural change and enough free space, thus limiting the scope of the PRL family. Here, a new PRL material, TPE‐4N, that features sensitive and reversible fluorescence switching is reported. The interesting on–off luminescent property of TPE‐4N can be facilely tuned through fast phototriggering and thermal annealing. Experimental and theoretical investigations reveal that subtle molecular conformation variation induces the corresponding PRL behavior. The crystalline and amorphous state endows an efficient and weak ISC process, respectively, to turn on and off the emission. The readily fabricated thin‐film of TPE‐4N exhibits non‐destructive PRL behavior with high contrast (>102), good light transmittance (>72.3%), and great durability and reversibility under room light for months. Remarkably, a uniform thin‐film with such fascinating PRL properties allows high‐tech applications in invisible anti‐counterfeiting and dynamic optical data storage with micro‐resolution.
The development of solid‐state intelligent materials, in particular those showing photoresponsive luminescence (PRL), is highly desirable for their cutting‐edge applications in sensors, displays, data‐storage, and anti‐counterfeiting, but is challenging. Few PRL materials are constructed by tethering the classic photochromic systems with newly‐emerged solid‐state emitters. Selective solid‐state photoreactions are demanded to precisely manipulate the luminescent behavior of these emitters, which require dramatic structural change and enough free space, thus limiting the scope of the PRL family. Here, a new PRL material, TPE‐4N, that features sensitive and reversible fluorescence switching is reported. The interesting on–off luminescent property of TPE‐4N can be facilely tuned through fast phototriggering and thermal annealing. Experimental and theoretical investigations reveal that subtle molecular conformation variation induces the corresponding PRL behavior. The crystalline and amorphous state endows an efficient and weak ISC process, respectively, to turn on and off the emission. The readily fabricated thin‐film of TPE‐4N exhibits non‐destructive PRL behavior with high contrast ( > 10 2 ), good light transmittance ( > 72.3%), and great durability and reversibility under room light for months. Remarkably, a uniform thin‐film with such fascinating PRL properties allows high‐tech applications in invisible anti‐counterfeiting and dynamic optical data storage with micro‐resolution.
The development of solid-state intelligent materials, in particular those showing photoresponsive luminescence (PRL), is highly desirable for their cutting-edge applications in sensors, displays, data-storage, and anti-counterfeiting, but is challenging. Few PRL materials are constructed by tethering the classic photochromic systems with newly-emerged solid-state emitters. Selective solid-state photoreactions are demanded to precisely manipulate the luminescent behavior of these emitters, which require dramatic structural change and enough free space, thus limiting the scope of the PRL family. Here, a new PRL material, TPE-4N, that features sensitive and reversible fluorescence switching is reported. The interesting on-off luminescent property of TPE-4N can be facilely tuned through fast phototriggering and thermal annealing. Experimental and theoretical investigations reveal that subtle molecular conformation variation induces the corresponding PRL behavior. The crystalline and amorphous state endows an efficient and weak ISC process, respectively, to turn on and off the emission. The readily fabricated thin-film of TPE-4N exhibits non-destructive PRL behavior with high contrast (>10 ), good light transmittance (>72.3%), and great durability and reversibility under room light for months. Remarkably, a uniform thin-film with such fascinating PRL properties allows high-tech applications in invisible anti-counterfeiting and dynamic optical data storage with micro-resolution.
The development of solid‐state intelligent materials, in particular those showing photoresponsive luminescence (PRL), is highly desirable for their cutting‐edge applications in sensors, displays, data‐storage, and anti‐counterfeiting, but is challenging. Few PRL materials are constructed by tethering the classic photochromic systems with newly‐emerged solid‐state emitters. Selective solid‐state photoreactions are demanded to precisely manipulate the luminescent behavior of these emitters, which require dramatic structural change and enough free space, thus limiting the scope of the PRL family. Here, a new PRL material, TPE‐4N, that features sensitive and reversible fluorescence switching is reported. The interesting on–off luminescent property of TPE‐4N can be facilely tuned through fast phototriggering and thermal annealing. Experimental and theoretical investigations reveal that subtle molecular conformation variation induces the corresponding PRL behavior. The crystalline and amorphous state endows an efficient and weak ISC process, respectively, to turn on and off the emission. The readily fabricated thin‐film of TPE‐4N exhibits non‐destructive PRL behavior with high contrast (>102), good light transmittance (>72.3%), and great durability and reversibility under room light for months. Remarkably, a uniform thin‐film with such fascinating PRL properties allows high‐tech applications in invisible anti‐counterfeiting and dynamic optical data storage with micro‐resolution. Solid‐state intelligent materials, in particular those showing photoresponsive luminescence (PRL), is desirable for their cutting‐edge applications, but challenging. A PRL material that features sensitive and reversible fluorescence switching through phototriggering and thermal annealing is reported. The behavior is attributed to subtle molecular conformation variations. Excellent quality of thin‐films and high PRL performance allows interesting applications in invisible anti‐counterfeiting and dynamic optical data storage with micro‐resolution.
Author Ma, Huili
Zhao, Weijun
Lam, Jacky W. Y.
Lu, Xuefeng
Yu, Jie
He, Zikai
Liu, Zhiyang
Sun, Jinyan
Tang, Ben Zhong
Author_xml – sequence: 1
  givenname: Weijun
  surname: Zhao
  fullname: Zhao, Weijun
  organization: HKUST Shenzhen Research Institute
– sequence: 2
  givenname: Zhiyang
  surname: Liu
  fullname: Liu, Zhiyang
  organization: HKUST Shenzhen Research Institute
– sequence: 3
  givenname: Jie
  surname: Yu
  fullname: Yu, Jie
  organization: HIT Campus of University Town
– sequence: 4
  givenname: Xuefeng
  surname: Lu
  fullname: Lu, Xuefeng
  organization: The Hong Kong University of Science and Technology
– sequence: 5
  givenname: Jacky W. Y.
  surname: Lam
  fullname: Lam, Jacky W. Y.
  organization: The Hong Kong University of Science and Technology
– sequence: 6
  givenname: Jinyan
  surname: Sun
  fullname: Sun, Jinyan
  organization: HIT Campus of University Town
– sequence: 7
  givenname: Zikai
  surname: He
  fullname: He, Zikai
  email: hezikai@hit.edu.cn
  organization: HIT Campus of University Town
– sequence: 8
  givenname: Huili
  surname: Ma
  fullname: Ma, Huili
  email: iamhlma@njtech.edu.cn
  organization: Nanjing Tech University
– sequence: 9
  givenname: Ben Zhong
  orcidid: 0000-0002-0293-964X
  surname: Tang
  fullname: Tang, Ben Zhong
  email: tangbz@ust.hk
  organization: The Hong Kong University of Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33270285$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFu1DAQhi3Uim4XrhxRJC5cskwcJ7GPqy0FpK2KtIWrcezx4sqxi5Oo2lsfoc_Ik5B2WypVQpzGh--bGc9_TA5CDEjImwIWBQD9oEynFhQoQM0Ze0FmRUWLnIGoDsgMRFnlomb8iBz3_SUAiBrql-SoLGkDlFcz8uNiTMGFbXYesk30zvy-ud0MasBsPXYuYK8xaMzaXfb1ZxzikNx2iwlNthnbwWN2Fj3q0auUrWKwMXVqcDFk31Vy96_-FTm0yvf4-qHOybfTjxerz_n6_NOX1XKda9YIllNjaGuU0VZxFGgNQMu10GVdKq61ti1wZpCVFjW3jbAaBC10VRbMAja8nJP3-75XKf4asR9k56blvVcB49hLyuq6aSiHakLfPUMv43SFabuJampeNHQaOydvH6ix7dDIq-Q6lXby8XYTwPaATrHvE1qp3XD_6SEp52UB8i4ieReR_BvRpC2eaY-d_ymIvXDtPO7-Q8vlydnyyf0D6cCmHg
CitedBy_id crossref_primary_10_1039_D2NJ03457C
crossref_primary_10_1002_anie_202114264
crossref_primary_10_1021_jacs_3c07478
crossref_primary_10_1039_D2SC02986C
crossref_primary_10_1002_adfm_202211009
crossref_primary_10_1021_acs_cgd_2c00179
crossref_primary_10_1039_D3QI02559D
crossref_primary_10_1021_acs_chemmater_2c01434
crossref_primary_10_1002_adhm_202101169
crossref_primary_10_1021_acs_accounts_2c00818
crossref_primary_10_3390_nano13182562
crossref_primary_10_1002_adom_202302854
crossref_primary_10_1002_anie_202406417
crossref_primary_10_1016_j_cej_2021_134055
crossref_primary_10_1007_s42114_025_01271_8
crossref_primary_10_1039_D1TC01713F
crossref_primary_10_1002_ange_202110088
crossref_primary_10_1088_1361_665X_ac1d93
crossref_primary_10_3389_fmats_2024_1446307
crossref_primary_10_1021_jacs_2c01248
crossref_primary_10_1002_ange_202114264
crossref_primary_10_1002_anie_202111344
crossref_primary_10_1016_j_saa_2024_124500
crossref_primary_10_1039_D1CE00442E
crossref_primary_10_1039_D5TC00180C
crossref_primary_10_1002_adfm_202107145
crossref_primary_10_1021_acs_analchem_2c00510
crossref_primary_10_1002_adom_202301627
crossref_primary_10_1007_s11426_021_9978_1
crossref_primary_10_1002_ange_202204568
crossref_primary_10_1002_anie_202202655
crossref_primary_10_1038_s41467_024_48728_w
crossref_primary_10_1039_D2CS00976E
crossref_primary_10_1039_D2TC03072A
crossref_primary_10_1002_ange_202413827
crossref_primary_10_1021_acsnano_3c00074
crossref_primary_10_1021_acs_cgd_4c00460
crossref_primary_10_1002_adom_202300386
crossref_primary_10_1002_adfm_202108365
crossref_primary_10_1002_ange_202406417
crossref_primary_10_1021_acs_jpca_4c06952
crossref_primary_10_1002_adma_202414188
crossref_primary_10_1039_D1TC04401J
crossref_primary_10_6023_cjoc202403027
crossref_primary_10_26599_JAC_2024_9220865
crossref_primary_10_1002_anie_202214875
crossref_primary_10_1021_acsphotonics_3c01756
crossref_primary_10_1002_anie_202110088
crossref_primary_10_1016_j_cej_2021_130986
crossref_primary_10_1002_adma_202407268
crossref_primary_10_1039_D1TC00501D
crossref_primary_10_1002_adma_202301914
crossref_primary_10_1016_j_dyepig_2022_110617
crossref_primary_10_1038_s41467_022_30121_0
crossref_primary_10_1016_j_cej_2021_132290
crossref_primary_10_1002_ange_202202655
crossref_primary_10_1002_anie_202204568
crossref_primary_10_1002_lpor_202100552
crossref_primary_10_1021_acs_analchem_2c05045
crossref_primary_10_1021_acs_analchem_4c03558
crossref_primary_10_1016_j_coco_2021_100816
crossref_primary_10_1016_j_jscs_2022_101502
crossref_primary_10_1039_D4TC03379E
crossref_primary_10_1039_D2TA09630G
crossref_primary_10_1002_adfm_202213927
crossref_primary_10_1002_ange_202214875
crossref_primary_10_1016_j_saa_2023_122968
crossref_primary_10_1002_lpor_202300925
crossref_primary_10_1016_j_cej_2023_144030
crossref_primary_10_1002_asia_202300124
crossref_primary_10_1016_j_cej_2023_141792
crossref_primary_10_1002_adma_202108163
crossref_primary_10_1016_j_cej_2024_148600
crossref_primary_10_1002_adfm_202106673
crossref_primary_10_1021_acsami_3c03183
crossref_primary_10_1021_acs_joc_4c00479
crossref_primary_10_1002_anie_202413827
crossref_primary_10_1016_j_cej_2023_141828
crossref_primary_10_1002_adom_202200629
crossref_primary_10_1016_j_cej_2024_156214
crossref_primary_10_1039_D3QO02116E
crossref_primary_10_1039_D3QM00621B
crossref_primary_10_1002_ange_202111344
crossref_primary_10_1021_acsami_1c06436
crossref_primary_10_1039_D4MA01015A
crossref_primary_10_1021_acsami_4c02677
Cites_doi 10.1002/adma.201805750
10.1002/adma.201503424
10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-9
10.1002/anie.201310438
10.1021/jacs.9b01870
10.1021/jacs.9b07057
10.1002/inf2.12125
10.1038/natrevmats.2016.100
10.1002/adma.201807328
10.1021/ja411689w
10.1016/j.cclet.2019.07.040
10.1038/nature10497
10.1002/adma.201605271
10.1039/C8TC02698J
10.1021/acsami.0c03122
10.1016/j.molstruc.2020.127987
10.1039/C8SC03740J
10.1021/acsnano.5b03367
10.1103/PhysRevB.62.10696
10.1021/ja306748k
10.1016/j.mtadv.2020.100058
10.1039/C1CS15205J
10.1021/ja512189a
10.1002/adma.201905866
10.1002/jrs.5073
10.1039/b804151m
10.1016/S0006-3495(80)85032-6
10.1002/adma.201803924
10.1021/acsami.8b10322
10.1002/asia.201601096
10.1201/9780429020841
10.1002/adma.201807751
10.1002/adma.201806727
10.1002/chem.201200354
10.1039/C7CS00206H
10.1126/science.291.5509.1769
10.1016/S0038-1098(96)00716-8
10.1039/C8QM00633D
10.1126/science.aaf6298
10.1002/adma.201704941
10.1039/C5CS00137D
10.1021/jacs.7b07738
10.1002/adma.201801726
10.1038/s41467-018-05476-y
10.1021/cr300179f
10.1039/C6SC03177C
10.1021/jacs.8b04900
10.1021/acs.chemrev.5b00263
10.1002/adma.201807333
10.1002/anie.201507197
10.1039/c2cp41502j
10.1039/b703092b
10.1126/science.1058847
10.1021/jacs.8b07108
10.1021/jacs.9b03932
10.1039/C8TC00145F
10.1002/adfm.201501224
10.1038/s41578-018-0040-9
10.1002/adma.201101059
10.1038/ncomms4601
10.1002/adma.200904102
10.1038/s41578-018-0016-9
10.1039/D0NR04584E
10.1021/jacs.9b01056
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
2020 Wiley-VCH GmbH.
2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
– notice: 2020 Wiley-VCH GmbH.
– notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202006844
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database
CrossRef
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 33270285
10_1002_adma_202006844
ADMA202006844
Genre article
Journal Article
GrantInformation_xml – fundername: National Science Foundation of China
  funderid: 21975061; 21788102; 51703042; 21973043
– fundername: Science and Technology Plan of Shenzhen
  funderid: JCYJ20190806142403535; JCYJ20180306174910791; JCYJ20170811155015918
– fundername: National Science Foundation of Guangdong Province
– fundername: Research Grants Council of Hong Kong
  funderid: C6009‐17G; A‐HKUST605/16; ITC‐CNERC14SC01
– fundername: Natural Scientific Research Innovation Foundation in Harbin Institute of Technology
  funderid: HIT.NSRIF.2020062
– fundername: Science and Technology Plan of Shenzhen
  grantid: JCYJ20190806142403535
– fundername: National Science Foundation of China
  grantid: 21788102
– fundername: Research Grants Council of Hong Kong
  grantid: C6009-17G
– fundername: Science and Technology Plan of Shenzhen
  grantid: JCYJ20180306174910791
– fundername: Research Grants Council of Hong Kong
  grantid: A-HKUST605/16
– fundername: National Science Foundation of China
  grantid: 21975061
– fundername: National Science Foundation of China
  grantid: 21973043
– fundername: Science and Technology Plan of Shenzhen
  grantid: JCYJ20170811155015918
– fundername: Research Grants Council of Hong Kong
  grantid: ITC-CNERC14SC01
– fundername: Natural Scientific Research Innovation Foundation in Harbin Institute of Technology
  grantid: HIT.NSRIF.2020062
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4794-2dd2bdadcfa8e9efd00b8c9c363a8cccfb084de43fec8f79fc0921c5314f0e783
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 00:13:32 EDT 2025
Fri Jul 25 03:13:55 EDT 2025
Wed Feb 19 02:29:53 EST 2025
Thu Apr 24 22:57:22 EDT 2025
Tue Jul 01 02:32:56 EDT 2025
Wed Jan 22 16:30:26 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords aggregation-induced emission
anti-counterfeiting
molecular conformation
photoresponsive luminescent materials
thin films
Language English
License 2020 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4794-2dd2bdadcfa8e9efd00b8c9c363a8cccfb084de43fec8f79fc0921c5314f0e783
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0293-964X
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adma.202006844
PMID 33270285
PQID 2476817236
PQPubID 2045203
PageCount 8
ParticipantIDs proquest_miscellaneous_2466772805
proquest_journals_2476817236
pubmed_primary_33270285
crossref_citationtrail_10_1002_adma_202006844
crossref_primary_10_1002_adma_202006844
wiley_primary_10_1002_adma_202006844_ADMA202006844
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015 2018 2020 2020 2020; 137 6 12 31 12
2011; 478
2015; 25
2018; 3
2014; 5
2018 2017; 9 8
2019 2017; 141 2
2019; 31
2018 2019 2012 2014 2018 2019 2009 2014; 140 141 134 53 6 141 38 136
2019 2016 2017 2020; 3 11 139 6
2019 2019 2008 2010 2001 2019 2012; 31 31 37 22 291 31 41
2019 2017 2020 1980; 141 46 32
2018; 30
2003 2016 2018 2015 2019 2015 2018 2012; 30 44 31 27 10 18
2012 2017; 14 48
2013 2015 2017 2018 2016 2018 2018 2020; 113 9 29 9 352 140 30 32
2018 2018 2002; 14
2011 2015 2016; 23 115 55
2000 1997 2001 2018; 62 102 292 3
Piegari A. (e_1_2_5_19_1) 2018
e_1_2_5_7_6
e_1_2_5_9_4
e_1_2_5_13_3
e_1_2_5_15_1
e_1_2_5_7_5
e_1_2_5_9_3
e_1_2_5_11_4
e_1_2_5_13_2
e_1_2_5_7_4
e_1_2_5_17_1
e_1_2_5_7_3
e_1_2_5_7_2
e_1_2_5_11_1
e_1_2_5_7_1
e_1_2_5_11_3
e_1_2_5_13_1
e_1_2_5_5_1
e_1_2_5_11_2
e_1_2_5_3_1
e_1_2_5_1_1
e_1_2_5_17_2
e_1_2_5_19_3
e_1_2_5_19_2
e_1_2_5_9_8
e_1_2_5_9_7
e_1_2_5_7_8
e_1_2_5_9_6
e_1_2_5_7_7
e_1_2_5_9_5
Tian H. (e_1_2_5_9_2) 2016
Dürr H. (e_1_2_5_9_1) 2003
e_1_2_5_6_7
e_1_2_5_10_6
e_1_2_5_12_4
e_1_2_5_14_2
e_1_2_5_6_6
e_1_2_5_8_4
e_1_2_5_10_5
e_1_2_5_12_3
e_1_2_5_14_1
e_1_2_5_6_5
e_1_2_5_8_3
e_1_2_5_10_8
e_1_2_5_12_6
e_1_2_5_6_4
e_1_2_5_8_2
e_1_2_5_10_7
e_1_2_5_12_5
e_1_2_5_16_1
e_1_2_5_6_3
e_1_2_5_8_1
e_1_2_5_10_2
e_1_2_5_6_2
e_1_2_5_10_1
e_1_2_5_6_1
e_1_2_5_10_4
e_1_2_5_12_2
e_1_2_5_10_3
e_1_2_5_12_1
e_1_2_5_4_1
e_1_2_5_2_2
e_1_2_5_2_1
e_1_2_5_18_2
e_1_2_5_18_1
e_1_2_5_18_4
e_1_2_5_18_3
References_xml – volume: 3 11 139 6
  start-page: 620 3205
  year: 2019 2016 2017 2020
  publication-title: Mater. Chem. Front. Chem. ‐ Asian J. J. Am. Chem. Soc. Mater. Today Adv.
– volume: 140 141 134 53 6 141 38 136
  start-page: 8364 4603 2270 5650 1859 1643
  year: 2018 2019 2012 2014 2018 2019 2009 2014
  publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc. J. Am. Chem. Soc. Angew. Chem., Int. Ed. J. Mater. Chem. C J. Am. Chem. Soc. Chem. Soc. Rev. J. Am. Chem. Soc.
– volume: 9 8
  start-page: 3044 1163
  year: 2018 2017
  publication-title: Nat. Commun. Chem. Sci.
– volume: 5
  start-page: 3601
  year: 2014
  publication-title: Nat. Commun.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 23 115 55
  start-page: 3261 519
  year: 2011 2015 2016
  publication-title: Adv. Mater. Chem. Rev. Angew. Chem., Int. Ed.
– volume: 141 2
  start-page: 7385
  year: 2019 2017
  publication-title: J. Am. Chem. Soc. Nat. Rev. Mater.
– volume: 478
  start-page: 204
  year: 2011
  publication-title: Nature
– volume: 25
  start-page: 4005
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 137 6 12 31 12
  start-page: 2436 8832 361
  year: 2015 2018 2020 2020 2020
  publication-title: J. Am. Chem. Soc. J. Mater. Chem. C ACS Appl. Mater. Interfaces Chin. Chem. Lett. Nanoscale
– volume: 14
  start-page: 99
  year: 2018 2018 2002
  publication-title: Adv. Mater.
– volume: 14 48
  start-page: 538
  year: 2012 2017
  publication-title: Phys. Chem. Chem. Phys. J. Raman Spectrosc.
– volume: 31 31 37 22 291 31 41
  start-page: 1520 3348 1769 1754
  year: 2019 2019 2008 2010 2001 2019 2012
  publication-title: Adv. Mater. Adv. Mater. Chem. Soc. Rev. Adv. Mater. Science Adv. Mater. Chem. Soc. Rev.
– volume: 3
  start-page: 113
  year: 2018
  publication-title: Nat. Rev. Mater.
– volume: 30 44 31 27 10 18
  start-page: 3719 6469
  year: 2003 2016 2018 2015 2019 2015 2018 2012
  publication-title: Adv. Mater. Chem. Soc. Rev. Adv. Mater. Adv. Mater. ACS Appl. Mater. Interfaces Chem. ‐ Eur. J.
– volume: 62 102 292 3
  start-page: 165 77 392
  year: 2000 1997 2001 2018
  publication-title: Phys. Rev. B Solid State Commun. Science Nat. Rev. Mater.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 141 46 32
  start-page: 4020 1007
  year: 2019 2017 2020 1980
  publication-title: J. Am. Chem. Soc. Chem. Soc. Rev. J. Mol. Struct. Biophys. J.
– volume: 113 9 29 9 352 140 30 32
  start-page: 6114 7746 8990 1443
  year: 2013 2015 2017 2018 2016 2018 2018 2020
  publication-title: Chem. Rev. ACS Nano Adv. Mater. Chem. Sci. Science J. Am. Chem. Soc. Adv. Mater. Adv. Mater.
– ident: e_1_2_5_6_1
  doi: 10.1002/adma.201805750
– ident: e_1_2_5_9_6
  doi: 10.1002/adma.201503424
– ident: e_1_2_5_19_3
  doi: 10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-9
– ident: e_1_2_5_10_4
  doi: 10.1002/anie.201310438
– ident: e_1_2_5_10_6
  doi: 10.1021/jacs.9b01870
– ident: e_1_2_5_18_1
  doi: 10.1021/jacs.9b07057
– ident: e_1_2_5_12_6
  doi: 10.1002/inf2.12125
– ident: e_1_2_5_2_2
  doi: 10.1038/natrevmats.2016.100
– volume-title: Optical Thin Films and Coatings: From Materials to Applications
  year: 2018
  ident: e_1_2_5_19_1
– ident: e_1_2_5_6_6
  doi: 10.1002/adma.201807328
– ident: e_1_2_5_10_8
  doi: 10.1021/ja411689w
– ident: e_1_2_5_12_4
  doi: 10.1016/j.cclet.2019.07.040
– ident: e_1_2_5_3_1
  doi: 10.1038/nature10497
– ident: e_1_2_5_7_3
  doi: 10.1002/adma.201605271
– ident: e_1_2_5_12_2
  doi: 10.1039/C8TC02698J
– ident: e_1_2_5_12_3
  doi: 10.1021/acsami.0c03122
– ident: e_1_2_5_18_3
  doi: 10.1016/j.molstruc.2020.127987
– ident: e_1_2_5_7_4
  doi: 10.1039/C8SC03740J
– ident: e_1_2_5_7_2
  doi: 10.1021/acsnano.5b03367
– volume-title: Photochromic Materials: Preparation, Properties and Applications
  year: 2016
  ident: e_1_2_5_9_2
– ident: e_1_2_5_8_1
  doi: 10.1103/PhysRevB.62.10696
– ident: e_1_2_5_10_3
  doi: 10.1021/ja306748k
– ident: e_1_2_5_11_4
  doi: 10.1016/j.mtadv.2020.100058
– ident: e_1_2_5_6_7
  doi: 10.1039/C1CS15205J
– ident: e_1_2_5_12_1
  doi: 10.1021/ja512189a
– ident: e_1_2_5_7_8
  doi: 10.1002/adma.201905866
– ident: e_1_2_5_17_2
  doi: 10.1002/jrs.5073
– ident: e_1_2_5_10_7
  doi: 10.1039/b804151m
– ident: e_1_2_5_18_4
  doi: 10.1016/S0006-3495(80)85032-6
– ident: e_1_2_5_15_1
  doi: 10.1002/adma.201803924
– ident: e_1_2_5_9_7
  doi: 10.1021/acsami.8b10322
– ident: e_1_2_5_11_2
  doi: 10.1002/asia.201601096
– ident: e_1_2_5_19_2
  doi: 10.1201/9780429020841
– ident: e_1_2_5_4_1
  doi: 10.1002/adma.201807751
– ident: e_1_2_5_6_2
  doi: 10.1002/adma.201806727
– ident: e_1_2_5_9_8
  doi: 10.1002/chem.201200354
– ident: e_1_2_5_18_2
  doi: 10.1039/C7CS00206H
– ident: e_1_2_5_6_5
  doi: 10.1126/science.291.5509.1769
– ident: e_1_2_5_8_2
  doi: 10.1016/S0038-1098(96)00716-8
– ident: e_1_2_5_11_1
  doi: 10.1039/C8QM00633D
– ident: e_1_2_5_7_5
  doi: 10.1126/science.aaf6298
– ident: e_1_2_5_9_3
  doi: 10.1002/adma.201704941
– ident: e_1_2_5_9_4
  doi: 10.1039/C5CS00137D
– ident: e_1_2_5_11_3
  doi: 10.1021/jacs.7b07738
– ident: e_1_2_5_7_7
  doi: 10.1002/adma.201801726
– ident: e_1_2_5_14_1
  doi: 10.1038/s41467-018-05476-y
– ident: e_1_2_5_7_1
  doi: 10.1021/cr300179f
– ident: e_1_2_5_14_2
  doi: 10.1039/C6SC03177C
– ident: e_1_2_5_7_6
  doi: 10.1021/jacs.8b04900
– ident: e_1_2_5_13_2
  doi: 10.1021/acs.chemrev.5b00263
– ident: e_1_2_5_9_5
  doi: 10.1002/adma.201807333
– ident: e_1_2_5_13_3
  doi: 10.1002/anie.201507197
– ident: e_1_2_5_17_1
  doi: 10.1039/c2cp41502j
– ident: e_1_2_5_6_3
  doi: 10.1039/b703092b
– volume-title: Photochromism: Molecules and Systems
  year: 2003
  ident: e_1_2_5_9_1
– ident: e_1_2_5_8_3
  doi: 10.1126/science.1058847
– ident: e_1_2_5_10_1
  doi: 10.1021/jacs.8b07108
– ident: e_1_2_5_10_2
  doi: 10.1021/jacs.9b03932
– ident: e_1_2_5_10_5
  doi: 10.1039/C8TC00145F
– ident: e_1_2_5_16_1
  doi: 10.1002/adfm.201501224
– ident: e_1_2_5_8_4
  doi: 10.1038/s41578-018-0040-9
– ident: e_1_2_5_13_1
  doi: 10.1002/adma.201101059
– ident: e_1_2_5_5_1
  doi: 10.1038/ncomms4601
– ident: e_1_2_5_6_4
  doi: 10.1002/adma.200904102
– ident: e_1_2_5_1_1
  doi: 10.1038/s41578-018-0016-9
– ident: e_1_2_5_12_5
  doi: 10.1039/D0NR04584E
– ident: e_1_2_5_2_1
  doi: 10.1021/jacs.9b01056
SSID ssj0009606
Score 2.6029062
Snippet The development of solid‐state intelligent materials, in particular those showing photoresponsive luminescence (PRL), is highly desirable for their...
The development of solid-state intelligent materials, in particular those showing photoresponsive luminescence (PRL), is highly desirable for their...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2006844
SubjectTerms aggregation‐induced emission
anti‐counterfeiting
Construction materials
Counterfeiting
Data storage
Emitters
Fluorescence
Light transmittance
Luminescence
Materials science
Molecular conformation
photoresponsive luminescent materials
Smart materials
Tethering
thin films
Turning (machining)
Title Turning On Solid‐State Luminescence by Phototriggered Subtle Molecular Conformation Variations
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202006844
https://www.ncbi.nlm.nih.gov/pubmed/33270285
https://www.proquest.com/docview/2476817236
https://www.proquest.com/docview/2466772805
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9UwFG8IT_KgCKgXkJTEhKdCbXu37vEGJIRwkSAY3uZ62qoRNgLbAzz5EfyMfBJ6urvBlRgTfVzaZlvb0_7Ov98h5F24kywo7plVQ8uUB8HQecSUksZjaqOMHvzxYbJ3qvbPhmePsvhbfoje4IaSEc9rFPDCXG89kIYWNvIGoUqsFRKCYsAWoqLjB_4ohOeRbE8OWZYo3bE2crE1PXz6VnoCNaeRa7x6dl-QovvoNuLkx2ZTm024_Y3P8X_-ap48n-BSOmo30ksy48oFMveIrXCRfDlpohWFfizpp-r8u737-StiVXrQXGD0POApQc0NPfpW1VUd9P6vWAmUhsMp7Eg67irxUkwz7JIm6eegrbdmwyVyuvvhZHuPTQo0MEBieiasFcYWFnyhXea85dxoyEAmstAA4A3XyjolvQPt08wDz8R7CGKvPHeplq_IbFmV7g2hVnJvbeZTw6UCSILWgx5eZ1MjiwAhBoR1C5TDhL0ci2ic5y3vsshx5vJ-5gZko-9_2fJ2_LHnarfe-UR-r3OhghoWsJ1MBmS9bw6Sh-6UonRVg32SJMXqXsMBed3uk_5VUmKenw4tIq72X74hH-2MR_3T8r8MWiHPBIbbROvQKpmtrxr3NuCl2qxFmbgHRv0N1g
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL2CsoAuKI9ShhYwEhIrt8b2JM5y1IcGmCmITlF3IX4BoiQIkkW76if0G_kSfJ1JyhQhJFhGtpXE9rXPfZ0L8DTcSdZI5qmVQ0ulN5yi84hKKbTH1EYRPfjT_WR8KF8eDbtoQsyFafkheoMbSkY8r1HA0SC9dcEaWthIHIQ6sZLyKlzDst5In7_z9oJBCgF6pNsTQ5olUnW8jYxvLY5fvJd-A5uL2DVePnsroLvPbmNOPm82td40p5cYHf_rv27BzTk0JaN2L92GK668A8u_EBbehfezJhpSyOuSHFTHn-yPs_MIV8mk-YIB9AYPCqJPyJuPVV3VQfX_gMVASTifwqYk064YL8FMwy5vkrwLCntrOVyFw73d2faYzms0UIPc9JRby7UtrPGFcpnzljGtTGZEIgpljPGaKWmdFN4Z5dPMG5bx5yZIvvTMpUrcg6WyKt19IFYwb23mU82ENCYJig86eZ1NtSgCihgA7VYoN3MCc6yjcZy31Ms8x5nL-5kbwLO-_9eWuuOPPTe6Bc_nIvw95zJoYgHeiWQAT_rmIHzoUSlKVzXYJ0lSLPA1HMBau1H6VwmBqX4qtPC43H_5hny0Mx31Tw_-ZdBjuD6eTSf55MX-q3W4wTH6JhqLNmCp_ta4hwE-1fpRFJCfHWIR8g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VVkJwKOV_SwtGQuLk1rW9iXNcsV210C0VtKi3EP8VRJtUkBzKiUfgGXkSPM4m7YIQEhwj27Jje-xvZjzfADwLd5I1knlq5dBS6Q2n6DyiUgrtMbRRRA_-dD_ZOZIvj4fHV6L4W36I3uCGkhHPaxTwc-s3L0lDCxt5g1AlVlJegyWZsAyTN4zfXBJIIT6PbHtiSLNEqo62kfHN-fbz19JvWHMeusa7Z3ILim7U7ZOTTxtNrTfM118IHf_nt1ZgeQZMyajdSbdhwZV34OYVusK78P6wiWYU8rokb6vTj_bHt-8RrJK95gyfzxs8Joi-IAcfqrqqg-J_gqlASTidwpYk0y4VL8E4wy5qkrwL6nprN7wHR5Ptwxc7dJahgRpkpqfcWq5tYY0vlMuct4xpZTIjElEoY4zXTEnrpPDOKJ9m3rCMb5kg99IzlypxHxbLqnQPgVjBvLWZTzUT0pgkqD3o4nU21aIIGGIAtFug3MzoyzGLxmneEi_zHGcu72duAM_7-uctcccfa651653PBPhLzmXQwwK4E8kAnvbFQfTQn1KUrmqwTpKkmN5rOIAH7T7puxICA_1UKOFxtf8yhnw0no76r9V_afQErh-MJ_ne7v6rR3CD49ObaClag8X6c-PWA3aq9eMoHj8B2IQQoQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Turning+On+Solid%E2%80%90State+Luminescence+by+Phototriggered+Subtle+Molecular+Conformation+Variations&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhao%2C+Weijun&rft.au=Liu%2C+Zhiyang&rft.au=Yu%2C+Jie&rft.au=Lu%2C+Xuefeng&rft.date=2021-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=33&rft.issue=2&rft_id=info:doi/10.1002%2Fadma.202006844&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon