Uniaxial Alignment of Conjugated Polymer Films for High‐Performance Organic Field‐Effect Transistors

Polymer semiconductors have been experiencing a remarkable improvement in electronic and optoelectronic properties, which are largely related to the recent development of a vast library of high‐performance, donor–acceptor copolymers showing alternation of chemical moieties with different electronic...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 30; no. 20; pp. e1705463 - n/a
Main Authors Khim, Dongyoon, Luzio, Alessandro, Bonacchini, Giorgio Ernesto, Pace, Giuseppina, Lee, Mi‐Jung, Noh, Yong‐Young, Caironi, Mario
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.05.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Polymer semiconductors have been experiencing a remarkable improvement in electronic and optoelectronic properties, which are largely related to the recent development of a vast library of high‐performance, donor–acceptor copolymers showing alternation of chemical moieties with different electronic affinities along their backbones. Such steady improvement is making conjugated polymers even more appealing for large‐area and flexible electronic applications, from distributed and portable electronics to healthcare devices, where cost‐effective manufacturing, light weight, and ease of integration represent key benefits. Recently, a strong boost to charge carrier mobility in polymer‐based field‐effect transistors, consistently achieving the range from 1.0 to 10 cm2 V−1 s−1 for both holes and electrons, has been given by uniaxial backbone alignment of polymers in thin films, inducing strong transport anisotropy and favoring enhanced transport properties along the alignment direction. Herein, an overview on this topic is provided with a focus on the processing–structure–property relationships that enable the controlled and uniform alignment of polymer films over large areas with scalable processes. The key aspects are specific molecular structures, such as planarized backbones with a reduced degree of conformational disorder, solution formulation with controlled aggregation, and deposition techniques inducing suitable directional flow. Uniaxial alignment represents a key factor to boost the charge mobility in polymer‐based field‐effect transistors. The subject is critically reviewed, collecting all recent approaches to the alignment of polymer semiconductors, and covering all aspects of solution formulations, control of solid‐state packing, and integration into electronic devices.
AbstractList Polymer semiconductors have been experiencing a remarkable improvement in electronic and optoelectronic properties, which are largely related to the recent development of a vast library of high‐performance, donor–acceptor copolymers showing alternation of chemical moieties with different electronic affinities along their backbones. Such steady improvement is making conjugated polymers even more appealing for large‐area and flexible electronic applications, from distributed and portable electronics to healthcare devices, where cost‐effective manufacturing, light weight, and ease of integration represent key benefits. Recently, a strong boost to charge carrier mobility in polymer‐based field‐effect transistors, consistently achieving the range from 1.0 to 10 cm2 V−1 s−1 for both holes and electrons, has been given by uniaxial backbone alignment of polymers in thin films, inducing strong transport anisotropy and favoring enhanced transport properties along the alignment direction. Herein, an overview on this topic is provided with a focus on the processing–structure–property relationships that enable the controlled and uniform alignment of polymer films over large areas with scalable processes. The key aspects are specific molecular structures, such as planarized backbones with a reduced degree of conformational disorder, solution formulation with controlled aggregation, and deposition techniques inducing suitable directional flow.
Polymer semiconductors have been experiencing a remarkable improvement in electronic and optoelectronic properties, which are largely related to the recent development of a vast library of high-performance, donor-acceptor copolymers showing alternation of chemical moieties with different electronic affinities along their backbones. Such steady improvement is making conjugated polymers even more appealing for large-area and flexible electronic applications, from distributed and portable electronics to healthcare devices, where cost-effective manufacturing, light weight, and ease of integration represent key benefits. Recently, a strong boost to charge carrier mobility in polymer-based field-effect transistors, consistently achieving the range from 1.0 to 10 cm V s for both holes and electrons, has been given by uniaxial backbone alignment of polymers in thin films, inducing strong transport anisotropy and favoring enhanced transport properties along the alignment direction. Herein, an overview on this topic is provided with a focus on the processing-structure-property relationships that enable the controlled and uniform alignment of polymer films over large areas with scalable processes. The key aspects are specific molecular structures, such as planarized backbones with a reduced degree of conformational disorder, solution formulation with controlled aggregation, and deposition techniques inducing suitable directional flow.
Polymer semiconductors have been experiencing a remarkable improvement in electronic and optoelectronic properties, which are largely related to the recent development of a vast library of high-performance, donor-acceptor copolymers showing alternation of chemical moieties with different electronic affinities along their backbones. Such steady improvement is making conjugated polymers even more appealing for large-area and flexible electronic applications, from distributed and portable electronics to healthcare devices, where cost-effective manufacturing, light weight, and ease of integration represent key benefits. Recently, a strong boost to charge carrier mobility in polymer-based field-effect transistors, consistently achieving the range from 1.0 to 10 cm2 V-1 s-1 for both holes and electrons, has been given by uniaxial backbone alignment of polymers in thin films, inducing strong transport anisotropy and favoring enhanced transport properties along the alignment direction. Herein, an overview on this topic is provided with a focus on the processing-structure-property relationships that enable the controlled and uniform alignment of polymer films over large areas with scalable processes. The key aspects are specific molecular structures, such as planarized backbones with a reduced degree of conformational disorder, solution formulation with controlled aggregation, and deposition techniques inducing suitable directional flow.Polymer semiconductors have been experiencing a remarkable improvement in electronic and optoelectronic properties, which are largely related to the recent development of a vast library of high-performance, donor-acceptor copolymers showing alternation of chemical moieties with different electronic affinities along their backbones. Such steady improvement is making conjugated polymers even more appealing for large-area and flexible electronic applications, from distributed and portable electronics to healthcare devices, where cost-effective manufacturing, light weight, and ease of integration represent key benefits. Recently, a strong boost to charge carrier mobility in polymer-based field-effect transistors, consistently achieving the range from 1.0 to 10 cm2 V-1 s-1 for both holes and electrons, has been given by uniaxial backbone alignment of polymers in thin films, inducing strong transport anisotropy and favoring enhanced transport properties along the alignment direction. Herein, an overview on this topic is provided with a focus on the processing-structure-property relationships that enable the controlled and uniform alignment of polymer films over large areas with scalable processes. The key aspects are specific molecular structures, such as planarized backbones with a reduced degree of conformational disorder, solution formulation with controlled aggregation, and deposition techniques inducing suitable directional flow.
Polymer semiconductors have been experiencing a remarkable improvement in electronic and optoelectronic properties, which are largely related to the recent development of a vast library of high‐performance, donor–acceptor copolymers showing alternation of chemical moieties with different electronic affinities along their backbones. Such steady improvement is making conjugated polymers even more appealing for large‐area and flexible electronic applications, from distributed and portable electronics to healthcare devices, where cost‐effective manufacturing, light weight, and ease of integration represent key benefits. Recently, a strong boost to charge carrier mobility in polymer‐based field‐effect transistors, consistently achieving the range from 1.0 to 10 cm 2 V −1 s −1 for both holes and electrons, has been given by uniaxial backbone alignment of polymers in thin films, inducing strong transport anisotropy and favoring enhanced transport properties along the alignment direction. Herein, an overview on this topic is provided with a focus on the processing–structure–property relationships that enable the controlled and uniform alignment of polymer films over large areas with scalable processes. The key aspects are specific molecular structures, such as planarized backbones with a reduced degree of conformational disorder, solution formulation with controlled aggregation, and deposition techniques inducing suitable directional flow.
Polymer semiconductors have been experiencing a remarkable improvement in electronic and optoelectronic properties, which are largely related to the recent development of a vast library of high‐performance, donor–acceptor copolymers showing alternation of chemical moieties with different electronic affinities along their backbones. Such steady improvement is making conjugated polymers even more appealing for large‐area and flexible electronic applications, from distributed and portable electronics to healthcare devices, where cost‐effective manufacturing, light weight, and ease of integration represent key benefits. Recently, a strong boost to charge carrier mobility in polymer‐based field‐effect transistors, consistently achieving the range from 1.0 to 10 cm2 V−1 s−1 for both holes and electrons, has been given by uniaxial backbone alignment of polymers in thin films, inducing strong transport anisotropy and favoring enhanced transport properties along the alignment direction. Herein, an overview on this topic is provided with a focus on the processing–structure–property relationships that enable the controlled and uniform alignment of polymer films over large areas with scalable processes. The key aspects are specific molecular structures, such as planarized backbones with a reduced degree of conformational disorder, solution formulation with controlled aggregation, and deposition techniques inducing suitable directional flow. Uniaxial alignment represents a key factor to boost the charge mobility in polymer‐based field‐effect transistors. The subject is critically reviewed, collecting all recent approaches to the alignment of polymer semiconductors, and covering all aspects of solution formulations, control of solid‐state packing, and integration into electronic devices.
Author Pace, Giuseppina
Lee, Mi‐Jung
Noh, Yong‐Young
Khim, Dongyoon
Caironi, Mario
Bonacchini, Giorgio Ernesto
Luzio, Alessandro
Author_xml – sequence: 1
  givenname: Dongyoon
  surname: Khim
  fullname: Khim, Dongyoon
  organization: Dongguk University
– sequence: 2
  givenname: Alessandro
  surname: Luzio
  fullname: Luzio, Alessandro
  organization: Istituto Italiano di Tecnologia
– sequence: 3
  givenname: Giorgio Ernesto
  surname: Bonacchini
  fullname: Bonacchini, Giorgio Ernesto
  organization: Politecnico di Milano
– sequence: 4
  givenname: Giuseppina
  surname: Pace
  fullname: Pace, Giuseppina
  organization: Istituto Italiano di Tecnologia
– sequence: 5
  givenname: Mi‐Jung
  surname: Lee
  fullname: Lee, Mi‐Jung
  organization: Kookmin University
– sequence: 6
  givenname: Yong‐Young
  surname: Noh
  fullname: Noh, Yong‐Young
  email: yynoh@dongguk.edu
  organization: Dongguk University
– sequence: 7
  givenname: Mario
  orcidid: 0000-0002-0442-4439
  surname: Caironi
  fullname: Caironi, Mario
  email: mario.caironi@iit.it
  organization: Istituto Italiano di Tecnologia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29582485$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFLHDEYhkNR6mp77bEEeull1i-TZGZyXLZaCxY96DlkM8maJZPYZAa7t_6E_sb-kmZZbUEQT-Ejz_Px8b7H6CDEYBD6QGBOAOpT1Q9qXgNpgbOGvkEzwmtSMRD8AM1AUF6JhnVH6DjnDQCIBpq36KgWvKtZx2fo7jY49dMpjxfercNgwoijxcsYNtNajabH19FvB5PwufNDxjYmfOHWd39-_b42qUyDCtrgq7RWwekCGd-XvzNrjR7xTVIhuzzGlN-hQ6t8Nu8f3xN0e352s7yoLq--flsuLivNWkErS3oGita80czYhq5oT2zXCMGY6UETAlQYzbkF264Eg5bxFlSjd9NK9IKeoM_7vfcp_phMHuXgsjbeq2DilGXJSgBrabtDPz1DN3FKoVxXKNrVJUkKhfr4SE2rwfTyPrlBpa18yrAAbA_oFHNOxkrtRjW6GMaknJcE5K4quatK_quqaPNn2tPmFwWxFx6cN9tXaLn48n3x3_0LD0inmA
CitedBy_id crossref_primary_10_1021_acsami_9b17784
crossref_primary_10_1021_acs_macromol_3c01790
crossref_primary_10_1063_5_0166449
crossref_primary_10_3390_polym13091435
crossref_primary_10_1016_j_synthmet_2025_117826
crossref_primary_10_1016_j_jtice_2022_104566
crossref_primary_10_1021_acsami_4c11824
crossref_primary_10_1021_acs_langmuir_0c00100
crossref_primary_10_1039_D1TC03681E
crossref_primary_10_1016_j_cis_2019_102080
crossref_primary_10_1063_5_0005441
crossref_primary_10_1021_acsami_2c18049
crossref_primary_10_1016_j_decarb_2024_100035
crossref_primary_10_1002_polb_24885
crossref_primary_10_1002_adfm_202006236
crossref_primary_10_1002_admt_202500068
crossref_primary_10_1002_hlca_201900048
crossref_primary_10_1016_j_electacta_2020_135974
crossref_primary_10_1002_adfm_202008813
crossref_primary_10_1002_aelm_201901070
crossref_primary_10_1002_advs_201800541
crossref_primary_10_1039_C9TC04397G
crossref_primary_10_3390_polym11111856
crossref_primary_10_1002_agt2_501
crossref_primary_10_1021_acsomega_8b02205
crossref_primary_10_1021_acsami_0c15893
crossref_primary_10_1039_C8TC04333G
crossref_primary_10_1021_acs_nanolett_4c01675
crossref_primary_10_7567_1347_4065_ab48b9
crossref_primary_10_1002_advs_201902315
crossref_primary_10_1039_D1TC03907E
crossref_primary_10_1016_j_trechm_2019_08_002
crossref_primary_10_1039_C9TC05803F
crossref_primary_10_1021_acsami_0c02749
crossref_primary_10_35848_1347_4065_ac2f20
crossref_primary_10_1021_acsami_3c15651
crossref_primary_10_1002_aelm_201800514
crossref_primary_10_1007_s42114_022_00611_2
crossref_primary_10_1039_D3TC00447C
crossref_primary_10_1021_acsanm_0c00523
crossref_primary_10_1021_acs_chemrev_2c00696
crossref_primary_10_1039_D1TC05966A
crossref_primary_10_1002_adma_202108255
crossref_primary_10_1021_acsami_0c14874
crossref_primary_10_1016_j_eurpolymj_2024_112840
crossref_primary_10_1016_j_orgel_2021_106186
crossref_primary_10_1002_adfm_202104881
crossref_primary_10_1021_acsmacrolett_0c00495
crossref_primary_10_1039_D4TC02386B
crossref_primary_10_1109_LED_2020_2976653
crossref_primary_10_1002_marc_201800431
crossref_primary_10_1016_j_mser_2025_100933
crossref_primary_10_1063_5_0006234
crossref_primary_10_1021_acs_chemrev_2c00905
crossref_primary_10_1021_acsapm_0c00704
crossref_primary_10_3390_electronics11040648
crossref_primary_10_1002_smll_202412230
crossref_primary_10_1021_acsaelm_2c01136
crossref_primary_10_1016_j_cej_2021_129230
crossref_primary_10_1002_adma_201905909
crossref_primary_10_1002_cphc_201801042
crossref_primary_10_1039_D2TC03971K
crossref_primary_10_1021_acs_accounts_2c00244
crossref_primary_10_1002_adom_201800361
crossref_primary_10_1002_adfm_202315183
crossref_primary_10_1002_adfm_201903889
crossref_primary_10_1021_acsami_9b12560
crossref_primary_10_1038_s41467_020_17361_8
crossref_primary_10_1002_aelm_201901200
crossref_primary_10_1016_j_synthmet_2021_116836
crossref_primary_10_1039_C9TC03283E
crossref_primary_10_1002_marc_201900098
crossref_primary_10_1016_j_orgel_2019_02_011
crossref_primary_10_1039_D1TA03377H
crossref_primary_10_1002_aelm_202101115
crossref_primary_10_1016_j_xcrp_2024_102076
crossref_primary_10_1002_smll_202300151
crossref_primary_10_1002_cphc_202400233
crossref_primary_10_3390_polym15214268
crossref_primary_10_1002_marc_202400172
crossref_primary_10_1021_acs_chemmater_8b05240
crossref_primary_10_1002_adom_202102397
crossref_primary_10_1002_marc_202100931
crossref_primary_10_1021_acs_langmuir_0c01876
crossref_primary_10_1021_acs_chemmater_8b04605
crossref_primary_10_1021_acsapm_0c00332
crossref_primary_10_1021_acs_macromol_8b01760
crossref_primary_10_1002_admt_202301503
crossref_primary_10_1021_acsami_9b17621
crossref_primary_10_1021_acsami_9b20991
crossref_primary_10_1021_acs_chemmater_9b05228
crossref_primary_10_1039_D1NA00863C
crossref_primary_10_1002_adfm_201805994
crossref_primary_10_1021_acsmacrolett_8b00595
crossref_primary_10_1002_adfm_201905365
crossref_primary_10_1021_acsapm_9b00549
crossref_primary_10_1021_acs_macromol_2c01701
crossref_primary_10_1088_1361_6463_ad2a0f
crossref_primary_10_1016_j_giant_2021_100064
crossref_primary_10_1021_acs_chemmater_0c04152
crossref_primary_10_1039_C9CP06477J
crossref_primary_10_1002_ejoc_202000140
crossref_primary_10_1002_aelm_202201043
crossref_primary_10_1016_j_apsusc_2019_02_106
crossref_primary_10_1021_acsami_2c13516
crossref_primary_10_1080_1536383X_2019_1650265
crossref_primary_10_3390_polym16233400
crossref_primary_10_1002_adma_201801079
crossref_primary_10_1002_aelm_202000161
crossref_primary_10_1021_acs_jpclett_1c03283
crossref_primary_10_1016_j_orgel_2022_106430
crossref_primary_10_1002_pi_6488
crossref_primary_10_1021_acsami_4c20510
crossref_primary_10_1021_acs_nanolett_8b04764
crossref_primary_10_1021_acsami_1c15208
crossref_primary_10_1088_2058_8585_ab76e1
crossref_primary_10_1039_D1TC00148E
crossref_primary_10_1016_j_cej_2024_150783
crossref_primary_10_1002_pssa_201800772
crossref_primary_10_1021_acsami_9b09607
crossref_primary_10_1021_acs_jctc_3c01385
crossref_primary_10_1002_adsu_202400674
crossref_primary_10_1002_advs_202002010
crossref_primary_10_1039_C9QM00382G
crossref_primary_10_1016_j_xcrp_2024_102250
crossref_primary_10_1016_j_orgel_2020_105742
crossref_primary_10_1063_5_0068098
crossref_primary_10_1021_acsapm_4c02790
crossref_primary_10_1021_acsaelm_1c00985
crossref_primary_10_1002_adma_202100421
crossref_primary_10_1021_acsami_0c03477
crossref_primary_10_1002_advs_201801566
crossref_primary_10_1039_D0TC01385D
crossref_primary_10_1002_anie_202500860
crossref_primary_10_1016_j_chemphys_2019_02_012
crossref_primary_10_1002_admt_202001028
crossref_primary_10_1021_acsaelm_0c01078
crossref_primary_10_1021_acsami_9b03999
crossref_primary_10_1039_D2SM00026A
crossref_primary_10_1021_acs_jpcc_9b09913
crossref_primary_10_1002_marc_202400265
crossref_primary_10_1002_advs_202001098
crossref_primary_10_1002_adfm_202200880
crossref_primary_10_1021_acs_macromol_4c01618
crossref_primary_10_1021_acsami_3c04435
crossref_primary_10_1038_s41467_019_11125_9
crossref_primary_10_1039_C9ME00042A
crossref_primary_10_1021_acs_chemmater_3c02489
crossref_primary_10_1039_D2TC04930A
crossref_primary_10_1002_ange_202500860
crossref_primary_10_1002_advs_201902412
crossref_primary_10_1038_s41428_019_0282_4
crossref_primary_10_1002_smll_202100332
crossref_primary_10_1002_aelm_201901002
crossref_primary_10_1021_acsami_0c18349
crossref_primary_10_1002_adfm_202105820
crossref_primary_10_1109_LSENS_2023_3347760
crossref_primary_10_1016_j_jiec_2019_06_019
crossref_primary_10_1088_1361_6463_ac19e2
crossref_primary_10_35848_1347_4065_ad85ec
crossref_primary_10_1021_acs_langmuir_1c02596
crossref_primary_10_1021_acscatal_0c05354
crossref_primary_10_1016_j_orgel_2018_10_013
crossref_primary_10_1002_marc_202200622
crossref_primary_10_1016_j_progpolymsci_2022_101548
crossref_primary_10_1088_1361_648X_ab2ac2
Cites_doi 10.1016/j.orgel.2011.06.027
10.1038/nature11687
10.1021/la5037772
10.1002/adfm.201303794
10.1002/adma.200400684
10.1002/adfm.201002729
10.1021/ja039772w
10.1021/acsami.5b00626
10.1002/adma.201401179
10.1021/jp3009628
10.1016/0379-6779(94)90214-3
10.1021/nn800574f
10.1002/1521-4095(20020618)14:12<915::AID-ADMA915>3.0.CO;2-9
10.1143/APEX.1.061802
10.1002/adma.201502437
10.1021/jp4003388
10.1016/j.cclet.2013.01.014
10.1002/adfm.201500643
10.1038/nmat3650
10.1002/adma.200501838
10.1039/b614393h
10.1002/aenm.201000005
10.1021/nn5011182
10.1103/PhysRevB.63.125204
10.1007/s11426-015-5399-5
10.1002/adfm.201400523
10.1002/adma.200903712
10.1038/ncomms13651
10.1201/9781420027327
10.1002/adfm.201001781
10.1038/nmat4784
10.1038/352414a0
10.1002/adma.201304346
10.1002/adfm.201302069
10.1002/adma.201305084
10.1002/adma.200900326
10.1021/cr050140x
10.1021/ma102451b
10.1002/aenm.201300458
10.1039/C4RA06311B
10.1021/ja4088665
10.1557/PROC-121-717
10.1038/nmat1612
10.1002/adma.201102410
10.1038/nmat2122
10.1021/ja208824d
10.1038/ncomms3238
10.1002/adfm.200400315
10.1038/nmat3722
10.1002/adfm.200801763
10.1016/j.orgel.2016.06.003
10.1021/cm502486n
10.1021/acs.chemmater.5b04567
10.1002/adma.200802722
10.1016/j.orgel.2014.12.001
10.1557/mrc.2015.44
10.1103/PhysRevB.84.045203
10.1126/sciadv.1501127
10.1039/b909902f
10.1021/ja0508929
10.1021/ja403949g
10.1002/adma.201001202
10.1021/nn8008307
10.1038/44359
10.1021/acs.chemmater.5b03775
10.1002/adma.201401495
10.1021/nl0341032
10.1002/aenm.201301659
10.1021/ja306844f
10.1039/c2jm35351b
10.1016/j.orgel.2009.03.001
10.1038/nature10683
10.1002/marc.201300712
10.1021/ma302664s
10.1002/adfm.201301007
10.1002/adma.200803541
10.1103/PhysRevB.57.12964
10.1038/nmat3790
10.1038/nature10313
10.1021/ja1017267
10.1038/ncomms2002
10.1002/adma.201201795
10.1021/jp5085789
10.1021/cm400266h
10.1002/pssb.201248143
10.1002/marc.200400647
10.1021/ja308927g
10.1103/PhysRevB.86.165203
10.1021/jp511451s
10.1063/1.4748976
10.1038/347539a0
10.1021/nl500758w
10.1002/adfm.201100904
10.1016/0038-1098(92)90359-H
10.1109/55.767101
10.1038/srep03425
10.1002/adma.200600929
10.1021/acsnano.5b02582
10.1021/ja1049324
10.1002/adfm.200400297
10.1038/nature13854
10.1002/adma.201401520
10.1126/science.aaf9062
10.1021/jacs.5b04253
10.1002/adfm.201302297
10.1021/ja044884o
10.1088/0953-8984/2/24/017
10.1021/la105109t
10.1021/cm049617w
10.1002/adma.201402941
10.1103/PhysRevB.95.085301
10.1039/C0JM03114C
10.1063/1.126991
10.1002/adma.201201318
10.1039/C6TC03897B
10.1126/science.270.5243.1789
10.1038/ncomms9394
10.1002/adma.200901136
10.1103/PhysRevB.84.115211
10.1002/adma.201301267
10.1002/adma.201702729
10.1002/adma.200402020
10.1021/acs.chemrev.6b00618
10.1038/nmat3595
10.1021/ma200864s
10.1021/ja310240q
10.1002/polb.23038
10.1038/nature07727
10.1021/nn2051295
10.1021/ja108861q
10.1557/mrs2008.140
10.1002/adma.201204075
10.1016/0379-6779(86)90127-X
10.1002/adma.200801725
10.1002/adma.201301438
10.1103/PhysRevApplied.8.034020
10.1016/j.progpolymsci.2013.07.009
10.1002/adma.201003158
10.1002/pssb.2221750102
10.1021/acsami.5b12552
10.1021/cr050966z
10.1038/ncomms4005
10.1103/PhysRevB.71.165202
10.1002/adma.201502820
10.1002/adfm.201001682
10.1103/PhysRevB.91.115302
10.1002/adma.200501152
10.1021/cm801689f
10.1021/cm060675m
10.1021/jp062899y
10.1039/c2jm31183f
10.1021/cr0501543
10.1103/PhysRevB.83.121306
10.1002/anie.201205653
10.1016/j.tsf.2008.07.012
10.1021/acs.nanolett.5b03868
10.1016/0079-6700(90)90025-V
10.1038/nmat1500
10.1039/C4RA15681A
10.1021/cm049781j
10.1021/cm503780u
10.1021/ma500762x
10.1063/1.1530720
10.1021/nl303612z
10.1021/acsami.5b08710
10.1038/ncomms8880
10.1051/jp3:1995132
10.1021/jp400171u
10.1016/j.synthmet.2005.08.019
10.1016/j.orgel.2007.09.007
10.1002/adma.201506151
10.1073/pnas.1501381112
10.1016/0379-6779(93)90563-C
10.1002/adma.201403767
10.1002/adma.201502239
10.1039/b922385a
10.1002/adma.201000232
10.1039/B814833C
10.1002/adma.201104206
10.1039/C3RA47064D
10.1063/1.339124
10.1021/acs.chemmater.5b00635
10.1021/ma400516d
10.1021/jacs.5b03355
10.1016/j.solmat.2008.12.012
10.1002/(SICI)1521-4095(199803)10:5<365::AID-ADMA365>3.0.CO;2-U
10.1002/adma.201200055
10.1103/PhysRevB.87.195209
10.1002/9783527685172
10.1073/pnas.092143399
10.1039/c3cp51264a
10.1088/0022-3727/16/9/019
10.1002/adma.200390114
10.1021/ja211630w
10.1002/aelm.201500036
10.1039/C5CC05247E
10.1021/acs.jpcc.6b11230
10.1063/1.117834
10.1002/adma.200305275
10.1002/adma.201503133
10.1021/jacs.5b00493
10.1039/C5TC01425E
10.1002/aelm.201600163
10.1002/adma.201601589
10.1063/1.3527066
10.1002/adfm.201602080
10.1002/adma.201205330
10.1038/nmat2291
10.1002/adma.201606206
10.1038/ncomms10908
10.1126/science.290.5499.2123
10.1126/sciadv.1602462
10.1038/nmat3710
10.1039/C4EE00688G
10.1021/ja028945z
10.1002/adfm.201400699
10.1021/acs.macromol.6b00495
10.1002/adma.200401171
10.1063/1.1568526
10.1002/adma.200703120
10.1021/acs.chemmater.6b04202
10.1063/1.3660779
10.1080/026782999204084
10.1002/adma.201505946
10.1103/PhysRevLett.96.086601
10.1016/j.solmat.2008.10.004
10.1002/adfm.200400017
10.1002/adma.201104284
10.1021/ma00069a009
10.1002/0470068329
10.1038/srep00754
10.1103/PhysRevLett.107.066601
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201705463
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
PubMed
MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 29582485
10_1002_adma_201705463
ADMA201705463
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: European Research Council
– fundername: Ministry of Science & ICT of Republic of Korea
– fundername: European Union's Horizon 2020 research and innovation program
  funderid: 638059
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4793-f1d40a3256c4ef63b3d1f869944ed0c11039ec55f0f7b94074570a6cf7b9b9d93
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 05:27:55 EDT 2025
Fri Jul 25 04:19:21 EDT 2025
Wed Feb 19 02:43:48 EST 2025
Thu Apr 24 23:08:35 EDT 2025
Tue Jul 01 00:44:40 EDT 2025
Wed Jan 22 16:54:34 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Keywords polymer semiconductors
printed electronics
aligned polymer films
organic field-effect transistors
transport anisotropy
Language English
License 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4793-f1d40a3256c4ef63b3d1f869944ed0c11039ec55f0f7b94074570a6cf7b9b9d93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-0442-4439
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adma.201705463
PMID 29582485
PQID 2038252130
PQPubID 2045203
PageCount 34
ParticipantIDs proquest_miscellaneous_2019047379
proquest_journals_2038252130
pubmed_primary_29582485
crossref_citationtrail_10_1002_adma_201705463
crossref_primary_10_1002_adma_201705463
wiley_primary_10_1002_adma_201705463_ADMA201705463
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-May
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-May
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1993; 26
1991; 352
2004; 22
2002; 14
1990; 347
2007; 107
2013; 3
2013; 4
2002; 99
2014; 26
2008; 37
2014; 24
2008; 33
2012; 12
2012; 249
1983; 16
2011; 475
2016; 36
1994; 62
2011; 110
2012; 492
2010; 22
2010; 20
2012; 134
2009; 10
2015; 137
2009; 93
2013; 117
2008; 517
2014; 14
2015; 91
2005; 71
2008; 20
1996; 69
2012; 24
2009; 19
1998; 10
2016; 49
2011; 480
2012; 22
2007; 19
2015; 58
2012; 101
2011; 1
2013; 87
2010; 39
2011; 84
1999; 26
1986; 14
2011; 83
1997
2006; 110
2014; 47
1999; 20
1992
1995; 270
2011; 133
1995; 5
2009; 457
2016; 4
2012; 50
1990; 2
1993; 57
2016; 7
2016; 2
1987; 62
2015; 112
2000; 77
2005; 127
2005; 4
2014; 35
2015; 119
2005; 15
2016; 28
2005; 17
2012; 116
2006; 106
2016; 26
2016; 8
2014; 31
2017; 8
2013; 25
2004; 126
2017; 3
1990; 15
2013; 24
2013; 23
2008; 9
2008; 7
2003; 15
2011; 12
2005; 26
2003; 93
2008; 1
1999; 401
2000; 290
2017; 117
2012; 51
2014; 5
2013; 15
2014; 4
2013; 12
2003; 3
2016; 352
2011; 21
2011; 23
2017; 121
2014; 8
2011; 27
2003; 125
2014; 7
1992; 82
1993; 175
1998; 57
2014; 118
2014; 515
2015; 1
2015; 6
2015; 17
2006; 96
2015; 5
2015; 16
2009; 21
2015; 3
2012
2005; 155
2013; 46
2006; 5
2006; 18
2016; 52
2006
1988; 121
2005
2017; 29
2003
2015; 9
2015; 7
2008; 93
2001; 63
2017; 95
2015; 25
2012; 2
2011; 109
2015; 27
2012; 3
2011; 107
2013; 38
2004; 16
2017; 16
2004; 14
2010; 132
2011; 44
2013; 135
2015
2012; 312
2012; 6
2009; 3
2012; 86
e_1_2_8_241_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_203_1
e_1_2_8_226_1
e_1_2_8_132_1
e_1_2_8_178_1
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_170_1
e_1_2_8_193_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_230_1
Bohidar H. B. (e_1_2_8_123_1) 2015
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_238_1
e_1_2_8_215_1
e_1_2_8_120_1
e_1_2_8_143_1
e_1_2_8_166_1
e_1_2_8_189_1
e_1_2_8_91_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_181_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_30_1
Kinder L. (e_1_2_8_155_1) 2003
e_1_2_8_242_1
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_227_1
e_1_2_8_204_1
e_1_2_8_133_1
e_1_2_8_179_1
e_1_2_8_110_1
e_1_2_8_171_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_194_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_156_1
e_1_2_8_231_1
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_239_1
Tseng S.‐R. (e_1_2_8_199_1) 2008; 93
e_1_2_8_216_1
e_1_2_8_144_1
e_1_2_8_90_1
e_1_2_8_121_1
Noriega R. (e_1_2_8_103_1) 2012
e_1_2_8_98_1
e_1_2_8_106_1
e_1_2_8_182_1
e_1_2_8_75_1
e_1_2_8_129_1
e_1_2_8_52_1
e_1_2_8_167_1
e_1_2_8_28_1
e_1_2_8_243_1
e_1_2_8_220_1
Tracz A. (e_1_2_8_210_1) 2004; 22
e_1_2_8_228_1
e_1_2_8_205_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_172_1
e_1_2_8_195_1
e_1_2_8_134_1
e_1_2_8_157_1
e_1_2_8_17_1
e_1_2_8_232_1
e_1_2_8_217_1
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_160_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_183_1
e_1_2_8_145_1
e_1_2_8_168_1
e_1_2_8_93_1
e_1_2_8_221_1
e_1_2_8_27_1
e_1_2_8_206_1
e_1_2_8_80_1
e_1_2_8_150_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_65_1
e_1_2_8_173_1
e_1_2_8_112_1
e_1_2_8_158_1
e_1_2_8_196_1
e_1_2_8_135_1
e_1_2_8_39_1
e_1_2_8_16_1
e_1_2_8_218_1
e_1_2_8_233_1
e_1_2_8_92_1
Skotheim T. A. (e_1_2_8_162_1) 1997
e_1_2_8_100_1
e_1_2_8_161_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_184_1
e_1_2_8_146_1
e_1_2_8_68_1
e_1_2_8_222_1
e_1_2_8_207_1
e_1_2_8_5_1
e_1_2_8_151_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_113_1
e_1_2_8_136_1
e_1_2_8_159_1
e_1_2_8_174_1
e_1_2_8_197_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
Malliaras G. (e_1_2_8_2_1) 2003
e_1_2_8_109_1
e_1_2_8_57_1
e_1_2_8_211_1
e_1_2_8_234_1
e_1_2_8_95_1
e_1_2_8_219_1
e_1_2_8_11_1
e_1_2_8_34_1
Roth S. (e_1_2_8_24_1) 2015
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_147_1
e_1_2_8_185_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_200_1
e_1_2_8_223_1
e_1_2_8_152_1
e_1_2_8_208_1
Cohen E. D. (e_1_2_8_229_1) 1992
e_1_2_8_6_1
Bassler H. (e_1_2_8_82_1) 2012
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_137_1
e_1_2_8_175_1
e_1_2_8_114_1
e_1_2_8_198_1
e_1_2_8_18_1
e_1_2_8_79_1
e_1_2_8_212_1
e_1_2_8_235_1
e_1_2_8_94_1
e_1_2_8_163_1
e_1_2_8_140_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_33_1
e_1_2_8_102_1
e_1_2_8_148_1
e_1_2_8_186_1
e_1_2_8_71_1
e_1_2_8_125_1
e_1_2_8_47_1
e_1_2_8_224_1
e_1_2_8_201_1
e_1_2_8_3_1
e_1_2_8_130_1
e_1_2_8_153_1
e_1_2_8_209_1
Mara W. C. (e_1_2_8_169_1) 2012
e_1_2_8_138_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_176_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_190_1
e_1_2_8_213_1
e_1_2_8_236_1
e_1_2_8_141_1
e_1_2_8_164_1
e_1_2_8_97_1
e_1_2_8_149_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_126_1
e_1_2_8_187_1
e_1_2_8_240_1
e_1_2_8_46_1
e_1_2_8_69_1
e_1_2_8_180_1
e_1_2_8_202_1
e_1_2_8_225_1
e_1_2_8_154_1
e_1_2_8_4_1
e_1_2_8_131_1
e_1_2_8_192_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_139_1
e_1_2_8_84_1
e_1_2_8_61_1
e_1_2_8_177_1
e_1_2_8_35_1
e_1_2_8_58_1
e_1_2_8_191_1
e_1_2_8_214_1
e_1_2_8_237_1
e_1_2_8_165_1
e_1_2_8_96_1
e_1_2_8_142_1
e_1_2_8_127_1
e_1_2_8_12_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_104_1
e_1_2_8_188_1
References_xml – volume: 3
  start-page: e1602462
  year: 2017
  publication-title: Sci. Adv.
– volume: 7
  start-page: 26726
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 328
  year: 2006
  publication-title: Nat. Mater.
– volume: 135
  start-page: 1092
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 24
  start-page: 839
  year: 2012
  publication-title: Adv. Mater.
– volume: 24
  start-page: 1151
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 99
  start-page: 5804
  year: 2002
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 26
  start-page: 6430
  year: 2014
  publication-title: Adv. Mater.
– volume: 12
  start-page: 1045
  year: 2013
  publication-title: Nat. Mater.
– volume: 457
  start-page: 679
  year: 2009
  publication-title: Nature
– volume: 15
  start-page: 909
  year: 1990
  publication-title: Prog. Polym. Sci.
– volume: 21
  start-page: 3859
  year: 2009
  publication-title: Adv. Mater.
– volume: 28
  start-page: 9099
  year: 2016
  publication-title: Chem. Mater.
– volume: 135
  start-page: 19229
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 155
  start-page: 639
  year: 2005
  publication-title: Synth. Met.
– volume: 517
  start-page: 982
  year: 2008
  publication-title: Thin Solid Films
– volume: 52
  start-page: 358
  year: 2016
  publication-title: Chem. Commun.
– volume: 134
  start-page: 20713
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 23
  start-page: 5086
  year: 2011
  publication-title: Adv. Mater.
– volume: 14
  start-page: 61
  year: 1986
  publication-title: Synth. Met.
– volume: 116
  start-page: 6536
  year: 2012
  publication-title: J. Phys. Chem. B
– volume: 38
  start-page: 1978
  year: 2013
  publication-title: Prog. Polym. Sci.
– volume: 27
  start-page: 8345
  year: 2015
  publication-title: Chem. Mater.
– volume: 15
  start-page: 575
  year: 2005
  publication-title: Adv. Funct. Mater.
– volume: 1
  start-page: 63
  year: 2011
  publication-title: Adv. Energy Mater.
– volume: 23
  start-page: 508
  year: 2011
  publication-title: Adv. Mater.
– volume: 26
  start-page: 1403
  year: 1999
  publication-title: Liq. Cryst.
– volume: 21
  start-page: 2338
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 24
  start-page: 1357
  year: 2012
  publication-title: Adv. Mater.
– volume: 24
  start-page: 4457
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 8394
  year: 2015
  publication-title: Nat. Commun.
– volume: 28
  start-page: 420
  year: 2016
  publication-title: Chem. Mater.
– volume: 3
  start-page: 780
  year: 2009
  publication-title: Acs Nano
– volume: 87
  start-page: 195209
  year: 2013
  publication-title: Phys. Rev. B
– volume: 16
  start-page: 4772
  year: 2004
  publication-title: Chem. Mater.
– volume: 3
  start-page: 707
  year: 2003
  publication-title: Nano Lett.
– volume: 4
  start-page: 2238
  year: 2013
  publication-title: Nat. Commun.
– volume: 137
  start-page: 7990
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 26
  start-page: 1319
  year: 2014
  publication-title: Adv. Mater.
– volume: 8
  start-page: 5968
  year: 2014
  publication-title: ACS Nano
– volume: 25
  start-page: 6442
  year: 2013
  publication-title: Adv. Mater.
– volume: 14
  start-page: 757
  year: 2004
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 2145
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 10
  start-page: 365
  year: 1998
  publication-title: Adv. Mater.
– volume: 9
  start-page: 8220
  year: 2015
  publication-title: ACS Nano
– volume: 19
  start-page: 743
  year: 2009
  publication-title: J. Mater. Chem.
– volume: 475
  start-page: 364
  year: 2011
  publication-title: Nature
– volume: 249
  start-page: 1655
  year: 2012
  publication-title: Phys. Status Solidi B
– volume: 28
  start-page: 151
  year: 2016
  publication-title: Adv. Mater.
– volume: 24
  start-page: 4618
  year: 2012
  publication-title: Adv. Mater.
– volume: 17
  start-page: 304
  year: 2015
  publication-title: Org. Electron.
– volume: 12
  start-page: 1768
  year: 2011
  publication-title: Org. Electron.
– volume: 126
  start-page: 13928
  year: 2004
  publication-title: J. Am. Chem. Soc.
– volume: 110
  start-page: 15763
  year: 2006
  publication-title: J. Phys. Chem. B
– volume: 14
  start-page: 915
  year: 2002
  publication-title: Adv. Mater.
– volume: 84
  start-page: 115211
  year: 2011
  publication-title: Phys. Rev. B
– volume: 57
  start-page: 12964
  year: 1998
  publication-title: Phys. Rev. B
– volume: 25
  start-page: 4302
  year: 2013
  publication-title: Adv. Mater.
– volume: 401
  start-page: 685
  year: 1999
  publication-title: Nature
– volume: 6
  start-page: 1849
  year: 2012
  publication-title: ACS Nano
– volume: 49
  start-page: 3452
  year: 2016
  publication-title: Macromolecules
– volume: 16
  start-page: 252
  year: 2017
  publication-title: Nat. Mater.
– volume: 23
  start-page: 6024
  year: 2013
  publication-title: Adv. Funct. Mater.
– volume: 26
  start-page: 8169
  year: 2014
  publication-title: Adv. Mater.
– volume: 290
  start-page: 2123
  year: 2000
  publication-title: Science
– volume: 28
  start-page: 2752
  year: 2016
  publication-title: Adv. Mater.
– volume: 5
  start-page: 355
  year: 1995
  publication-title: J. Phys. III
– volume: 515
  start-page: 384
  year: 2014
  publication-title: Nature
– volume: 29
  start-page: 1702729
  year: 2017
  publication-title: Adv. Mater.
– volume: 127
  start-page: 6918
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 15
  start-page: 671
  year: 2005
  publication-title: Adv. Funct. Mater.
– volume: 26
  start-page: 4457
  year: 1993
  publication-title: Macromolecules
– volume: 95
  start-page: 085301
  year: 2017
  publication-title: Phys. Rev. B
– volume: 71
  start-page: 165202
  year: 2005
  publication-title: Phys. Rev. B
– volume: 12
  start-page: 6353
  year: 2012
  publication-title: Nano Lett.
– volume: 117
  start-page: 6332
  year: 2017
  publication-title: Chem. Rev.
– volume: 51
  start-page: 11131
  year: 2012
  publication-title: Angew. Chem., Int. Ed.
– volume: 25
  start-page: 2075
  year: 2013
  publication-title: Chem. Mater.
– volume: 7
  start-page: 216
  year: 2008
  publication-title: Nat. Mater.
– volume: 14
  start-page: 2764
  year: 2014
  publication-title: Nano Lett.
– volume: 121
  start-page: 3714
  year: 2017
  publication-title: J. Phys. Chem. C
– volume: 3
  start-page: 835
  year: 2009
  publication-title: ACS Nano
– volume: 91
  start-page: 115302
  year: 2015
  publication-title: Phys. Rev. B
– volume: 17
  start-page: 2411
  year: 2005
  publication-title: Adv. Mater.
– volume: 10
  start-page: 741
  year: 2009
  publication-title: Org. Electron.
– volume: 93
  start-page: 394
  year: 2009
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 16
  start-page: 4748
  year: 2004
  publication-title: Chem. Mater.
– volume: 69
  start-page: 4108
  year: 1996
  publication-title: Appl. Phys. Lett.
– volume: 83
  start-page: 121306
  year: 2011
  publication-title: Phys. Rev. B
– volume: 84
  start-page: 045203
  year: 2011
  publication-title: Phys. Rev. B
– volume: 21
  start-page: 1568
  year: 2009
  publication-title: Adv. Mater.
– volume: 21
  start-page: 2652
  year: 2011
  publication-title: Adv. Funct. Mater.
– year: 1997
– volume: 8
  start-page: 4819
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 7880
  year: 2015
  publication-title: Nat. Commun.
– volume: 3
  start-page: 1539
  year: 2013
  publication-title: Adv. Energy Mater.
– volume: 492
  start-page: 234
  year: 2012
  publication-title: Nature
– volume: 58
  start-page: 947
  year: 2015
  publication-title: Sci. China Chem.
– volume: 93
  start-page: 465
  year: 2009
  publication-title: Sol. Energy Mater. Sol. Cells
– year: 2015
– volume: 133
  start-page: 2605
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 11135
  year: 2016
  publication-title: J. Mater. Chem. C
– volume: 26
  start-page: 5722
  year: 2014
  publication-title: Adv. Mater.
– year: 2003
– volume: 25
  start-page: 1859
  year: 2013
  publication-title: Adv. Mater.
– volume: 27
  start-page: 2350
  year: 2015
  publication-title: Chem. Mater.
– volume: 3
  start-page: 1002
  year: 2012
  publication-title: Nat. Commun.
– volume: 22
  start-page: 4359
  year: 2010
  publication-title: Adv. Mater.
– volume: 5
  start-page: 383
  year: 2015
  publication-title: MRS Commun.
– volume: 16
  start-page: 314
  year: 2015
  publication-title: Nano Lett.
– volume: 77
  start-page: 406
  year: 2000
  publication-title: Appl. Phys. Lett.
– volume: 20
  start-page: 2588
  year: 2008
  publication-title: Adv. Mater.
– volume: 12
  start-page: 947
  year: 2013
  publication-title: Nat. Mater.
– volume: 135
  start-page: 9540
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 312
  start-page: 1
  year: 2012
  end-page: 65
– volume: 82
  start-page: 317
  year: 1992
  publication-title: Solid State Commun.
– volume: 29
  start-page: 1606206
  year: 2017
  publication-title: Adv. Mater.
– volume: 25
  start-page: 1401
  year: 2013
  publication-title: Adv. Mater.
– volume: 21
  start-page: 3697
  year: 2011
  publication-title: Adv. Funct. Mater.
– volume: 26
  start-page: 7627
  year: 2014
  publication-title: Adv. Mater.
– volume: 20
  start-page: 289
  year: 1999
  publication-title: IEEE Electron Device Lett.
– volume: 7
  start-page: 13651
  year: 2016
  publication-title: Nat. Commun.
– volume: 107
  start-page: 1296
  year: 2007
  publication-title: Chem. Rev.
– volume: 2
  start-page: 1600163
  year: 2016
  publication-title: Adv. Electron. Mater.
– volume: 107
  start-page: 926
  year: 2007
  publication-title: Chem. Rev.
– volume: 36
  start-page: 113
  year: 2016
  publication-title: Org. Electron.
– volume: 7
  start-page: 6550
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 46
  start-page: 2658
  year: 2013
  publication-title: Macromolecules
– volume: 12
  start-page: 1038
  year: 2013
  publication-title: Nat. Mater.
– volume: 44
  start-page: 5246
  year: 2011
  publication-title: Macromolecules
– volume: 4
  start-page: 1301659
  year: 2014
  publication-title: Adv. Energy Mater.
– volume: 133
  start-page: 19056
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 96
  start-page: 086601
  year: 2006
  publication-title: Phys. Rev. Lett.
– volume: 480
  start-page: 504
  year: 2011
  publication-title: Nature
– year: 2005
– volume: 27
  start-page: 5043
  year: 2015
  publication-title: Adv. Mater.
– volume: 25
  start-page: 7003
  year: 2013
  publication-title: Adv. Mater.
– volume: 26
  start-page: 2993
  year: 2014
  publication-title: Adv. Mater.
– volume: 93
  start-page: 1636
  year: 2003
  publication-title: J. Appl. Phys.
– volume: 21
  start-page: 3759
  year: 2009
  publication-title: Adv. Mater.
– volume: 22
  start-page: 11462
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 8
  start-page: 034020
  year: 2017
  publication-title: Phys. Rev. Appl.
– volume: 44
  start-page: 1530
  year: 2011
  publication-title: Macromolecules
– volume: 27
  start-page: 7356
  year: 2015
  publication-title: Adv. Mater.
– volume: 25
  start-page: 5126
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 1
  year: 2015
  publication-title: Adv. Electron. Mater.
– volume: 27
  start-page: 2687
  year: 2015
  publication-title: Chem. Mater.
– volume: 119
  start-page: 2062
  year: 2015
  publication-title: J. Phys. Chem. B
– volume: 20
  start-page: 2513
  year: 2010
  publication-title: J. Mater. Chem.
– volume: 1
  start-page: e1501127
  year: 2015
  publication-title: Sci. Adv.
– volume: 35
  start-page: 9
  year: 2014
  publication-title: Macromol. Rapid Commun.
– volume: 62
  start-page: 257
  year: 1994
  publication-title: Synth. Met.
– volume: 18
  start-page: 4724
  year: 2006
  publication-title: Chem. Mater.
– volume: 110
  start-page: 093523
  year: 2011
  publication-title: J. Appl. Phys.
– volume: 28
  start-page: 8531
  year: 2016
  publication-title: Adv. Mater.
– volume: 21
  start-page: 1166
  year: 2009
  publication-title: Adv. Mater.
– volume: 50
  start-page: 536
  year: 2012
  publication-title: J. Polym. Sci., Part B: Polym. Phys.
– volume: 137
  start-page: 6705
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 28
  start-page: 6568
  year: 2016
  publication-title: Adv. Mater.
– volume: 26
  start-page: 834
  year: 2005
  publication-title: Macromol. Rapid Commun.
– volume: 2
  start-page: 5465
  year: 1990
  publication-title: J. Phys.: Condens. Matter
– volume: 112
  start-page: 10599
  year: 2015
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 46
  start-page: 4014
  year: 2013
  publication-title: Macromolecules
– volume: 21
  start-page: 518
  year: 2011
  publication-title: Adv. Funct. Mater.
– volume: 3
  start-page: 3425
  year: 2013
  publication-title: Sci. Rep.
– volume: 37
  start-page: 827
  year: 2008
  publication-title: Chem. Soc. Rev.
– volume: 22
  start-page: 24827
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 1
  start-page: 061802
  year: 2008
  publication-title: Appl. Phys. Express
– volume: 22
  start-page: 415
  year: 2004
  publication-title: Mater. Sci.
– volume: 9
  start-page: 143
  year: 2008
  publication-title: Org. Electron.
– volume: 125
  start-page: 1682
  year: 2003
  publication-title: J. Am. Chem. Soc.
– volume: 63
  start-page: 125204
  year: 2001
  publication-title: Phys. Rev. B
– volume: 352
  start-page: 1521
  year: 2016
  publication-title: Science
– year: 1992
– volume: 134
  start-page: 4015
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 24
  start-page: 3524
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 11385
  year: 2015
  publication-title: RSC Adv.
– volume: 19
  start-page: 1200
  year: 2009
  publication-title: Adv. Funct. Mater.
– volume: 26
  start-page: 6907
  year: 2014
  publication-title: Chem. Mater
– volume: 39
  start-page: 2643
  year: 2010
  publication-title: Chem. Soc. Rev.
– volume: 4
  start-page: 864
  year: 2005
  publication-title: Nat. Mater.
– volume: 24
  start-page: 2874
  year: 2012
  publication-title: Adv. Mater.
– volume: 86
  start-page: 165203
  year: 2012
  publication-title: Phys. Rev. B
– volume: 134
  start-page: 18303
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 754
  year: 2012
  publication-title: Sci. Rep.
– volume: 27
  start-page: 4212
  year: 2011
  publication-title: Langmuir
– volume: 22
  start-page: 3812
  year: 2010
  publication-title: Adv. Mater.
– volume: 21
  start-page: 932
  year: 2011
  publication-title: Adv. Funct. Mater.
– volume: 347
  start-page: 539
  year: 1990
  publication-title: Nature
– volume: 33
  start-page: 683
  year: 2008
  publication-title: MRS Bull.
– volume: 137
  start-page: 6254
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 665
  year: 2013
  publication-title: Nat. Mater.
– volume: 17
  start-page: 684
  year: 2005
  publication-title: Adv. Mater.
– volume: 175
  start-page: 15
  year: 1993
  publication-title: Phys. Status Solidi B
– volume: 31
  start-page: 469
  year: 2014
  publication-title: Langmuir
– volume: 57
  start-page: 4093
  year: 1993
  publication-title: Synth. Met.
– volume: 93
  start-page: 382
  year: 2008
  publication-title: Appl. Phys. Lett.
– volume: 117
  start-page: 11764
  year: 2013
  publication-title: J. Phys. Chem. C
– volume: 24
  start-page: 925
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 20
  start-page: 7252
  year: 2008
  publication-title: Chem. Mater.
– volume: 24
  start-page: 23
  year: 2013
  publication-title: Chin. Chem. Lett.
– volume: 93
  start-page: 6137
  year: 2003
  publication-title: J. Appl. Phys.
– volume: 4
  start-page: 11121
  year: 2014
  publication-title: RSC Adv.
– volume: 12
  start-page: 659
  year: 2013
  publication-title: Nat. Mater.
– volume: 109
  start-page: 013702
  year: 2011
  publication-title: J. Appl. Phys.
– volume: 15
  start-page: 14396
  year: 2013
  publication-title: Phys. Chem. Chem. Phys.
– volume: 118
  start-page: 12556
  year: 2014
  publication-title: J. Phys. Chem. B
– volume: 3
  start-page: 7394
  year: 2015
  publication-title: J. Mater. Chem. C
– volume: 22
  start-page: 2799
  year: 2010
  publication-title: Adv. Mater.
– volume: 24
  start-page: 4959
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 352
  start-page: 414
  year: 1991
  publication-title: Nature
– volume: 16
  start-page: 1737
  year: 1983
  publication-title: J. Phys. D: Appl. Phys.
– volume: 106
  start-page: 5028
  year: 2006
  publication-title: Chem. Rev.
– volume: 15
  start-page: 495
  year: 2003
  publication-title: Adv. Mater.
– volume: 47
  start-page: 3871
  year: 2014
  publication-title: Macromolecules
– volume: 16
  start-page: 1585
  year: 2004
  publication-title: Adv. Mater.
– volume: 132
  start-page: 11437
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 10908
  year: 2016
  publication-title: Nat. Commun.
– volume: 101
  start-page: 093308
  year: 2012
  publication-title: Appl. Phys. Lett.
– volume: 26
  start-page: 6031
  year: 2014
  publication-title: Adv. Mater.
– volume: 117
  start-page: 6835
  year: 2013
  publication-title: J. Phys. Chem. C
– volume: 15
  start-page: 1519
  year: 2003
  publication-title: Adv. Mater.
– volume: 2
  year: 2012
– volume: 5
  start-page: 3005
  year: 2014
  publication-title: Nat. Commun.
– volume: 19
  start-page: 688
  year: 2007
  publication-title: Adv. Mater.
– volume: 62
  start-page: 4100
  year: 1987
  publication-title: J. Appl. Phys.
– volume: 17
  start-page: 1581
  year: 2005
  publication-title: Adv. Mater.
– volume: 27
  start-page: 7759
  year: 2015
  publication-title: Adv. Mater.
– volume: 26
  start-page: 8011
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 270
  start-page: 1789
  year: 1995
  publication-title: Science
– volume: 7
  start-page: 900
  year: 2008
  publication-title: Nat. Mater.
– volume: 21
  start-page: 2741
  year: 2009
  publication-title: Adv. Mater.
– year: 2012
– volume: 107
  start-page: 066601
  year: 2011
  publication-title: Phys. Rev. Lett.
– volume: 121
  start-page: 717
  year: 1988
  publication-title: MRS Online Proc. Libr.
– volume: 132
  start-page: 8807
  year: 2010
  publication-title: J. Am. Chem. Soc.
– year: 2006
– volume: 126
  start-page: 3378
  year: 2004
  publication-title: J. Am. Chem. Soc.
– volume: 18
  start-page: 860
  year: 2006
  publication-title: Adv. Mater.
– volume: 4
  start-page: 41159
  year: 2014
  publication-title: RSC Adv.
– ident: e_1_2_8_128_1
  doi: 10.1016/j.orgel.2011.06.027
– ident: e_1_2_8_5_1
  doi: 10.1038/nature11687
– volume-title: Modern Coating and Drying Technology
  year: 1992
  ident: e_1_2_8_229_1
– ident: e_1_2_8_185_1
  doi: 10.1021/la5037772
– ident: e_1_2_8_197_1
  doi: 10.1002/adfm.201303794
– ident: e_1_2_8_4_1
  doi: 10.1002/adma.200400684
– ident: e_1_2_8_129_1
  doi: 10.1002/adfm.201002729
– ident: e_1_2_8_71_1
  doi: 10.1021/ja039772w
– ident: e_1_2_8_236_1
  doi: 10.1021/acsami.5b00626
– ident: e_1_2_8_198_1
  doi: 10.1002/adma.201401179
– ident: e_1_2_8_150_1
  doi: 10.1021/jp3009628
– ident: e_1_2_8_164_1
  doi: 10.1016/0379-6779(94)90214-3
– ident: e_1_2_8_224_1
  doi: 10.1021/nn800574f
– ident: e_1_2_8_238_1
  doi: 10.1002/1521-4095(20020618)14:12<915::AID-ADMA915>3.0.CO;2-9
– ident: e_1_2_8_194_1
  doi: 10.1143/APEX.1.061802
– ident: e_1_2_8_66_1
  doi: 10.1002/adma.201502437
– ident: e_1_2_8_147_1
  doi: 10.1021/jp4003388
– ident: e_1_2_8_220_1
  doi: 10.1016/j.cclet.2013.01.014
– ident: e_1_2_8_151_1
  doi: 10.1002/adfm.201500643
– ident: e_1_2_8_193_1
  doi: 10.1038/nmat3650
– ident: e_1_2_8_176_1
  doi: 10.1002/adma.200501838
– ident: e_1_2_8_59_1
  doi: 10.1039/b614393h
– ident: e_1_2_8_132_1
  doi: 10.1002/aenm.201000005
– ident: e_1_2_8_149_1
  doi: 10.1021/nn5011182
– ident: e_1_2_8_145_1
  doi: 10.1103/PhysRevB.63.125204
– ident: e_1_2_8_70_1
  doi: 10.1007/s11426-015-5399-5
– ident: e_1_2_8_130_1
  doi: 10.1002/adfm.201400523
– ident: e_1_2_8_58_1
  doi: 10.1002/adma.200903712
– ident: e_1_2_8_15_1
  doi: 10.1038/ncomms13651
– ident: e_1_2_8_231_1
  doi: 10.1201/9781420027327
– ident: e_1_2_8_221_1
  doi: 10.1002/adfm.201001781
– ident: e_1_2_8_78_1
  doi: 10.1038/nmat4784
– ident: e_1_2_8_154_1
  doi: 10.1038/352414a0
– ident: e_1_2_8_37_1
  doi: 10.1002/adma.201304346
– ident: e_1_2_8_81_1
  doi: 10.1002/adfm.201302069
– ident: e_1_2_8_17_1
  doi: 10.1002/adma.201305084
– ident: e_1_2_8_53_1
  doi: 10.1002/adma.200900326
– ident: e_1_2_8_110_1
  doi: 10.1021/cr050140x
– ident: e_1_2_8_143_1
  doi: 10.1021/ma102451b
– ident: e_1_2_8_234_1
  doi: 10.1002/aenm.201300458
– ident: e_1_2_8_139_1
  doi: 10.1039/C4RA06311B
– ident: e_1_2_8_127_1
  doi: 10.1021/ja4088665
– ident: e_1_2_8_177_1
  doi: 10.1557/PROC-121-717
– ident: e_1_2_8_72_1
  doi: 10.1038/nmat1612
– ident: e_1_2_8_148_1
  doi: 10.1002/adma.201102410
– ident: e_1_2_8_184_1
  doi: 10.1038/nmat2122
– ident: e_1_2_8_86_1
  doi: 10.1021/ja208824d
– ident: e_1_2_8_76_1
  doi: 10.1038/ncomms3238
– ident: e_1_2_8_195_1
  doi: 10.1002/adfm.200400315
– ident: e_1_2_8_20_1
  doi: 10.1038/nmat3722
– ident: e_1_2_8_126_1
  doi: 10.1002/adfm.200801763
– ident: e_1_2_8_208_1
  doi: 10.1016/j.orgel.2016.06.003
– ident: e_1_2_8_188_1
  doi: 10.1021/cm502486n
– ident: e_1_2_8_16_1
  doi: 10.1021/acs.chemmater.5b04567
– ident: e_1_2_8_122_1
  doi: 10.1002/adma.200802722
– ident: e_1_2_8_30_1
  doi: 10.1016/j.orgel.2014.12.001
– volume-title: Fundamentals of Polymer Physics and Molecular Biophysics
  year: 2015
  ident: e_1_2_8_123_1
– ident: e_1_2_8_22_1
  doi: 10.1557/mrc.2015.44
– ident: e_1_2_8_75_1
  doi: 10.1103/PhysRevB.84.045203
– ident: e_1_2_8_51_1
  doi: 10.1126/sciadv.1501127
– ident: e_1_2_8_34_1
  doi: 10.1039/b909902f
– ident: e_1_2_8_223_1
  doi: 10.1021/ja0508929
– ident: e_1_2_8_42_1
  doi: 10.1021/ja403949g
– ident: e_1_2_8_141_1
  doi: 10.1002/adma.201001202
– ident: e_1_2_8_230_1
  doi: 10.1021/nn8008307
– ident: e_1_2_8_10_1
  doi: 10.1038/44359
– ident: e_1_2_8_187_1
  doi: 10.1021/acs.chemmater.5b03775
– ident: e_1_2_8_191_1
  doi: 10.1002/adma.201401495
– ident: e_1_2_8_124_1
  doi: 10.1021/nl0341032
– ident: e_1_2_8_173_1
  doi: 10.1002/aenm.201301659
– ident: e_1_2_8_140_1
  doi: 10.1021/ja306844f
– ident: e_1_2_8_181_1
  doi: 10.1039/c2jm35351b
– ident: e_1_2_8_201_1
  doi: 10.1016/j.orgel.2009.03.001
– volume: 22
  start-page: 415
  year: 2004
  ident: e_1_2_8_210_1
  publication-title: Mater. Sci.
– ident: e_1_2_8_243_1
  doi: 10.1038/nature10683
– ident: e_1_2_8_157_1
  doi: 10.1002/marc.201300712
– ident: e_1_2_8_87_1
  doi: 10.1021/ma302664s
– ident: e_1_2_8_133_1
  doi: 10.1002/adfm.201301007
– ident: e_1_2_8_57_1
  doi: 10.1002/adma.200803541
– ident: e_1_2_8_101_1
  doi: 10.1103/PhysRevB.57.12964
– ident: e_1_2_8_77_1
  doi: 10.1038/nmat3790
– ident: e_1_2_8_63_1
  doi: 10.1038/nature10313
– ident: e_1_2_8_180_1
  doi: 10.1021/ja1017267
– ident: e_1_2_8_204_1
  doi: 10.1038/ncomms2002
– ident: e_1_2_8_85_1
  doi: 10.1002/adma.201201795
– ident: e_1_2_8_90_1
  doi: 10.1021/jp5085789
– ident: e_1_2_8_107_1
  doi: 10.1021/cm400266h
– ident: e_1_2_8_56_1
  doi: 10.1002/pssb.201248143
– ident: e_1_2_8_115_1
  doi: 10.1002/marc.200400647
– ident: e_1_2_8_41_1
  doi: 10.1021/ja308927g
– ident: e_1_2_8_88_1
  doi: 10.1103/PhysRevB.86.165203
– ident: e_1_2_8_89_1
  doi: 10.1021/jp511451s
– ident: e_1_2_8_54_1
  doi: 10.1063/1.4748976
– ident: e_1_2_8_3_1
  doi: 10.1038/347539a0
– ident: e_1_2_8_18_1
  doi: 10.1021/nl500758w
– ident: e_1_2_8_168_1
  doi: 10.1002/adfm.201100904
– ident: e_1_2_8_165_1
  doi: 10.1016/0038-1098(92)90359-H
– ident: e_1_2_8_26_1
  doi: 10.1109/55.767101
– ident: e_1_2_8_112_1
  doi: 10.1038/srep03425
– volume-title: Optical Science and Technology, SPIE's 48th Annu. Meet
  year: 2003
  ident: e_1_2_8_155_1
– ident: e_1_2_8_62_1
  doi: 10.1002/adma.200600929
– ident: e_1_2_8_161_1
  doi: 10.1021/acsnano.5b02582
– ident: e_1_2_8_80_1
  doi: 10.1021/ja1049324
– ident: e_1_2_8_114_1
  doi: 10.1002/adfm.200400297
– ident: e_1_2_8_19_1
  doi: 10.1038/nature13854
– ident: e_1_2_8_200_1
  doi: 10.1002/adma.201401520
– volume: 93
  start-page: 382
  year: 2008
  ident: e_1_2_8_199_1
  publication-title: Appl. Phys. Lett.
– ident: e_1_2_8_36_1
  doi: 10.1126/science.aaf9062
– ident: e_1_2_8_68_1
  doi: 10.1021/jacs.5b04253
– ident: e_1_2_8_91_1
  doi: 10.1002/adfm.201302297
– ident: e_1_2_8_167_1
  doi: 10.1021/ja044884o
– ident: e_1_2_8_136_1
  doi: 10.1088/0953-8984/2/24/017
– ident: e_1_2_8_182_1
  doi: 10.1021/la105109t
– ident: e_1_2_8_113_1
  doi: 10.1021/cm049617w
– ident: e_1_2_8_79_1
  doi: 10.1002/adma.201402941
– ident: e_1_2_8_32_1
  doi: 10.1103/PhysRevB.95.085301
– ident: e_1_2_8_131_1
  doi: 10.1039/C0JM03114C
– ident: e_1_2_8_120_1
  doi: 10.1063/1.126991
– ident: e_1_2_8_40_1
  doi: 10.1002/adma.201201318
– ident: e_1_2_8_33_1
  doi: 10.1039/C6TC03897B
– ident: e_1_2_8_7_1
  doi: 10.1126/science.270.5243.1789
– ident: e_1_2_8_21_1
  doi: 10.1038/ncomms9394
– ident: e_1_2_8_49_1
  doi: 10.1002/adma.200901136
– ident: e_1_2_8_146_1
  doi: 10.1103/PhysRevB.84.115211
– ident: e_1_2_8_206_1
  doi: 10.1002/adma.201301267
– ident: e_1_2_8_48_1
  doi: 10.1002/adma.201702729
– ident: e_1_2_8_74_1
  doi: 10.1002/adma.200402020
– ident: e_1_2_8_211_1
  doi: 10.1021/acs.chemrev.6b00618
– volume-title: One‐Dimensional Metals: Conjugated Polymers, Organic Crystals, Carbon Nanotubes and Graphene
  year: 2015
  ident: e_1_2_8_24_1
– ident: e_1_2_8_111_1
  doi: 10.1038/nmat3595
– ident: e_1_2_8_142_1
  doi: 10.1021/ma200864s
– ident: e_1_2_8_144_1
  doi: 10.1021/ja310240q
– ident: e_1_2_8_205_1
  doi: 10.1002/polb.23038
– ident: e_1_2_8_227_1
  doi: 10.1038/nature07727
– ident: e_1_2_8_222_1
  doi: 10.1021/nn2051295
– ident: e_1_2_8_94_1
  doi: 10.1021/ja108861q
– ident: e_1_2_8_73_1
  doi: 10.1557/mrs2008.140
– ident: e_1_2_8_31_1
  doi: 10.1002/adma.201204075
– ident: e_1_2_8_163_1
  doi: 10.1016/0379-6779(86)90127-X
– ident: e_1_2_8_61_1
  doi: 10.1002/adma.200801725
– ident: e_1_2_8_118_1
  doi: 10.1002/adma.201301438
– volume-title: Organic Semiconductors and Devices
  year: 2003
  ident: e_1_2_8_2_1
– ident: e_1_2_8_38_1
  doi: 10.1103/PhysRevApplied.8.034020
– ident: e_1_2_8_95_1
  doi: 10.1016/j.progpolymsci.2013.07.009
– ident: e_1_2_8_233_1
  doi: 10.1002/adma.201003158
– ident: e_1_2_8_100_1
  doi: 10.1002/pssb.2221750102
– ident: e_1_2_8_135_1
  doi: 10.1021/acsami.5b12552
– ident: e_1_2_8_60_1
  doi: 10.1021/cr050966z
– ident: e_1_2_8_44_1
  doi: 10.1038/ncomms4005
– ident: e_1_2_8_97_1
  doi: 10.1103/PhysRevB.71.165202
– ident: e_1_2_8_109_1
  doi: 10.1002/adma.201502820
– ident: e_1_2_8_119_1
  doi: 10.1002/adfm.201001682
– ident: e_1_2_8_69_1
  doi: 10.1103/PhysRevB.91.115302
– ident: e_1_2_8_52_1
  doi: 10.1002/adma.200501152
– ident: e_1_2_8_213_1
  doi: 10.1021/cm801689f
– ident: e_1_2_8_215_1
  doi: 10.1021/cm060675m
– ident: e_1_2_8_116_1
  doi: 10.1021/jp062899y
– ident: e_1_2_8_138_1
  doi: 10.1039/c2jm31183f
– ident: e_1_2_8_27_1
  doi: 10.1021/cr0501543
– ident: e_1_2_8_96_1
  doi: 10.1103/PhysRevB.83.121306
– ident: e_1_2_8_64_1
  doi: 10.1002/anie.201205653
– ident: e_1_2_8_219_1
  doi: 10.1016/j.tsf.2008.07.012
– ident: e_1_2_8_190_1
  doi: 10.1021/acs.nanolett.5b03868
– ident: e_1_2_8_174_1
  doi: 10.1016/0079-6700(90)90025-V
– ident: e_1_2_8_8_1
  doi: 10.1038/nmat1500
– ident: e_1_2_8_235_1
  doi: 10.1039/C4RA15681A
– ident: e_1_2_8_1_1
  doi: 10.1021/cm049781j
– ident: e_1_2_8_196_1
  doi: 10.1021/cm503780u
– ident: e_1_2_8_241_1
  doi: 10.1021/ma500762x
– ident: e_1_2_8_170_1
  doi: 10.1063/1.1530720
– ident: e_1_2_8_43_1
  doi: 10.1021/nl303612z
– ident: e_1_2_8_152_1
  doi: 10.1021/acsami.5b08710
– ident: e_1_2_8_83_1
  doi: 10.1038/ncomms8880
– ident: e_1_2_8_98_1
  doi: 10.1051/jp3:1995132
– ident: e_1_2_8_117_1
  doi: 10.1021/jp400171u
– ident: e_1_2_8_171_1
  doi: 10.1016/j.synthmet.2005.08.019
– ident: e_1_2_8_216_1
  doi: 10.1016/j.orgel.2007.09.007
– ident: e_1_2_8_242_1
  doi: 10.1002/adma.201506151
– ident: e_1_2_8_23_1
  doi: 10.1073/pnas.1501381112
– ident: e_1_2_8_166_1
  doi: 10.1016/0379-6779(93)90563-C
– ident: e_1_2_8_67_1
  doi: 10.1002/adma.201403767
– ident: e_1_2_8_237_1
  doi: 10.1002/adma.201502239
– ident: e_1_2_8_28_1
  doi: 10.1039/b922385a
– ident: e_1_2_8_226_1
  doi: 10.1002/adma.201000232
– ident: e_1_2_8_225_1
  doi: 10.1039/B814833C
– start-page: 1
  volume-title: Unimolecular and Supramolecular Electronics I: Chemistry and Physics Meet at Metal‐Molecule Interfaces
  year: 2012
  ident: e_1_2_8_82_1
– ident: e_1_2_8_50_1
  doi: 10.1002/adma.201104206
– ident: e_1_2_8_65_1
  doi: 10.1039/C3RA47064D
– ident: e_1_2_8_156_1
  doi: 10.1063/1.339124
– ident: e_1_2_8_160_1
  doi: 10.1021/acs.chemmater.5b00635
– ident: e_1_2_8_172_1
  doi: 10.1021/ma400516d
– ident: e_1_2_8_186_1
  doi: 10.1021/jacs.5b03355
– volume-title: Liquid Crystal Flat Panel Displays: Manufacturing Science & Technology
  year: 2012
  ident: e_1_2_8_169_1
– ident: e_1_2_8_203_1
  doi: 10.1016/j.solmat.2008.12.012
– ident: e_1_2_8_12_1
  doi: 10.1002/(SICI)1521-4095(199803)10:5<365::AID-ADMA365>3.0.CO;2-U
– ident: e_1_2_8_232_1
  doi: 10.1002/adma.201200055
– ident: e_1_2_8_99_1
  doi: 10.1103/PhysRevB.87.195209
– ident: e_1_2_8_55_1
  doi: 10.1002/9783527685172
– ident: e_1_2_8_84_1
  doi: 10.1073/pnas.092143399
– ident: e_1_2_8_214_1
  doi: 10.1039/c3cp51264a
– ident: e_1_2_8_212_1
  doi: 10.1088/0022-3727/16/9/019
– ident: e_1_2_8_121_1
  doi: 10.1002/adma.200390114
– ident: e_1_2_8_179_1
  doi: 10.1021/ja211630w
– ident: e_1_2_8_207_1
  doi: 10.1002/aelm.201500036
– ident: e_1_2_8_209_1
  doi: 10.1039/C5CC05247E
– ident: e_1_2_8_47_1
  doi: 10.1021/acs.jpcc.6b11230
– ident: e_1_2_8_13_1
  doi: 10.1063/1.117834
– ident: e_1_2_8_93_1
  doi: 10.1002/adma.200305275
– ident: e_1_2_8_35_1
  doi: 10.1002/adma.201503133
– ident: e_1_2_8_125_1
  doi: 10.1021/jacs.5b00493
– volume-title: Organic Electronics II: More Materials and Applications
  year: 2012
  ident: e_1_2_8_103_1
– ident: e_1_2_8_134_1
  doi: 10.1039/C5TC01425E
– volume-title: Handbook of Conducting Polymers
  year: 1997
  ident: e_1_2_8_162_1
– ident: e_1_2_8_46_1
  doi: 10.1002/aelm.201600163
– ident: e_1_2_8_25_1
  doi: 10.1002/adma.201601589
– ident: e_1_2_8_158_1
  doi: 10.1063/1.3527066
– ident: e_1_2_8_108_1
  doi: 10.1002/adfm.201602080
– ident: e_1_2_8_228_1
  doi: 10.1002/adma.201205330
– ident: e_1_2_8_14_1
  doi: 10.1038/nmat2291
– ident: e_1_2_8_6_1
  doi: 10.1002/adma.201606206
– ident: e_1_2_8_45_1
  doi: 10.1038/ncomms10908
– ident: e_1_2_8_11_1
  doi: 10.1126/science.290.5499.2123
– ident: e_1_2_8_183_1
  doi: 10.1126/sciadv.1602462
– ident: e_1_2_8_105_1
  doi: 10.1038/nmat3710
– ident: e_1_2_8_189_1
  doi: 10.1039/C4EE00688G
– ident: e_1_2_8_217_1
  doi: 10.1021/ja028945z
– ident: e_1_2_8_159_1
  doi: 10.1002/adfm.201400699
– ident: e_1_2_8_175_1
  doi: 10.1021/acs.macromol.6b00495
– ident: e_1_2_8_218_1
  doi: 10.1002/adma.200401171
– ident: e_1_2_8_178_1
  doi: 10.1063/1.1568526
– ident: e_1_2_8_192_1
  doi: 10.1002/adma.200703120
– ident: e_1_2_8_202_1
  doi: 10.1021/acs.chemmater.6b04202
– ident: e_1_2_8_239_1
  doi: 10.1063/1.3660779
– ident: e_1_2_8_153_1
  doi: 10.1080/026782999204084
– ident: e_1_2_8_240_1
  doi: 10.1002/adma.201505946
– ident: e_1_2_8_104_1
  doi: 10.1103/PhysRevLett.96.086601
– ident: e_1_2_8_9_1
  doi: 10.1016/j.solmat.2008.10.004
– ident: e_1_2_8_92_1
  doi: 10.1002/adfm.200400017
– ident: e_1_2_8_106_1
  doi: 10.1002/adma.201104284
– ident: e_1_2_8_137_1
  doi: 10.1021/ma00069a009
– ident: e_1_2_8_29_1
  doi: 10.1002/0470068329
– ident: e_1_2_8_39_1
  doi: 10.1038/srep00754
– ident: e_1_2_8_102_1
  doi: 10.1103/PhysRevLett.107.066601
SSID ssj0009606
Score 2.6169572
SecondaryResourceType review_article
Snippet Polymer semiconductors have been experiencing a remarkable improvement in electronic and optoelectronic properties, which are largely related to the recent...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1705463
SubjectTerms aligned polymer films
Alignment
Carrier mobility
Current carriers
Electronic devices
Molecular chains
Optoelectronics
organic field‐effect transistors
Polymer films
polymer semiconductors
Polymers
Portable equipment
printed electronics
Semiconductor devices
Thin films
Transistors
transport anisotropy
Transport properties
Weight reduction
Title Uniaxial Alignment of Conjugated Polymer Films for High‐Performance Organic Field‐Effect Transistors
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201705463
https://www.ncbi.nlm.nih.gov/pubmed/29582485
https://www.proquest.com/docview/2038252130
https://www.proquest.com/docview/2019047379
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEMct1BMceD8CBRkJiZPbJH4kPq4KqwqpqEJU6i2yHRsW0gR1d6WWEx-Bz8gnYcbezXZBCAlusTxRnNgT_-3M_ELICxGU9VwEJkVRMqFtYFZpx4qgKlt6DgoD852P3qrDE_HmVJ5eyeJPfIhxww09I76v0cGNne9voKGmjdwgxMEIhbhPDNhCVfRuw49CeR5he1wyrUS9pjbm5f726duz0m9Sc1u5xqlneouYdaNTxMnnveXC7rmvv_Ac_-eubpObK11KJ2kg3SHXfH-X3LhCK7xHPoI-NRcztOpmH2IUAR0CPRj6T0vcjGvp8dBdnvlzOp11Z3MKcphiGMmPb9-PN-kJNGV_OjDyXQt1iZ9M46QZmSXz--Rk-vr9wSFb_aiBOdyYY6FoRW44qCcnfFDc8rYItdJaCN_mrsDPzd5JGfJQWQ1LSCGr3CiHJatbzR-QnX7o_SNCrbVFXVUgU2BhWJTeamkKVQUOstPL1mSErTuqcSuKOf5Mo2sSf7ls8Ak24xPMyMvR_kvid_zRcnfd783Kj-dQy2EJXcJEn5HnYzV4IH5WMb0flmgDrRUVr3RGHqbxMl6q1LJGaFxGytjrf2lDM3l1NBlLj__lpCfkOhzXKSZzl-wszpf-KeimhX0WfeMnxycPiA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BOQAH_imBAkZC4uQ2iX8SH1eF1QLdqkKtxC2KExuWpgnq7krAiUfgGXkSPPYmy4IQEhwdjxXH9sTfjGc-AzzlVmrDuKWCJynlSluqpapoYmWmU8McwsB85-mhnJzwV29FH02IuTCBH2JwuKFm-P81Kjg6pPfWrKFl7YmDkA-GS3YRLuG13t6qerNmkEKA7un2mKBK8rznbYzTvc32m_vSb2BzE7v6zWd8HXTf7RBzcrq7XOjd6ssvjI7_9V034NoKmpJRWEs34YJpb8HVnwgLb8N7B1HLTzOUambvfCAB6SzZ79oPS_TH1eSoaz6fmXMynjVnc-IQMcFIku9fvx2tMxRISACtnJBpalcXKJSJ3zc9bcn8DpyMXxzvT-jqrgZaoW-O2qTmcckcgKq4sZJpVic2l0pxbuq4SvDE2VRC2NhmWjkrkossLmWFJa1qxe7CVtu15h4QrXWSZ5lDKs42TFKjlSgTmVnmkKcRdRkB7WeqqFZE5nifRlMECua0wBEshhGM4Nkg_zFQePxRcqef-GKlynNXy5wVnbq9PoInQ7VTQjxZKVvTLVHG9ZZnLFMRbIcFM7wqVSJH3rgIUj_tf-lDMXo-HQ2l-__S6DFcnhxPD4qDl4evH8AV9zwPIZo7sLU4X5qHDkYt9COvKD8AuXATow
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB5BkRA8cB-BAkZC4sltEh-JH1ddVuVotUJU6lsUX3RLmlTdXQl44if0N_aX4GM32wUhJHh0PFYc25P5xp75DPCKWi4NoRYzmuWYCmmx5ELhzPJC5oY4hOHznff2-e4BfXfIDi9l8Ud-iH7DzWtG-F97BT_VdntFGlrrwBvk6WAoJ1fhGuVp6df18OOKQMrj88C2RxgWnJZL2sY0315vv26WfsOa69A12J7RbaiXvY4hJ1-25jO5pb7_Quj4P591B24tgCkaxJV0F66Y9h7cvERXeB-OHECtv068VDP5HMIIUGfRTtcez_1unEbjrvl2Ys7QaNKcTJHDw8jHkVz8OB-v8hNQTP9UTsg02tVFAmUUrGYgLZk-gIPRm087u3hxUwNWfmcO20zTtCYOPilqLCeS6MyWXAhKjU5V5s-bjWLMpraQwvmQlBVpzZUvSaEFeQgbbdeax4CklFlZFA6nOM8wy40UrM54YYnDnYbpOgG8nKhKLWjM_W0aTRUJmPPKj2DVj2ACr3v500jg8UfJzeW8VwtFnrpa4nzo3Fn6BF721U4F_blK3Zpu7mVcb2lBCpHAo7he-lflgpWeNS6BPMz6X_pQDYZ7g7705F8avYDr4-Go-vB2__1TuOEelzE-cxM2Zmdz88xhqJl8HtTkJ4bYEls
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uniaxial+Alignment+of+Conjugated+Polymer+Films+for+High%E2%80%90Performance+Organic+Field%E2%80%90Effect+Transistors&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Khim%2C+Dongyoon&rft.au=Luzio%2C+Alessandro&rft.au=Bonacchini%2C+Giorgio+Ernesto&rft.au=Pace%2C+Giuseppina&rft.date=2018-05-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=30&rft.issue=20&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.201705463&rft.externalDBID=10.1002%252Fadma.201705463&rft.externalDocID=ADMA201705463
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon