Regulating the Coordination Geometry and Oxidation State of Single‐Atom Fe Sites for Enhanced Oxygen Reduction Electrocatalysis

FeNC catalysts demonstrate remarkable activity and stability for the oxygen reduction reaction (ORR) in polymer electrolyte membrane fuel cells and Zn–air batteries (ZABs). The local coordination of Fe single atoms in FeNC catalysts strongly impacts ORR activity. Herein, FeNC catalysts contain...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 19; no. 24; pp. e2300373 - n/a
Main Authors Wang, Minjie, Wang, Li, Li, Qingbin, Wang, Dan, Yang, Liu, Han, Yongjun, Ren, Yuan, Tian, Gang, Zheng, Xiaoyang, Ji, Muwei, Zhu, Caizhen, Peng, Lishan, Waterhouse, Geoffrey I. N.
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.06.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract FeNC catalysts demonstrate remarkable activity and stability for the oxygen reduction reaction (ORR) in polymer electrolyte membrane fuel cells and Zn–air batteries (ZABs). The local coordination of Fe single atoms in FeNC catalysts strongly impacts ORR activity. Herein, FeNC catalysts containing Fe single atoms sites with FeN3, FeN4, and FeN5 coordinations are synthesized by carbonization of Fe‐rich polypyrrole precursors. The FeN5 sites possess a higher Fe oxidation state (+2.62) than the FeN3 (+2.23) and FeN4 (+2.47) sites, and higher ORR activity. Density functional theory calculations verify that the FeN5 coordination optimizes the adsorption and desorption of ORR intermediates, dramatically lowering the energy barrier for OH− desorption in the rate‐limiting ORR step. A primary ZAB constructed using the FeNC catalyst with FeN5 sites demonstrates state‐of‐the‐art performance (an open circuit potential of 1.629 V, power density of 159 mW cm−2). Results confirm an intimate structure‐activity relationship between Fe coordination, Fe oxidation state, and ORR activity in FeNC catalysts. FeNC catalysts with different Fe single‐atom coordination geometries (FeN3, FeN4, or FeN5) are synthesized by pyrolysis of Fe‐polypyrrole precursors. FeN5 sites offer the highest Fe oxidation state (+2.62), strongest Fe–N interaction, lowest energy barrier for OH− desorption, and highest intrinsic activity for oxygen reduction reaction in alkaline media.
AbstractList FeNC catalysts demonstrate remarkable activity and stability for the oxygen reduction reaction (ORR) in polymer electrolyte membrane fuel cells and Zn–air batteries (ZABs). The local coordination of Fe single atoms in FeNC catalysts strongly impacts ORR activity. Herein, FeNC catalysts containing Fe single atoms sites with FeN3, FeN4, and FeN5 coordinations are synthesized by carbonization of Fe‐rich polypyrrole precursors. The FeN5 sites possess a higher Fe oxidation state (+2.62) than the FeN3 (+2.23) and FeN4 (+2.47) sites, and higher ORR activity. Density functional theory calculations verify that the FeN5 coordination optimizes the adsorption and desorption of ORR intermediates, dramatically lowering the energy barrier for OH− desorption in the rate‐limiting ORR step. A primary ZAB constructed using the FeNC catalyst with FeN5 sites demonstrates state‐of‐the‐art performance (an open circuit potential of 1.629 V, power density of 159 mW cm−2). Results confirm an intimate structure‐activity relationship between Fe coordination, Fe oxidation state, and ORR activity in FeNC catalysts.
FeNC catalysts demonstrate remarkable activity and stability for the oxygen reduction reaction (ORR) in polymer electrolyte membrane fuel cells and Zn-air batteries (ZABs). The local coordination of Fe single atoms in FeNC catalysts strongly impacts ORR activity. Herein, FeNC catalysts containing Fe single atoms sites with FeN3 , FeN4 , and FeN5 coordinations are synthesized by carbonization of Fe-rich polypyrrole precursors. The FeN5 sites possess a higher Fe oxidation state (+2.62) than the FeN3 (+2.23) and FeN4 (+2.47) sites, and higher ORR activity. Density functional theory calculations verify that the FeN5 coordination optimizes the adsorption and desorption of ORR intermediates, dramatically lowering the energy barrier for OH- desorption in the rate-limiting ORR step. A primary ZAB constructed using the FeNC catalyst with FeN5 sites demonstrates state-of-the-art performance (an open circuit potential of 1.629 V, power density of 159 mW cm-2 ). Results confirm an intimate structure-activity relationship between Fe coordination, Fe oxidation state, and ORR activity in FeNC catalysts.FeNC catalysts demonstrate remarkable activity and stability for the oxygen reduction reaction (ORR) in polymer electrolyte membrane fuel cells and Zn-air batteries (ZABs). The local coordination of Fe single atoms in FeNC catalysts strongly impacts ORR activity. Herein, FeNC catalysts containing Fe single atoms sites with FeN3 , FeN4 , and FeN5 coordinations are synthesized by carbonization of Fe-rich polypyrrole precursors. The FeN5 sites possess a higher Fe oxidation state (+2.62) than the FeN3 (+2.23) and FeN4 (+2.47) sites, and higher ORR activity. Density functional theory calculations verify that the FeN5 coordination optimizes the adsorption and desorption of ORR intermediates, dramatically lowering the energy barrier for OH- desorption in the rate-limiting ORR step. A primary ZAB constructed using the FeNC catalyst with FeN5 sites demonstrates state-of-the-art performance (an open circuit potential of 1.629 V, power density of 159 mW cm-2 ). Results confirm an intimate structure-activity relationship between Fe coordination, Fe oxidation state, and ORR activity in FeNC catalysts.
FeNC catalysts demonstrate remarkable activity and stability for the oxygen reduction reaction (ORR) in polymer electrolyte membrane fuel cells and Zn-air batteries (ZABs). The local coordination of Fe single atoms in FeNC catalysts strongly impacts ORR activity. Herein, FeNC catalysts containing Fe single atoms sites with FeN , FeN , and FeN coordinations are synthesized by carbonization of Fe-rich polypyrrole precursors. The FeN sites possess a higher Fe oxidation state (+2.62) than the FeN (+2.23) and FeN (+2.47) sites, and higher ORR activity. Density functional theory calculations verify that the FeN coordination optimizes the adsorption and desorption of ORR intermediates, dramatically lowering the energy barrier for OH desorption in the rate-limiting ORR step. A primary ZAB constructed using the FeNC catalyst with FeN sites demonstrates state-of-the-art performance (an open circuit potential of 1.629 V, power density of 159 mW cm ). Results confirm an intimate structure-activity relationship between Fe coordination, Fe oxidation state, and ORR activity in FeNC catalysts.
FeNC catalysts demonstrate remarkable activity and stability for the oxygen reduction reaction (ORR) in polymer electrolyte membrane fuel cells and Zn–air batteries (ZABs). The local coordination of Fe single atoms in FeNC catalysts strongly impacts ORR activity. Herein, FeNC catalysts containing Fe single atoms sites with FeN 3 , FeN 4 , and FeN 5 coordinations are synthesized by carbonization of Fe‐rich polypyrrole precursors. The FeN 5 sites possess a higher Fe oxidation state (+2.62) than the FeN 3 (+2.23) and FeN 4 (+2.47) sites, and higher ORR activity. Density functional theory calculations verify that the FeN 5 coordination optimizes the adsorption and desorption of ORR intermediates, dramatically lowering the energy barrier for OH − desorption in the rate‐limiting ORR step. A primary ZAB constructed using the FeNC catalyst with FeN 5 sites demonstrates state‐of‐the‐art performance (an open circuit potential of 1.629 V, power density of 159 mW cm −2 ). Results confirm an intimate structure‐activity relationship between Fe coordination, Fe oxidation state, and ORR activity in FeNC catalysts.
FeNC catalysts demonstrate remarkable activity and stability for the oxygen reduction reaction (ORR) in polymer electrolyte membrane fuel cells and Zn–air batteries (ZABs). The local coordination of Fe single atoms in FeNC catalysts strongly impacts ORR activity. Herein, FeNC catalysts containing Fe single atoms sites with FeN3, FeN4, and FeN5 coordinations are synthesized by carbonization of Fe‐rich polypyrrole precursors. The FeN5 sites possess a higher Fe oxidation state (+2.62) than the FeN3 (+2.23) and FeN4 (+2.47) sites, and higher ORR activity. Density functional theory calculations verify that the FeN5 coordination optimizes the adsorption and desorption of ORR intermediates, dramatically lowering the energy barrier for OH− desorption in the rate‐limiting ORR step. A primary ZAB constructed using the FeNC catalyst with FeN5 sites demonstrates state‐of‐the‐art performance (an open circuit potential of 1.629 V, power density of 159 mW cm−2). Results confirm an intimate structure‐activity relationship between Fe coordination, Fe oxidation state, and ORR activity in FeNC catalysts. FeNC catalysts with different Fe single‐atom coordination geometries (FeN3, FeN4, or FeN5) are synthesized by pyrolysis of Fe‐polypyrrole precursors. FeN5 sites offer the highest Fe oxidation state (+2.62), strongest Fe–N interaction, lowest energy barrier for OH− desorption, and highest intrinsic activity for oxygen reduction reaction in alkaline media.
Author Zheng, Xiaoyang
Wang, Li
Han, Yongjun
Ji, Muwei
Wang, Dan
Waterhouse, Geoffrey I. N.
Ren, Yuan
Yang, Liu
Tian, Gang
Wang, Minjie
Li, Qingbin
Zhu, Caizhen
Peng, Lishan
Author_xml – sequence: 1
  givenname: Minjie
  surname: Wang
  fullname: Wang, Minjie
  organization: Pingdingshan University
– sequence: 2
  givenname: Li
  surname: Wang
  fullname: Wang, Li
  organization: Pingdingshan University
– sequence: 3
  givenname: Qingbin
  surname: Li
  fullname: Li, Qingbin
  email: 3204@pdsu.edu.cn
  organization: Pingdingshan University
– sequence: 4
  givenname: Dan
  surname: Wang
  fullname: Wang, Dan
  organization: Pingdingshan University
– sequence: 5
  givenname: Liu
  surname: Yang
  fullname: Yang, Liu
  organization: Pingdingshan University
– sequence: 6
  givenname: Yongjun
  surname: Han
  fullname: Han, Yongjun
  organization: Pingdingshan University
– sequence: 7
  givenname: Yuan
  surname: Ren
  fullname: Ren, Yuan
  organization: Fudan University
– sequence: 8
  givenname: Gang
  surname: Tian
  fullname: Tian, Gang
  organization: Pingdingshan University
– sequence: 9
  givenname: Xiaoyang
  surname: Zheng
  fullname: Zheng, Xiaoyang
  organization: University of Tsukuba
– sequence: 10
  givenname: Muwei
  surname: Ji
  fullname: Ji, Muwei
  organization: Shantou University
– sequence: 11
  givenname: Caizhen
  surname: Zhu
  fullname: Zhu, Caizhen
  email: czzhu@szu.edu.cn
  organization: Shenzhen University
– sequence: 12
  givenname: Lishan
  surname: Peng
  fullname: Peng, Lishan
  email: lspeng@gia.cas.cn
  organization: The University of Auckland
– sequence: 13
  givenname: Geoffrey I. N.
  orcidid: 0000-0002-3296-3093
  surname: Waterhouse
  fullname: Waterhouse, Geoffrey I. N.
  email: g.waterhouse@auckland.ac.nz
  organization: The University of Auckland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36919312$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1rFDEYx4NU7ItePUrASy-75nVmcizLtgorha6eQ5p5Zjslk9Qkg86tfgM_o5_EbLetUCg9Jfnz-z2E53-I9nzwgNB7SuaUEPYpDc7NGWGcEF7zV-iAVpTPqoapvcc7JfvoMKXrglAm6jdon1eKqvI4QL8vYDM6k3u_wfkK8CKE2Pa-BMHjMwgD5Dhh41t8_qtvd_E6mww4dHhdLAd_b_-c5DDgUyhBhoS7EPHSXxlvYatNG_D4AtrR3tlLBzbHYE02bkp9eoted8YleHd_HqHvp8tvi8-z1fnZl8XJamZFrfhMKtnK2lhCiRGqI1XV8gYMJ1JVpIHKCKtEJy0n4tJaWrWKg5HSiI5wURx-hI53c29i-DFCynrokwXnjIcwJs3qpmaUkbop6Mcn6HUYoy-_06xhkjdCcVmoD_fUeDlAq29iP5g46YflFkDsABtDShE6bft8t8IcTe80JXrbod52qB87LNr8ifYw-VlB7YSfvYPpBVqvv65W_91_LFuwMg
CitedBy_id crossref_primary_10_1039_D4NJ04093G
crossref_primary_10_1002_smll_202307278
crossref_primary_10_1021_acsnano_4c08695
crossref_primary_10_1016_j_jallcom_2023_171813
crossref_primary_10_1039_D4QI02430C
crossref_primary_10_1016_j_cej_2024_153670
crossref_primary_10_1039_D3QI00700F
crossref_primary_10_1016_j_jelechem_2024_118442
crossref_primary_10_1002_smll_202405012
crossref_primary_10_1002_ange_202405334
crossref_primary_10_26599_NR_2025_94907245
crossref_primary_10_1016_j_ijhydene_2024_12_394
crossref_primary_10_1016_j_jcis_2024_06_155
crossref_primary_10_1016_j_cej_2024_156625
crossref_primary_10_1016_j_apcatb_2024_124385
crossref_primary_10_1002_adfm_202406790
crossref_primary_10_1016_j_watres_2024_121589
crossref_primary_10_1021_acsami_4c21167
crossref_primary_10_1039_D4NA00847B
crossref_primary_10_1039_D3IM00062A
crossref_primary_10_1016_j_apcatb_2025_125080
crossref_primary_10_1016_j_cej_2024_158551
crossref_primary_10_1039_D3IM00056G
crossref_primary_10_1039_D3NR04244H
crossref_primary_10_1039_D4TA08969C
crossref_primary_10_1002_smll_202406078
crossref_primary_10_1016_j_cej_2024_155005
crossref_primary_10_1002_anie_202405334
crossref_primary_10_1016_j_jcis_2024_07_029
crossref_primary_10_1007_s12598_024_03167_w
crossref_primary_10_1021_acs_inorgchem_4c05479
crossref_primary_10_1021_acsnano_3c09100
crossref_primary_10_1002_adfm_202307917
crossref_primary_10_1002_celc_202300695
crossref_primary_10_1016_j_jallcom_2025_178488
crossref_primary_10_1021_acsami_4c22867
Cites_doi 10.1016/j.apcatb.2019.118537
10.1038/s41929-022-00796-1
10.1016/j.jcat.2021.02.016
10.1038/ncomms5973
10.1021/jacs.8b11129
10.1038/s41929-021-00650-w
10.1002/anie.202207268
10.1007/s12274-020-2755-3
10.1016/j.ccr.2019.02.029
10.1021/jacs.9b11852
10.1039/D2SE00896C
10.1016/j.apcatb.2022.121462
10.1002/smll.202105409
10.1016/j.nanoen.2019.104164
10.1007/s12274-019-2345-4
10.1038/s41929-018-0164-8
10.1007/s12274-018-2149-y
10.1002/smll.202200911
10.1021/acscatal.9b03359
10.1016/S1872-2067(22)64146-9
10.1016/j.ensm.2021.11.049
10.1016/j.ccr.2020.213606
10.1002/smll.201804183
10.1021/acs.chemrev.6b00299
10.1002/smll.202202476
10.1016/j.apcatb.2020.119460
10.1016/j.nanoms.2022.04.001
10.1016/j.apsusc.2020.148742
10.1021/jacs.9b09352
10.1038/s41467-020-14848-2
10.1021/acscatal.2c01294
10.1016/j.ccr.2021.213996
10.1002/anie.202012798
10.1002/smll.202107141
10.1016/j.nanoen.2022.107565
10.1039/C9TA08532G
10.1016/j.mcat.2022.112805
10.1016/j.apcatb.2020.118869
10.1016/j.trechm.2021.05.009
10.1016/j.apcatb.2019.02.059
10.1016/j.apcatb.2022.121834
10.1038/s41929-019-0304-9
10.1021/acs.chemrev.1c00158
10.1002/adma.202100997
10.1126/science.aam5852
10.1038/s41929-022-00748-9
10.1007/s12274-022-4289-3
10.1038/s41560-022-01062-1
10.1002/adma.202202544
10.1016/j.jcat.2020.05.034
10.1016/j.apsusc.2019.06.184
10.1021/jacs.2c00719
10.1002/aenm.202003018
10.1002/aenm.202201823
10.1002/anie.202206579
10.1016/j.apcatb.2022.121147
10.1002/adfm.202204110
10.1016/j.apcatb.2022.121352
10.1002/marc.200500514
10.1021/acs.chemrev.7b00776
10.1038/s41467-022-30148-3
10.1016/j.esci.2022.02.005
10.1016/j.trechm.2021.08.008
10.1007/s12274-023-5457-9
10.1038/s41560-021-00878-7
10.1002/aic.16140
10.1021/jacs.2c00533
10.1039/D0CS01297A
10.1016/j.apcatb.2022.121378
ContentType Journal Article
Copyright 2023 The Authors. Small published by Wiley‐VCH GmbH
2023 The Authors. Small published by Wiley-VCH GmbH.
2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. Small published by Wiley‐VCH GmbH
– notice: 2023 The Authors. Small published by Wiley-VCH GmbH.
– notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202300373
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic
PubMed
CrossRef

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 36919312
10_1002_smll_202300373
SMLL202300373
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22209087; 22209186; 22005058
– fundername: College Students Innovation Training Program of Henan Province
  funderid: 202210919008
– fundername: Pingdingshan University's Ph.D. Research Start‐up Fund Project
  funderid: PXY‐BSQD‐2022003
– fundername: National Natural Science Foundation of China
  grantid: 22209087
– fundername: National Natural Science Foundation of China
  grantid: 22209186
– fundername: Pingdingshan University's Ph.D. Research Start-up Fund Project
  grantid: PXY-BSQD-2022003
– fundername: College Students Innovation Training Program of Henan Province
  grantid: 202210919008
– fundername: National Natural Science Foundation of China
  grantid: 22005058
GroupedDBID ---
05W
0R~
123
1L6
1OC
24P
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AASGY
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c4793-595d57ac010a49f066d38ea3059608e6a4c94f5c304bcc16d93ea55a4f03410a3
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 05:33:57 EDT 2025
Fri Jul 25 11:55:45 EDT 2025
Mon Jul 21 05:50:10 EDT 2025
Tue Jul 01 02:54:28 EDT 2025
Thu Apr 24 23:04:11 EDT 2025
Wed Jan 22 16:20:22 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords oxygen reduction reaction
Fe single atoms
FeN x sites
zinc-air batteries
Fe coordination geometry
Language English
License Attribution-NonCommercial-NoDerivs
2023 The Authors. Small published by Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4793-595d57ac010a49f066d38ea3059608e6a4c94f5c304bcc16d93ea55a4f03410a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3296-3093
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202300373
PMID 36919312
PQID 2825384935
PQPubID 1046358
PageCount 9
ParticipantIDs proquest_miscellaneous_2787212078
proquest_journals_2825384935
pubmed_primary_36919312
crossref_citationtrail_10_1002_smll_202300373
crossref_primary_10_1002_smll_202300373
wiley_primary_10_1002_smll_202300373_SMLL202300373
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 442
2019; 12
2021; 281
2020; 13
2019; 249
2020; 11
2021; 121
2020; 10
2005; 26
2017; 356
2017; 117
2014; 5
2021; 33
2019; 66
2018; 1
2022; 34
2023; 534
2022; 32
2021; 396
2019; 7
2021; 428
2022; 310
2021; 6
2019; 9
2021; 4
2021; 3
2019; 2
2020; 142
2020; 264
2022; 45
2019; 388
2022; 43
2020; 389
2021; 50
2019; 141
2022; 318
2018; 64
2022; 313
2022; 312
2022; 144
2022; 101
2023
2022
2022; 5
2022; 61
2018; 118
2022; 6
2022; 7
2020; 270
2022; 12
2022; 13
2022; 15
2020; 551
2022; 2
2018; 11
2021; 60
2019; 493
2022; 307
2022; 18
2018; 14
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
Luo M. (e_1_2_7_16_1) 2022; 5
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 6
  start-page: 3895
  year: 2022
  publication-title: Sustainable Energy Fuels
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 141
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 18
  year: 2022
  publication-title: Small
– volume: 15
  start-page: 5995
  year: 2022
  publication-title: Nano Res.
– volume: 117
  start-page: 3717
  year: 2017
  publication-title: Chem. Rev.
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 3
  start-page: 779
  year: 2021
  publication-title: Trends Chem.
– volume: 6
  start-page: 834
  year: 2021
  publication-title: Nat. Energy
– volume: 1
  start-page: 935
  year: 2018
  publication-title: Nat. Catal.
– volume: 60
  start-page: 3212
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 26
  start-page: 1736
  year: 2005
  publication-title: Macromol. Rapid Commun.
– volume: 396
  start-page: 215
  year: 2021
  publication-title: J. Catal.
– volume: 310
  year: 2022
  publication-title: Appl. Catal., B
– volume: 142
  start-page: 2404
  year: 2020
  publication-title: J. Am. Chem. Soc.
– year: 2023
  publication-title: Nano Res.
– volume: 5
  start-page: 503
  year: 2022
  publication-title: Nat. Catal.
– volume: 43
  start-page: 2443
  year: 2022
  publication-title: Chin. J. Catal.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 312
  year: 2022
  publication-title: Appl. Catal., B
– volume: 141
  start-page: 2035
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 50
  start-page: 2486
  year: 2021
  publication-title: Chem. Soc. Rev.
– volume: 45
  start-page: 301
  year: 2022
  publication-title: Energy Storage Mater.
– volume: 270
  year: 2020
  publication-title: Appl. Catal., B
– volume: 249
  start-page: 91
  year: 2019
  publication-title: Appl. Catal., B
– volume: 13
  start-page: 2473
  year: 2022
  publication-title: Nat. Commun.
– volume: 389
  start-page: 150
  year: 2020
  publication-title: J. Catal.
– volume: 121
  year: 2021
  publication-title: Chem. Rev.
– volume: 318
  year: 2022
  publication-title: Appl. Catal., B
– volume: 3
  start-page: 954
  year: 2021
  publication-title: Trends Chem.
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 442
  year: 2021
  publication-title: Coord. Chem. Rev.
– volume: 12
  start-page: 7541
  year: 2022
  publication-title: ACS Catal.
– volume: 5
  year: 2022
  publication-title: Nat. Catal.
– volume: 493
  start-page: 351
  year: 2019
  publication-title: Appl. Surf. Sci.
– volume: 12
  start-page: 2067
  year: 2019
  publication-title: Nano Res.
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 2
  start-page: 227
  year: 2022
  publication-title: eScience
– volume: 64
  start-page: 2881
  year: 2018
  publication-title: AIChE J.
– volume: 5
  start-page: 4973
  year: 2014
  publication-title: Nat. Commun.
– volume: 11
  start-page: 6260
  year: 2018
  publication-title: Nano Res..
– volume: 307
  year: 2022
  publication-title: Appl. Catal., B
– volume: 144
  start-page: 9271
  year: 2022
  publication-title: J. Am. Chem. Soc.
– volume: 428
  year: 2021
  publication-title: Coord. Chem. Rev.
– volume: 551
  year: 2020
  publication-title: Appl. Surf. Sci.
– volume: 101
  year: 2022
  publication-title: Nano Energy
– volume: 11
  start-page: 1029
  year: 2020
  publication-title: Nat. Commun.
– volume: 66
  year: 2019
  publication-title: Nano Energy
– volume: 61
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 313
  year: 2022
  publication-title: Appl. Catal., B
– volume: 356
  start-page: 599
  year: 2017
  publication-title: Science
– volume: 144
  start-page: 9280
  year: 2022
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 652
  year: 2022
  publication-title: Nat. Energy
– volume: 9
  year: 2019
  publication-title: ACS Catal.
– volume: 5
  start-page: 163
  year: 2022
  publication-title: Nat. Catal.
– volume: 118
  start-page: 4981
  year: 2018
  publication-title: Chem. Rev.
– volume: 4
  start-page: 615
  year: 2021
  publication-title: Nat. Catal.
– volume: 13
  start-page: 1842
  year: 2020
  publication-title: Nano Res.
– volume: 281
  year: 2021
  publication-title: Appl. Catal., B
– volume: 534
  year: 2023
  publication-title: Mol. Catal.
– volume: 2
  start-page: 578
  year: 2019
  publication-title: Nat. Catal.
– volume: 264
  year: 2020
  publication-title: Appl. Catal., B
– year: 2022
  publication-title: Nano Mater. Sci.
– volume: 388
  start-page: 172
  year: 2019
  publication-title: Coord. Chem. Rev.
– ident: e_1_2_7_54_1
  doi: 10.1016/j.apcatb.2019.118537
– ident: e_1_2_7_67_1
  doi: 10.1038/s41929-022-00796-1
– ident: e_1_2_7_25_1
  doi: 10.1016/j.jcat.2021.02.016
– ident: e_1_2_7_23_1
  doi: 10.1038/ncomms5973
– ident: e_1_2_7_21_1
  doi: 10.1021/jacs.8b11129
– ident: e_1_2_7_22_1
  doi: 10.1038/s41929-021-00650-w
– ident: e_1_2_7_47_1
  doi: 10.1002/anie.202207268
– ident: e_1_2_7_61_1
  doi: 10.1007/s12274-020-2755-3
– ident: e_1_2_7_45_1
  doi: 10.1016/j.ccr.2019.02.029
– ident: e_1_2_7_34_1
  doi: 10.1021/jacs.9b11852
– ident: e_1_2_7_39_1
  doi: 10.1039/D2SE00896C
– ident: e_1_2_7_64_1
  doi: 10.1016/j.apcatb.2022.121462
– ident: e_1_2_7_5_1
  doi: 10.1002/smll.202105409
– ident: e_1_2_7_11_1
  doi: 10.1016/j.nanoen.2019.104164
– ident: e_1_2_7_18_1
  doi: 10.1007/s12274-019-2345-4
– ident: e_1_2_7_28_1
  doi: 10.1038/s41929-018-0164-8
– ident: e_1_2_7_32_1
  doi: 10.1007/s12274-018-2149-y
– ident: e_1_2_7_1_1
  doi: 10.1002/smll.202200911
– ident: e_1_2_7_17_1
  doi: 10.1021/acscatal.9b03359
– ident: e_1_2_7_26_1
  doi: 10.1016/S1872-2067(22)64146-9
– ident: e_1_2_7_15_1
  doi: 10.1016/j.ensm.2021.11.049
– ident: e_1_2_7_41_1
  doi: 10.1016/j.ccr.2020.213606
– ident: e_1_2_7_46_1
  doi: 10.1002/smll.201804183
– ident: e_1_2_7_38_1
  doi: 10.1021/acs.chemrev.6b00299
– ident: e_1_2_7_2_1
  doi: 10.1002/smll.202202476
– ident: e_1_2_7_3_1
  doi: 10.1016/j.apcatb.2020.119460
– ident: e_1_2_7_60_1
  doi: 10.1016/j.nanoms.2022.04.001
– ident: e_1_2_7_59_1
  doi: 10.1016/j.apsusc.2020.148742
– ident: e_1_2_7_9_1
  doi: 10.1021/jacs.9b09352
– ident: e_1_2_7_62_1
  doi: 10.1038/s41467-020-14848-2
– ident: e_1_2_7_20_1
  doi: 10.1021/acscatal.2c01294
– ident: e_1_2_7_37_1
  doi: 10.1016/j.ccr.2021.213996
– volume: 5
  year: 2022
  ident: e_1_2_7_16_1
  publication-title: Nat. Catal.
– ident: e_1_2_7_33_1
  doi: 10.1002/anie.202012798
– ident: e_1_2_7_8_1
  doi: 10.1002/smll.202107141
– ident: e_1_2_7_6_1
  doi: 10.1016/j.nanoen.2022.107565
– ident: e_1_2_7_31_1
  doi: 10.1039/C9TA08532G
– ident: e_1_2_7_43_1
  doi: 10.1016/j.mcat.2022.112805
– ident: e_1_2_7_48_1
  doi: 10.1016/j.apcatb.2020.118869
– ident: e_1_2_7_12_1
  doi: 10.1016/j.trechm.2021.05.009
– ident: e_1_2_7_58_1
  doi: 10.1016/j.apcatb.2019.02.059
– ident: e_1_2_7_35_1
  doi: 10.1016/j.apcatb.2022.121834
– ident: e_1_2_7_19_1
  doi: 10.1038/s41929-019-0304-9
– ident: e_1_2_7_4_1
  doi: 10.1021/acs.chemrev.1c00158
– ident: e_1_2_7_10_1
  doi: 10.1002/adma.202100997
– ident: e_1_2_7_52_1
  doi: 10.1126/science.aam5852
– ident: e_1_2_7_24_1
  doi: 10.1038/s41929-022-00748-9
– ident: e_1_2_7_27_1
  doi: 10.1007/s12274-022-4289-3
– ident: e_1_2_7_55_1
  doi: 10.1038/s41560-022-01062-1
– ident: e_1_2_7_57_1
  doi: 10.1002/adma.202202544
– ident: e_1_2_7_29_1
  doi: 10.1016/j.jcat.2020.05.034
– ident: e_1_2_7_49_1
  doi: 10.1016/j.apsusc.2019.06.184
– ident: e_1_2_7_56_1
  doi: 10.1021/jacs.2c00719
– ident: e_1_2_7_14_1
  doi: 10.1002/aenm.202003018
– ident: e_1_2_7_50_1
  doi: 10.1002/aenm.202201823
– ident: e_1_2_7_63_1
  doi: 10.1002/anie.202206579
– ident: e_1_2_7_68_1
  doi: 10.1016/j.apcatb.2022.121147
– ident: e_1_2_7_51_1
  doi: 10.1002/adfm.202204110
– ident: e_1_2_7_70_1
  doi: 10.1016/j.apcatb.2022.121352
– ident: e_1_2_7_53_1
  doi: 10.1002/marc.200500514
– ident: e_1_2_7_36_1
  doi: 10.1021/acs.chemrev.7b00776
– ident: e_1_2_7_65_1
  doi: 10.1038/s41467-022-30148-3
– ident: e_1_2_7_7_1
  doi: 10.1016/j.esci.2022.02.005
– ident: e_1_2_7_30_1
  doi: 10.1016/j.trechm.2021.08.008
– ident: e_1_2_7_40_1
  doi: 10.1007/s12274-023-5457-9
– ident: e_1_2_7_13_1
  doi: 10.1038/s41560-021-00878-7
– ident: e_1_2_7_44_1
  doi: 10.1002/aic.16140
– ident: e_1_2_7_69_1
  doi: 10.1021/jacs.2c00533
– ident: e_1_2_7_42_1
  doi: 10.1039/D0CS01297A
– ident: e_1_2_7_66_1
  doi: 10.1016/j.apcatb.2022.121378
SSID ssj0031247
Score 2.6095712
Snippet FeNC catalysts demonstrate remarkable activity and stability for the oxygen reduction reaction (ORR) in polymer electrolyte membrane fuel cells and Zn–air...
FeNC catalysts demonstrate remarkable activity and stability for the oxygen reduction reaction (ORR) in polymer electrolyte membrane fuel cells and Zn-air...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2300373
SubjectTerms Catalysts
Chemical reduction
Coordination
Density functional theory
Desorption
Electrolytic cells
Fe coordination geometry
Fe single atoms
FeN x sites
Metal air batteries
Nanotechnology
Open circuit voltage
Oxidation
oxygen reduction reaction
Oxygen reduction reactions
Polypyrroles
Proton exchange membrane fuel cells
Valence
Zinc-oxygen batteries
zinc–air batteries
Title Regulating the Coordination Geometry and Oxidation State of Single‐Atom Fe Sites for Enhanced Oxygen Reduction Electrocatalysis
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202300373
https://www.ncbi.nlm.nih.gov/pubmed/36919312
https://www.proquest.com/docview/2825384935
https://www.proquest.com/docview/2787212078
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BT3AAyquBtjISEqe03tjO41hVu61QC2hLpd4ix7HVqrsJ6mYlygn-Ab-RX8KMvZt2QQgJTnl5FMeZ8Xy2x98AvM54LlWuZewyVccy5TbWNQ5cEYsrPLpUSNrgfPwuPTyVb8_U2a1d_IEfop9wI8vw_TUZuK5muzekobPphJYOEEJzkRHdJwVsESoa9_xRAp2Xz66CPism4q0layNPdlfFV73Sb1BzFbl61zN6CHpZ6RBxcrkz76od8-UXPsf_-apH8GCBS9leUKR1uGObx3D_FlvhE_g2Dnnr8YIhbGT7LQ5cL8JsIjuw7dR2V9dMNzV7__kipGpiHsuy1rETlJrYH1-_73XtlI0s3kCQyxAys2Fz7sMQUOwa1ZmNiU3WSw9Djh4_xUTMKU_hdDT8uH8YLzI4xIZm7GJVqFpl2uCgT8vCIbypRW61oJw_PLeplqaQThnBZWXMIK0LYbVSWjqO3pVr8QzWmraxG8CsSmqOwpLCXvMq04PM2Qw7Z8ddZbIqgnj5B0uzoDenLBuTMhAzJyU1bdk3bQRv-vKfArHHH0tuLhWiXBj4rKQtvyKXhVARvOofo2nSeotubDvHMtgZIjJAEBbB86BI_atEWiB0HiQRJF4d_lKH8uT46Ki_evEvQi_hHp2HMLdNWOuu5nYLAVVXbcPdRH7Y9qbzE0qqGdI
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BOQAH_imBAkZC4pTWG9v5OVbVLgvsFmnbStwiJ7FF1d0EtVmJcqJv0GfkSZixN4EFISQ4RUk8ipPMeD6Px98AvEx4KlWqZWgTVYUy5ibUFU5cEYsrPNpYSNrgPN2Px0fy7QfVZRPSXhjPD9EH3Mgy3HhNBk4B6Z0frKFnizmtHSCG5iIRV-EalfV2s6pZzyAl0H25-irotUKi3up4G3m0sy6_7pd-A5vr2NU5n9FtKLpu-5yTk-1lW2yXX35hdPyv97oDt1bQlO16XboLV0x9D27-RFh4Hy5mvnQ9njBEjmyvwbnrsQ8ostemWZj29JzpumLvPx_7ak3MwVnWWHaAUnPz7evlbtss2MjgBcS5DFEzG9YfXSYCip2jRrMZEco66aEv0-OiTESe8gCORsPDvXG4KuIQlhS0C1WmKpXoEud9WmYWEU4lUqMFlf3hqYm1LDNpVSm4LMpyEFeZMFopLS1HB8u1eAgbdVObR8CMiiqOwpIyX9Mi0YPEmgTHZ8ttUSZFAGH3C_NyxXBOhTbmuedmjnL6tHn_aQN41bf_5Lk9_thyq9OIfGXjZznt-hWpzIQK4EV_G62Tllx0bZoltsHxEMEB4rAANr0m9Y8ScYboeRAFEDl9-Esf8oPpZNKfPf4XoedwfXw4neSTN_vvnsANuu6z3rZgoz1dmqeIr9rimbOg7zNmHRY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dThQxFD5RTIheAKLICGhNTLwa6E7b-bkksCvggmaRhLtJp9NG4u4MgdlEvJI34Bl5Ek7b3ZHVGBO9mrTTk3Y65_R8_fsOwNuEplykkocmEWXIY6pDWeLEFbG4wKeJGbcXnA-P4r0TfnAqTu_d4vf8EO2Cm7UMN15bAz8vzdZP0tDL0dBuHSCEpixhD-ERVpRavd4dtARSDL2XC6-CTiu0zFtT2kYabc3Kz7ql37DmLHR1vqe3CHLaan_k5OvmuCk21fdfCB3_57OWYGECTMm216Sn8EBXy_DkHl3hM7ge-MD1mCCIG8lOjTPXM7-cSN7reqSbiysiq5J8_HbmYzURB2ZJbcgxSg317Y-b7aYekZ7GDES5BDEz6VZf3DkEFLtCfSYDSyfrpLs-SI9bY7LUKc_hpNf9vLMXTkI4hMou2YUiE6VIpMJZn-SZQXxTslRLZoP-0FTHkquMG6EY5YVSnbjMmJZCSG4oulcq2QrMVXWlV4FoEZUUhbk995oWiewkRic4OhtqCpUUAYTTP5irCb-5DbMxzD0zc5Tbrs3brg3gXVv-3DN7_LHk-lQh8omFX-b2zi9LecZEAG_a12ibdsNFVroeYxkcDREaIAoL4IVXpLYqFmeInTtRAJFTh7-0IT8-7Pfb1Mt_EXoN8592e3l__-jDGjy22f7I2zrMNRdjvYHgqileOfu5A-ErG84
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulating+the+Coordination+Geometry+and+Oxidation+State+of+Single-Atom+Fe+Sites+for+Enhanced+Oxygen+Reduction+Electrocatalysis&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Wang%2C+Minjie&rft.au=Wang%2C+Li&rft.au=Li%2C+Qingbin&rft.au=Wang%2C+Dan&rft.date=2023-06-01&rft.eissn=1613-6829&rft.volume=19&rft.issue=24&rft.spage=e2300373&rft_id=info:doi/10.1002%2Fsmll.202300373&rft_id=info%3Apmid%2F36919312&rft.externalDocID=36919312
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon