Uniaxial Alignment of Conjugated Polymer Films for High‐Performance Organic Field‐Effect Transistors
Polymer semiconductors have been experiencing a remarkable improvement in electronic and optoelectronic properties, which are largely related to the recent development of a vast library of high‐performance, donor–acceptor copolymers showing alternation of chemical moieties with different electronic...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 30; no. 20; pp. e1705463 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.05.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Polymer semiconductors have been experiencing a remarkable improvement in electronic and optoelectronic properties, which are largely related to the recent development of a vast library of high‐performance, donor–acceptor copolymers showing alternation of chemical moieties with different electronic affinities along their backbones. Such steady improvement is making conjugated polymers even more appealing for large‐area and flexible electronic applications, from distributed and portable electronics to healthcare devices, where cost‐effective manufacturing, light weight, and ease of integration represent key benefits. Recently, a strong boost to charge carrier mobility in polymer‐based field‐effect transistors, consistently achieving the range from 1.0 to 10 cm2 V−1 s−1 for both holes and electrons, has been given by uniaxial backbone alignment of polymers in thin films, inducing strong transport anisotropy and favoring enhanced transport properties along the alignment direction. Herein, an overview on this topic is provided with a focus on the processing–structure–property relationships that enable the controlled and uniform alignment of polymer films over large areas with scalable processes. The key aspects are specific molecular structures, such as planarized backbones with a reduced degree of conformational disorder, solution formulation with controlled aggregation, and deposition techniques inducing suitable directional flow.
Uniaxial alignment represents a key factor to boost the charge mobility in polymer‐based field‐effect transistors. The subject is critically reviewed, collecting all recent approaches to the alignment of polymer semiconductors, and covering all aspects of solution formulations, control of solid‐state packing, and integration into electronic devices. |
---|---|
AbstractList | Polymer semiconductors have been experiencing a remarkable improvement in electronic and optoelectronic properties, which are largely related to the recent development of a vast library of high‐performance, donor–acceptor copolymers showing alternation of chemical moieties with different electronic affinities along their backbones. Such steady improvement is making conjugated polymers even more appealing for large‐area and flexible electronic applications, from distributed and portable electronics to healthcare devices, where cost‐effective manufacturing, light weight, and ease of integration represent key benefits. Recently, a strong boost to charge carrier mobility in polymer‐based field‐effect transistors, consistently achieving the range from 1.0 to 10 cm2 V−1 s−1 for both holes and electrons, has been given by uniaxial backbone alignment of polymers in thin films, inducing strong transport anisotropy and favoring enhanced transport properties along the alignment direction. Herein, an overview on this topic is provided with a focus on the processing–structure–property relationships that enable the controlled and uniform alignment of polymer films over large areas with scalable processes. The key aspects are specific molecular structures, such as planarized backbones with a reduced degree of conformational disorder, solution formulation with controlled aggregation, and deposition techniques inducing suitable directional flow. Polymer semiconductors have been experiencing a remarkable improvement in electronic and optoelectronic properties, which are largely related to the recent development of a vast library of high-performance, donor-acceptor copolymers showing alternation of chemical moieties with different electronic affinities along their backbones. Such steady improvement is making conjugated polymers even more appealing for large-area and flexible electronic applications, from distributed and portable electronics to healthcare devices, where cost-effective manufacturing, light weight, and ease of integration represent key benefits. Recently, a strong boost to charge carrier mobility in polymer-based field-effect transistors, consistently achieving the range from 1.0 to 10 cm V s for both holes and electrons, has been given by uniaxial backbone alignment of polymers in thin films, inducing strong transport anisotropy and favoring enhanced transport properties along the alignment direction. Herein, an overview on this topic is provided with a focus on the processing-structure-property relationships that enable the controlled and uniform alignment of polymer films over large areas with scalable processes. The key aspects are specific molecular structures, such as planarized backbones with a reduced degree of conformational disorder, solution formulation with controlled aggregation, and deposition techniques inducing suitable directional flow. Polymer semiconductors have been experiencing a remarkable improvement in electronic and optoelectronic properties, which are largely related to the recent development of a vast library of high-performance, donor-acceptor copolymers showing alternation of chemical moieties with different electronic affinities along their backbones. Such steady improvement is making conjugated polymers even more appealing for large-area and flexible electronic applications, from distributed and portable electronics to healthcare devices, where cost-effective manufacturing, light weight, and ease of integration represent key benefits. Recently, a strong boost to charge carrier mobility in polymer-based field-effect transistors, consistently achieving the range from 1.0 to 10 cm2 V-1 s-1 for both holes and electrons, has been given by uniaxial backbone alignment of polymers in thin films, inducing strong transport anisotropy and favoring enhanced transport properties along the alignment direction. Herein, an overview on this topic is provided with a focus on the processing-structure-property relationships that enable the controlled and uniform alignment of polymer films over large areas with scalable processes. The key aspects are specific molecular structures, such as planarized backbones with a reduced degree of conformational disorder, solution formulation with controlled aggregation, and deposition techniques inducing suitable directional flow.Polymer semiconductors have been experiencing a remarkable improvement in electronic and optoelectronic properties, which are largely related to the recent development of a vast library of high-performance, donor-acceptor copolymers showing alternation of chemical moieties with different electronic affinities along their backbones. Such steady improvement is making conjugated polymers even more appealing for large-area and flexible electronic applications, from distributed and portable electronics to healthcare devices, where cost-effective manufacturing, light weight, and ease of integration represent key benefits. Recently, a strong boost to charge carrier mobility in polymer-based field-effect transistors, consistently achieving the range from 1.0 to 10 cm2 V-1 s-1 for both holes and electrons, has been given by uniaxial backbone alignment of polymers in thin films, inducing strong transport anisotropy and favoring enhanced transport properties along the alignment direction. Herein, an overview on this topic is provided with a focus on the processing-structure-property relationships that enable the controlled and uniform alignment of polymer films over large areas with scalable processes. The key aspects are specific molecular structures, such as planarized backbones with a reduced degree of conformational disorder, solution formulation with controlled aggregation, and deposition techniques inducing suitable directional flow. Polymer semiconductors have been experiencing a remarkable improvement in electronic and optoelectronic properties, which are largely related to the recent development of a vast library of high‐performance, donor–acceptor copolymers showing alternation of chemical moieties with different electronic affinities along their backbones. Such steady improvement is making conjugated polymers even more appealing for large‐area and flexible electronic applications, from distributed and portable electronics to healthcare devices, where cost‐effective manufacturing, light weight, and ease of integration represent key benefits. Recently, a strong boost to charge carrier mobility in polymer‐based field‐effect transistors, consistently achieving the range from 1.0 to 10 cm 2 V −1 s −1 for both holes and electrons, has been given by uniaxial backbone alignment of polymers in thin films, inducing strong transport anisotropy and favoring enhanced transport properties along the alignment direction. Herein, an overview on this topic is provided with a focus on the processing–structure–property relationships that enable the controlled and uniform alignment of polymer films over large areas with scalable processes. The key aspects are specific molecular structures, such as planarized backbones with a reduced degree of conformational disorder, solution formulation with controlled aggregation, and deposition techniques inducing suitable directional flow. Polymer semiconductors have been experiencing a remarkable improvement in electronic and optoelectronic properties, which are largely related to the recent development of a vast library of high‐performance, donor–acceptor copolymers showing alternation of chemical moieties with different electronic affinities along their backbones. Such steady improvement is making conjugated polymers even more appealing for large‐area and flexible electronic applications, from distributed and portable electronics to healthcare devices, where cost‐effective manufacturing, light weight, and ease of integration represent key benefits. Recently, a strong boost to charge carrier mobility in polymer‐based field‐effect transistors, consistently achieving the range from 1.0 to 10 cm2 V−1 s−1 for both holes and electrons, has been given by uniaxial backbone alignment of polymers in thin films, inducing strong transport anisotropy and favoring enhanced transport properties along the alignment direction. Herein, an overview on this topic is provided with a focus on the processing–structure–property relationships that enable the controlled and uniform alignment of polymer films over large areas with scalable processes. The key aspects are specific molecular structures, such as planarized backbones with a reduced degree of conformational disorder, solution formulation with controlled aggregation, and deposition techniques inducing suitable directional flow. Uniaxial alignment represents a key factor to boost the charge mobility in polymer‐based field‐effect transistors. The subject is critically reviewed, collecting all recent approaches to the alignment of polymer semiconductors, and covering all aspects of solution formulations, control of solid‐state packing, and integration into electronic devices. |
Author | Pace, Giuseppina Lee, Mi‐Jung Noh, Yong‐Young Khim, Dongyoon Caironi, Mario Bonacchini, Giorgio Ernesto Luzio, Alessandro |
Author_xml | – sequence: 1 givenname: Dongyoon surname: Khim fullname: Khim, Dongyoon organization: Dongguk University – sequence: 2 givenname: Alessandro surname: Luzio fullname: Luzio, Alessandro organization: Istituto Italiano di Tecnologia – sequence: 3 givenname: Giorgio Ernesto surname: Bonacchini fullname: Bonacchini, Giorgio Ernesto organization: Politecnico di Milano – sequence: 4 givenname: Giuseppina surname: Pace fullname: Pace, Giuseppina organization: Istituto Italiano di Tecnologia – sequence: 5 givenname: Mi‐Jung surname: Lee fullname: Lee, Mi‐Jung organization: Kookmin University – sequence: 6 givenname: Yong‐Young surname: Noh fullname: Noh, Yong‐Young email: yynoh@dongguk.edu organization: Dongguk University – sequence: 7 givenname: Mario orcidid: 0000-0002-0442-4439 surname: Caironi fullname: Caironi, Mario email: mario.caironi@iit.it organization: Istituto Italiano di Tecnologia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29582485$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFLHDEYhkNR6mp77bEEeull1i-TZGZyXLZaCxY96DlkM8maJZPYZAa7t_6E_sb-kmZZbUEQT-Ejz_Px8b7H6CDEYBD6QGBOAOpT1Q9qXgNpgbOGvkEzwmtSMRD8AM1AUF6JhnVH6DjnDQCIBpq36KgWvKtZx2fo7jY49dMpjxfercNgwoijxcsYNtNajabH19FvB5PwufNDxjYmfOHWd39-_b42qUyDCtrgq7RWwekCGd-XvzNrjR7xTVIhuzzGlN-hQ6t8Nu8f3xN0e352s7yoLq--flsuLivNWkErS3oGita80czYhq5oT2zXCMGY6UETAlQYzbkF264Eg5bxFlSjd9NK9IKeoM_7vfcp_phMHuXgsjbeq2DilGXJSgBrabtDPz1DN3FKoVxXKNrVJUkKhfr4SE2rwfTyPrlBpa18yrAAbA_oFHNOxkrtRjW6GMaknJcE5K4quatK_quqaPNn2tPmFwWxFx6cN9tXaLn48n3x3_0LD0inmA |
CitedBy_id | crossref_primary_10_1021_acsami_9b17784 crossref_primary_10_1021_acs_macromol_3c01790 crossref_primary_10_1063_5_0166449 crossref_primary_10_3390_polym13091435 crossref_primary_10_1016_j_synthmet_2025_117826 crossref_primary_10_1016_j_jtice_2022_104566 crossref_primary_10_1021_acsami_4c11824 crossref_primary_10_1021_acs_langmuir_0c00100 crossref_primary_10_1039_D1TC03681E crossref_primary_10_1016_j_cis_2019_102080 crossref_primary_10_1063_5_0005441 crossref_primary_10_1021_acsami_2c18049 crossref_primary_10_1016_j_decarb_2024_100035 crossref_primary_10_1002_polb_24885 crossref_primary_10_1002_adfm_202006236 crossref_primary_10_1002_admt_202500068 crossref_primary_10_1002_hlca_201900048 crossref_primary_10_1016_j_electacta_2020_135974 crossref_primary_10_1002_adfm_202008813 crossref_primary_10_1002_aelm_201901070 crossref_primary_10_1002_advs_201800541 crossref_primary_10_1039_C9TC04397G crossref_primary_10_3390_polym11111856 crossref_primary_10_1002_agt2_501 crossref_primary_10_1021_acsomega_8b02205 crossref_primary_10_1021_acsami_0c15893 crossref_primary_10_1039_C8TC04333G crossref_primary_10_1021_acs_nanolett_4c01675 crossref_primary_10_7567_1347_4065_ab48b9 crossref_primary_10_1002_advs_201902315 crossref_primary_10_1039_D1TC03907E crossref_primary_10_1016_j_trechm_2019_08_002 crossref_primary_10_1039_C9TC05803F crossref_primary_10_1021_acsami_0c02749 crossref_primary_10_35848_1347_4065_ac2f20 crossref_primary_10_1021_acsami_3c15651 crossref_primary_10_1002_aelm_201800514 crossref_primary_10_1007_s42114_022_00611_2 crossref_primary_10_1039_D3TC00447C crossref_primary_10_1021_acsanm_0c00523 crossref_primary_10_1021_acs_chemrev_2c00696 crossref_primary_10_1039_D1TC05966A crossref_primary_10_1002_adma_202108255 crossref_primary_10_1021_acsami_0c14874 crossref_primary_10_1016_j_eurpolymj_2024_112840 crossref_primary_10_1016_j_orgel_2021_106186 crossref_primary_10_1002_adfm_202104881 crossref_primary_10_1021_acsmacrolett_0c00495 crossref_primary_10_1039_D4TC02386B crossref_primary_10_1109_LED_2020_2976653 crossref_primary_10_1002_marc_201800431 crossref_primary_10_1016_j_mser_2025_100933 crossref_primary_10_1063_5_0006234 crossref_primary_10_1021_acs_chemrev_2c00905 crossref_primary_10_1021_acsapm_0c00704 crossref_primary_10_3390_electronics11040648 crossref_primary_10_1002_smll_202412230 crossref_primary_10_1021_acsaelm_2c01136 crossref_primary_10_1016_j_cej_2021_129230 crossref_primary_10_1002_adma_201905909 crossref_primary_10_1002_cphc_201801042 crossref_primary_10_1039_D2TC03971K crossref_primary_10_1021_acs_accounts_2c00244 crossref_primary_10_1002_adom_201800361 crossref_primary_10_1002_adfm_202315183 crossref_primary_10_1002_adfm_201903889 crossref_primary_10_1021_acsami_9b12560 crossref_primary_10_1038_s41467_020_17361_8 crossref_primary_10_1002_aelm_201901200 crossref_primary_10_1016_j_synthmet_2021_116836 crossref_primary_10_1039_C9TC03283E crossref_primary_10_1002_marc_201900098 crossref_primary_10_1016_j_orgel_2019_02_011 crossref_primary_10_1039_D1TA03377H crossref_primary_10_1002_aelm_202101115 crossref_primary_10_1016_j_xcrp_2024_102076 crossref_primary_10_1002_smll_202300151 crossref_primary_10_1002_cphc_202400233 crossref_primary_10_3390_polym15214268 crossref_primary_10_1002_marc_202400172 crossref_primary_10_1021_acs_chemmater_8b05240 crossref_primary_10_1002_adom_202102397 crossref_primary_10_1002_marc_202100931 crossref_primary_10_1021_acs_langmuir_0c01876 crossref_primary_10_1021_acs_chemmater_8b04605 crossref_primary_10_1021_acsapm_0c00332 crossref_primary_10_1021_acs_macromol_8b01760 crossref_primary_10_1002_admt_202301503 crossref_primary_10_1021_acsami_9b17621 crossref_primary_10_1021_acsami_9b20991 crossref_primary_10_1021_acs_chemmater_9b05228 crossref_primary_10_1039_D1NA00863C crossref_primary_10_1002_adfm_201805994 crossref_primary_10_1021_acsmacrolett_8b00595 crossref_primary_10_1002_adfm_201905365 crossref_primary_10_1021_acsapm_9b00549 crossref_primary_10_1021_acs_macromol_2c01701 crossref_primary_10_1088_1361_6463_ad2a0f crossref_primary_10_1016_j_giant_2021_100064 crossref_primary_10_1021_acs_chemmater_0c04152 crossref_primary_10_1039_C9CP06477J crossref_primary_10_1002_ejoc_202000140 crossref_primary_10_1002_aelm_202201043 crossref_primary_10_1016_j_apsusc_2019_02_106 crossref_primary_10_1021_acsami_2c13516 crossref_primary_10_1080_1536383X_2019_1650265 crossref_primary_10_3390_polym16233400 crossref_primary_10_1002_adma_201801079 crossref_primary_10_1002_aelm_202000161 crossref_primary_10_1021_acs_jpclett_1c03283 crossref_primary_10_1016_j_orgel_2022_106430 crossref_primary_10_1002_pi_6488 crossref_primary_10_1021_acsami_4c20510 crossref_primary_10_1021_acs_nanolett_8b04764 crossref_primary_10_1021_acsami_1c15208 crossref_primary_10_1088_2058_8585_ab76e1 crossref_primary_10_1039_D1TC00148E crossref_primary_10_1016_j_cej_2024_150783 crossref_primary_10_1002_pssa_201800772 crossref_primary_10_1021_acsami_9b09607 crossref_primary_10_1021_acs_jctc_3c01385 crossref_primary_10_1002_adsu_202400674 crossref_primary_10_1002_advs_202002010 crossref_primary_10_1039_C9QM00382G crossref_primary_10_1016_j_xcrp_2024_102250 crossref_primary_10_1016_j_orgel_2020_105742 crossref_primary_10_1063_5_0068098 crossref_primary_10_1021_acsapm_4c02790 crossref_primary_10_1021_acsaelm_1c00985 crossref_primary_10_1002_adma_202100421 crossref_primary_10_1021_acsami_0c03477 crossref_primary_10_1002_advs_201801566 crossref_primary_10_1039_D0TC01385D crossref_primary_10_1002_anie_202500860 crossref_primary_10_1016_j_chemphys_2019_02_012 crossref_primary_10_1002_admt_202001028 crossref_primary_10_1021_acsaelm_0c01078 crossref_primary_10_1021_acsami_9b03999 crossref_primary_10_1039_D2SM00026A crossref_primary_10_1021_acs_jpcc_9b09913 crossref_primary_10_1002_marc_202400265 crossref_primary_10_1002_advs_202001098 crossref_primary_10_1002_adfm_202200880 crossref_primary_10_1021_acs_macromol_4c01618 crossref_primary_10_1021_acsami_3c04435 crossref_primary_10_1038_s41467_019_11125_9 crossref_primary_10_1039_C9ME00042A crossref_primary_10_1021_acs_chemmater_3c02489 crossref_primary_10_1039_D2TC04930A crossref_primary_10_1002_ange_202500860 crossref_primary_10_1002_advs_201902412 crossref_primary_10_1038_s41428_019_0282_4 crossref_primary_10_1002_smll_202100332 crossref_primary_10_1002_aelm_201901002 crossref_primary_10_1021_acsami_0c18349 crossref_primary_10_1002_adfm_202105820 crossref_primary_10_1109_LSENS_2023_3347760 crossref_primary_10_1016_j_jiec_2019_06_019 crossref_primary_10_1088_1361_6463_ac19e2 crossref_primary_10_35848_1347_4065_ad85ec crossref_primary_10_1021_acs_langmuir_1c02596 crossref_primary_10_1021_acscatal_0c05354 crossref_primary_10_1016_j_orgel_2018_10_013 crossref_primary_10_1002_marc_202200622 crossref_primary_10_1016_j_progpolymsci_2022_101548 crossref_primary_10_1088_1361_648X_ab2ac2 |
Cites_doi | 10.1016/j.orgel.2011.06.027 10.1038/nature11687 10.1021/la5037772 10.1002/adfm.201303794 10.1002/adma.200400684 10.1002/adfm.201002729 10.1021/ja039772w 10.1021/acsami.5b00626 10.1002/adma.201401179 10.1021/jp3009628 10.1016/0379-6779(94)90214-3 10.1021/nn800574f 10.1002/1521-4095(20020618)14:12<915::AID-ADMA915>3.0.CO;2-9 10.1143/APEX.1.061802 10.1002/adma.201502437 10.1021/jp4003388 10.1016/j.cclet.2013.01.014 10.1002/adfm.201500643 10.1038/nmat3650 10.1002/adma.200501838 10.1039/b614393h 10.1002/aenm.201000005 10.1021/nn5011182 10.1103/PhysRevB.63.125204 10.1007/s11426-015-5399-5 10.1002/adfm.201400523 10.1002/adma.200903712 10.1038/ncomms13651 10.1201/9781420027327 10.1002/adfm.201001781 10.1038/nmat4784 10.1038/352414a0 10.1002/adma.201304346 10.1002/adfm.201302069 10.1002/adma.201305084 10.1002/adma.200900326 10.1021/cr050140x 10.1021/ma102451b 10.1002/aenm.201300458 10.1039/C4RA06311B 10.1021/ja4088665 10.1557/PROC-121-717 10.1038/nmat1612 10.1002/adma.201102410 10.1038/nmat2122 10.1021/ja208824d 10.1038/ncomms3238 10.1002/adfm.200400315 10.1038/nmat3722 10.1002/adfm.200801763 10.1016/j.orgel.2016.06.003 10.1021/cm502486n 10.1021/acs.chemmater.5b04567 10.1002/adma.200802722 10.1016/j.orgel.2014.12.001 10.1557/mrc.2015.44 10.1103/PhysRevB.84.045203 10.1126/sciadv.1501127 10.1039/b909902f 10.1021/ja0508929 10.1021/ja403949g 10.1002/adma.201001202 10.1021/nn8008307 10.1038/44359 10.1021/acs.chemmater.5b03775 10.1002/adma.201401495 10.1021/nl0341032 10.1002/aenm.201301659 10.1021/ja306844f 10.1039/c2jm35351b 10.1016/j.orgel.2009.03.001 10.1038/nature10683 10.1002/marc.201300712 10.1021/ma302664s 10.1002/adfm.201301007 10.1002/adma.200803541 10.1103/PhysRevB.57.12964 10.1038/nmat3790 10.1038/nature10313 10.1021/ja1017267 10.1038/ncomms2002 10.1002/adma.201201795 10.1021/jp5085789 10.1021/cm400266h 10.1002/pssb.201248143 10.1002/marc.200400647 10.1021/ja308927g 10.1103/PhysRevB.86.165203 10.1021/jp511451s 10.1063/1.4748976 10.1038/347539a0 10.1021/nl500758w 10.1002/adfm.201100904 10.1016/0038-1098(92)90359-H 10.1109/55.767101 10.1038/srep03425 10.1002/adma.200600929 10.1021/acsnano.5b02582 10.1021/ja1049324 10.1002/adfm.200400297 10.1038/nature13854 10.1002/adma.201401520 10.1126/science.aaf9062 10.1021/jacs.5b04253 10.1002/adfm.201302297 10.1021/ja044884o 10.1088/0953-8984/2/24/017 10.1021/la105109t 10.1021/cm049617w 10.1002/adma.201402941 10.1103/PhysRevB.95.085301 10.1039/C0JM03114C 10.1063/1.126991 10.1002/adma.201201318 10.1039/C6TC03897B 10.1126/science.270.5243.1789 10.1038/ncomms9394 10.1002/adma.200901136 10.1103/PhysRevB.84.115211 10.1002/adma.201301267 10.1002/adma.201702729 10.1002/adma.200402020 10.1021/acs.chemrev.6b00618 10.1038/nmat3595 10.1021/ma200864s 10.1021/ja310240q 10.1002/polb.23038 10.1038/nature07727 10.1021/nn2051295 10.1021/ja108861q 10.1557/mrs2008.140 10.1002/adma.201204075 10.1016/0379-6779(86)90127-X 10.1002/adma.200801725 10.1002/adma.201301438 10.1103/PhysRevApplied.8.034020 10.1016/j.progpolymsci.2013.07.009 10.1002/adma.201003158 10.1002/pssb.2221750102 10.1021/acsami.5b12552 10.1021/cr050966z 10.1038/ncomms4005 10.1103/PhysRevB.71.165202 10.1002/adma.201502820 10.1002/adfm.201001682 10.1103/PhysRevB.91.115302 10.1002/adma.200501152 10.1021/cm801689f 10.1021/cm060675m 10.1021/jp062899y 10.1039/c2jm31183f 10.1021/cr0501543 10.1103/PhysRevB.83.121306 10.1002/anie.201205653 10.1016/j.tsf.2008.07.012 10.1021/acs.nanolett.5b03868 10.1016/0079-6700(90)90025-V 10.1038/nmat1500 10.1039/C4RA15681A 10.1021/cm049781j 10.1021/cm503780u 10.1021/ma500762x 10.1063/1.1530720 10.1021/nl303612z 10.1021/acsami.5b08710 10.1038/ncomms8880 10.1051/jp3:1995132 10.1021/jp400171u 10.1016/j.synthmet.2005.08.019 10.1016/j.orgel.2007.09.007 10.1002/adma.201506151 10.1073/pnas.1501381112 10.1016/0379-6779(93)90563-C 10.1002/adma.201403767 10.1002/adma.201502239 10.1039/b922385a 10.1002/adma.201000232 10.1039/B814833C 10.1002/adma.201104206 10.1039/C3RA47064D 10.1063/1.339124 10.1021/acs.chemmater.5b00635 10.1021/ma400516d 10.1021/jacs.5b03355 10.1016/j.solmat.2008.12.012 10.1002/(SICI)1521-4095(199803)10:5<365::AID-ADMA365>3.0.CO;2-U 10.1002/adma.201200055 10.1103/PhysRevB.87.195209 10.1002/9783527685172 10.1073/pnas.092143399 10.1039/c3cp51264a 10.1088/0022-3727/16/9/019 10.1002/adma.200390114 10.1021/ja211630w 10.1002/aelm.201500036 10.1039/C5CC05247E 10.1021/acs.jpcc.6b11230 10.1063/1.117834 10.1002/adma.200305275 10.1002/adma.201503133 10.1021/jacs.5b00493 10.1039/C5TC01425E 10.1002/aelm.201600163 10.1002/adma.201601589 10.1063/1.3527066 10.1002/adfm.201602080 10.1002/adma.201205330 10.1038/nmat2291 10.1002/adma.201606206 10.1038/ncomms10908 10.1126/science.290.5499.2123 10.1126/sciadv.1602462 10.1038/nmat3710 10.1039/C4EE00688G 10.1021/ja028945z 10.1002/adfm.201400699 10.1021/acs.macromol.6b00495 10.1002/adma.200401171 10.1063/1.1568526 10.1002/adma.200703120 10.1021/acs.chemmater.6b04202 10.1063/1.3660779 10.1080/026782999204084 10.1002/adma.201505946 10.1103/PhysRevLett.96.086601 10.1016/j.solmat.2008.10.004 10.1002/adfm.200400017 10.1002/adma.201104284 10.1021/ma00069a009 10.1002/0470068329 10.1038/srep00754 10.1103/PhysRevLett.107.066601 |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201705463 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 29582485 10_1002_adma_201705463 ADMA201705463 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: European Research Council – fundername: Ministry of Science & ICT of Republic of Korea – fundername: European Union's Horizon 2020 research and innovation program funderid: 638059 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4793-f1d40a3256c4ef63b3d1f869944ed0c11039ec55f0f7b94074570a6cf7b9b9d93 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 05:27:55 EDT 2025 Fri Jul 25 04:19:21 EDT 2025 Wed Feb 19 02:43:48 EST 2025 Thu Apr 24 23:08:35 EDT 2025 Tue Jul 01 00:44:40 EDT 2025 Wed Jan 22 16:54:34 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Keywords | polymer semiconductors printed electronics aligned polymer films organic field-effect transistors transport anisotropy |
Language | English |
License | 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4793-f1d40a3256c4ef63b3d1f869944ed0c11039ec55f0f7b94074570a6cf7b9b9d93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-0442-4439 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adma.201705463 |
PMID | 29582485 |
PQID | 2038252130 |
PQPubID | 2045203 |
PageCount | 34 |
ParticipantIDs | proquest_miscellaneous_2019047379 proquest_journals_2038252130 pubmed_primary_29582485 crossref_citationtrail_10_1002_adma_201705463 crossref_primary_10_1002_adma_201705463 wiley_primary_10_1002_adma_201705463_ADMA201705463 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-May |
PublicationDateYYYYMMDD | 2018-05-01 |
PublicationDate_xml | – month: 05 year: 2018 text: 2018-May |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1993; 26 1991; 352 2004; 22 2002; 14 1990; 347 2007; 107 2013; 3 2013; 4 2002; 99 2014; 26 2008; 37 2014; 24 2008; 33 2012; 12 2012; 249 1983; 16 2011; 475 2016; 36 1994; 62 2011; 110 2012; 492 2010; 22 2010; 20 2012; 134 2009; 10 2015; 137 2009; 93 2013; 117 2008; 517 2014; 14 2015; 91 2005; 71 2008; 20 1996; 69 2012; 24 2009; 19 1998; 10 2016; 49 2011; 480 2012; 22 2007; 19 2015; 58 2012; 101 2011; 1 2013; 87 2010; 39 2011; 84 1999; 26 1986; 14 2011; 83 1997 2006; 110 2014; 47 1999; 20 1992 1995; 270 2011; 133 1995; 5 2009; 457 2016; 4 2012; 50 1990; 2 1993; 57 2016; 7 2016; 2 1987; 62 2015; 112 2000; 77 2005; 127 2005; 4 2014; 35 2015; 119 2005; 15 2016; 28 2005; 17 2012; 116 2006; 106 2016; 26 2016; 8 2014; 31 2017; 8 2013; 25 2004; 126 2017; 3 1990; 15 2013; 24 2013; 23 2008; 9 2008; 7 2003; 15 2011; 12 2005; 26 2003; 93 2008; 1 1999; 401 2000; 290 2017; 117 2012; 51 2014; 5 2013; 15 2014; 4 2013; 12 2003; 3 2016; 352 2011; 21 2011; 23 2017; 121 2014; 8 2011; 27 2003; 125 2014; 7 1992; 82 1993; 175 1998; 57 2014; 118 2014; 515 2015; 1 2015; 6 2015; 17 2006; 96 2015; 5 2015; 16 2009; 21 2015; 3 2012 2005; 155 2013; 46 2006; 5 2006; 18 2016; 52 2006 1988; 121 2005 2017; 29 2003 2015; 9 2015; 7 2008; 93 2001; 63 2017; 95 2015; 25 2012; 2 2011; 109 2015; 27 2012; 3 2011; 107 2013; 38 2004; 16 2017; 16 2004; 14 2010; 132 2011; 44 2013; 135 2015 2012; 312 2012; 6 2009; 3 2012; 86 e_1_2_8_241_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_203_1 e_1_2_8_226_1 e_1_2_8_132_1 e_1_2_8_178_1 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_170_1 e_1_2_8_193_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_230_1 Bohidar H. B. (e_1_2_8_123_1) 2015 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_238_1 e_1_2_8_215_1 e_1_2_8_120_1 e_1_2_8_143_1 e_1_2_8_166_1 e_1_2_8_189_1 e_1_2_8_91_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_181_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_30_1 Kinder L. (e_1_2_8_155_1) 2003 e_1_2_8_242_1 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_227_1 e_1_2_8_204_1 e_1_2_8_133_1 e_1_2_8_179_1 e_1_2_8_110_1 e_1_2_8_171_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_194_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_156_1 e_1_2_8_231_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_239_1 Tseng S.‐R. (e_1_2_8_199_1) 2008; 93 e_1_2_8_216_1 e_1_2_8_144_1 e_1_2_8_90_1 e_1_2_8_121_1 Noriega R. (e_1_2_8_103_1) 2012 e_1_2_8_98_1 e_1_2_8_106_1 e_1_2_8_182_1 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_167_1 e_1_2_8_28_1 e_1_2_8_243_1 e_1_2_8_220_1 Tracz A. (e_1_2_8_210_1) 2004; 22 e_1_2_8_228_1 e_1_2_8_205_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_172_1 e_1_2_8_195_1 e_1_2_8_134_1 e_1_2_8_157_1 e_1_2_8_17_1 e_1_2_8_232_1 e_1_2_8_217_1 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_160_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_183_1 e_1_2_8_145_1 e_1_2_8_168_1 e_1_2_8_93_1 e_1_2_8_221_1 e_1_2_8_27_1 e_1_2_8_206_1 e_1_2_8_80_1 e_1_2_8_150_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_65_1 e_1_2_8_173_1 e_1_2_8_112_1 e_1_2_8_158_1 e_1_2_8_196_1 e_1_2_8_135_1 e_1_2_8_39_1 e_1_2_8_16_1 e_1_2_8_218_1 e_1_2_8_233_1 e_1_2_8_92_1 Skotheim T. A. (e_1_2_8_162_1) 1997 e_1_2_8_100_1 e_1_2_8_161_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_184_1 e_1_2_8_146_1 e_1_2_8_68_1 e_1_2_8_222_1 e_1_2_8_207_1 e_1_2_8_5_1 e_1_2_8_151_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_113_1 e_1_2_8_136_1 e_1_2_8_159_1 e_1_2_8_174_1 e_1_2_8_197_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 Malliaras G. (e_1_2_8_2_1) 2003 e_1_2_8_109_1 e_1_2_8_57_1 e_1_2_8_211_1 e_1_2_8_234_1 e_1_2_8_95_1 e_1_2_8_219_1 e_1_2_8_11_1 e_1_2_8_34_1 Roth S. (e_1_2_8_24_1) 2015 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_147_1 e_1_2_8_185_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_200_1 e_1_2_8_223_1 e_1_2_8_152_1 e_1_2_8_208_1 Cohen E. D. (e_1_2_8_229_1) 1992 e_1_2_8_6_1 Bassler H. (e_1_2_8_82_1) 2012 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_137_1 e_1_2_8_175_1 e_1_2_8_114_1 e_1_2_8_198_1 e_1_2_8_18_1 e_1_2_8_79_1 e_1_2_8_212_1 e_1_2_8_235_1 e_1_2_8_94_1 e_1_2_8_163_1 e_1_2_8_140_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_33_1 e_1_2_8_102_1 e_1_2_8_148_1 e_1_2_8_186_1 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_47_1 e_1_2_8_224_1 e_1_2_8_201_1 e_1_2_8_3_1 e_1_2_8_130_1 e_1_2_8_153_1 e_1_2_8_209_1 Mara W. C. (e_1_2_8_169_1) 2012 e_1_2_8_138_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_176_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_190_1 e_1_2_8_213_1 e_1_2_8_236_1 e_1_2_8_141_1 e_1_2_8_164_1 e_1_2_8_97_1 e_1_2_8_149_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_126_1 e_1_2_8_187_1 e_1_2_8_240_1 e_1_2_8_46_1 e_1_2_8_69_1 e_1_2_8_180_1 e_1_2_8_202_1 e_1_2_8_225_1 e_1_2_8_154_1 e_1_2_8_4_1 e_1_2_8_131_1 e_1_2_8_192_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_139_1 e_1_2_8_84_1 e_1_2_8_61_1 e_1_2_8_177_1 e_1_2_8_35_1 e_1_2_8_58_1 e_1_2_8_191_1 e_1_2_8_214_1 e_1_2_8_237_1 e_1_2_8_165_1 e_1_2_8_96_1 e_1_2_8_142_1 e_1_2_8_127_1 e_1_2_8_12_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_104_1 e_1_2_8_188_1 |
References_xml | – volume: 3 start-page: e1602462 year: 2017 publication-title: Sci. Adv. – volume: 7 start-page: 26726 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 328 year: 2006 publication-title: Nat. Mater. – volume: 135 start-page: 1092 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 24 start-page: 839 year: 2012 publication-title: Adv. Mater. – volume: 24 start-page: 1151 year: 2014 publication-title: Adv. Funct. Mater. – volume: 99 start-page: 5804 year: 2002 publication-title: Proc. Natl. Acad. Sci. USA – volume: 26 start-page: 6430 year: 2014 publication-title: Adv. Mater. – volume: 12 start-page: 1045 year: 2013 publication-title: Nat. Mater. – volume: 457 start-page: 679 year: 2009 publication-title: Nature – volume: 15 start-page: 909 year: 1990 publication-title: Prog. Polym. Sci. – volume: 21 start-page: 3859 year: 2009 publication-title: Adv. Mater. – volume: 28 start-page: 9099 year: 2016 publication-title: Chem. Mater. – volume: 135 start-page: 19229 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 155 start-page: 639 year: 2005 publication-title: Synth. Met. – volume: 517 start-page: 982 year: 2008 publication-title: Thin Solid Films – volume: 52 start-page: 358 year: 2016 publication-title: Chem. Commun. – volume: 134 start-page: 20713 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 23 start-page: 5086 year: 2011 publication-title: Adv. Mater. – volume: 14 start-page: 61 year: 1986 publication-title: Synth. Met. – volume: 116 start-page: 6536 year: 2012 publication-title: J. Phys. Chem. B – volume: 38 start-page: 1978 year: 2013 publication-title: Prog. Polym. Sci. – volume: 27 start-page: 8345 year: 2015 publication-title: Chem. Mater. – volume: 15 start-page: 575 year: 2005 publication-title: Adv. Funct. Mater. – volume: 1 start-page: 63 year: 2011 publication-title: Adv. Energy Mater. – volume: 23 start-page: 508 year: 2011 publication-title: Adv. Mater. – volume: 26 start-page: 1403 year: 1999 publication-title: Liq. Cryst. – volume: 21 start-page: 2338 year: 2011 publication-title: J. Mater. Chem. – volume: 24 start-page: 1357 year: 2012 publication-title: Adv. Mater. – volume: 24 start-page: 4457 year: 2014 publication-title: Adv. Funct. Mater. – volume: 6 start-page: 8394 year: 2015 publication-title: Nat. Commun. – volume: 28 start-page: 420 year: 2016 publication-title: Chem. Mater. – volume: 3 start-page: 780 year: 2009 publication-title: Acs Nano – volume: 87 start-page: 195209 year: 2013 publication-title: Phys. Rev. B – volume: 16 start-page: 4772 year: 2004 publication-title: Chem. Mater. – volume: 3 start-page: 707 year: 2003 publication-title: Nano Lett. – volume: 4 start-page: 2238 year: 2013 publication-title: Nat. Commun. – volume: 137 start-page: 7990 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 26 start-page: 1319 year: 2014 publication-title: Adv. Mater. – volume: 8 start-page: 5968 year: 2014 publication-title: ACS Nano – volume: 25 start-page: 6442 year: 2013 publication-title: Adv. Mater. – volume: 14 start-page: 757 year: 2004 publication-title: Adv. Funct. Mater. – volume: 7 start-page: 2145 year: 2014 publication-title: Energy Environ. Sci. – volume: 10 start-page: 365 year: 1998 publication-title: Adv. Mater. – volume: 9 start-page: 8220 year: 2015 publication-title: ACS Nano – volume: 19 start-page: 743 year: 2009 publication-title: J. Mater. Chem. – volume: 475 start-page: 364 year: 2011 publication-title: Nature – volume: 249 start-page: 1655 year: 2012 publication-title: Phys. Status Solidi B – volume: 28 start-page: 151 year: 2016 publication-title: Adv. Mater. – volume: 24 start-page: 4618 year: 2012 publication-title: Adv. Mater. – volume: 17 start-page: 304 year: 2015 publication-title: Org. Electron. – volume: 12 start-page: 1768 year: 2011 publication-title: Org. Electron. – volume: 126 start-page: 13928 year: 2004 publication-title: J. Am. Chem. Soc. – volume: 110 start-page: 15763 year: 2006 publication-title: J. Phys. Chem. B – volume: 14 start-page: 915 year: 2002 publication-title: Adv. Mater. – volume: 84 start-page: 115211 year: 2011 publication-title: Phys. Rev. B – volume: 57 start-page: 12964 year: 1998 publication-title: Phys. Rev. B – volume: 25 start-page: 4302 year: 2013 publication-title: Adv. Mater. – volume: 401 start-page: 685 year: 1999 publication-title: Nature – volume: 6 start-page: 1849 year: 2012 publication-title: ACS Nano – volume: 49 start-page: 3452 year: 2016 publication-title: Macromolecules – volume: 16 start-page: 252 year: 2017 publication-title: Nat. Mater. – volume: 23 start-page: 6024 year: 2013 publication-title: Adv. Funct. Mater. – volume: 26 start-page: 8169 year: 2014 publication-title: Adv. Mater. – volume: 290 start-page: 2123 year: 2000 publication-title: Science – volume: 28 start-page: 2752 year: 2016 publication-title: Adv. Mater. – volume: 5 start-page: 355 year: 1995 publication-title: J. Phys. III – volume: 515 start-page: 384 year: 2014 publication-title: Nature – volume: 29 start-page: 1702729 year: 2017 publication-title: Adv. Mater. – volume: 127 start-page: 6918 year: 2005 publication-title: J. Am. Chem. Soc. – volume: 15 start-page: 671 year: 2005 publication-title: Adv. Funct. Mater. – volume: 26 start-page: 4457 year: 1993 publication-title: Macromolecules – volume: 95 start-page: 085301 year: 2017 publication-title: Phys. Rev. B – volume: 71 start-page: 165202 year: 2005 publication-title: Phys. Rev. B – volume: 12 start-page: 6353 year: 2012 publication-title: Nano Lett. – volume: 117 start-page: 6332 year: 2017 publication-title: Chem. Rev. – volume: 51 start-page: 11131 year: 2012 publication-title: Angew. Chem., Int. Ed. – volume: 25 start-page: 2075 year: 2013 publication-title: Chem. Mater. – volume: 7 start-page: 216 year: 2008 publication-title: Nat. Mater. – volume: 14 start-page: 2764 year: 2014 publication-title: Nano Lett. – volume: 121 start-page: 3714 year: 2017 publication-title: J. Phys. Chem. C – volume: 3 start-page: 835 year: 2009 publication-title: ACS Nano – volume: 91 start-page: 115302 year: 2015 publication-title: Phys. Rev. B – volume: 17 start-page: 2411 year: 2005 publication-title: Adv. Mater. – volume: 10 start-page: 741 year: 2009 publication-title: Org. Electron. – volume: 93 start-page: 394 year: 2009 publication-title: Sol. Energy Mater. Sol. Cells – volume: 16 start-page: 4748 year: 2004 publication-title: Chem. Mater. – volume: 69 start-page: 4108 year: 1996 publication-title: Appl. Phys. Lett. – volume: 83 start-page: 121306 year: 2011 publication-title: Phys. Rev. B – volume: 84 start-page: 045203 year: 2011 publication-title: Phys. Rev. B – volume: 21 start-page: 1568 year: 2009 publication-title: Adv. Mater. – volume: 21 start-page: 2652 year: 2011 publication-title: Adv. Funct. Mater. – year: 1997 – volume: 8 start-page: 4819 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 7880 year: 2015 publication-title: Nat. Commun. – volume: 3 start-page: 1539 year: 2013 publication-title: Adv. Energy Mater. – volume: 492 start-page: 234 year: 2012 publication-title: Nature – volume: 58 start-page: 947 year: 2015 publication-title: Sci. China Chem. – volume: 93 start-page: 465 year: 2009 publication-title: Sol. Energy Mater. Sol. Cells – year: 2015 – volume: 133 start-page: 2605 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 11135 year: 2016 publication-title: J. Mater. Chem. C – volume: 26 start-page: 5722 year: 2014 publication-title: Adv. Mater. – year: 2003 – volume: 25 start-page: 1859 year: 2013 publication-title: Adv. Mater. – volume: 27 start-page: 2350 year: 2015 publication-title: Chem. Mater. – volume: 3 start-page: 1002 year: 2012 publication-title: Nat. Commun. – volume: 22 start-page: 4359 year: 2010 publication-title: Adv. Mater. – volume: 5 start-page: 383 year: 2015 publication-title: MRS Commun. – volume: 16 start-page: 314 year: 2015 publication-title: Nano Lett. – volume: 77 start-page: 406 year: 2000 publication-title: Appl. Phys. Lett. – volume: 20 start-page: 2588 year: 2008 publication-title: Adv. Mater. – volume: 12 start-page: 947 year: 2013 publication-title: Nat. Mater. – volume: 135 start-page: 9540 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 312 start-page: 1 year: 2012 end-page: 65 – volume: 82 start-page: 317 year: 1992 publication-title: Solid State Commun. – volume: 29 start-page: 1606206 year: 2017 publication-title: Adv. Mater. – volume: 25 start-page: 1401 year: 2013 publication-title: Adv. Mater. – volume: 21 start-page: 3697 year: 2011 publication-title: Adv. Funct. Mater. – volume: 26 start-page: 7627 year: 2014 publication-title: Adv. Mater. – volume: 20 start-page: 289 year: 1999 publication-title: IEEE Electron Device Lett. – volume: 7 start-page: 13651 year: 2016 publication-title: Nat. Commun. – volume: 107 start-page: 1296 year: 2007 publication-title: Chem. Rev. – volume: 2 start-page: 1600163 year: 2016 publication-title: Adv. Electron. Mater. – volume: 107 start-page: 926 year: 2007 publication-title: Chem. Rev. – volume: 36 start-page: 113 year: 2016 publication-title: Org. Electron. – volume: 7 start-page: 6550 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 46 start-page: 2658 year: 2013 publication-title: Macromolecules – volume: 12 start-page: 1038 year: 2013 publication-title: Nat. Mater. – volume: 44 start-page: 5246 year: 2011 publication-title: Macromolecules – volume: 4 start-page: 1301659 year: 2014 publication-title: Adv. Energy Mater. – volume: 133 start-page: 19056 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 96 start-page: 086601 year: 2006 publication-title: Phys. Rev. Lett. – volume: 480 start-page: 504 year: 2011 publication-title: Nature – year: 2005 – volume: 27 start-page: 5043 year: 2015 publication-title: Adv. Mater. – volume: 25 start-page: 7003 year: 2013 publication-title: Adv. Mater. – volume: 26 start-page: 2993 year: 2014 publication-title: Adv. Mater. – volume: 93 start-page: 1636 year: 2003 publication-title: J. Appl. Phys. – volume: 21 start-page: 3759 year: 2009 publication-title: Adv. Mater. – volume: 22 start-page: 11462 year: 2012 publication-title: J. Mater. Chem. – volume: 8 start-page: 034020 year: 2017 publication-title: Phys. Rev. Appl. – volume: 44 start-page: 1530 year: 2011 publication-title: Macromolecules – volume: 27 start-page: 7356 year: 2015 publication-title: Adv. Mater. – volume: 25 start-page: 5126 year: 2015 publication-title: Adv. Funct. Mater. – volume: 1 year: 2015 publication-title: Adv. Electron. Mater. – volume: 27 start-page: 2687 year: 2015 publication-title: Chem. Mater. – volume: 119 start-page: 2062 year: 2015 publication-title: J. Phys. Chem. B – volume: 20 start-page: 2513 year: 2010 publication-title: J. Mater. Chem. – volume: 1 start-page: e1501127 year: 2015 publication-title: Sci. Adv. – volume: 35 start-page: 9 year: 2014 publication-title: Macromol. Rapid Commun. – volume: 62 start-page: 257 year: 1994 publication-title: Synth. Met. – volume: 18 start-page: 4724 year: 2006 publication-title: Chem. Mater. – volume: 110 start-page: 093523 year: 2011 publication-title: J. Appl. Phys. – volume: 28 start-page: 8531 year: 2016 publication-title: Adv. Mater. – volume: 21 start-page: 1166 year: 2009 publication-title: Adv. Mater. – volume: 50 start-page: 536 year: 2012 publication-title: J. Polym. Sci., Part B: Polym. Phys. – volume: 137 start-page: 6705 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 28 start-page: 6568 year: 2016 publication-title: Adv. Mater. – volume: 26 start-page: 834 year: 2005 publication-title: Macromol. Rapid Commun. – volume: 2 start-page: 5465 year: 1990 publication-title: J. Phys.: Condens. Matter – volume: 112 start-page: 10599 year: 2015 publication-title: Proc. Natl. Acad. Sci. USA – volume: 46 start-page: 4014 year: 2013 publication-title: Macromolecules – volume: 21 start-page: 518 year: 2011 publication-title: Adv. Funct. Mater. – volume: 3 start-page: 3425 year: 2013 publication-title: Sci. Rep. – volume: 37 start-page: 827 year: 2008 publication-title: Chem. Soc. Rev. – volume: 22 start-page: 24827 year: 2012 publication-title: J. Mater. Chem. – volume: 1 start-page: 061802 year: 2008 publication-title: Appl. Phys. Express – volume: 22 start-page: 415 year: 2004 publication-title: Mater. Sci. – volume: 9 start-page: 143 year: 2008 publication-title: Org. Electron. – volume: 125 start-page: 1682 year: 2003 publication-title: J. Am. Chem. Soc. – volume: 63 start-page: 125204 year: 2001 publication-title: Phys. Rev. B – volume: 352 start-page: 1521 year: 2016 publication-title: Science – year: 1992 – volume: 134 start-page: 4015 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 24 start-page: 3524 year: 2014 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 11385 year: 2015 publication-title: RSC Adv. – volume: 19 start-page: 1200 year: 2009 publication-title: Adv. Funct. Mater. – volume: 26 start-page: 6907 year: 2014 publication-title: Chem. Mater – volume: 39 start-page: 2643 year: 2010 publication-title: Chem. Soc. Rev. – volume: 4 start-page: 864 year: 2005 publication-title: Nat. Mater. – volume: 24 start-page: 2874 year: 2012 publication-title: Adv. Mater. – volume: 86 start-page: 165203 year: 2012 publication-title: Phys. Rev. B – volume: 134 start-page: 18303 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 754 year: 2012 publication-title: Sci. Rep. – volume: 27 start-page: 4212 year: 2011 publication-title: Langmuir – volume: 22 start-page: 3812 year: 2010 publication-title: Adv. Mater. – volume: 21 start-page: 932 year: 2011 publication-title: Adv. Funct. Mater. – volume: 347 start-page: 539 year: 1990 publication-title: Nature – volume: 33 start-page: 683 year: 2008 publication-title: MRS Bull. – volume: 137 start-page: 6254 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 665 year: 2013 publication-title: Nat. Mater. – volume: 17 start-page: 684 year: 2005 publication-title: Adv. Mater. – volume: 175 start-page: 15 year: 1993 publication-title: Phys. Status Solidi B – volume: 31 start-page: 469 year: 2014 publication-title: Langmuir – volume: 57 start-page: 4093 year: 1993 publication-title: Synth. Met. – volume: 93 start-page: 382 year: 2008 publication-title: Appl. Phys. Lett. – volume: 117 start-page: 11764 year: 2013 publication-title: J. Phys. Chem. C – volume: 24 start-page: 925 year: 2014 publication-title: Adv. Funct. Mater. – volume: 20 start-page: 7252 year: 2008 publication-title: Chem. Mater. – volume: 24 start-page: 23 year: 2013 publication-title: Chin. Chem. Lett. – volume: 93 start-page: 6137 year: 2003 publication-title: J. Appl. Phys. – volume: 4 start-page: 11121 year: 2014 publication-title: RSC Adv. – volume: 12 start-page: 659 year: 2013 publication-title: Nat. Mater. – volume: 109 start-page: 013702 year: 2011 publication-title: J. Appl. Phys. – volume: 15 start-page: 14396 year: 2013 publication-title: Phys. Chem. Chem. Phys. – volume: 118 start-page: 12556 year: 2014 publication-title: J. Phys. Chem. B – volume: 3 start-page: 7394 year: 2015 publication-title: J. Mater. Chem. C – volume: 22 start-page: 2799 year: 2010 publication-title: Adv. Mater. – volume: 24 start-page: 4959 year: 2014 publication-title: Adv. Funct. Mater. – volume: 352 start-page: 414 year: 1991 publication-title: Nature – volume: 16 start-page: 1737 year: 1983 publication-title: J. Phys. D: Appl. Phys. – volume: 106 start-page: 5028 year: 2006 publication-title: Chem. Rev. – volume: 15 start-page: 495 year: 2003 publication-title: Adv. Mater. – volume: 47 start-page: 3871 year: 2014 publication-title: Macromolecules – volume: 16 start-page: 1585 year: 2004 publication-title: Adv. Mater. – volume: 132 start-page: 11437 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 10908 year: 2016 publication-title: Nat. Commun. – volume: 101 start-page: 093308 year: 2012 publication-title: Appl. Phys. Lett. – volume: 26 start-page: 6031 year: 2014 publication-title: Adv. Mater. – volume: 117 start-page: 6835 year: 2013 publication-title: J. Phys. Chem. C – volume: 15 start-page: 1519 year: 2003 publication-title: Adv. Mater. – volume: 2 year: 2012 – volume: 5 start-page: 3005 year: 2014 publication-title: Nat. Commun. – volume: 19 start-page: 688 year: 2007 publication-title: Adv. Mater. – volume: 62 start-page: 4100 year: 1987 publication-title: J. Appl. Phys. – volume: 17 start-page: 1581 year: 2005 publication-title: Adv. Mater. – volume: 27 start-page: 7759 year: 2015 publication-title: Adv. Mater. – volume: 26 start-page: 8011 year: 2016 publication-title: Adv. Funct. Mater. – volume: 270 start-page: 1789 year: 1995 publication-title: Science – volume: 7 start-page: 900 year: 2008 publication-title: Nat. Mater. – volume: 21 start-page: 2741 year: 2009 publication-title: Adv. Mater. – year: 2012 – volume: 107 start-page: 066601 year: 2011 publication-title: Phys. Rev. Lett. – volume: 121 start-page: 717 year: 1988 publication-title: MRS Online Proc. Libr. – volume: 132 start-page: 8807 year: 2010 publication-title: J. Am. Chem. Soc. – year: 2006 – volume: 126 start-page: 3378 year: 2004 publication-title: J. Am. Chem. Soc. – volume: 18 start-page: 860 year: 2006 publication-title: Adv. Mater. – volume: 4 start-page: 41159 year: 2014 publication-title: RSC Adv. – ident: e_1_2_8_128_1 doi: 10.1016/j.orgel.2011.06.027 – ident: e_1_2_8_5_1 doi: 10.1038/nature11687 – volume-title: Modern Coating and Drying Technology year: 1992 ident: e_1_2_8_229_1 – ident: e_1_2_8_185_1 doi: 10.1021/la5037772 – ident: e_1_2_8_197_1 doi: 10.1002/adfm.201303794 – ident: e_1_2_8_4_1 doi: 10.1002/adma.200400684 – ident: e_1_2_8_129_1 doi: 10.1002/adfm.201002729 – ident: e_1_2_8_71_1 doi: 10.1021/ja039772w – ident: e_1_2_8_236_1 doi: 10.1021/acsami.5b00626 – ident: e_1_2_8_198_1 doi: 10.1002/adma.201401179 – ident: e_1_2_8_150_1 doi: 10.1021/jp3009628 – ident: e_1_2_8_164_1 doi: 10.1016/0379-6779(94)90214-3 – ident: e_1_2_8_224_1 doi: 10.1021/nn800574f – ident: e_1_2_8_238_1 doi: 10.1002/1521-4095(20020618)14:12<915::AID-ADMA915>3.0.CO;2-9 – ident: e_1_2_8_194_1 doi: 10.1143/APEX.1.061802 – ident: e_1_2_8_66_1 doi: 10.1002/adma.201502437 – ident: e_1_2_8_147_1 doi: 10.1021/jp4003388 – ident: e_1_2_8_220_1 doi: 10.1016/j.cclet.2013.01.014 – ident: e_1_2_8_151_1 doi: 10.1002/adfm.201500643 – ident: e_1_2_8_193_1 doi: 10.1038/nmat3650 – ident: e_1_2_8_176_1 doi: 10.1002/adma.200501838 – ident: e_1_2_8_59_1 doi: 10.1039/b614393h – ident: e_1_2_8_132_1 doi: 10.1002/aenm.201000005 – ident: e_1_2_8_149_1 doi: 10.1021/nn5011182 – ident: e_1_2_8_145_1 doi: 10.1103/PhysRevB.63.125204 – ident: e_1_2_8_70_1 doi: 10.1007/s11426-015-5399-5 – ident: e_1_2_8_130_1 doi: 10.1002/adfm.201400523 – ident: e_1_2_8_58_1 doi: 10.1002/adma.200903712 – ident: e_1_2_8_15_1 doi: 10.1038/ncomms13651 – ident: e_1_2_8_231_1 doi: 10.1201/9781420027327 – ident: e_1_2_8_221_1 doi: 10.1002/adfm.201001781 – ident: e_1_2_8_78_1 doi: 10.1038/nmat4784 – ident: e_1_2_8_154_1 doi: 10.1038/352414a0 – ident: e_1_2_8_37_1 doi: 10.1002/adma.201304346 – ident: e_1_2_8_81_1 doi: 10.1002/adfm.201302069 – ident: e_1_2_8_17_1 doi: 10.1002/adma.201305084 – ident: e_1_2_8_53_1 doi: 10.1002/adma.200900326 – ident: e_1_2_8_110_1 doi: 10.1021/cr050140x – ident: e_1_2_8_143_1 doi: 10.1021/ma102451b – ident: e_1_2_8_234_1 doi: 10.1002/aenm.201300458 – ident: e_1_2_8_139_1 doi: 10.1039/C4RA06311B – ident: e_1_2_8_127_1 doi: 10.1021/ja4088665 – ident: e_1_2_8_177_1 doi: 10.1557/PROC-121-717 – ident: e_1_2_8_72_1 doi: 10.1038/nmat1612 – ident: e_1_2_8_148_1 doi: 10.1002/adma.201102410 – ident: e_1_2_8_184_1 doi: 10.1038/nmat2122 – ident: e_1_2_8_86_1 doi: 10.1021/ja208824d – ident: e_1_2_8_76_1 doi: 10.1038/ncomms3238 – ident: e_1_2_8_195_1 doi: 10.1002/adfm.200400315 – ident: e_1_2_8_20_1 doi: 10.1038/nmat3722 – ident: e_1_2_8_126_1 doi: 10.1002/adfm.200801763 – ident: e_1_2_8_208_1 doi: 10.1016/j.orgel.2016.06.003 – ident: e_1_2_8_188_1 doi: 10.1021/cm502486n – ident: e_1_2_8_16_1 doi: 10.1021/acs.chemmater.5b04567 – ident: e_1_2_8_122_1 doi: 10.1002/adma.200802722 – ident: e_1_2_8_30_1 doi: 10.1016/j.orgel.2014.12.001 – volume-title: Fundamentals of Polymer Physics and Molecular Biophysics year: 2015 ident: e_1_2_8_123_1 – ident: e_1_2_8_22_1 doi: 10.1557/mrc.2015.44 – ident: e_1_2_8_75_1 doi: 10.1103/PhysRevB.84.045203 – ident: e_1_2_8_51_1 doi: 10.1126/sciadv.1501127 – ident: e_1_2_8_34_1 doi: 10.1039/b909902f – ident: e_1_2_8_223_1 doi: 10.1021/ja0508929 – ident: e_1_2_8_42_1 doi: 10.1021/ja403949g – ident: e_1_2_8_141_1 doi: 10.1002/adma.201001202 – ident: e_1_2_8_230_1 doi: 10.1021/nn8008307 – ident: e_1_2_8_10_1 doi: 10.1038/44359 – ident: e_1_2_8_187_1 doi: 10.1021/acs.chemmater.5b03775 – ident: e_1_2_8_191_1 doi: 10.1002/adma.201401495 – ident: e_1_2_8_124_1 doi: 10.1021/nl0341032 – ident: e_1_2_8_173_1 doi: 10.1002/aenm.201301659 – ident: e_1_2_8_140_1 doi: 10.1021/ja306844f – ident: e_1_2_8_181_1 doi: 10.1039/c2jm35351b – ident: e_1_2_8_201_1 doi: 10.1016/j.orgel.2009.03.001 – volume: 22 start-page: 415 year: 2004 ident: e_1_2_8_210_1 publication-title: Mater. Sci. – ident: e_1_2_8_243_1 doi: 10.1038/nature10683 – ident: e_1_2_8_157_1 doi: 10.1002/marc.201300712 – ident: e_1_2_8_87_1 doi: 10.1021/ma302664s – ident: e_1_2_8_133_1 doi: 10.1002/adfm.201301007 – ident: e_1_2_8_57_1 doi: 10.1002/adma.200803541 – ident: e_1_2_8_101_1 doi: 10.1103/PhysRevB.57.12964 – ident: e_1_2_8_77_1 doi: 10.1038/nmat3790 – ident: e_1_2_8_63_1 doi: 10.1038/nature10313 – ident: e_1_2_8_180_1 doi: 10.1021/ja1017267 – ident: e_1_2_8_204_1 doi: 10.1038/ncomms2002 – ident: e_1_2_8_85_1 doi: 10.1002/adma.201201795 – ident: e_1_2_8_90_1 doi: 10.1021/jp5085789 – ident: e_1_2_8_107_1 doi: 10.1021/cm400266h – ident: e_1_2_8_56_1 doi: 10.1002/pssb.201248143 – ident: e_1_2_8_115_1 doi: 10.1002/marc.200400647 – ident: e_1_2_8_41_1 doi: 10.1021/ja308927g – ident: e_1_2_8_88_1 doi: 10.1103/PhysRevB.86.165203 – ident: e_1_2_8_89_1 doi: 10.1021/jp511451s – ident: e_1_2_8_54_1 doi: 10.1063/1.4748976 – ident: e_1_2_8_3_1 doi: 10.1038/347539a0 – ident: e_1_2_8_18_1 doi: 10.1021/nl500758w – ident: e_1_2_8_168_1 doi: 10.1002/adfm.201100904 – ident: e_1_2_8_165_1 doi: 10.1016/0038-1098(92)90359-H – ident: e_1_2_8_26_1 doi: 10.1109/55.767101 – ident: e_1_2_8_112_1 doi: 10.1038/srep03425 – volume-title: Optical Science and Technology, SPIE's 48th Annu. Meet year: 2003 ident: e_1_2_8_155_1 – ident: e_1_2_8_62_1 doi: 10.1002/adma.200600929 – ident: e_1_2_8_161_1 doi: 10.1021/acsnano.5b02582 – ident: e_1_2_8_80_1 doi: 10.1021/ja1049324 – ident: e_1_2_8_114_1 doi: 10.1002/adfm.200400297 – ident: e_1_2_8_19_1 doi: 10.1038/nature13854 – ident: e_1_2_8_200_1 doi: 10.1002/adma.201401520 – volume: 93 start-page: 382 year: 2008 ident: e_1_2_8_199_1 publication-title: Appl. Phys. Lett. – ident: e_1_2_8_36_1 doi: 10.1126/science.aaf9062 – ident: e_1_2_8_68_1 doi: 10.1021/jacs.5b04253 – ident: e_1_2_8_91_1 doi: 10.1002/adfm.201302297 – ident: e_1_2_8_167_1 doi: 10.1021/ja044884o – ident: e_1_2_8_136_1 doi: 10.1088/0953-8984/2/24/017 – ident: e_1_2_8_182_1 doi: 10.1021/la105109t – ident: e_1_2_8_113_1 doi: 10.1021/cm049617w – ident: e_1_2_8_79_1 doi: 10.1002/adma.201402941 – ident: e_1_2_8_32_1 doi: 10.1103/PhysRevB.95.085301 – ident: e_1_2_8_131_1 doi: 10.1039/C0JM03114C – ident: e_1_2_8_120_1 doi: 10.1063/1.126991 – ident: e_1_2_8_40_1 doi: 10.1002/adma.201201318 – ident: e_1_2_8_33_1 doi: 10.1039/C6TC03897B – ident: e_1_2_8_7_1 doi: 10.1126/science.270.5243.1789 – ident: e_1_2_8_21_1 doi: 10.1038/ncomms9394 – ident: e_1_2_8_49_1 doi: 10.1002/adma.200901136 – ident: e_1_2_8_146_1 doi: 10.1103/PhysRevB.84.115211 – ident: e_1_2_8_206_1 doi: 10.1002/adma.201301267 – ident: e_1_2_8_48_1 doi: 10.1002/adma.201702729 – ident: e_1_2_8_74_1 doi: 10.1002/adma.200402020 – ident: e_1_2_8_211_1 doi: 10.1021/acs.chemrev.6b00618 – volume-title: One‐Dimensional Metals: Conjugated Polymers, Organic Crystals, Carbon Nanotubes and Graphene year: 2015 ident: e_1_2_8_24_1 – ident: e_1_2_8_111_1 doi: 10.1038/nmat3595 – ident: e_1_2_8_142_1 doi: 10.1021/ma200864s – ident: e_1_2_8_144_1 doi: 10.1021/ja310240q – ident: e_1_2_8_205_1 doi: 10.1002/polb.23038 – ident: e_1_2_8_227_1 doi: 10.1038/nature07727 – ident: e_1_2_8_222_1 doi: 10.1021/nn2051295 – ident: e_1_2_8_94_1 doi: 10.1021/ja108861q – ident: e_1_2_8_73_1 doi: 10.1557/mrs2008.140 – ident: e_1_2_8_31_1 doi: 10.1002/adma.201204075 – ident: e_1_2_8_163_1 doi: 10.1016/0379-6779(86)90127-X – ident: e_1_2_8_61_1 doi: 10.1002/adma.200801725 – ident: e_1_2_8_118_1 doi: 10.1002/adma.201301438 – volume-title: Organic Semiconductors and Devices year: 2003 ident: e_1_2_8_2_1 – ident: e_1_2_8_38_1 doi: 10.1103/PhysRevApplied.8.034020 – ident: e_1_2_8_95_1 doi: 10.1016/j.progpolymsci.2013.07.009 – ident: e_1_2_8_233_1 doi: 10.1002/adma.201003158 – ident: e_1_2_8_100_1 doi: 10.1002/pssb.2221750102 – ident: e_1_2_8_135_1 doi: 10.1021/acsami.5b12552 – ident: e_1_2_8_60_1 doi: 10.1021/cr050966z – ident: e_1_2_8_44_1 doi: 10.1038/ncomms4005 – ident: e_1_2_8_97_1 doi: 10.1103/PhysRevB.71.165202 – ident: e_1_2_8_109_1 doi: 10.1002/adma.201502820 – ident: e_1_2_8_119_1 doi: 10.1002/adfm.201001682 – ident: e_1_2_8_69_1 doi: 10.1103/PhysRevB.91.115302 – ident: e_1_2_8_52_1 doi: 10.1002/adma.200501152 – ident: e_1_2_8_213_1 doi: 10.1021/cm801689f – ident: e_1_2_8_215_1 doi: 10.1021/cm060675m – ident: e_1_2_8_116_1 doi: 10.1021/jp062899y – ident: e_1_2_8_138_1 doi: 10.1039/c2jm31183f – ident: e_1_2_8_27_1 doi: 10.1021/cr0501543 – ident: e_1_2_8_96_1 doi: 10.1103/PhysRevB.83.121306 – ident: e_1_2_8_64_1 doi: 10.1002/anie.201205653 – ident: e_1_2_8_219_1 doi: 10.1016/j.tsf.2008.07.012 – ident: e_1_2_8_190_1 doi: 10.1021/acs.nanolett.5b03868 – ident: e_1_2_8_174_1 doi: 10.1016/0079-6700(90)90025-V – ident: e_1_2_8_8_1 doi: 10.1038/nmat1500 – ident: e_1_2_8_235_1 doi: 10.1039/C4RA15681A – ident: e_1_2_8_1_1 doi: 10.1021/cm049781j – ident: e_1_2_8_196_1 doi: 10.1021/cm503780u – ident: e_1_2_8_241_1 doi: 10.1021/ma500762x – ident: e_1_2_8_170_1 doi: 10.1063/1.1530720 – ident: e_1_2_8_43_1 doi: 10.1021/nl303612z – ident: e_1_2_8_152_1 doi: 10.1021/acsami.5b08710 – ident: e_1_2_8_83_1 doi: 10.1038/ncomms8880 – ident: e_1_2_8_98_1 doi: 10.1051/jp3:1995132 – ident: e_1_2_8_117_1 doi: 10.1021/jp400171u – ident: e_1_2_8_171_1 doi: 10.1016/j.synthmet.2005.08.019 – ident: e_1_2_8_216_1 doi: 10.1016/j.orgel.2007.09.007 – ident: e_1_2_8_242_1 doi: 10.1002/adma.201506151 – ident: e_1_2_8_23_1 doi: 10.1073/pnas.1501381112 – ident: e_1_2_8_166_1 doi: 10.1016/0379-6779(93)90563-C – ident: e_1_2_8_67_1 doi: 10.1002/adma.201403767 – ident: e_1_2_8_237_1 doi: 10.1002/adma.201502239 – ident: e_1_2_8_28_1 doi: 10.1039/b922385a – ident: e_1_2_8_226_1 doi: 10.1002/adma.201000232 – ident: e_1_2_8_225_1 doi: 10.1039/B814833C – start-page: 1 volume-title: Unimolecular and Supramolecular Electronics I: Chemistry and Physics Meet at Metal‐Molecule Interfaces year: 2012 ident: e_1_2_8_82_1 – ident: e_1_2_8_50_1 doi: 10.1002/adma.201104206 – ident: e_1_2_8_65_1 doi: 10.1039/C3RA47064D – ident: e_1_2_8_156_1 doi: 10.1063/1.339124 – ident: e_1_2_8_160_1 doi: 10.1021/acs.chemmater.5b00635 – ident: e_1_2_8_172_1 doi: 10.1021/ma400516d – ident: e_1_2_8_186_1 doi: 10.1021/jacs.5b03355 – volume-title: Liquid Crystal Flat Panel Displays: Manufacturing Science & Technology year: 2012 ident: e_1_2_8_169_1 – ident: e_1_2_8_203_1 doi: 10.1016/j.solmat.2008.12.012 – ident: e_1_2_8_12_1 doi: 10.1002/(SICI)1521-4095(199803)10:5<365::AID-ADMA365>3.0.CO;2-U – ident: e_1_2_8_232_1 doi: 10.1002/adma.201200055 – ident: e_1_2_8_99_1 doi: 10.1103/PhysRevB.87.195209 – ident: e_1_2_8_55_1 doi: 10.1002/9783527685172 – ident: e_1_2_8_84_1 doi: 10.1073/pnas.092143399 – ident: e_1_2_8_214_1 doi: 10.1039/c3cp51264a – ident: e_1_2_8_212_1 doi: 10.1088/0022-3727/16/9/019 – ident: e_1_2_8_121_1 doi: 10.1002/adma.200390114 – ident: e_1_2_8_179_1 doi: 10.1021/ja211630w – ident: e_1_2_8_207_1 doi: 10.1002/aelm.201500036 – ident: e_1_2_8_209_1 doi: 10.1039/C5CC05247E – ident: e_1_2_8_47_1 doi: 10.1021/acs.jpcc.6b11230 – ident: e_1_2_8_13_1 doi: 10.1063/1.117834 – ident: e_1_2_8_93_1 doi: 10.1002/adma.200305275 – ident: e_1_2_8_35_1 doi: 10.1002/adma.201503133 – ident: e_1_2_8_125_1 doi: 10.1021/jacs.5b00493 – volume-title: Organic Electronics II: More Materials and Applications year: 2012 ident: e_1_2_8_103_1 – ident: e_1_2_8_134_1 doi: 10.1039/C5TC01425E – volume-title: Handbook of Conducting Polymers year: 1997 ident: e_1_2_8_162_1 – ident: e_1_2_8_46_1 doi: 10.1002/aelm.201600163 – ident: e_1_2_8_25_1 doi: 10.1002/adma.201601589 – ident: e_1_2_8_158_1 doi: 10.1063/1.3527066 – ident: e_1_2_8_108_1 doi: 10.1002/adfm.201602080 – ident: e_1_2_8_228_1 doi: 10.1002/adma.201205330 – ident: e_1_2_8_14_1 doi: 10.1038/nmat2291 – ident: e_1_2_8_6_1 doi: 10.1002/adma.201606206 – ident: e_1_2_8_45_1 doi: 10.1038/ncomms10908 – ident: e_1_2_8_11_1 doi: 10.1126/science.290.5499.2123 – ident: e_1_2_8_183_1 doi: 10.1126/sciadv.1602462 – ident: e_1_2_8_105_1 doi: 10.1038/nmat3710 – ident: e_1_2_8_189_1 doi: 10.1039/C4EE00688G – ident: e_1_2_8_217_1 doi: 10.1021/ja028945z – ident: e_1_2_8_159_1 doi: 10.1002/adfm.201400699 – ident: e_1_2_8_175_1 doi: 10.1021/acs.macromol.6b00495 – ident: e_1_2_8_218_1 doi: 10.1002/adma.200401171 – ident: e_1_2_8_178_1 doi: 10.1063/1.1568526 – ident: e_1_2_8_192_1 doi: 10.1002/adma.200703120 – ident: e_1_2_8_202_1 doi: 10.1021/acs.chemmater.6b04202 – ident: e_1_2_8_239_1 doi: 10.1063/1.3660779 – ident: e_1_2_8_153_1 doi: 10.1080/026782999204084 – ident: e_1_2_8_240_1 doi: 10.1002/adma.201505946 – ident: e_1_2_8_104_1 doi: 10.1103/PhysRevLett.96.086601 – ident: e_1_2_8_9_1 doi: 10.1016/j.solmat.2008.10.004 – ident: e_1_2_8_92_1 doi: 10.1002/adfm.200400017 – ident: e_1_2_8_106_1 doi: 10.1002/adma.201104284 – ident: e_1_2_8_137_1 doi: 10.1021/ma00069a009 – ident: e_1_2_8_29_1 doi: 10.1002/0470068329 – ident: e_1_2_8_39_1 doi: 10.1038/srep00754 – ident: e_1_2_8_102_1 doi: 10.1103/PhysRevLett.107.066601 |
SSID | ssj0009606 |
Score | 2.6169572 |
SecondaryResourceType | review_article |
Snippet | Polymer semiconductors have been experiencing a remarkable improvement in electronic and optoelectronic properties, which are largely related to the recent... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1705463 |
SubjectTerms | aligned polymer films Alignment Carrier mobility Current carriers Electronic devices Molecular chains Optoelectronics organic field‐effect transistors Polymer films polymer semiconductors Polymers Portable equipment printed electronics Semiconductor devices Thin films Transistors transport anisotropy Transport properties Weight reduction |
Title | Uniaxial Alignment of Conjugated Polymer Films for High‐Performance Organic Field‐Effect Transistors |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201705463 https://www.ncbi.nlm.nih.gov/pubmed/29582485 https://www.proquest.com/docview/2038252130 https://www.proquest.com/docview/2019047379 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEMct1BMceD8CBRkJiZPbJH4kPq4KqwqpqEJU6i2yHRsW0gR1d6WWEx-Bz8gnYcbezXZBCAlusTxRnNgT_-3M_ELICxGU9VwEJkVRMqFtYFZpx4qgKlt6DgoD852P3qrDE_HmVJ5eyeJPfIhxww09I76v0cGNne9voKGmjdwgxMEIhbhPDNhCVfRuw49CeR5he1wyrUS9pjbm5f726duz0m9Sc1u5xqlneouYdaNTxMnnveXC7rmvv_Ac_-eubpObK11KJ2kg3SHXfH-X3LhCK7xHPoI-NRcztOpmH2IUAR0CPRj6T0vcjGvp8dBdnvlzOp11Z3MKcphiGMmPb9-PN-kJNGV_OjDyXQt1iZ9M46QZmSXz--Rk-vr9wSFb_aiBOdyYY6FoRW44qCcnfFDc8rYItdJaCN_mrsDPzd5JGfJQWQ1LSCGr3CiHJatbzR-QnX7o_SNCrbVFXVUgU2BhWJTeamkKVQUOstPL1mSErTuqcSuKOf5Mo2sSf7ls8Ak24xPMyMvR_kvid_zRcnfd783Kj-dQy2EJXcJEn5HnYzV4IH5WMb0flmgDrRUVr3RGHqbxMl6q1LJGaFxGytjrf2lDM3l1NBlLj__lpCfkOhzXKSZzl-wszpf-KeimhX0WfeMnxycPiA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BOQAH_imBAkZC4uQ2iX8SH1eF1QLdqkKtxC2KExuWpgnq7krAiUfgGXkSPPYmy4IQEhwdjxXH9sTfjGc-AzzlVmrDuKWCJynlSluqpapoYmWmU8McwsB85-mhnJzwV29FH02IuTCBH2JwuKFm-P81Kjg6pPfWrKFl7YmDkA-GS3YRLuG13t6qerNmkEKA7un2mKBK8rznbYzTvc32m_vSb2BzE7v6zWd8HXTf7RBzcrq7XOjd6ssvjI7_9V034NoKmpJRWEs34YJpb8HVnwgLb8N7B1HLTzOUambvfCAB6SzZ79oPS_TH1eSoaz6fmXMynjVnc-IQMcFIku9fvx2tMxRISACtnJBpalcXKJSJ3zc9bcn8DpyMXxzvT-jqrgZaoW-O2qTmcckcgKq4sZJpVic2l0pxbuq4SvDE2VRC2NhmWjkrkossLmWFJa1qxe7CVtu15h4QrXWSZ5lDKs42TFKjlSgTmVnmkKcRdRkB7WeqqFZE5nifRlMECua0wBEshhGM4Nkg_zFQePxRcqef-GKlynNXy5wVnbq9PoInQ7VTQjxZKVvTLVHG9ZZnLFMRbIcFM7wqVSJH3rgIUj_tf-lDMXo-HQ2l-__S6DFcnhxPD4qDl4evH8AV9zwPIZo7sLU4X5qHDkYt9COvKD8AuXATow |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB5BkRA8cB-BAkZC4sltEh-JH1ddVuVotUJU6lsUX3RLmlTdXQl44if0N_aX4GM32wUhJHh0PFYc25P5xp75DPCKWi4NoRYzmuWYCmmx5ELhzPJC5oY4hOHznff2-e4BfXfIDi9l8Ud-iH7DzWtG-F97BT_VdntFGlrrwBvk6WAoJ1fhGuVp6df18OOKQMrj88C2RxgWnJZL2sY0315vv26WfsOa69A12J7RbaiXvY4hJ1-25jO5pb7_Quj4P591B24tgCkaxJV0F66Y9h7cvERXeB-OHECtv068VDP5HMIIUGfRTtcez_1unEbjrvl2Ys7QaNKcTJHDw8jHkVz8OB-v8hNQTP9UTsg02tVFAmUUrGYgLZk-gIPRm087u3hxUwNWfmcO20zTtCYOPilqLCeS6MyWXAhKjU5V5s-bjWLMpraQwvmQlBVpzZUvSaEFeQgbbdeax4CklFlZFA6nOM8wy40UrM54YYnDnYbpOgG8nKhKLWjM_W0aTRUJmPPKj2DVj2ACr3v500jg8UfJzeW8VwtFnrpa4nzo3Fn6BF721U4F_blK3Zpu7mVcb2lBCpHAo7he-lflgpWeNS6BPMz6X_pQDYZ7g7705F8avYDr4-Go-vB2__1TuOEelzE-cxM2Zmdz88xhqJl8HtTkJ4bYEls |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uniaxial+Alignment+of+Conjugated+Polymer+Films+for+High%E2%80%90Performance+Organic+Field%E2%80%90Effect+Transistors&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Khim%2C+Dongyoon&rft.au=Luzio%2C+Alessandro&rft.au=Bonacchini%2C+Giorgio+Ernesto&rft.au=Pace%2C+Giuseppina&rft.date=2018-05-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=30&rft.issue=20&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.201705463&rft.externalDBID=10.1002%252Fadma.201705463&rft.externalDocID=ADMA201705463 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |