Regulating the Coordination Geometry and Oxidation State of Single‐Atom Fe Sites for Enhanced Oxygen Reduction Electrocatalysis
FeNC catalysts demonstrate remarkable activity and stability for the oxygen reduction reaction (ORR) in polymer electrolyte membrane fuel cells and Zn–air batteries (ZABs). The local coordination of Fe single atoms in FeNC catalysts strongly impacts ORR activity. Herein, FeNC catalysts contain...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 19; no. 24; pp. e2300373 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.06.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | FeNC catalysts demonstrate remarkable activity and stability for the oxygen reduction reaction (ORR) in polymer electrolyte membrane fuel cells and Zn–air batteries (ZABs). The local coordination of Fe single atoms in FeNC catalysts strongly impacts ORR activity. Herein, FeNC catalysts containing Fe single atoms sites with FeN3, FeN4, and FeN5 coordinations are synthesized by carbonization of Fe‐rich polypyrrole precursors. The FeN5 sites possess a higher Fe oxidation state (+2.62) than the FeN3 (+2.23) and FeN4 (+2.47) sites, and higher ORR activity. Density functional theory calculations verify that the FeN5 coordination optimizes the adsorption and desorption of ORR intermediates, dramatically lowering the energy barrier for OH− desorption in the rate‐limiting ORR step. A primary ZAB constructed using the FeNC catalyst with FeN5 sites demonstrates state‐of‐the‐art performance (an open circuit potential of 1.629 V, power density of 159 mW cm−2). Results confirm an intimate structure‐activity relationship between Fe coordination, Fe oxidation state, and ORR activity in FeNC catalysts.
FeNC catalysts with different Fe single‐atom coordination geometries (FeN3, FeN4, or FeN5) are synthesized by pyrolysis of Fe‐polypyrrole precursors. FeN5 sites offer the highest Fe oxidation state (+2.62), strongest Fe–N interaction, lowest energy barrier for OH− desorption, and highest intrinsic activity for oxygen reduction reaction in alkaline media. |
---|---|
AbstractList | FeNC catalysts demonstrate remarkable activity and stability for the oxygen reduction reaction (ORR) in polymer electrolyte membrane fuel cells and Zn–air batteries (ZABs). The local coordination of Fe single atoms in FeNC catalysts strongly impacts ORR activity. Herein, FeNC catalysts containing Fe single atoms sites with FeN3, FeN4, and FeN5 coordinations are synthesized by carbonization of Fe‐rich polypyrrole precursors. The FeN5 sites possess a higher Fe oxidation state (+2.62) than the FeN3 (+2.23) and FeN4 (+2.47) sites, and higher ORR activity. Density functional theory calculations verify that the FeN5 coordination optimizes the adsorption and desorption of ORR intermediates, dramatically lowering the energy barrier for OH− desorption in the rate‐limiting ORR step. A primary ZAB constructed using the FeNC catalyst with FeN5 sites demonstrates state‐of‐the‐art performance (an open circuit potential of 1.629 V, power density of 159 mW cm−2). Results confirm an intimate structure‐activity relationship between Fe coordination, Fe oxidation state, and ORR activity in FeNC catalysts. FeNC catalysts demonstrate remarkable activity and stability for the oxygen reduction reaction (ORR) in polymer electrolyte membrane fuel cells and Zn-air batteries (ZABs). The local coordination of Fe single atoms in FeNC catalysts strongly impacts ORR activity. Herein, FeNC catalysts containing Fe single atoms sites with FeN3 , FeN4 , and FeN5 coordinations are synthesized by carbonization of Fe-rich polypyrrole precursors. The FeN5 sites possess a higher Fe oxidation state (+2.62) than the FeN3 (+2.23) and FeN4 (+2.47) sites, and higher ORR activity. Density functional theory calculations verify that the FeN5 coordination optimizes the adsorption and desorption of ORR intermediates, dramatically lowering the energy barrier for OH- desorption in the rate-limiting ORR step. A primary ZAB constructed using the FeNC catalyst with FeN5 sites demonstrates state-of-the-art performance (an open circuit potential of 1.629 V, power density of 159 mW cm-2 ). Results confirm an intimate structure-activity relationship between Fe coordination, Fe oxidation state, and ORR activity in FeNC catalysts.FeNC catalysts demonstrate remarkable activity and stability for the oxygen reduction reaction (ORR) in polymer electrolyte membrane fuel cells and Zn-air batteries (ZABs). The local coordination of Fe single atoms in FeNC catalysts strongly impacts ORR activity. Herein, FeNC catalysts containing Fe single atoms sites with FeN3 , FeN4 , and FeN5 coordinations are synthesized by carbonization of Fe-rich polypyrrole precursors. The FeN5 sites possess a higher Fe oxidation state (+2.62) than the FeN3 (+2.23) and FeN4 (+2.47) sites, and higher ORR activity. Density functional theory calculations verify that the FeN5 coordination optimizes the adsorption and desorption of ORR intermediates, dramatically lowering the energy barrier for OH- desorption in the rate-limiting ORR step. A primary ZAB constructed using the FeNC catalyst with FeN5 sites demonstrates state-of-the-art performance (an open circuit potential of 1.629 V, power density of 159 mW cm-2 ). Results confirm an intimate structure-activity relationship between Fe coordination, Fe oxidation state, and ORR activity in FeNC catalysts. FeNC catalysts demonstrate remarkable activity and stability for the oxygen reduction reaction (ORR) in polymer electrolyte membrane fuel cells and Zn-air batteries (ZABs). The local coordination of Fe single atoms in FeNC catalysts strongly impacts ORR activity. Herein, FeNC catalysts containing Fe single atoms sites with FeN , FeN , and FeN coordinations are synthesized by carbonization of Fe-rich polypyrrole precursors. The FeN sites possess a higher Fe oxidation state (+2.62) than the FeN (+2.23) and FeN (+2.47) sites, and higher ORR activity. Density functional theory calculations verify that the FeN coordination optimizes the adsorption and desorption of ORR intermediates, dramatically lowering the energy barrier for OH desorption in the rate-limiting ORR step. A primary ZAB constructed using the FeNC catalyst with FeN sites demonstrates state-of-the-art performance (an open circuit potential of 1.629 V, power density of 159 mW cm ). Results confirm an intimate structure-activity relationship between Fe coordination, Fe oxidation state, and ORR activity in FeNC catalysts. FeNC catalysts demonstrate remarkable activity and stability for the oxygen reduction reaction (ORR) in polymer electrolyte membrane fuel cells and Zn–air batteries (ZABs). The local coordination of Fe single atoms in FeNC catalysts strongly impacts ORR activity. Herein, FeNC catalysts containing Fe single atoms sites with FeN 3 , FeN 4 , and FeN 5 coordinations are synthesized by carbonization of Fe‐rich polypyrrole precursors. The FeN 5 sites possess a higher Fe oxidation state (+2.62) than the FeN 3 (+2.23) and FeN 4 (+2.47) sites, and higher ORR activity. Density functional theory calculations verify that the FeN 5 coordination optimizes the adsorption and desorption of ORR intermediates, dramatically lowering the energy barrier for OH − desorption in the rate‐limiting ORR step. A primary ZAB constructed using the FeNC catalyst with FeN 5 sites demonstrates state‐of‐the‐art performance (an open circuit potential of 1.629 V, power density of 159 mW cm −2 ). Results confirm an intimate structure‐activity relationship between Fe coordination, Fe oxidation state, and ORR activity in FeNC catalysts. FeNC catalysts demonstrate remarkable activity and stability for the oxygen reduction reaction (ORR) in polymer electrolyte membrane fuel cells and Zn–air batteries (ZABs). The local coordination of Fe single atoms in FeNC catalysts strongly impacts ORR activity. Herein, FeNC catalysts containing Fe single atoms sites with FeN3, FeN4, and FeN5 coordinations are synthesized by carbonization of Fe‐rich polypyrrole precursors. The FeN5 sites possess a higher Fe oxidation state (+2.62) than the FeN3 (+2.23) and FeN4 (+2.47) sites, and higher ORR activity. Density functional theory calculations verify that the FeN5 coordination optimizes the adsorption and desorption of ORR intermediates, dramatically lowering the energy barrier for OH− desorption in the rate‐limiting ORR step. A primary ZAB constructed using the FeNC catalyst with FeN5 sites demonstrates state‐of‐the‐art performance (an open circuit potential of 1.629 V, power density of 159 mW cm−2). Results confirm an intimate structure‐activity relationship between Fe coordination, Fe oxidation state, and ORR activity in FeNC catalysts. FeNC catalysts with different Fe single‐atom coordination geometries (FeN3, FeN4, or FeN5) are synthesized by pyrolysis of Fe‐polypyrrole precursors. FeN5 sites offer the highest Fe oxidation state (+2.62), strongest Fe–N interaction, lowest energy barrier for OH− desorption, and highest intrinsic activity for oxygen reduction reaction in alkaline media. |
Author | Zheng, Xiaoyang Wang, Li Han, Yongjun Ji, Muwei Wang, Dan Waterhouse, Geoffrey I. N. Ren, Yuan Yang, Liu Tian, Gang Wang, Minjie Li, Qingbin Zhu, Caizhen Peng, Lishan |
Author_xml | – sequence: 1 givenname: Minjie surname: Wang fullname: Wang, Minjie organization: Pingdingshan University – sequence: 2 givenname: Li surname: Wang fullname: Wang, Li organization: Pingdingshan University – sequence: 3 givenname: Qingbin surname: Li fullname: Li, Qingbin email: 3204@pdsu.edu.cn organization: Pingdingshan University – sequence: 4 givenname: Dan surname: Wang fullname: Wang, Dan organization: Pingdingshan University – sequence: 5 givenname: Liu surname: Yang fullname: Yang, Liu organization: Pingdingshan University – sequence: 6 givenname: Yongjun surname: Han fullname: Han, Yongjun organization: Pingdingshan University – sequence: 7 givenname: Yuan surname: Ren fullname: Ren, Yuan organization: Fudan University – sequence: 8 givenname: Gang surname: Tian fullname: Tian, Gang organization: Pingdingshan University – sequence: 9 givenname: Xiaoyang surname: Zheng fullname: Zheng, Xiaoyang organization: University of Tsukuba – sequence: 10 givenname: Muwei surname: Ji fullname: Ji, Muwei organization: Shantou University – sequence: 11 givenname: Caizhen surname: Zhu fullname: Zhu, Caizhen email: czzhu@szu.edu.cn organization: Shenzhen University – sequence: 12 givenname: Lishan surname: Peng fullname: Peng, Lishan email: lspeng@gia.cas.cn organization: The University of Auckland – sequence: 13 givenname: Geoffrey I. N. orcidid: 0000-0002-3296-3093 surname: Waterhouse fullname: Waterhouse, Geoffrey I. N. email: g.waterhouse@auckland.ac.nz organization: The University of Auckland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36919312$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1rFDEYx4NU7ItePUrASy-75nVmcizLtgorha6eQ5p5Zjslk9Qkg86tfgM_o5_EbLetUCg9Jfnz-z2E53-I9nzwgNB7SuaUEPYpDc7NGWGcEF7zV-iAVpTPqoapvcc7JfvoMKXrglAm6jdon1eKqvI4QL8vYDM6k3u_wfkK8CKE2Pa-BMHjMwgD5Dhh41t8_qtvd_E6mww4dHhdLAd_b_-c5DDgUyhBhoS7EPHSXxlvYatNG_D4AtrR3tlLBzbHYE02bkp9eoted8YleHd_HqHvp8tvi8-z1fnZl8XJamZFrfhMKtnK2lhCiRGqI1XV8gYMJ1JVpIHKCKtEJy0n4tJaWrWKg5HSiI5wURx-hI53c29i-DFCynrokwXnjIcwJs3qpmaUkbop6Mcn6HUYoy-_06xhkjdCcVmoD_fUeDlAq29iP5g46YflFkDsABtDShE6bft8t8IcTe80JXrbod52qB87LNr8ifYw-VlB7YSfvYPpBVqvv65W_91_LFuwMg |
CitedBy_id | crossref_primary_10_1039_D4NJ04093G crossref_primary_10_1002_smll_202307278 crossref_primary_10_1021_acsnano_4c08695 crossref_primary_10_1016_j_jallcom_2023_171813 crossref_primary_10_1039_D4QI02430C crossref_primary_10_1016_j_cej_2024_153670 crossref_primary_10_1039_D3QI00700F crossref_primary_10_1016_j_jelechem_2024_118442 crossref_primary_10_1002_smll_202405012 crossref_primary_10_1002_ange_202405334 crossref_primary_10_26599_NR_2025_94907245 crossref_primary_10_1016_j_ijhydene_2024_12_394 crossref_primary_10_1016_j_jcis_2024_06_155 crossref_primary_10_1016_j_cej_2024_156625 crossref_primary_10_1016_j_apcatb_2024_124385 crossref_primary_10_1002_adfm_202406790 crossref_primary_10_1016_j_watres_2024_121589 crossref_primary_10_1021_acsami_4c21167 crossref_primary_10_1039_D4NA00847B crossref_primary_10_1039_D3IM00062A crossref_primary_10_1016_j_apcatb_2025_125080 crossref_primary_10_1016_j_cej_2024_158551 crossref_primary_10_1039_D3IM00056G crossref_primary_10_1039_D3NR04244H crossref_primary_10_1039_D4TA08969C crossref_primary_10_1002_smll_202406078 crossref_primary_10_1016_j_cej_2024_155005 crossref_primary_10_1002_anie_202405334 crossref_primary_10_1016_j_jcis_2024_07_029 crossref_primary_10_1007_s12598_024_03167_w crossref_primary_10_1021_acs_inorgchem_4c05479 crossref_primary_10_1021_acsnano_3c09100 crossref_primary_10_1002_adfm_202307917 crossref_primary_10_1002_celc_202300695 crossref_primary_10_1016_j_jallcom_2025_178488 crossref_primary_10_1021_acsami_4c22867 |
Cites_doi | 10.1016/j.apcatb.2019.118537 10.1038/s41929-022-00796-1 10.1016/j.jcat.2021.02.016 10.1038/ncomms5973 10.1021/jacs.8b11129 10.1038/s41929-021-00650-w 10.1002/anie.202207268 10.1007/s12274-020-2755-3 10.1016/j.ccr.2019.02.029 10.1021/jacs.9b11852 10.1039/D2SE00896C 10.1016/j.apcatb.2022.121462 10.1002/smll.202105409 10.1016/j.nanoen.2019.104164 10.1007/s12274-019-2345-4 10.1038/s41929-018-0164-8 10.1007/s12274-018-2149-y 10.1002/smll.202200911 10.1021/acscatal.9b03359 10.1016/S1872-2067(22)64146-9 10.1016/j.ensm.2021.11.049 10.1016/j.ccr.2020.213606 10.1002/smll.201804183 10.1021/acs.chemrev.6b00299 10.1002/smll.202202476 10.1016/j.apcatb.2020.119460 10.1016/j.nanoms.2022.04.001 10.1016/j.apsusc.2020.148742 10.1021/jacs.9b09352 10.1038/s41467-020-14848-2 10.1021/acscatal.2c01294 10.1016/j.ccr.2021.213996 10.1002/anie.202012798 10.1002/smll.202107141 10.1016/j.nanoen.2022.107565 10.1039/C9TA08532G 10.1016/j.mcat.2022.112805 10.1016/j.apcatb.2020.118869 10.1016/j.trechm.2021.05.009 10.1016/j.apcatb.2019.02.059 10.1016/j.apcatb.2022.121834 10.1038/s41929-019-0304-9 10.1021/acs.chemrev.1c00158 10.1002/adma.202100997 10.1126/science.aam5852 10.1038/s41929-022-00748-9 10.1007/s12274-022-4289-3 10.1038/s41560-022-01062-1 10.1002/adma.202202544 10.1016/j.jcat.2020.05.034 10.1016/j.apsusc.2019.06.184 10.1021/jacs.2c00719 10.1002/aenm.202003018 10.1002/aenm.202201823 10.1002/anie.202206579 10.1016/j.apcatb.2022.121147 10.1002/adfm.202204110 10.1016/j.apcatb.2022.121352 10.1002/marc.200500514 10.1021/acs.chemrev.7b00776 10.1038/s41467-022-30148-3 10.1016/j.esci.2022.02.005 10.1016/j.trechm.2021.08.008 10.1007/s12274-023-5457-9 10.1038/s41560-021-00878-7 10.1002/aic.16140 10.1021/jacs.2c00533 10.1039/D0CS01297A 10.1016/j.apcatb.2022.121378 |
ContentType | Journal Article |
Copyright | 2023 The Authors. Small published by Wiley‐VCH GmbH 2023 The Authors. Small published by Wiley-VCH GmbH. 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Authors. Small published by Wiley‐VCH GmbH – notice: 2023 The Authors. Small published by Wiley-VCH GmbH. – notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202300373 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 36919312 10_1002_smll_202300373 SMLL202300373 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22209087; 22209186; 22005058 – fundername: College Students Innovation Training Program of Henan Province funderid: 202210919008 – fundername: Pingdingshan University's Ph.D. Research Start‐up Fund Project funderid: PXY‐BSQD‐2022003 – fundername: National Natural Science Foundation of China grantid: 22209087 – fundername: National Natural Science Foundation of China grantid: 22209186 – fundername: Pingdingshan University's Ph.D. Research Start-up Fund Project grantid: PXY-BSQD-2022003 – fundername: College Students Innovation Training Program of Henan Province grantid: 202210919008 – fundername: National Natural Science Foundation of China grantid: 22005058 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 24P 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AASGY AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION EJD FEDTE GODZA HVGLF AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c4793-595d57ac010a49f066d38ea3059608e6a4c94f5c304bcc16d93ea55a4f03410a3 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 05:33:57 EDT 2025 Fri Jul 25 11:55:45 EDT 2025 Mon Jul 21 05:50:10 EDT 2025 Tue Jul 01 02:54:28 EDT 2025 Thu Apr 24 23:04:11 EDT 2025 Wed Jan 22 16:20:22 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Keywords | oxygen reduction reaction Fe single atoms FeN x sites zinc-air batteries Fe coordination geometry |
Language | English |
License | Attribution-NonCommercial-NoDerivs 2023 The Authors. Small published by Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4793-595d57ac010a49f066d38ea3059608e6a4c94f5c304bcc16d93ea55a4f03410a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3296-3093 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202300373 |
PMID | 36919312 |
PQID | 2825384935 |
PQPubID | 1046358 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2787212078 proquest_journals_2825384935 pubmed_primary_36919312 crossref_citationtrail_10_1002_smll_202300373 crossref_primary_10_1002_smll_202300373 wiley_primary_10_1002_smll_202300373_SMLL202300373 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-01 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 442 2019; 12 2021; 281 2020; 13 2019; 249 2020; 11 2021; 121 2020; 10 2005; 26 2017; 356 2017; 117 2014; 5 2021; 33 2019; 66 2018; 1 2022; 34 2023; 534 2022; 32 2021; 396 2019; 7 2021; 428 2022; 310 2021; 6 2019; 9 2021; 4 2021; 3 2019; 2 2020; 142 2020; 264 2022; 45 2019; 388 2022; 43 2020; 389 2021; 50 2019; 141 2022; 318 2018; 64 2022; 313 2022; 312 2022; 144 2022; 101 2023 2022 2022; 5 2022; 61 2018; 118 2022; 6 2022; 7 2020; 270 2022; 12 2022; 13 2022; 15 2020; 551 2022; 2 2018; 11 2021; 60 2019; 493 2022; 307 2022; 18 2018; 14 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 Luo M. (e_1_2_7_16_1) 2022; 5 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – volume: 6 start-page: 3895 year: 2022 publication-title: Sustainable Energy Fuels – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 141 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 18 year: 2022 publication-title: Small – volume: 15 start-page: 5995 year: 2022 publication-title: Nano Res. – volume: 117 start-page: 3717 year: 2017 publication-title: Chem. Rev. – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 3 start-page: 779 year: 2021 publication-title: Trends Chem. – volume: 6 start-page: 834 year: 2021 publication-title: Nat. Energy – volume: 1 start-page: 935 year: 2018 publication-title: Nat. Catal. – volume: 60 start-page: 3212 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 14 year: 2018 publication-title: Small – volume: 26 start-page: 1736 year: 2005 publication-title: Macromol. Rapid Commun. – volume: 396 start-page: 215 year: 2021 publication-title: J. Catal. – volume: 310 year: 2022 publication-title: Appl. Catal., B – volume: 142 start-page: 2404 year: 2020 publication-title: J. Am. Chem. Soc. – year: 2023 publication-title: Nano Res. – volume: 5 start-page: 503 year: 2022 publication-title: Nat. Catal. – volume: 43 start-page: 2443 year: 2022 publication-title: Chin. J. Catal. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 312 year: 2022 publication-title: Appl. Catal., B – volume: 141 start-page: 2035 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 50 start-page: 2486 year: 2021 publication-title: Chem. Soc. Rev. – volume: 45 start-page: 301 year: 2022 publication-title: Energy Storage Mater. – volume: 270 year: 2020 publication-title: Appl. Catal., B – volume: 249 start-page: 91 year: 2019 publication-title: Appl. Catal., B – volume: 13 start-page: 2473 year: 2022 publication-title: Nat. Commun. – volume: 389 start-page: 150 year: 2020 publication-title: J. Catal. – volume: 121 year: 2021 publication-title: Chem. Rev. – volume: 318 year: 2022 publication-title: Appl. Catal., B – volume: 3 start-page: 954 year: 2021 publication-title: Trends Chem. – volume: 12 year: 2022 publication-title: Adv. Energy Mater. – volume: 442 year: 2021 publication-title: Coord. Chem. Rev. – volume: 12 start-page: 7541 year: 2022 publication-title: ACS Catal. – volume: 5 year: 2022 publication-title: Nat. Catal. – volume: 493 start-page: 351 year: 2019 publication-title: Appl. Surf. Sci. – volume: 12 start-page: 2067 year: 2019 publication-title: Nano Res. – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 2 start-page: 227 year: 2022 publication-title: eScience – volume: 64 start-page: 2881 year: 2018 publication-title: AIChE J. – volume: 5 start-page: 4973 year: 2014 publication-title: Nat. Commun. – volume: 11 start-page: 6260 year: 2018 publication-title: Nano Res.. – volume: 307 year: 2022 publication-title: Appl. Catal., B – volume: 144 start-page: 9271 year: 2022 publication-title: J. Am. Chem. Soc. – volume: 428 year: 2021 publication-title: Coord. Chem. Rev. – volume: 551 year: 2020 publication-title: Appl. Surf. Sci. – volume: 101 year: 2022 publication-title: Nano Energy – volume: 11 start-page: 1029 year: 2020 publication-title: Nat. Commun. – volume: 66 year: 2019 publication-title: Nano Energy – volume: 61 year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 313 year: 2022 publication-title: Appl. Catal., B – volume: 356 start-page: 599 year: 2017 publication-title: Science – volume: 144 start-page: 9280 year: 2022 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 652 year: 2022 publication-title: Nat. Energy – volume: 9 year: 2019 publication-title: ACS Catal. – volume: 5 start-page: 163 year: 2022 publication-title: Nat. Catal. – volume: 118 start-page: 4981 year: 2018 publication-title: Chem. Rev. – volume: 4 start-page: 615 year: 2021 publication-title: Nat. Catal. – volume: 13 start-page: 1842 year: 2020 publication-title: Nano Res. – volume: 281 year: 2021 publication-title: Appl. Catal., B – volume: 534 year: 2023 publication-title: Mol. Catal. – volume: 2 start-page: 578 year: 2019 publication-title: Nat. Catal. – volume: 264 year: 2020 publication-title: Appl. Catal., B – year: 2022 publication-title: Nano Mater. Sci. – volume: 388 start-page: 172 year: 2019 publication-title: Coord. Chem. Rev. – ident: e_1_2_7_54_1 doi: 10.1016/j.apcatb.2019.118537 – ident: e_1_2_7_67_1 doi: 10.1038/s41929-022-00796-1 – ident: e_1_2_7_25_1 doi: 10.1016/j.jcat.2021.02.016 – ident: e_1_2_7_23_1 doi: 10.1038/ncomms5973 – ident: e_1_2_7_21_1 doi: 10.1021/jacs.8b11129 – ident: e_1_2_7_22_1 doi: 10.1038/s41929-021-00650-w – ident: e_1_2_7_47_1 doi: 10.1002/anie.202207268 – ident: e_1_2_7_61_1 doi: 10.1007/s12274-020-2755-3 – ident: e_1_2_7_45_1 doi: 10.1016/j.ccr.2019.02.029 – ident: e_1_2_7_34_1 doi: 10.1021/jacs.9b11852 – ident: e_1_2_7_39_1 doi: 10.1039/D2SE00896C – ident: e_1_2_7_64_1 doi: 10.1016/j.apcatb.2022.121462 – ident: e_1_2_7_5_1 doi: 10.1002/smll.202105409 – ident: e_1_2_7_11_1 doi: 10.1016/j.nanoen.2019.104164 – ident: e_1_2_7_18_1 doi: 10.1007/s12274-019-2345-4 – ident: e_1_2_7_28_1 doi: 10.1038/s41929-018-0164-8 – ident: e_1_2_7_32_1 doi: 10.1007/s12274-018-2149-y – ident: e_1_2_7_1_1 doi: 10.1002/smll.202200911 – ident: e_1_2_7_17_1 doi: 10.1021/acscatal.9b03359 – ident: e_1_2_7_26_1 doi: 10.1016/S1872-2067(22)64146-9 – ident: e_1_2_7_15_1 doi: 10.1016/j.ensm.2021.11.049 – ident: e_1_2_7_41_1 doi: 10.1016/j.ccr.2020.213606 – ident: e_1_2_7_46_1 doi: 10.1002/smll.201804183 – ident: e_1_2_7_38_1 doi: 10.1021/acs.chemrev.6b00299 – ident: e_1_2_7_2_1 doi: 10.1002/smll.202202476 – ident: e_1_2_7_3_1 doi: 10.1016/j.apcatb.2020.119460 – ident: e_1_2_7_60_1 doi: 10.1016/j.nanoms.2022.04.001 – ident: e_1_2_7_59_1 doi: 10.1016/j.apsusc.2020.148742 – ident: e_1_2_7_9_1 doi: 10.1021/jacs.9b09352 – ident: e_1_2_7_62_1 doi: 10.1038/s41467-020-14848-2 – ident: e_1_2_7_20_1 doi: 10.1021/acscatal.2c01294 – ident: e_1_2_7_37_1 doi: 10.1016/j.ccr.2021.213996 – volume: 5 year: 2022 ident: e_1_2_7_16_1 publication-title: Nat. Catal. – ident: e_1_2_7_33_1 doi: 10.1002/anie.202012798 – ident: e_1_2_7_8_1 doi: 10.1002/smll.202107141 – ident: e_1_2_7_6_1 doi: 10.1016/j.nanoen.2022.107565 – ident: e_1_2_7_31_1 doi: 10.1039/C9TA08532G – ident: e_1_2_7_43_1 doi: 10.1016/j.mcat.2022.112805 – ident: e_1_2_7_48_1 doi: 10.1016/j.apcatb.2020.118869 – ident: e_1_2_7_12_1 doi: 10.1016/j.trechm.2021.05.009 – ident: e_1_2_7_58_1 doi: 10.1016/j.apcatb.2019.02.059 – ident: e_1_2_7_35_1 doi: 10.1016/j.apcatb.2022.121834 – ident: e_1_2_7_19_1 doi: 10.1038/s41929-019-0304-9 – ident: e_1_2_7_4_1 doi: 10.1021/acs.chemrev.1c00158 – ident: e_1_2_7_10_1 doi: 10.1002/adma.202100997 – ident: e_1_2_7_52_1 doi: 10.1126/science.aam5852 – ident: e_1_2_7_24_1 doi: 10.1038/s41929-022-00748-9 – ident: e_1_2_7_27_1 doi: 10.1007/s12274-022-4289-3 – ident: e_1_2_7_55_1 doi: 10.1038/s41560-022-01062-1 – ident: e_1_2_7_57_1 doi: 10.1002/adma.202202544 – ident: e_1_2_7_29_1 doi: 10.1016/j.jcat.2020.05.034 – ident: e_1_2_7_49_1 doi: 10.1016/j.apsusc.2019.06.184 – ident: e_1_2_7_56_1 doi: 10.1021/jacs.2c00719 – ident: e_1_2_7_14_1 doi: 10.1002/aenm.202003018 – ident: e_1_2_7_50_1 doi: 10.1002/aenm.202201823 – ident: e_1_2_7_63_1 doi: 10.1002/anie.202206579 – ident: e_1_2_7_68_1 doi: 10.1016/j.apcatb.2022.121147 – ident: e_1_2_7_51_1 doi: 10.1002/adfm.202204110 – ident: e_1_2_7_70_1 doi: 10.1016/j.apcatb.2022.121352 – ident: e_1_2_7_53_1 doi: 10.1002/marc.200500514 – ident: e_1_2_7_36_1 doi: 10.1021/acs.chemrev.7b00776 – ident: e_1_2_7_65_1 doi: 10.1038/s41467-022-30148-3 – ident: e_1_2_7_7_1 doi: 10.1016/j.esci.2022.02.005 – ident: e_1_2_7_30_1 doi: 10.1016/j.trechm.2021.08.008 – ident: e_1_2_7_40_1 doi: 10.1007/s12274-023-5457-9 – ident: e_1_2_7_13_1 doi: 10.1038/s41560-021-00878-7 – ident: e_1_2_7_44_1 doi: 10.1002/aic.16140 – ident: e_1_2_7_69_1 doi: 10.1021/jacs.2c00533 – ident: e_1_2_7_42_1 doi: 10.1039/D0CS01297A – ident: e_1_2_7_66_1 doi: 10.1016/j.apcatb.2022.121378 |
SSID | ssj0031247 |
Score | 2.6095712 |
Snippet | FeNC catalysts demonstrate remarkable activity and stability for the oxygen reduction reaction (ORR) in polymer electrolyte membrane fuel cells and Zn–air... FeNC catalysts demonstrate remarkable activity and stability for the oxygen reduction reaction (ORR) in polymer electrolyte membrane fuel cells and Zn-air... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2300373 |
SubjectTerms | Catalysts Chemical reduction Coordination Density functional theory Desorption Electrolytic cells Fe coordination geometry Fe single atoms FeN x sites Metal air batteries Nanotechnology Open circuit voltage Oxidation oxygen reduction reaction Oxygen reduction reactions Polypyrroles Proton exchange membrane fuel cells Valence Zinc-oxygen batteries zinc–air batteries |
Title | Regulating the Coordination Geometry and Oxidation State of Single‐Atom Fe Sites for Enhanced Oxygen Reduction Electrocatalysis |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202300373 https://www.ncbi.nlm.nih.gov/pubmed/36919312 https://www.proquest.com/docview/2825384935 https://www.proquest.com/docview/2787212078 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BT3AAyquBtjISEqe03tjO41hVu61QC2hLpd4ix7HVqrsJ6mYlygn-Ab-RX8KMvZt2QQgJTnl5FMeZ8Xy2x98AvM54LlWuZewyVccy5TbWNQ5cEYsrPLpUSNrgfPwuPTyVb8_U2a1d_IEfop9wI8vw_TUZuK5muzekobPphJYOEEJzkRHdJwVsESoa9_xRAp2Xz66CPism4q0layNPdlfFV73Sb1BzFbl61zN6CHpZ6RBxcrkz76od8-UXPsf_-apH8GCBS9leUKR1uGObx3D_FlvhE_g2Dnnr8YIhbGT7LQ5cL8JsIjuw7dR2V9dMNzV7__kipGpiHsuy1rETlJrYH1-_73XtlI0s3kCQyxAys2Fz7sMQUOwa1ZmNiU3WSw9Djh4_xUTMKU_hdDT8uH8YLzI4xIZm7GJVqFpl2uCgT8vCIbypRW61oJw_PLeplqaQThnBZWXMIK0LYbVSWjqO3pVr8QzWmraxG8CsSmqOwpLCXvMq04PM2Qw7Z8ddZbIqgnj5B0uzoDenLBuTMhAzJyU1bdk3bQRv-vKfArHHH0tuLhWiXBj4rKQtvyKXhVARvOofo2nSeotubDvHMtgZIjJAEBbB86BI_atEWiB0HiQRJF4d_lKH8uT46Ki_evEvQi_hHp2HMLdNWOuu5nYLAVVXbcPdRH7Y9qbzE0qqGdI |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BOQAH_imBAkZC4pTWG9v5OVbVLgvsFmnbStwiJ7FF1d0EtVmJcqJv0GfkSZixN4EFISQ4RUk8ipPMeD6Px98AvEx4KlWqZWgTVYUy5ibUFU5cEYsrPNpYSNrgPN2Px0fy7QfVZRPSXhjPD9EH3Mgy3HhNBk4B6Z0frKFnizmtHSCG5iIRV-EalfV2s6pZzyAl0H25-irotUKi3up4G3m0sy6_7pd-A5vr2NU5n9FtKLpu-5yTk-1lW2yXX35hdPyv97oDt1bQlO16XboLV0x9D27-RFh4Hy5mvnQ9njBEjmyvwbnrsQ8ostemWZj29JzpumLvPx_7ak3MwVnWWHaAUnPz7evlbtss2MjgBcS5DFEzG9YfXSYCip2jRrMZEco66aEv0-OiTESe8gCORsPDvXG4KuIQlhS0C1WmKpXoEud9WmYWEU4lUqMFlf3hqYm1LDNpVSm4LMpyEFeZMFopLS1HB8u1eAgbdVObR8CMiiqOwpIyX9Mi0YPEmgTHZ8ttUSZFAGH3C_NyxXBOhTbmuedmjnL6tHn_aQN41bf_5Lk9_thyq9OIfGXjZznt-hWpzIQK4EV_G62Tllx0bZoltsHxEMEB4rAANr0m9Y8ScYboeRAFEDl9-Esf8oPpZNKfPf4XoedwfXw4neSTN_vvnsANuu6z3rZgoz1dmqeIr9rimbOg7zNmHRY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dThQxFD5RTIheAKLICGhNTLwa6E7b-bkksCvggmaRhLtJp9NG4u4MgdlEvJI34Bl5Ek7b3ZHVGBO9mrTTk3Y65_R8_fsOwNuEplykkocmEWXIY6pDWeLEFbG4wKeJGbcXnA-P4r0TfnAqTu_d4vf8EO2Cm7UMN15bAz8vzdZP0tDL0dBuHSCEpixhD-ERVpRavd4dtARSDL2XC6-CTiu0zFtT2kYabc3Kz7ql37DmLHR1vqe3CHLaan_k5OvmuCk21fdfCB3_57OWYGECTMm216Sn8EBXy_DkHl3hM7ge-MD1mCCIG8lOjTPXM7-cSN7reqSbiysiq5J8_HbmYzURB2ZJbcgxSg317Y-b7aYekZ7GDES5BDEz6VZf3DkEFLtCfSYDSyfrpLs-SI9bY7LUKc_hpNf9vLMXTkI4hMou2YUiE6VIpMJZn-SZQXxTslRLZoP-0FTHkquMG6EY5YVSnbjMmJZCSG4oulcq2QrMVXWlV4FoEZUUhbk995oWiewkRic4OhtqCpUUAYTTP5irCb-5DbMxzD0zc5Tbrs3brg3gXVv-3DN7_LHk-lQh8omFX-b2zi9LecZEAG_a12ibdsNFVroeYxkcDREaIAoL4IVXpLYqFmeInTtRAJFTh7-0IT8-7Pfb1Mt_EXoN8592e3l__-jDGjy22f7I2zrMNRdjvYHgqileOfu5A-ErG84 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulating+the+Coordination+Geometry+and+Oxidation+State+of+Single-Atom+Fe+Sites+for+Enhanced+Oxygen+Reduction+Electrocatalysis&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Wang%2C+Minjie&rft.au=Wang%2C+Li&rft.au=Li%2C+Qingbin&rft.au=Wang%2C+Dan&rft.date=2023-06-01&rft.eissn=1613-6829&rft.volume=19&rft.issue=24&rft.spage=e2300373&rft_id=info:doi/10.1002%2Fsmll.202300373&rft_id=info%3Apmid%2F36919312&rft.externalDocID=36919312 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |