Vanadium in Borosilicate Glass
Understanding the role of V2O5 within borosilicate glass matrices is important for the development of novel matrices toward immobilization of sulfate containing high‐level nuclear wastes. Present investigation shows, within sodium barium borosilicate glass matrix V2O5 can be homogeneously added up t...
Saved in:
Published in | Journal of the American Ceramic Society Vol. 98; no. 1; pp. 88 - 96 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Columbus
Blackwell Publishing Ltd
01.01.2015
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0002-7820 1551-2916 |
DOI | 10.1111/jace.13303 |
Cover
Loading…
Abstract | Understanding the role of V2O5 within borosilicate glass matrices is important for the development of novel matrices toward immobilization of sulfate containing high‐level nuclear wastes. Present investigation shows, within sodium barium borosilicate glass matrix V2O5 can be homogeneously added up to 5 mol% and beyond which it separates out into three phases, for example, (i) silica (ii) Barium (Ba) – Vanadium (V) oxide, and (iii) glass matrix. 29Si MAS NMR (Nuclear Magnetic Resonance) studies of the samples show that below 5 mol% V2O5 addition, silicate network is dominantly constituted of Q2 and Q3 structural units, whereas above this, the network gets more polymerized through formation of Q3 and Q4 units. In case of borate network, 11B MAS NMR investigations revealed that the concentration of BO4 [(0B, 4Si)] unit increases gradually up to 5 mol% and then it decreases at the cost of BO4 [(1B, 3Si)], BO3 (symmetric) and BO3 (asymmetric) units. Micro‐Raman analyses of the samples showed that with additions of V2O5 in diluted concentrations, amorphous silicate network remained unaltered, whereas some amplification in signals corresponding to ring‐type metaborate and VO5 units exists. It is therefore apparent from both MAS‐NMR and micro‐Raman studies that with V2O5 additions within the solubility limit (≤5 mol%), borate network gets depolymerized leading to decrease in hardness from an average value of 5.0–4.2 GPa. |
---|---|
AbstractList | Understanding the role of ... within borosilicate glass matrices is important for the development of novel matrices toward immobilization of sulfate containing high-level nuclear wastes. Present investigation shows, within sodium barium borosilicate glass matrix ... can be homogeneously added up to 5 mol% and beyond which it separates out into three phases, for example, (i) silica (ii) Barium (Ba) -- Vanadium (V) oxide, and (iii) glass matrix. 29Si MAS NMR (Nuclear Magnetic Resonance) studies of the samples show that below 5 mol% ... addition, silicate network is dominantly constituted of Q2 and Q3 structural units, whereas above this, the network gets more polymerized through formation of Q3 and Q4 units. In case of borate network, 11B MAS NMR investigations revealed that the concentration of BO4 [(0B, 4Si)] unit increases gradually up to 5 mol% and then it decreases at the cost of BO4 [(1B, 3Si)], BO3 (symmetric) and BO3 (asymmetric) units. Micro-Raman analyses of the samples showed that with additions of ... in diluted concentrations, amorphous silicate network remained unaltered, whereas some amplification in signals corresponding to ring-type metaborate and VO5 units exists. It is therefore apparent from both MAS-NMR and micro-Raman studies that with ... additions within the solubility limit (≤5 mol%), borate network gets depolymerized leading to decrease in hardness from an average value of 5.0-4.2 GPa. (ProQuest: ... denotes formulae/symbols omitted.) Understanding the role of V 2 O 5 within borosilicate glass matrices is important for the development of novel matrices toward immobilization of sulfate containing high‐level nuclear wastes. Present investigation shows, within sodium barium borosilicate glass matrix V 2 O 5 can be homogeneously added up to 5 mol% and beyond which it separates out into three phases, for example, (i) silica (ii) Barium (Ba) – Vanadium (V) oxide, and (iii) glass matrix. 29 Si MAS NMR (Nuclear Magnetic Resonance) studies of the samples show that below 5 mol% V 2 O 5 addition, silicate network is dominantly constituted of Q 2 and Q 3 structural units, whereas above this, the network gets more polymerized through formation of Q 3 and Q 4 units. In case of borate network, 11 B MAS NMR investigations revealed that the concentration of BO 4 [(0B, 4Si)] unit increases gradually up to 5 mol% and then it decreases at the cost of BO 4 [(1B, 3Si)], BO 3 (symmetric) and BO 3 (asymmetric) units. Micro‐Raman analyses of the samples showed that with additions of V 2 O 5 in diluted concentrations, amorphous silicate network remained unaltered, whereas some amplification in signals corresponding to ring‐type metaborate and VO 5 units exists. It is therefore apparent from both MAS ‐ NMR and micro‐Raman studies that with V 2 O 5 additions within the solubility limit (≤5 mol%), borate network gets depolymerized leading to decrease in hardness from an average value of 5.0–4.2 GPa. Understanding the role of V2O5 within borosilicate glass matrices is important for the development of novel matrices toward immobilization of sulfate containing high-level nuclear wastes. Present investigation shows, within sodium barium borosilicate glass matrix V2O5 can be homogeneously added up to 5 mol% and beyond which it separates out into three phases, for example, (i) silica (ii) Barium (Ba) - Vanadium (V) oxide, and (iii) glass matrix. 29Si MAS NMR (Nuclear Magnetic Resonance) studies of the samples show that below 5 mol% V2O5 addition, silicate network is dominantly constituted of Q2 and Q3 structural units, whereas above this, the network gets more polymerized through formation of Q3 and Q4 units. In case of borate network, 11B MAS NMR investigations revealed that the concentration of BO4 [(0B, 4Si)] unit increases gradually up to 5 mol% and then it decreases at the cost of BO4 [(1B, 3Si)], BO3 (symmetric) and BO3 (asymmetric) units. Micro-Raman analyses of the samples showed that with additions of V2O5 in diluted concentrations, amorphous silicate network remained unaltered, whereas some amplification in signals corresponding to ring-type metaborate and VO5 units exists. It is therefore apparent from both MAS-NMR and micro-Raman studies that with V2O5 additions within the solubility limit ( less than or equal to 5 mol%), borate network gets depolymerized leading to decrease in hardness from an average value of 5.0-4.2 GPa. Understanding the role of V2O5 within borosilicate glass matrices is important for the development of novel matrices toward immobilization of sulfate containing high‐level nuclear wastes. Present investigation shows, within sodium barium borosilicate glass matrix V2O5 can be homogeneously added up to 5 mol% and beyond which it separates out into three phases, for example, (i) silica (ii) Barium (Ba) – Vanadium (V) oxide, and (iii) glass matrix. 29Si MAS NMR (Nuclear Magnetic Resonance) studies of the samples show that below 5 mol% V2O5 addition, silicate network is dominantly constituted of Q2 and Q3 structural units, whereas above this, the network gets more polymerized through formation of Q3 and Q4 units. In case of borate network, 11B MAS NMR investigations revealed that the concentration of BO4 [(0B, 4Si)] unit increases gradually up to 5 mol% and then it decreases at the cost of BO4 [(1B, 3Si)], BO3 (symmetric) and BO3 (asymmetric) units. Micro‐Raman analyses of the samples showed that with additions of V2O5 in diluted concentrations, amorphous silicate network remained unaltered, whereas some amplification in signals corresponding to ring‐type metaborate and VO5 units exists. It is therefore apparent from both MAS‐NMR and micro‐Raman studies that with V2O5 additions within the solubility limit (≤5 mol%), borate network gets depolymerized leading to decrease in hardness from an average value of 5.0–4.2 GPa. |
Author | Sengupta, Pranesh Dey, Goutam K. Dey, Krishna K. Halder, Rumu Mishra, Raman K. Kaushik, Chetan P. Abraham, Geogy Ajithkumar, Thalasseril G. |
Author_xml | – sequence: 1 givenname: Pranesh surname: Sengupta fullname: Sengupta, Pranesh email: praneshsengupta@gmail.com organization: Materials Science Division, Bhabha Atomic Research Centre, 400 085, Mumbai, India – sequence: 2 givenname: Krishna K. surname: Dey fullname: Dey, Krishna K. organization: Department of Physics, Dr HS Gour University, 470 003, Madhya Pradesh, India – sequence: 3 givenname: Rumu surname: Halder fullname: Halder, Rumu organization: Materials Science Division, Bhabha Atomic Research Centre, 400 085, Mumbai, India – sequence: 4 givenname: Thalasseril G. surname: Ajithkumar fullname: Ajithkumar, Thalasseril G. organization: Central NMR Facility, National Chemical Laboratory, 411 008, Pune, India – sequence: 5 givenname: Geogy surname: Abraham fullname: Abraham, Geogy organization: Materials Science Division, Bhabha Atomic Research Centre, 400 085, Mumbai, India – sequence: 6 givenname: Raman K. surname: Mishra fullname: Mishra, Raman K. organization: Waste Management Division, Bhabha Atomic Research Centre, 400 085, Mumbai, India – sequence: 7 givenname: Chetan P. surname: Kaushik fullname: Kaushik, Chetan P. organization: Waste Management Division, Bhabha Atomic Research Centre, 400 085, Mumbai, India – sequence: 8 givenname: Goutam K. surname: Dey fullname: Dey, Goutam K. organization: Materials Science Division, Bhabha Atomic Research Centre, 400 085, Mumbai, India |
BookMark | eNp9kE1LAzEQhoNUsK1e_AFS8CLC1szma3OspR9KUUStx5AmKaRud-tmF-2_d-uqhyLOZRh4nmHm7aBWlmcOoVPAfajraqWN6wMhmBygNjAGUSyBt1AbYxxHIonxEeqEsKpHkAlto7O5zrT11brns951XuTBp97o0vUmqQ7hGB0udRrcyXfvoufx6Gk4jWb3k5vhYBYZKiSJKMRAY7BmaQ2jGjjjVmK2pHYRS0sYlxZrLTVgS_kiTjA4iUE4bmlikkVMuuii2bsp8rfKhVKtfTAuTXXm8ioo4BxjKnePddH5HrrKqyKrr6spyoQATpKawg1l6pdC4ZbK-FKXPs_KQvtUAVa7wNQuMPUVWK1c7imbwq91sf0bhgZ-96nb_kOq28Fw9ONEjeND6T5-HV28Ki6IYOrlbqIeBJ1PxZirR_IJa8GI6w |
CODEN | JACTAW |
CitedBy_id | crossref_primary_10_1007_s10967_017_5206_1 crossref_primary_10_1007_s10973_023_12632_0 crossref_primary_10_1021_acs_jced_5b00985 crossref_primary_10_1007_s10967_015_4672_6 crossref_primary_10_1016_j_jnoncrysol_2018_10_009 crossref_primary_10_1080_00295450_2023_2266612 crossref_primary_10_1088_2053_1591_ab82ca crossref_primary_10_1007_s12034_024_03257_6 crossref_primary_10_1021_acs_jpcb_1c07134 crossref_primary_10_1016_j_jnucmat_2024_155005 crossref_primary_10_1016_j_anucene_2023_110175 crossref_primary_10_1016_j_jnoncrysol_2021_121223 crossref_primary_10_1016_j_radphyschem_2017_05_003 crossref_primary_10_1111_jace_19851 crossref_primary_10_1111_jace_15331 crossref_primary_10_1111_jace_17057 crossref_primary_10_1111_jace_19333 crossref_primary_10_1016_j_jhazmat_2015_01_061 crossref_primary_10_1557_s43580_021_00034_z crossref_primary_10_1016_j_jnoncrysol_2023_122554 crossref_primary_10_1016_j_jnoncrysol_2019_04_009 crossref_primary_10_1016_j_jpcs_2018_10_030 crossref_primary_10_1021_acs_cgd_7b00576 crossref_primary_10_1039_D3RA00069A crossref_primary_10_1016_j_jnoncrysol_2016_08_026 crossref_primary_10_1021_acs_jced_7b00362 crossref_primary_10_1088_2053_1591_ab67f6 crossref_primary_10_1016_j_jnoncrysol_2022_121933 crossref_primary_10_1016_j_jnoncrysol_2025_123516 crossref_primary_10_1111_jace_18850 |
Cites_doi | 10.1016/S0016-7037(01)00775-X 10.1016/j.jnucmat.2005.11.012 10.1021/ja00310a004 10.1515/9781501509384-008 10.1016/S0022-3093(96)00596-0 10.1016/S0926-2040(00)00050-3 10.1021/ic3016832 10.1016/S0022-3093(02)00945-6 10.1016/j.jnoncrysol.2007.02.013 10.1016/0022-3093(83)90032-7 10.1016/0022-3697(93)90242-J 10.1016/0191-815X(84)90045-7 10.1021/ic010305u 10.1111/j.1551-2916.2008.02773.x 10.1080/01418619108204878 10.1007/BF02402831 10.1016/j.jhazmat.2011.03.031 10.1016/S0022-3093(99)00693-6 10.1016/j.jnucmat.2006.07.004 10.1016/j.jnoncrysol.2009.05.015 10.1016/0038-1098(82)90329-5 10.1016/j.jnoncrysol.2006.09.041 10.1016/0022-3093(75)90137-4 10.2138/rmg.2011.73.6 10.1021/jp961439 10.2172/890179 10.1179/174367606X81669 10.1016/j.jnoncrysol.2007.04.029 10.1016/0025-5408(94)90004-3 10.1021/jp100530m 10.1016/0022-2860(93)80349-Z 10.1515/9781501509384-007 10.1016/0022-3093(76)90132-0 10.1002/jrs.2763 10.1021/ja00109a026 10.1016/S0022-3115(01)00591-8 10.1016/0167-577X(95)00148-4 10.1016/S0022-3093(99)00352-X 10.1007/s11661-005-0201-5 10.1111/j.1551-2916.2007.01853.x 10.1016/j.jnucmat.2006.09.012 10.1088/0953-8984/14/25/322 10.1016/j.gca.2004.08.029 10.1007/978-3-642-32917-3_2 10.1016/0022-3093(90)90823-5 10.1021/cm1006058 10.1016/j.jhazmat.2012.07.039 10.1016/j.chemgeo.2008.07.002 10.1016/j.jnoncrysol.2006.02.085 10.1080/13642818908209739 10.1016/j.jnucmat.2012.08.012 10.1002/jrs.1250120110 10.1016/j.jnucmat.2011.01.122 10.2172/219300 10.1016/j.jnoncrysol.2003.08.070 10.1023/A:1018646507438 10.1021/jp034048l 10.1016/S0022-3093(97)00491-2 10.1021/jp993416b 10.1016/B978-0-08-056033-5.00107-5 10.2172/145022 10.1007/978-1-4615-9107-8_7 10.1016/S0022-3093(01)00624-X 10.1016/j.jnucmat.2008.07.046 10.1016/S0022-2860(96)09674-3 10.1016/j.jnucmat.2007.08.005 10.1016/0025-5408(78)90173-3 |
ContentType | Journal Article |
Copyright | 2014 The American Ceramic Society Copyright Wiley Subscription Services, Inc. Jan 2015 |
Copyright_xml | – notice: 2014 The American Ceramic Society – notice: Copyright Wiley Subscription Services, Inc. Jan 2015 |
DBID | BSCLL AAYXX CITATION 7QQ 7SR 8FD JG9 |
DOI | 10.1111/jace.13303 |
DatabaseName | Istex CrossRef Ceramic Abstracts Engineered Materials Abstracts Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Ceramic Abstracts Technology Research Database |
DatabaseTitleList | Materials Research Database CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Visual Arts Engineering |
EISSN | 1551-2916 |
Editor | Pinckney, L. |
Editor_xml | – sequence: 9 givenname: L. surname: Pinckney fullname: Pinckney, L. |
EndPage | 96 |
ExternalDocumentID | 3558889391 10_1111_jace_13303 JACE13303 ark_67375_WNG_Q74VH7F6_S |
Genre | article Feature |
GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 1OB 1OC 29L 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABDPE ABEFU ABEML ABJNI ABPVW ABTAH ACAHQ ACBEA ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACKIV ACNCT ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMHG ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFPWT AFZJQ AHBTC AHEFC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG CO8 COF CS3 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBO EBS EDO EJD EMK ESX F00 F01 F04 FEDTE FOJGT FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ H~9 I-F IRD ITF ITG ITH IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NDZJH NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QF4 QM1 QN7 QO4 R.K RAX RIWAO RJQFR ROL RX1 SAMSI SJN SUPJJ TAE TH9 TN5 TUS UB1 UPT V8K VH1 W8V W99 WBKPD WFSAM WH7 WIH WIK WOHZO WQJ WRC WTY WXSBR WYISQ XG1 YQT ZCG ZE2 ZY4 ZZTAW ~02 ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACUHS ACYXJ ADNMO AFWVQ ALVPJ AAYXX ADMLS ADXHL AEYWJ AGHNM AGQPQ AGYGG CITATION 7QQ 7SR 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 |
ID | FETCH-LOGICAL-c4793-4121421dcfdc54a1656d905f4db29d3569d0aa9a10d46b2801e9017e6d48c8b23 |
IEDL.DBID | DR2 |
ISSN | 0002-7820 |
IngestDate | Fri Jul 11 10:18:27 EDT 2025 Fri Jul 25 19:19:39 EDT 2025 Thu Apr 24 23:04:06 EDT 2025 Tue Jul 01 01:35:25 EDT 2025 Wed Jan 22 16:56:57 EST 2025 Wed Oct 30 09:59:36 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4793-4121421dcfdc54a1656d905f4db29d3569d0aa9a10d46b2801e9017e6d48c8b23 |
Notes | istex:8C31F80FC7202546F86CCACF8C6201DE3E69A57B ark:/67375/WNG-Q74VH7F6-S ArticleID:JACE13303 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PQID | 1645771638 |
PQPubID | 41752 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1660049330 proquest_journals_1645771638 crossref_citationtrail_10_1111_jace_13303 crossref_primary_10_1111_jace_13303 wiley_primary_10_1111_jace_13303_JACE13303 istex_primary_ark_67375_WNG_Q74VH7F6_S |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2015 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – month: 01 year: 2015 text: January 2015 |
PublicationDecade | 2010 |
PublicationPlace | Columbus |
PublicationPlace_xml | – name: Columbus |
PublicationTitle | Journal of the American Ceramic Society |
PublicationTitleAlternate | J. Am. Ceram. Soc |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | C. P. Kaushik, R. K. Mishra, P. Sengupta, D. Das, G. B. Kale, and K. Raj, "Barium Borosilicate Glass: A Potential Matrix for Immobilization of Sulfate Bearing High Level Radioactive Waste," J. Nucl. Mater., 358, 129-38 (2006). R. S. Dutta, C. Yusufali, B. Paul, S. Majumdar, P. Sengupta, R. K. Mishra, C. P. Kaushik, R. J. Kshirsagar, U. D. Kulkarni, and G. K. Dey, "Formation of Diffusion Barrier Coating on Superalloy 690 Substrate and its Stability in Borosilicate Melt at Elevated Temperature," J. Nucl. Mater., 432, 72-7 (2013). B. A. Moyer, R. Custelcean, B. P. Hay, J. L. Sessler, K. B. James, V. W. Day, and S. O. Kang, "A Case for Molecular Recognition in Nuclear Separations: Sulphate Separation from Nuclear Wastes," Inorg. Chem., 52, 3473-90 (2013). N. Janes and E. Oldfield, "Prediction of Silicon-29 Nuclear Magnetic Resonance Chemical Shifts Using a Group Electronegativity Approach: Applications to Silicate and Aluminosilicate Structures," J. Am. Chem. Soc., 107, 6769-75 (1985). C. Martineau, V. K. Michaelis, S. Schiller, and S. Kroeker, "Liquid−Liquid Phase Separation in Model Nuclear Waste Glasses: A Solid-State Double-Resonance NMR Study," Chem. Mater., 22, 4896-903 (2010). D. Maniu, I. Ardelean, and T. Iliescu, "Raman Spectroscopic Investigations of the Structure of XV2O5 1−x [3B2O3 -K2O] Glasses," Mater. Lett., 25 [3-4] 147-9 (1995). V. Pirlet, "Overview of Actinides Np, Pu, Am and Tc Release from Waste Glasses: Influence of Solution Composition," J. Nucl. Mater., 298, 47-54 (2001). D. W. Matson, S. K. Sharma, and J. A. Philpotts, "The Structure of High-Silica Alkali-Silicate Glasses. A Raman Spectroscopic Investigation," J. Non-Cryst. Solids, 58 [2-3] 323-52 (1983). P. Sengupta, C. P. Kaushik, R. K. Mishra, and G. B. Kale, "Microstructural Characterization and Role of Glassy Layer Developed on Process Pot Wall During Nuclear High Level Waste Vitrification Process," J. Amer. Ceram. Soc., 90, 3085-90 (2007). P. Sengupta, "Interaction Study Between Nuclear Waste Glass Melt and Ceramic Melter Bellow Liner Materials," J. Nucl. Mater., 411, 181-4 (2011). E. Vernaz, S. Gin, and C. Veyer, "Waste Glass," Comprehensive Nucl.Mater, 5, 451-83 (2012). M. Lenoir, A. Grandjean, S. Poissonnet, and D. R. Neuville, "Quantitation of Sulfate Solubility in Borosilicate Glasses Using Raman Spectroscopy," J. Non Crys. Solids, 355, 1468-73 (2009). T. Yazawa, K. Kuraoka, T. Akai, N. Umesaki, and W. F. Du, "Clarification of Phase Separation Mechanism of Sodium Borosilicate Glasses in Early Stage by Nuclear Magnetic Resonance," J. Phys. Chem. B, 104 [9] 2109-16 (2000). S. Prasad, T. M. Clark, T. H. Sefzik, H. T. Kwak, Z. Gan, and P. J. Grandinetti, "Solid State Multinuclear Magnetic Resonance Investigation of Pyrex," J. Non-Cryst. Solids, 352, 2834-40 (2006). P. M. Aguiar and S. Kroeker, "Boron Speciation and Non-Bridging Oxygens in High-Alkali Borate Glasses," J. Non-Cryst. Solids, 353 [18-21] 1834-9 (2007). T. Iliescu, S. Simon, D. Maniu, and I. Ardelean, "Raman Spectroscopy of Oxide Glass System 1−x [YB2O3.ZLi2O].XGd2O3," J. Mol. Struct., 294, 201-3 (1992). D. Maniu, I. Ardelean, T. Iliescu, S. Cinta, and O. Cozar, "Raman Spectroscopic Investigations of the Oxide Glass System 1−x 3B2O3·K2O xMO MO = V2O5 or Cu," J. Mol. Struct., 410-411, 291-4 (1997). P. Sengupta, N. Soudamini, C. P. Kaushik, Jagannath, R. K. Mishra, G. B. Kale, K. Raj, D. Das, and B. P. Sharma, "Corrosion of Alloy 690 Process Pot by Sulfate Containing High Level Radioactive Waste at Feed Stage," J. Nucl. Mater., 374, 185-91 (2008). B. N. Meera, A. K. Sood, N. Chandrabhas, and J. Ramakrishna, "Raman Study of Lead Borate Glasses," J. Non-Cryst. Solids, 126 [3] 224-30 (1990). K. Raj and C. P. Kaushik, "Glass Matrices for Vitrification of Radioactive Waste- An Update on R&D Efforts," ISSTGM-2009. IOP Conf Series: Mater. Sci. Engg., 2, 1-6 (2009). K. A. Smith, R. J. Kirkpatrick, E. Oldfield, and D. M. Henderson, "High Resolution Si NMR Spectroscopic Study of Rock Forming Silicates," Am. Miner., 68, 1206-15 (1983). P. Sengupta, D. Rogalla, H. W. Becker, G. K. Dey, and S. Chakraborty, "Development of Graded Ni-YSZ Composite Coating on Alloy 690 by Pulsed Laser Deposition Technique to Reduce Hazardous Metallic Nuclear Waste Inventory," J. Hazar. Mater., 192, 208-21 (2011). A. D. Pelton and P. Wu, "Thermodynamic Modelling of Glass Forming Melts," J. Non-Cryst. Solids, 253, 178-91 (1999). M. Lenoir, A. Grandjean, Y. Linard, B. Cochain, and D. R. Neuville, "The Influence of Si, B Substitution and the Nature of Network Modifying Cations on the Properties and Structure of Borosilicate Glasses and Melts," Chem. Geo., 256, 316-25 (2008). B. P. Dwivedi, M. H. Rahman, Y. Kumar, and B. N. Khanna, "Raman Scattering Study of Lithium Borate Glasses," J. Phys. Chem. Solids, 54 [5] 621-8 (1993). G. L. Turner, K. Smith, R. J. Kirkpatrick, and E. Oldfield, "Boron-11 Nuclear Magnetic Resonance Spectroscopic Study of Borate and Borosilicate Minerals and a Borosilicate Glass," J. Magn. Reson., 67 [3] 544-50 (1986). D. Manara, A. Grandjean, O. Pinet, J. L. Dussossoy, and D. R. Neuville, "Sulfur Behavior in Silicate Glasses and Melts: Implications for Sulfate Incorporation in Nuclear Waste Glasses as a Function of Alkali Cation and V2O5 Content," J. Non-Cryst. Solids, 353, 12-23 (2007). C. Sanchez, J. Livage, and G. Lucazeau, "Infrared and Raman Study of Amorphous V2O5," J. Raman Spectrosc., 12 [1] 68-72 (1982). D. de Waal and C. Huter, "Vibrational Spectra of Two Phases of Copper Pyrovanadate and Some Solid Solutions of Copper and Magnesium Pyrovanadate," Mater. Res. Bull., 29 [8] 843-9 (1994). P. Sengupta, "A Review on Immobilization of Phosphate Containing High Level Nuclear Wastes Within Glass Matrix - Present Status and Future Challenges," J. Hazar. Mater., 235-236, 17-28 (2012). B. C. Bunker, D. R. Tellant, R. J. Kirkpatrick, and G. I. Turner, "Multinuclear Nuclear Magnetic Resonance and Raman Investigation of Sodium Borosilicate Glass Structures," Phys. Chem. Glasses, 31 [1] 30-41 (1990). I. W. Donald, B. L. Metcalfe, and J. R. N. Taylor, "Review: The Immobilization of High Level Radioactive Wastes Using Ceramics and Glasses," J. Mater. Sci., 32 851-87 (1997). V. K. Michaelis, P. M. Aguiar, and S. Kroeker, "Probing Alkali Coordination Environments in Alkali Borate Glasses by Multinuclear Magnetic Resonance," J. Non-Cryst. Solids, 353 [26] 2582-90 (2007). J. F. Stebbins, P. Zhao, and S. Kroeker, "Non-Bridging Oxygens in Borate Glasses: Characterization by 11B and 17O MAS and 3QMAS NMR," Solid State Nucl. Magn. Reson., 16 [1-2] 9-19 (2000). V. Sudarsan, V. K. Shrikhande, G. P. Kothiyal, and S. K. Kulshreshtha, "Structural Aspects of B2O3-Substituted (PbO)0.5(SiO2)0.5 Glasses," J. Phys.: Condens. Matter, 14, 6553-65 (2002). L. Backnaes and J. Deubener, "Experimental Studies on Sulfur Solubility in Silicate Melts at Near Atmospheric Pressure," Rev. Miner. Geochem., 73, 143-65 (2011). M. D. Ingram, "Ionic Conductivity and Glass Structure," Philos. Mag. B, 60 [6] 729-40 (1989). R. G. C. Beerkens and K. Kahl, "Chemistry of Sulphur in Soda-Lime-Silica Glass Melts," Phys. Chem. Glasses, 43 [4] 189-98 (2002). P. Sengupta, J. Mittra, and G. B. Kale, "Interaction Between Borosilicate Melt and Inconel," J. Nucl. Mater., 350, 66-73 (2006). L. S. Du and J. F. Stebbins, "Nature of Silicon−Boron Mixing in Sodium Borosilicate Glasses: A High-Resolution 11B and 17O NMR Study," J. Phys. Chem. B, 107 [37] 10063-76 (2003). R. Martens and W. Muller-Warmuth, "Structural Groups and Their Mixing in Borosilicate Glasses of Various Compositions - An NMR Study," J. Non-Cryst. Solids, 265, 167-75 (2000). S. Kroeker and J. F. Stebbins, "Three-Coordinated Boron-11 Chemical Shifts in Borates," Inorg. Chem., 40, 6239-46 (2001). Y. Dimitrev and V. Dimitrov, "X-Ray Diffraction Studies of Glasses in the TeO2-V2O5 System," Mater. Res. Bull., 13, 1071-5 (1978). W. E. Lee, M. I. Ojovan, and M. C. Stennett, "Immobilization of Radioactive Waste in Glasses, Glass Composite," Mater. Ceram. Adv. Appl. Ceram., 105, 3-12 (2006). O. Attos, M. Massot, M. Balkanski, E. Haro-Poniatowski, and M. Asomoza, "Structure of Borovandate Glasses Studied by Raman Spectroscopy," J. Non-Cryst. Solids, 210 [2-3] 163-70 (1997). F. I. Galeneer, "Planar Rings in Glasses," Solid State Commun., 44 [7] 1037-40 (1982). R. K. Mishra, P. Sengupta, C. P. Kaushik, A. K. Tyagi, G. B. Kale, and K. Raj, "Studies on Immobilization of Thorium in Barium Borosilicate Glass," J. Nucl. Mater., 360, 143-50 (2007). T. Furukawa and W. B. White, "Raman Spectroscopic Investigation of Sodium Borosilicate Glass Structure," J. Mat. Sci., 16, 2689-700 (1981). M. I. Ojovan and W. E. Lee, An Introduction to Nuclear Waste Immobilization. Elseiver, Amsterdam, the Netherlands, 2005. V. Kain, P. Sengupta, P. K. De, and S. Banerjee, "Case Reviews on the Effect of Microstructure on the Corrosion Behavior of Austenitic Alloys for Processing and Storage of Nuclear Waste," Metall. Mater. Trans. A, 36A, 1075-84 (2005). D. A. McKeown, I. S. Muller, H. Gan, I. L. Pegg, and C. A. Kendizora, "Raman Studies of Sulfur in Borosilicate Waste Glasses: Sulfate Environments," J. Non-Cryst. Solids, 288 [1-3] 191-9 (2001). S. Sen, Z. Xu, and J. F. Stebbins, "Temperature Dependent Structural Changes in Borate, Borosilicate and Boroaluminate Liquids: High-Resolution 11B, 29Si and 27Al NMR Studies," J. Non-Cryst. Solids, 226 [1-2] 29-40 (1998). T. Tsujimura, X. Xue, M. Kanzaki, and M. J. Walker, "Sulfur Speciation and Network Structural Changes in Sodium Silicate Glasses: Constraints from NMR and Raman Spectroscopy," Geochim. Cosmochim. Acta, 68 [24] 5081-101 (2004). T. W. Bril, "Raman Spectroscopy of Crystalline and Vitreous Borates," Philips Res. Rept. Suppl, 2, 117-23 (1976). R. K. Mishra, V. Sudarsan, P. Sengupta, R. K. Vatsa, A. K. Tyagi, C. P. Kaushik, D. Das, and K. Raj, "Role of Sulphate in Structural Modifications of Sodium Barium Borosilicate Glasses Developed for Nuclear Waste Immobilization," J. Am. Ceram. Soc., 91, 3903-7 (2008). S. K. Le 1982; 12 1976; 20 2002; 14 1995; 32 2004; 68 1975; 18 1997; 410–411 2009; 355 2011; 192 2009; 392 1996; 100 2011; 190 1994; 29 2001; 40 1979 1983; 58 2001; 298 2010; 22 1989; 31 2000; 16 1995; 25 2010; 114 2011; 73 2002; 43 2013; 52 1986 1999; 253 2013; 432 2012; 235–236 1983; 68 2011; 411 1989; 60 1990; 31 2001; 288 1990; 126 2007; 360 2002; 298 1997; 210 2006; 350 1995; 117 1976; 2 2007; 90 2007 1996 2006; 352 1995 2005 1994 2004 1985; 107 1978; 13 2006; 358 2003; 331 2008; 91 2003; 107 1992; 294 1997; 32 2000; 104 1986; 67 1999; 38 2007; 353 1991; 64 1993; 54 1984; 5 2002; 66 1982; 44 2011; 42 1981; 16 2005; 36A 2000; 265 2013 1998; 226 2008; 256 2006; 105 2009; 2 2008; 374 2012; 5 e_1_2_5_27_1 e_1_2_5_25_1 e_1_2_5_48_1 Navrotsky A. (e_1_2_5_49_1) 1995 e_1_2_5_23_1 e_1_2_5_46_1 e_1_2_5_21_1 e_1_2_5_44_1 e_1_2_5_65_1 e_1_2_5_67_1 Bril T. W. (e_1_2_5_75_1) 1976; 2 e_1_2_5_69_1 e_1_2_5_29_1 e_1_2_5_80_1 e_1_2_5_82_1 e_1_2_5_61_1 Janetzen C. (e_1_2_5_7_1) 1986 e_1_2_5_42_1 e_1_2_5_40_1 Ojovan M. I. (e_1_2_5_6_1) 2007 e_1_2_5_15_1 e_1_2_5_17_1 e_1_2_5_59_1 e_1_2_5_9_1 e_1_2_5_11_1 e_1_2_5_57_1 e_1_2_5_13_1 e_1_2_5_32_1 Stefanovskii S. V. (e_1_2_5_37_1) 1995 e_1_2_5_55_1 e_1_2_5_76_1 e_1_2_5_3_1 Bunker B. C. (e_1_2_5_72_1) 1990; 31 e_1_2_5_78_1 e_1_2_5_19_1 Stefanovskii S. V. (e_1_2_5_36_1) 1989; 31 e_1_2_5_70_1 e_1_2_5_74_1 e_1_2_5_30_1 e_1_2_5_53_1 e_1_2_5_51_1 e_1_2_5_28_1 e_1_2_5_26_1 e_1_2_5_47_1 e_1_2_5_24_1 Jantzen C. M. (e_1_2_5_38_1) 1986 e_1_2_5_45_1 e_1_2_5_22_1 e_1_2_5_66_1 e_1_2_5_68_1 Ewing R. C. (e_1_2_5_10_1) 1999 e_1_2_5_81_1 e_1_2_5_60_1 e_1_2_5_83_1 e_1_2_5_62_1 e_1_2_5_64_1 e_1_2_5_20_1 e_1_2_5_14_1 e_1_2_5_39_1 Ojovan M. I. (e_1_2_5_5_1) 2005 e_1_2_5_16_1 e_1_2_5_58_1 e_1_2_5_8_1 e_1_2_5_35_1 e_1_2_5_56_1 Beerkens R. G. C. (e_1_2_5_41_1) 2002; 43 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_54_1 e_1_2_5_4_1 Sengupta P. (e_1_2_5_18_1) 2011; 192 e_1_2_5_77_1 e_1_2_5_2_1 e_1_2_5_79_1 Turner G. L. (e_1_2_5_63_1) 1986; 67 Smith K. A. (e_1_2_5_43_1) 1983; 68 e_1_2_5_71_1 e_1_2_5_73_1 Raj K. (e_1_2_5_34_1) 2009; 2 e_1_2_5_31_1 e_1_2_5_52_1 e_1_2_5_50_1 |
References_xml | – reference: V. Sudarsan, V. K. Shrikhande, G. P. Kothiyal, and S. K. Kulshreshtha, "Structural Aspects of B2O3-Substituted (PbO)0.5(SiO2)0.5 Glasses," J. Phys.: Condens. Matter, 14, 6553-65 (2002). – reference: R. G. C. Beerkens and K. Kahl, "Chemistry of Sulphur in Soda-Lime-Silica Glass Melts," Phys. Chem. Glasses, 43 [4] 189-98 (2002). – reference: T. Yazawa, K. Kuraoka, T. Akai, N. Umesaki, and W. F. Du, "Clarification of Phase Separation Mechanism of Sodium Borosilicate Glasses in Early Stage by Nuclear Magnetic Resonance," J. Phys. Chem. B, 104 [9] 2109-16 (2000). – reference: R. K. Mishra, P. Sengupta, C. P. Kaushik, A. K. Tyagi, G. B. Kale, and K. Raj, "Studies on Immobilization of Thorium in Barium Borosilicate Glass," J. Nucl. Mater., 360, 143-50 (2007). – reference: K. A. Smith, R. J. Kirkpatrick, E. Oldfield, and D. M. Henderson, "High Resolution Si NMR Spectroscopic Study of Rock Forming Silicates," Am. Miner., 68, 1206-15 (1983). – reference: D. Maniu, I. Ardelean, T. Iliescu, S. Cinta, and O. Cozar, "Raman Spectroscopic Investigations of the Oxide Glass System 1−x 3B2O3·K2O xMO MO = V2O5 or Cu," J. Mol. Struct., 410-411, 291-4 (1997). – reference: E. Vernaz, S. Gin, and C. Veyer, "Waste Glass," Comprehensive Nucl.Mater, 5, 451-83 (2012). – reference: V. K. Michaelis, P. M. Aguiar, and S. Kroeker, "Probing Alkali Coordination Environments in Alkali Borate Glasses by Multinuclear Magnetic Resonance," J. Non-Cryst. Solids, 353 [26] 2582-90 (2007). – reference: D. A. McKeown, I. S. Muller, H. Gan, I. L. Pegg, and C. A. Kendizora, "Raman Studies of Sulfur in Borosilicate Waste Glasses: Sulfate Environments," J. Non-Cryst. Solids, 288 [1-3] 191-9 (2001). – reference: L. S. Du and J. F. Stebbins, "Nature of Silicon−Boron Mixing in Sodium Borosilicate Glasses: A High-Resolution 11B and 17O NMR Study," J. Phys. Chem. B, 107 [37] 10063-76 (2003). – reference: B. C. Bunker, D. R. Tellant, R. J. Kirkpatrick, and G. I. Turner, "Multinuclear Nuclear Magnetic Resonance and Raman Investigation of Sodium Borosilicate Glass Structures," Phys. Chem. Glasses, 31 [1] 30-41 (1990). – reference: V. Pirlet, "Overview of Actinides Np, Pu, Am and Tc Release from Waste Glasses: Influence of Solution Composition," J. Nucl. Mater., 298, 47-54 (2001). – reference: R. E. Youngman and J. W. Zwanziger, "On the Formation of Tetracoordinate Boron in Rubidium Borate Glasses," J. Am. Chem. Soc., 117 [4] 1397-402 (1995). – reference: C. P. Kaushik, R. K. Mishra, P. Sengupta, D. Das, G. B. Kale, and K. Raj, "Barium Borosilicate Glass: A Potential Matrix for Immobilization of Sulfate Bearing High Level Radioactive Waste," J. Nucl. Mater., 358, 129-38 (2006). – reference: D. Maniu, I. Ardelean, and T. Iliescu, "Raman Spectroscopic Investigations of the Structure of XV2O5 1−x [3B2O3 -K2O] Glasses," Mater. Lett., 25 [3-4] 147-9 (1995). – reference: W. L. Konijnendijk and J. M. Stevels, "The Structure of Borosilicate Glasses Studied by Raman Scattering," J. Non-Cryst. Solids, 20 [2] 193-224 (1976). – reference: T. Furukawa and W. B. White, "Raman Spectroscopic Investigation of Sodium Borosilicate Glass Structure," J. Mat. Sci., 16, 2689-700 (1981). – reference: D. A. McKeown, I. S. Muller, H. Gan, and I. L. Pegg, "X-Ray Absorption Studies of Vanadium Valence and Local Environment in Borosilicate Waste Glasses Using Vanadium Sulfide, Silicate, and Oxide Standards," J. Non-Cryst. Solids, 298, 160-75 (2002). – reference: M. C. Davis, D. C. Kaseman, S. M. Parvani, K. J. Sanders, P. J. Grandinetti, D. Massiot, and P. Florian, "Q n Species Distribution in K2O·2SiO2 Glass by 29Si Magic Angle Flipping NMR," J. Phys. Chem. A, 114 [17] 5503-8 (2010). – reference: P. Sengupta, "A Review on Immobilization of Phosphate Containing High Level Nuclear Wastes Within Glass Matrix - Present Status and Future Challenges," J. Hazar. Mater., 235-236, 17-28 (2012). – reference: W. E. Lee, M. I. Ojovan, and M. C. Stennett, "Immobilization of Radioactive Waste in Glasses, Glass Composite," Mater. Ceram. Adv. Appl. Ceram., 105, 3-12 (2006). – reference: M. I. Ojovan and W. E. Lee, An Introduction to Nuclear Waste Immobilization. Elseiver, Amsterdam, the Netherlands, 2005. – reference: P. Sengupta, "Interaction Study Between Nuclear Waste Glass Melt and Ceramic Melter Bellow Liner Materials," J. Nucl. Mater., 411, 181-4 (2011). – reference: C. Sanchez, J. Livage, and G. Lucazeau, "Infrared and Raman Study of Amorphous V2O5," J. Raman Spectrosc., 12 [1] 68-72 (1982). – reference: P. Sengupta, D. Rogalla, H. W. Becker, G. K. Dey, and S. Chakraborty, "Development of Graded Ni-YSZ Composite Coating on Alloy 690 by Pulsed Laser Deposition Technique to Reduce Hazardous Metallic Nuclear Waste Inventory," J. Hazar. Mater., 192, 208-21 (2011). – reference: G. N. Greaves, S. J. Gurman, C. R. A. Catlow, A. V. Chadwick, S. Houde-Walter, C. M. B. Henderson, and B. R. Dobson, "A Structural Basis for Ionic Diffusion in Oxide Glasses," Philos. Mag. A, 64, 1059-72 (1991). – reference: S. V. Stefanovskii, F. A. Livanov, and A. N. Gulin, Scientific Basis for Nuclear Waste Management, vol. XVIII, pp. 101-6. Materials Research Society, Pittsburgh, PA, 1995. – reference: D. W. Matson, S. K. Sharma, and J. A. Philpotts, "The Structure of High-Silica Alkali-Silicate Glasses. A Raman Spectroscopic Investigation," J. Non-Cryst. Solids, 58 [2-3] 323-52 (1983). – reference: I. W. Donald, B. L. Metcalfe, and J. R. N. Taylor, "Review: The Immobilization of High Level Radioactive Wastes Using Ceramics and Glasses," J. Mater. Sci., 32 851-87 (1997). – reference: R. Martens and W. Muller-Warmuth, "Structural Groups and Their Mixing in Borosilicate Glasses of Various Compositions - An NMR Study," J. Non-Cryst. Solids, 265, 167-75 (2000). – reference: M. I. Ojovan and W. E. Lee, New Developments in Glassy Nuclear Wasteforms. Nova Science Pub Inc., New York, 2007. – reference: P. Sengupta, J. Mittra, and G. B. Kale, "Interaction Between Borosilicate Melt and Inconel," J. Nucl. Mater., 350, 66-73 (2006). – reference: N. Trcera, S. Rossano, and M. Tarrida, "Structural Study of Mg-Bearing Sodosilicate Glasses by Raman Spectroscopy," J. Raman Spect., 42, 765-72 (2011). – reference: G. L. Turner, K. Smith, R. J. Kirkpatrick, and E. Oldfield, "Boron-11 Nuclear Magnetic Resonance Spectroscopic Study of Borate and Borosilicate Minerals and a Borosilicate Glass," J. Magn. Reson., 67 [3] 544-50 (1986). – reference: T. Iliescu, S. Simon, D. Maniu, and I. Ardelean, "Raman Spectroscopy of Oxide Glass System 1−x [YB2O3.ZLi2O].XGd2O3," J. Mol. Struct., 294, 201-3 (1992). – reference: D. Manara, A. Grandjean, O. Pinet, J. L. Dussossoy, and D. R. Neuville, "Sulfur Behavior in Silicate Glasses and Melts: Implications for Sulfate Incorporation in Nuclear Waste Glasses as a Function of Alkali Cation and V2O5 Content," J. Non-Cryst. Solids, 353, 12-23 (2007). – reference: R. S. Dutta, C. Yusufali, B. Paul, S. Majumdar, P. Sengupta, R. K. Mishra, C. P. Kaushik, R. J. Kshirsagar, U. D. Kulkarni, and G. K. Dey, "Formation of Diffusion Barrier Coating on Superalloy 690 Substrate and its Stability in Borosilicate Melt at Elevated Temperature," J. Nucl. Mater., 432, 72-7 (2013). – reference: V. Kain, P. Sengupta, P. K. De, and S. Banerjee, "Case Reviews on the Effect of Microstructure on the Corrosion Behavior of Austenitic Alloys for Processing and Storage of Nuclear Waste," Metall. Mater. Trans. A, 36A, 1075-84 (2005). – reference: S. V. Stefanovskii and F. A. Livanov, "Glasses for Immobilization of Sulfate Containing Radioactive Wastes," Radiokhimiya, 31, 129-34 (1989). – reference: W. L. Konijnendijk and J. M. Stevels, "The Structure of Borate Glasses Studied by Raman Scattering," J. Non-Cryst. Solids, 18 [3] 307-31 (1975). – reference: S. Sen, Z. Xu, and J. F. Stebbins, "Temperature Dependent Structural Changes in Borate, Borosilicate and Boroaluminate Liquids: High-Resolution 11B, 29Si and 27Al NMR Studies," J. Non-Cryst. Solids, 226 [1-2] 29-40 (1998). – reference: D. de Waal and C. Huter, "Vibrational Spectra of Two Phases of Copper Pyrovanadate and Some Solid Solutions of Copper and Magnesium Pyrovanadate," Mater. Res. Bull., 29 [8] 843-9 (1994). – reference: P. Sengupta, C. P. Kaushik, R. K. Mishra, and G. B. Kale, "Microstructural Characterization and Role of Glassy Layer Developed on Process Pot Wall During Nuclear High Level Waste Vitrification Process," J. Amer. Ceram. Soc., 90, 3085-90 (2007). – reference: P. Sengupta, N. Soudamini, C. P. Kaushik, Jagannath, R. K. Mishra, G. B. Kale, K. Raj, D. Das, and B. P. Sharma, "Corrosion of Alloy 690 Process Pot by Sulfate Containing High Level Radioactive Waste at Feed Stage," J. Nucl. Mater., 374, 185-91 (2008). – reference: M. D. Ingram, "Ionic Conductivity and Glass Structure," Philos. Mag. B, 60 [6] 729-40 (1989). – reference: M. Lenoir, A. Grandjean, S. Poissonnet, and D. R. Neuville, "Quantitation of Sulfate Solubility in Borosilicate Glasses Using Raman Spectroscopy," J. Non Crys. Solids, 355, 1468-73 (2009). – reference: P. Sengupta, S. Fanara, and S. Chakraborty, "Preliminary Study on Calcium Aluminosilicate Glass as a Potential Host Matrix for Radioactive 90Sr - An Approach Based on Natural Analogue Study," J. Hazar. Mater., 190, 229-39 (2011). – reference: P. M. Aguiar and S. Kroeker, "Boron Speciation and Non-Bridging Oxygens in High-Alkali Borate Glasses," J. Non-Cryst. Solids, 353 [18-21] 1834-9 (2007). – reference: F. I. Galeneer, "Planar Rings in Glasses," Solid State Commun., 44 [7] 1037-40 (1982). – reference: S. K. Lee and J. F. Stebbins, "Extent of Intermixing Among Framework Units in Silicate Glasses and Melts," Geochim. Cosmochim. Acta, 66 [2] 303-9 (2002). – reference: T. Tsujimura, X. Xue, M. Kanzaki, and M. J. Walker, "Sulfur Speciation and Network Structural Changes in Sodium Silicate Glasses: Constraints from NMR and Raman Spectroscopy," Geochim. Cosmochim. Acta, 68 [24] 5081-101 (2004). – reference: L. L. Hench, D. E. Clark, and J. Campbell, "High Level Waste Immobilization Forms," Nucl. Chem. Waste Mgt., 5 149-73 (1984). – reference: Y. Dimitrev and V. Dimitrov, "X-Ray Diffraction Studies of Glasses in the TeO2-V2O5 System," Mater. Res. Bull., 13, 1071-5 (1978). – reference: K. Raj and C. P. Kaushik, "Glass Matrices for Vitrification of Radioactive Waste- An Update on R&D Efforts," ISSTGM-2009. IOP Conf Series: Mater. Sci. Engg., 2, 1-6 (2009). – reference: S. Kroeker and J. F. Stebbins, "Three-Coordinated Boron-11 Chemical Shifts in Borates," Inorg. Chem., 40, 6239-46 (2001). – reference: L. Backnaes and J. Deubener, "Experimental Studies on Sulfur Solubility in Silicate Melts at Near Atmospheric Pressure," Rev. Miner. Geochem., 73, 143-65 (2011). – reference: C. W. Kim and D. E. Day, "Immobilization of Hanford LAW in Iron Phosphate Glasses," J. Non-Cryst. Solids, 331 [1-3] 20-31 (2003). – reference: M. Lenoir, A. Grandjean, Y. Linard, B. Cochain, and D. R. Neuville, "The Influence of Si, B Substitution and the Nature of Network Modifying Cations on the Properties and Structure of Borosilicate Glasses and Melts," Chem. Geo., 256, 316-25 (2008). – reference: R. E. Youngman and J. W. Zwanziger, "Network Modification in Potassium Borate Glasses: Structural Studies with NMR and Raman Spectroscopies," J. Phys. Chem., 100 [41] 16720-8 (1996). – reference: A. D. Pelton and P. Wu, "Thermodynamic Modelling of Glass Forming Melts," J. Non-Cryst. Solids, 253, 178-91 (1999). – reference: N. Janes and E. Oldfield, "Prediction of Silicon-29 Nuclear Magnetic Resonance Chemical Shifts Using a Group Electronegativity Approach: Applications to Silicate and Aluminosilicate Structures," J. Am. Chem. Soc., 107, 6769-75 (1985). – reference: B. N. Meera, A. K. Sood, N. Chandrabhas, and J. Ramakrishna, "Raman Study of Lead Borate Glasses," J. Non-Cryst. Solids, 126 [3] 224-30 (1990). – reference: B. A. Moyer, R. Custelcean, B. P. Hay, J. L. Sessler, K. B. James, V. W. Day, and S. O. Kang, "A Case for Molecular Recognition in Nuclear Separations: Sulphate Separation from Nuclear Wastes," Inorg. Chem., 52, 3473-90 (2013). – reference: R. K. Mishra, V. Sudarsan, P. Sengupta, R. K. Vatsa, A. K. Tyagi, C. P. Kaushik, D. Das, and K. Raj, "Role of Sulphate in Structural Modifications of Sodium Barium Borosilicate Glasses Developed for Nuclear Waste Immobilization," J. Am. Ceram. Soc., 91, 3903-7 (2008). – reference: O. Attos, M. Massot, M. Balkanski, E. Haro-Poniatowski, and M. Asomoza, "Structure of Borovandate Glasses Studied by Raman Spectroscopy," J. Non-Cryst. Solids, 210 [2-3] 163-70 (1997). – reference: C. Martineau, V. K. Michaelis, S. Schiller, and S. Kroeker, "Liquid−Liquid Phase Separation in Model Nuclear Waste Glasses: A Solid-State Double-Resonance NMR Study," Chem. Mater., 22, 4896-903 (2010). – reference: P. Sengupta, C. P. Kaushik, G. B. Kale, D. Das, K. Raj, and B. P. Sharma, "Evaluation of Alloy 690 Process Pot at the Contact with Borosilicate Melt Pool During Vitrification of High Level Nuclear Waste," J. Nucl. Mater., 392, 379-85 (2009). – reference: B. P. Dwivedi, M. H. Rahman, Y. Kumar, and B. N. Khanna, "Raman Scattering Study of Lithium Borate Glasses," J. Phys. Chem. Solids, 54 [5] 621-8 (1993). – reference: J. F. Stebbins, P. Zhao, and S. Kroeker, "Non-Bridging Oxygens in Borate Glasses: Characterization by 11B and 17O MAS and 3QMAS NMR," Solid State Nucl. Magn. Reson., 16 [1-2] 9-19 (2000). – reference: S. Prasad, T. M. Clark, T. H. Sefzik, H. T. Kwak, Z. Gan, and P. J. Grandinetti, "Solid State Multinuclear Magnetic Resonance Investigation of Pyrex," J. Non-Cryst. Solids, 352, 2834-40 (2006). – reference: T. W. Bril, "Raman Spectroscopy of Crystalline and Vitreous Borates," Philips Res. Rept. Suppl, 2, 117-23 (1976). – volume: 353 start-page: 1834 issue: 18–21 year: 2007 end-page: 9 article-title: Boron Speciation and Non‐Bridging Oxygens in High‐Alkali Borate Glasses publication-title: J. Non‐Cryst. Solids – volume: 331 start-page: 20 issue: 1–3 year: 2003 end-page: 31 article-title: Immobilization of Hanford LAW in Iron Phosphate Glasses publication-title: J. Non‐Cryst. Solids – volume: 60 start-page: 729 issue: 6 year: 1989 end-page: 40 article-title: Ionic Conductivity and Glass Structure publication-title: Philos. Mag. B – volume: 29 start-page: 843 issue: 8 year: 1994 end-page: 9 article-title: Vibrational Spectra of Two Phases of Copper Pyrovanadate and Some Solid Solutions of Copper and Magnesium Pyrovanadate publication-title: Mater. Res. Bull. – volume: 117 start-page: 1397 issue: 4 year: 1995 end-page: 402 article-title: On the Formation of Tetracoordinate Boron in Rubidium Borate Glasses publication-title: J. Am. Chem. Soc. – start-page: 57 year: 1979 end-page: 68 – volume: 353 start-page: 12 year: 2007 end-page: 23 article-title: Sulfur Behavior in Silicate Glasses and Melts: Implications for Sulfate Incorporation in Nuclear Waste Glasses as a Function of Alkali Cation and V O Content publication-title: J. Non‐Cryst. Solids – year: 2005 – volume: 32 start-page: 121 year: 1995 end-page: 43 – volume: 105 start-page: 3 year: 2006 end-page: 12 article-title: Immobilization of Radioactive Waste in Glasses, Glass Composite publication-title: Mater. Ceram. Adv. Appl. Ceram. – volume: 73 start-page: 143 year: 2011 end-page: 65 article-title: Experimental Studies on Sulfur Solubility in Silicate Melts at Near Atmospheric Pressure publication-title: Rev. Miner. Geochem. – volume: 32 start-page: 851 year: 1997 end-page: 87 article-title: Review: The Immobilization of High Level Radioactive Wastes Using Ceramics and Glasses publication-title: J. Mater. Sci. – volume: 58 start-page: 323 issue: 2–3 year: 1983 end-page: 52 article-title: The Structure of High‐Silica Alkali‐Silicate Glasses. A Raman Spectroscopic Investigation publication-title: J. Non‐Cryst. Solids – volume: 38 start-page: 1 year: 1999 end-page: 22 – volume: 42 start-page: 765 year: 2011 end-page: 72 article-title: Structural Study of Mg‐Bearing Sodosilicate Glasses by Raman Spectroscopy publication-title: J. Raman Spect. – volume: 90 start-page: 3085 year: 2007 end-page: 90 article-title: Microstructural Characterization and Role of Glassy Layer Developed on Process Pot Wall During Nuclear High Level Waste Vitrification Process publication-title: J. Amer. Ceram. Soc. – volume: 32 start-page: 145 year: 1995 end-page: 90 – volume: 256 start-page: 316 year: 2008 end-page: 25 article-title: The Influence of Si, B Substitution and the Nature of Network Modifying Cations on the Properties and Structure of Borosilicate Glasses and Melts publication-title: Chem. Geo. – start-page: 157 year: 1986 end-page: 65 – year: 1994 – volume: 192 start-page: 208 year: 2011 end-page: 21 article-title: Development of Graded Ni‐YSZ Composite Coating on Alloy 690 by Pulsed Laser Deposition Technique to Reduce Hazardous Metallic Nuclear Waste Inventory publication-title: J. Hazar. Mater. – volume: 410–411 start-page: 291 year: 1997 end-page: 4 article-title: Raman Spectroscopic Investigations of the Oxide Glass System 1− 3B O ·K O MO MO = V O or Cu publication-title: J. Mol. Struct. – volume: 68 start-page: 1206 year: 1983 end-page: 15 article-title: High Resolution Si NMR Spectroscopic Study of Rock Forming Silicates publication-title: Am. Miner. – volume: 114 start-page: 5503 issue: 17 year: 2010 end-page: 8 article-title: Species Distribution in K O·2SiO Glass by Si Magic Angle Flipping NMR publication-title: J. Phys. Chem. A – volume: 432 start-page: 72 year: 2013 end-page: 7 article-title: Formation of Diffusion Barrier Coating on Superalloy 690 Substrate and its Stability in Borosilicate Melt at Elevated Temperature publication-title: J. Nucl. Mater. – start-page: 25 year: 2013 end-page: 51 – year: 2004 – volume: 288 start-page: 191 issue: 1–3 year: 2001 end-page: 9 article-title: Raman Studies of Sulfur in Borosilicate Waste Glasses: Sulfate Environments publication-title: J. Non‐Cryst. Solids – volume: 360 start-page: 143 year: 2007 end-page: 50 article-title: Studies on Immobilization of Thorium in Barium Borosilicate Glass publication-title: J. Nucl. Mater. – volume: 52 start-page: 3473 year: 2013 end-page: 90 article-title: A Case for Molecular Recognition in Nuclear Separations: Sulphate Separation from Nuclear Wastes publication-title: Inorg. Chem. – volume: 353 start-page: 2582 issue: 26 year: 2007 end-page: 90 article-title: Probing Alkali Coordination Environments in Alkali Borate Glasses by Multinuclear Magnetic Resonance publication-title: J. Non‐Cryst. Solids – volume: 5 start-page: 451 year: 2012 end-page: 83 article-title: Waste Glass publication-title: Comprehensive Nucl.Mater – volume: 67 start-page: 544 issue: 3 year: 1986 end-page: 50 article-title: Boron‐11 Nuclear Magnetic Resonance Spectroscopic Study of Borate and Borosilicate Minerals and a Borosilicate Glass publication-title: J. Magn. Reson. – volume: 20 start-page: 193 issue: 2 year: 1976 end-page: 224 article-title: The Structure of Borosilicate Glasses Studied by Raman Scattering publication-title: J. Non‐Cryst. Solids – volume: 235–236 start-page: 17 year: 2012 end-page: 28 article-title: A Review on Immobilization of Phosphate Containing High Level Nuclear Wastes Within Glass Matrix ‐ Present Status and Future Challenges publication-title: J. Hazar. Mater. – volume: 22 start-page: 4896 year: 2010 end-page: 903 article-title: Liquid−Liquid Phase Separation in Model Nuclear Waste Glasses: A Solid‐State Double‐Resonance NMR Study publication-title: Chem. Mater. – volume: 265 start-page: 167 year: 2000 end-page: 75 article-title: Structural Groups and Their Mixing in Borosilicate Glasses of Various Compositions – An NMR Study publication-title: J. Non‐Cryst. Solids – volume: 355 start-page: 1468 year: 2009 end-page: 73 article-title: Quantitation of Sulfate Solubility in Borosilicate Glasses Using Raman Spectroscopy publication-title: J. Non Crys. Solids – volume: 12 start-page: 68 issue: 1 year: 1982 end-page: 72 article-title: Infrared and Raman Study of Amorphous V O publication-title: J. Raman Spectrosc. – volume: 91 start-page: 3903 year: 2008 end-page: 7 article-title: Role of Sulphate in Structural Modifications of Sodium Barium Borosilicate Glasses Developed for Nuclear Waste Immobilization publication-title: J. Am. Ceram. Soc. – volume: 392 start-page: 379 year: 2009 end-page: 85 article-title: Evaluation of Alloy 690 Process Pot at the Contact with Borosilicate Melt Pool During Vitrification of High Level Nuclear Waste publication-title: J. Nucl. Mater. – volume: 36A start-page: 1075 year: 2005 end-page: 84 article-title: Case Reviews on the Effect of Microstructure on the Corrosion Behavior of Austenitic Alloys for Processing and Storage of Nuclear Waste publication-title: Metall. Mater. Trans. A – volume: 358 start-page: 129 year: 2006 end-page: 38 article-title: Barium Borosilicate Glass: A Potential Matrix for Immobilization of Sulfate Bearing High Level Radioactive Waste publication-title: J. Nucl. Mater. – volume: 25 start-page: 147 issue: 3–4 year: 1995 end-page: 9 article-title: Raman Spectroscopic Investigations of the Structure of V O 1− [3B O ‐K O] Glasses publication-title: Mater. Lett. – year: 2007 – volume: 100 start-page: 16720 issue: 41 year: 1996 end-page: 8 article-title: Network Modification in Potassium Borate Glasses: Structural Studies with NMR and Raman Spectroscopies publication-title: J. Phys. Chem. – volume: 16 start-page: 9 issue: 1–2 year: 2000 end-page: 19 article-title: Non‐Bridging Oxygens in Borate Glasses: Characterization by B and O MAS and 3QMAS NMR publication-title: Solid State Nucl. Magn. Reson. – year: 1996 – volume: 5 start-page: 149 year: 1984 end-page: 73 article-title: High Level Waste Immobilization Forms publication-title: Nucl. Chem. Waste Mgt. – volume: 16 start-page: 2689 year: 1981 end-page: 700 article-title: Raman Spectroscopic Investigation of Sodium Borosilicate Glass Structure publication-title: J. Mat. Sci. – volume: 66 start-page: 303 issue: 2 year: 2002 end-page: 9 article-title: Extent of Intermixing Among Framework Units in Silicate Glasses and Melts publication-title: Geochim. Cosmochim. Acta – volume: 226 start-page: 29 issue: 1–2 year: 1998 end-page: 40 article-title: Temperature Dependent Structural Changes in Borate, Borosilicate and Boroaluminate Liquids: High‐Resolution B, Si and Al NMR Studies publication-title: J. Non‐Cryst. Solids – volume: 18 start-page: 307 issue: 3 year: 1975 end-page: 31 article-title: The Structure of Borate Glasses Studied by Raman Scattering publication-title: J. Non‐Cryst. Solids – volume: 40 start-page: 6239 year: 2001 end-page: 46 article-title: Three‐Coordinated Boron‐11 Chemical Shifts in Borates publication-title: Inorg. Chem. – volume: 374 start-page: 185 year: 2008 end-page: 91 article-title: Corrosion of Alloy 690 Process Pot by Sulfate Containing High Level Radioactive Waste at Feed Stage publication-title: J. Nucl. Mater. – volume: 352 start-page: 2834 year: 2006 end-page: 40 article-title: Solid State Multinuclear Magnetic Resonance Investigation of Pyrex publication-title: J. Non‐Cryst. Solids – volume: 31 start-page: 30 issue: 1 year: 1990 end-page: 41 article-title: Multinuclear Nuclear Magnetic Resonance and Raman Investigation of Sodium Borosilicate Glass Structures publication-title: Phys. Chem. Glasses – volume: 253 start-page: 178 year: 1999 end-page: 91 article-title: Thermodynamic Modelling of Glass Forming Melts publication-title: J. Non‐Cryst. Solids – volume: 54 start-page: 621 issue: 5 year: 1993 end-page: 8 article-title: Raman Scattering Study of Lithium Borate Glasses publication-title: J. Phys. Chem. Solids – volume: 107 start-page: 6769 year: 1985 end-page: 75 article-title: Prediction of Silicon‐29 Nuclear Magnetic Resonance Chemical Shifts Using a Group Electronegativity Approach: Applications to Silicate and Aluminosilicate Structures publication-title: J. Am. Chem. Soc. – volume: 43 start-page: 189 issue: 4 year: 2002 end-page: 98 article-title: Chemistry of Sulphur in Soda–Lime–Silica Glass Melts publication-title: Phys. Chem. Glasses – volume: 104 start-page: 2109 issue: 9 year: 2000 end-page: 16 article-title: Clarification of Phase Separation Mechanism of Sodium Borosilicate Glasses in Early Stage by Nuclear Magnetic Resonance publication-title: J. Phys. Chem. B – volume: 107 start-page: 10063 issue: 37 year: 2003 end-page: 76 article-title: Nature of Silicon−Boron Mixing in Sodium Borosilicate Glasses: A High‐Resolution B and O NMR Study publication-title: J. Phys. Chem. B – volume: 126 start-page: 224 issue: 3 year: 1990 end-page: 30 article-title: Raman Study of Lead Borate Glasses publication-title: J. Non‐Cryst. Solids – volume: 13 start-page: 1071 year: 1978 end-page: 5 article-title: X‐Ray Diffraction Studies of Glasses in the TeO ‐V O System publication-title: Mater. Res. Bull. – volume: 210 start-page: 163 issue: 2–3 year: 1997 end-page: 70 article-title: Structure of Borovandate Glasses Studied by Raman Spectroscopy publication-title: J. Non‐Cryst. Solids – volume: 294 start-page: 201 year: 1992 end-page: 3 article-title: Raman Spectroscopy of Oxide Glass System 1−x [YB O .ZLi O].XGd O publication-title: J. Mol. Struct. – volume: 298 start-page: 160 year: 2002 end-page: 75 article-title: X‐Ray Absorption Studies of Vanadium Valence and Local Environment in Borosilicate Waste Glasses Using Vanadium Sulfide, Silicate, and Oxide Standards publication-title: J. Non‐Cryst. Solids – volume: 2 start-page: 1 year: 2009 end-page: 6 article-title: Glass Matrices for Vitrification of Radioactive Waste‐ An Update on R&D Efforts publication-title: ISSTGM‐2009. IOP Conf Series: Mater. Sci. Engg. – volume: 350 start-page: 66 year: 2006 end-page: 73 article-title: Interaction Between Borosilicate Melt and Inconel publication-title: J. Nucl. Mater. – start-page: 101 year: 1995 end-page: 6 – volume: 411 start-page: 181 year: 2011 end-page: 4 article-title: Interaction Study Between Nuclear Waste Glass Melt and Ceramic Melter Bellow Liner Materials publication-title: J. Nucl. Mater. – volume: 31 start-page: 129 year: 1989 end-page: 34 article-title: Glasses for Immobilization of Sulfate Containing Radioactive Wastes publication-title: Radiokhimiya – volume: 64 start-page: 1059 year: 1991 end-page: 72 article-title: A Structural Basis for Ionic Diffusion in Oxide Glasses publication-title: Philos. Mag. A – volume: 190 start-page: 229 year: 2011 end-page: 39 article-title: Preliminary Study on Calcium Aluminosilicate Glass as a Potential Host Matrix for Radioactive Sr – An Approach Based on Natural Analogue Study publication-title: J. Hazar. Mater. – volume: 68 start-page: 5081 issue: 24 year: 2004 end-page: 101 article-title: Sulfur Speciation and Network Structural Changes in Sodium Silicate Glasses: Constraints from NMR and Raman Spectroscopy publication-title: Geochim. Cosmochim. Acta – volume: 2 start-page: 117 year: 1976 end-page: 23 article-title: Raman Spectroscopy of Crystalline and Vitreous Borates publication-title: Philips Res. Rept. Suppl – volume: 14 start-page: 6553 year: 2002 end-page: 65 article-title: Structural Aspects of B O ‐Substituted (PbO) (SiO ) Glasses publication-title: J. Phys.: Condens. Matter – volume: 298 start-page: 47 year: 2001 end-page: 54 article-title: Overview of Actinides Np, Pu, Am and Tc Release from Waste Glasses: Influence of Solution Composition publication-title: J. Nucl. Mater. – volume: 44 start-page: 1037 issue: 7 year: 1982 end-page: 40 article-title: Planar Rings in Glasses publication-title: Solid State Commun. – ident: e_1_2_5_55_1 doi: 10.1016/S0016-7037(01)00775-X – ident: e_1_2_5_12_1 – start-page: 157 volume-title: Nuclear Waste Management year: 1986 ident: e_1_2_5_38_1 – ident: e_1_2_5_23_1 doi: 10.1016/j.jnucmat.2005.11.012 – ident: e_1_2_5_44_1 doi: 10.1021/ja00310a004 – ident: e_1_2_5_50_1 doi: 10.1515/9781501509384-008 – volume: 43 start-page: 189 issue: 4 year: 2002 ident: e_1_2_5_41_1 article-title: Chemistry of Sulphur in Soda–Lime–Silica Glass Melts publication-title: Phys. Chem. Glasses – ident: e_1_2_5_69_1 doi: 10.1016/S0022-3093(96)00596-0 – ident: e_1_2_5_53_1 doi: 10.1016/S0926-2040(00)00050-3 – volume: 67 start-page: 544 issue: 3 year: 1986 ident: e_1_2_5_63_1 article-title: Boron‐11 Nuclear Magnetic Resonance Spectroscopic Study of Borate and Borosilicate Minerals and a Borosilicate Glass publication-title: J. Magn. Reson. – ident: e_1_2_5_25_1 doi: 10.1021/ic3016832 – ident: e_1_2_5_39_1 doi: 10.1016/S0022-3093(02)00945-6 – ident: e_1_2_5_60_1 doi: 10.1016/j.jnoncrysol.2007.02.013 – ident: e_1_2_5_66_1 doi: 10.1016/0022-3093(83)90032-7 – ident: e_1_2_5_74_1 doi: 10.1016/0022-3697(93)90242-J – ident: e_1_2_5_3_1 doi: 10.1016/0191-815X(84)90045-7 – ident: e_1_2_5_54_1 doi: 10.1021/ic010305u – ident: e_1_2_5_31_1 doi: 10.1111/j.1551-2916.2008.02773.x – ident: e_1_2_5_46_1 doi: 10.1080/01418619108204878 – ident: e_1_2_5_80_1 doi: 10.1007/BF02402831 – ident: e_1_2_5_29_1 doi: 10.1016/j.jhazmat.2011.03.031 – ident: e_1_2_5_56_1 doi: 10.1016/S0022-3093(99)00693-6 – ident: e_1_2_5_30_1 doi: 10.1016/j.jnucmat.2006.07.004 – ident: e_1_2_5_70_1 doi: 10.1016/j.jnoncrysol.2009.05.015 – ident: e_1_2_5_73_1 doi: 10.1016/0038-1098(82)90329-5 – ident: e_1_2_5_13_1 doi: 10.1016/j.jnoncrysol.2006.09.041 – volume: 2 start-page: 117 year: 1976 ident: e_1_2_5_75_1 article-title: Raman Spectroscopy of Crystalline and Vitreous Borates publication-title: Philips Res. Rept. Suppl – ident: e_1_2_5_67_1 doi: 10.1016/0022-3093(75)90137-4 – ident: e_1_2_5_14_1 doi: 10.2138/rmg.2011.73.6 – ident: e_1_2_5_58_1 doi: 10.1021/jp961439 – ident: e_1_2_5_33_1 doi: 10.2172/890179 – ident: e_1_2_5_4_1 doi: 10.1179/174367606X81669 – ident: e_1_2_5_61_1 doi: 10.1016/j.jnoncrysol.2007.04.029 – ident: e_1_2_5_83_1 doi: 10.1016/0025-5408(94)90004-3 – ident: e_1_2_5_48_1 doi: 10.1021/jp100530m – ident: e_1_2_5_78_1 doi: 10.1016/0022-2860(93)80349-Z – start-page: 121 volume-title: Structure, Dynamics and Properties of Silicate Melts year: 1995 ident: e_1_2_5_49_1 doi: 10.1515/9781501509384-007 – ident: e_1_2_5_68_1 doi: 10.1016/0022-3093(76)90132-0 – ident: e_1_2_5_71_1 doi: 10.1002/jrs.2763 – ident: e_1_2_5_57_1 doi: 10.1021/ja00109a026 – ident: e_1_2_5_15_1 doi: 10.1016/S0022-3115(01)00591-8 – ident: e_1_2_5_76_1 doi: 10.1016/0167-577X(95)00148-4 – ident: e_1_2_5_35_1 doi: 10.1016/S0022-3093(99)00352-X – ident: e_1_2_5_24_1 doi: 10.1007/s11661-005-0201-5 – start-page: 1 volume-title: Mineralogical Society of America, Reviews in Mineralogy year: 1999 ident: e_1_2_5_10_1 – volume: 31 start-page: 129 year: 1989 ident: e_1_2_5_36_1 article-title: Glasses for Immobilization of Sulfate Containing Radioactive Wastes publication-title: Radiokhimiya – ident: e_1_2_5_22_1 doi: 10.1111/j.1551-2916.2007.01853.x – ident: e_1_2_5_32_1 doi: 10.1016/j.jnucmat.2006.09.012 – ident: e_1_2_5_42_1 doi: 10.1088/0953-8984/14/25/322 – volume-title: New Developments in Glassy Nuclear Wasteforms year: 2007 ident: e_1_2_5_6_1 – ident: e_1_2_5_65_1 doi: 10.1016/j.gca.2004.08.029 – ident: e_1_2_5_8_1 doi: 10.1007/978-3-642-32917-3_2 – ident: e_1_2_5_77_1 doi: 10.1016/0022-3093(90)90823-5 – volume: 192 start-page: 208 year: 2011 ident: e_1_2_5_18_1 article-title: Development of Graded Ni‐YSZ Composite Coating on Alloy 690 by Pulsed Laser Deposition Technique to Reduce Hazardous Metallic Nuclear Waste Inventory publication-title: J. Hazar. Mater. – ident: e_1_2_5_45_1 doi: 10.1021/cm1006058 – ident: e_1_2_5_28_1 doi: 10.1016/j.jhazmat.2012.07.039 – ident: e_1_2_5_81_1 doi: 10.1016/j.chemgeo.2008.07.002 – ident: e_1_2_5_62_1 doi: 10.1016/j.jnoncrysol.2006.02.085 – ident: e_1_2_5_47_1 doi: 10.1080/13642818908209739 – ident: e_1_2_5_17_1 doi: 10.1016/j.jnucmat.2012.08.012 – ident: e_1_2_5_82_1 doi: 10.1002/jrs.1250120110 – ident: e_1_2_5_19_1 doi: 10.1016/j.jnucmat.2011.01.122 – volume: 2 start-page: 1 year: 2009 ident: e_1_2_5_34_1 article-title: Glass Matrices for Vitrification of Radioactive Waste‐ An Update on R&D Efforts publication-title: ISSTGM‐2009. IOP Conf Series: Mater. Sci. Engg. – start-page: 157 volume-title: Nuclear Waste Management year: 1986 ident: e_1_2_5_7_1 – volume-title: An Introduction to Nuclear Waste Immobilization year: 2005 ident: e_1_2_5_5_1 – ident: e_1_2_5_26_1 doi: 10.2172/219300 – ident: e_1_2_5_27_1 doi: 10.1016/j.jnoncrysol.2003.08.070 – start-page: 101 volume-title: Scientific Basis for Nuclear Waste Management year: 1995 ident: e_1_2_5_37_1 – volume: 31 start-page: 30 issue: 1 year: 1990 ident: e_1_2_5_72_1 article-title: Multinuclear Nuclear Magnetic Resonance and Raman Investigation of Sodium Borosilicate Glass Structures publication-title: Phys. Chem. Glasses – ident: e_1_2_5_2_1 doi: 10.1023/A:1018646507438 – ident: e_1_2_5_51_1 doi: 10.1021/jp034048l – ident: e_1_2_5_59_1 doi: 10.1016/S0022-3093(97)00491-2 – ident: e_1_2_5_52_1 doi: 10.1021/jp993416b – volume: 68 start-page: 1206 year: 1983 ident: e_1_2_5_43_1 article-title: High Resolution Si NMR Spectroscopic Study of Rock Forming Silicates publication-title: Am. Miner. – ident: e_1_2_5_9_1 doi: 10.1016/B978-0-08-056033-5.00107-5 – ident: e_1_2_5_16_1 doi: 10.2172/145022 – ident: e_1_2_5_11_1 doi: 10.1007/978-1-4615-9107-8_7 – ident: e_1_2_5_64_1 doi: 10.1016/S0022-3093(01)00624-X – ident: e_1_2_5_20_1 doi: 10.1016/j.jnucmat.2008.07.046 – ident: e_1_2_5_79_1 doi: 10.1016/S0022-2860(96)09674-3 – ident: e_1_2_5_21_1 doi: 10.1016/j.jnucmat.2007.08.005 – ident: e_1_2_5_40_1 doi: 10.1016/0025-5408(78)90173-3 |
SSID | ssj0001984 |
Score | 2.305895 |
Snippet | Understanding the role of V2O5 within borosilicate glass matrices is important for the development of novel matrices toward immobilization of sulfate... Understanding the role of V 2 O 5 within borosilicate glass matrices is important for the development of novel matrices toward immobilization of sulfate... Understanding the role of ... within borosilicate glass matrices is important for the development of novel matrices toward immobilization of sulfate containing... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 88 |
SubjectTerms | Addition polymerization Borates Borosilicate glasses Ceramics Glass Networks NMR Nuclear magnetic resonance Polymers Silica Silicates Vanadium Vanadium pentoxide |
Title | Vanadium in Borosilicate Glass |
URI | https://api.istex.fr/ark:/67375/WNG-Q74VH7F6-S/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjace.13303 https://www.proquest.com/docview/1645771638 https://www.proquest.com/docview/1660049330 |
Volume | 98 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEB9EX9qHqm2lqfaIWAoKOZLb3XxAX-7U8xAqtOrpS1n2K3BczYl3AfGvd2fz4VmKUN_yMSG7szvZ30xmfgvwVYVxlkolAhaGMqCaREGa5WGQp5JoFWYmEhjQ_3EWjy7p6TW7XoHvTS1MxQ_RBtzQMtz3Gg1cyPmykQtlutbDclSfEYmROP_o1xN3lPWmaYN9kRSu5iZ1aTzto89WozVU7P0zqLkMWN2KM1yH301bq0STabdcyK56-IvG8bWd2YB3NRT1-9Xc2YQVU7yHt0sEhfZsPJmXlcz8A3TGLkOsvPEnhT-Y2R5NqhI6_wQx-Ee4HB5fHI6Cen-FQGE8LaAR8q1FWuVaMSqQh0dnIcuplr1MExZnOhQiE1GoaSx7di0zFj0kJtY0VanskS1YLWaF-QQ-YXmONdlW0TklhkiaUClIzyiZ2svag_1Gz1zV5OO4B8Yf3johVgPcacCDvVb2tqLc-KfUNzdcrYi4m2KSWsL41dkJ_5nQ8SgZxvzcg51mPHltn3NunUSWJIhFPdhtb1vLwt8lojCzEmVi9J_syzw4cIP3QnP4af_w2B19_h_hbXhjERirYjo7sLq4K80Xi3IWsgNr_cHRYNhxs_oRoNb02w |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZT9tAEB5V8NDyUI6CMEdw1aoSSI7seNfHI4SENECkcgTeVntZiigOIrGE-PXsrB03VAipffMxlndnd7zfjGe-Bfgu_ShNhOQe9X3hERUGXpJmvpclIlTST3XAMaB_Poh616R_S2-r3ByshSn5IeqAG1qG_V6jgWNAet7KudRN42Ih1-ciMUgDfa_jiz_sUcafJjP0i7RwFTupTeSpn321Hi2iap9egc15yGrXnO5yubHqxFIVYqrJXbOYiqZ8_ovI8b-7swKfKzTqHpbTZxU-6HwNluY4Cs3ZcDQpSpnJF2gMbZJYce-OcvdobLo0Kqvo3BOE4etw3e1ctXtetcWCJzGk5pEAKdcCJTMlKeFIxaNSn2ZEiVaqQhqlyuc85YGvSCRaZjnTBkDEOlIkkYlohRuwkI9zvQluSLMMy7KNpjMS6lCQmAgetrQUibmsHNifKZrJin8ct8H4zWo_xGiAWQ048K2WfShZN96U-mHHqxbhj3eYpxZTdjM4Yb9iMuzF3YhdOrAzG1BWmeiEGT-RxjHCUQe-1reNceEfE57rcYEyEbpQ5mUOHNjRe6c5rH_Y7tijrX8R3oOPvavzM3b2c3C6DZ8MIKNliGcHFqaPhd41oGcqGnZqvwBND_eI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rS9xAEB9EQeqH-mjF1FekIrSQI7ns5gF-8XWeVo_W1tMvsuwrcNjmxLuA-Ne7s3l4FinUb3lMyO7sTvY3k5nfAmxLP0oTIblHfV94RIWBl6SZ72WJCJX0Ux1wDOif96LuJTm9ptdTsFvXwpT8EE3ADS3Dfq_RwO9UNmnkXOqW8bCQ6nOGRAZKICS6eCaPMu40qcEvssJV5KQ2j6d59sVyNIOafXiBNScRq11yOvNwUze2zDS5bRVj0ZKPf_E4vrU3C_C-wqLuXjl5FmFK50swN8FQaM76g1FRyow-wEbfpogVf9xB7u4PTY8GZQ2de4wg_CNcdo5-HXS9aoMFT2JAzSMBEq4FSmZKUsKRiEelPs2IEu1UhTRKlc95ygNfkUi0zWKmDXyIdaRIIhPRDpdhOh_megXckGYZFmUbRWck1KEgMRE8bGspEnNZOfCl1jOTFfs4boLxmzVeiNEAsxpw4HMje1dybrwqtWOHqxHh97eYpRZTdtU7Zj9i0u_GnYj9dGCtHk9WGeiIGS-RxjGCUQe2mtvGtPB_Cc_1sECZCB0o8zIHvtrB-0dz2OnewZE9-vQ_wpsw-_2ww85Oet9W4Z1BY7SM76zB9Pi-0OsG8YzFhp3YT2Xn9jc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vanadium+in+Borosilicate+Glass&rft.jtitle=Journal+of+the+American+Ceramic+Society&rft.au=Sengupta%2C+Pranesh&rft.au=Dey%2C+Krishna+K.&rft.au=Halder%2C+Rumu&rft.au=Ajithkumar%2C+Thalasseril+G.&rft.date=2015-01-01&rft.issn=0002-7820&rft.eissn=1551-2916&rft.volume=98&rft.issue=1&rft.spage=88&rft.epage=96&rft_id=info:doi/10.1111%2Fjace.13303&rft.externalDBID=10.1111%252Fjace.13303&rft.externalDocID=JACE13303 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7820&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7820&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7820&client=summon |