Vanadium in Borosilicate Glass

Understanding the role of V2O5 within borosilicate glass matrices is important for the development of novel matrices toward immobilization of sulfate containing high‐level nuclear wastes. Present investigation shows, within sodium barium borosilicate glass matrix V2O5 can be homogeneously added up t...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Ceramic Society Vol. 98; no. 1; pp. 88 - 96
Main Authors Sengupta, Pranesh, Dey, Krishna K., Halder, Rumu, Ajithkumar, Thalasseril G., Abraham, Geogy, Mishra, Raman K., Kaushik, Chetan P., Dey, Goutam K.
Format Journal Article
LanguageEnglish
Published Columbus Blackwell Publishing Ltd 01.01.2015
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0002-7820
1551-2916
DOI10.1111/jace.13303

Cover

Loading…
Abstract Understanding the role of V2O5 within borosilicate glass matrices is important for the development of novel matrices toward immobilization of sulfate containing high‐level nuclear wastes. Present investigation shows, within sodium barium borosilicate glass matrix V2O5 can be homogeneously added up to 5 mol% and beyond which it separates out into three phases, for example, (i) silica (ii) Barium (Ba) – Vanadium (V) oxide, and (iii) glass matrix. 29Si MAS NMR (Nuclear Magnetic Resonance) studies of the samples show that below 5 mol% V2O5 addition, silicate network is dominantly constituted of Q2 and Q3 structural units, whereas above this, the network gets more polymerized through formation of Q3 and Q4 units. In case of borate network, 11B MAS NMR investigations revealed that the concentration of BO4 [(0B, 4Si)] unit increases gradually up to 5 mol% and then it decreases at the cost of BO4 [(1B, 3Si)], BO3 (symmetric) and BO3 (asymmetric) units. Micro‐Raman analyses of the samples showed that with additions of V2O5 in diluted concentrations, amorphous silicate network remained unaltered, whereas some amplification in signals corresponding to ring‐type metaborate and VO5 units exists. It is therefore apparent from both MAS‐NMR and micro‐Raman studies that with V2O5 additions within the solubility limit (≤5 mol%), borate network gets depolymerized leading to decrease in hardness from an average value of 5.0–4.2 GPa.
AbstractList Understanding the role of ... within borosilicate glass matrices is important for the development of novel matrices toward immobilization of sulfate containing high-level nuclear wastes. Present investigation shows, within sodium barium borosilicate glass matrix ... can be homogeneously added up to 5 mol% and beyond which it separates out into three phases, for example, (i) silica (ii) Barium (Ba) -- Vanadium (V) oxide, and (iii) glass matrix. 29Si MAS NMR (Nuclear Magnetic Resonance) studies of the samples show that below 5 mol% ... addition, silicate network is dominantly constituted of Q2 and Q3 structural units, whereas above this, the network gets more polymerized through formation of Q3 and Q4 units. In case of borate network, 11B MAS NMR investigations revealed that the concentration of BO4 [(0B, 4Si)] unit increases gradually up to 5 mol% and then it decreases at the cost of BO4 [(1B, 3Si)], BO3 (symmetric) and BO3 (asymmetric) units. Micro-Raman analyses of the samples showed that with additions of ... in diluted concentrations, amorphous silicate network remained unaltered, whereas some amplification in signals corresponding to ring-type metaborate and VO5 units exists. It is therefore apparent from both MAS-NMR and micro-Raman studies that with ... additions within the solubility limit (≤5 mol%), borate network gets depolymerized leading to decrease in hardness from an average value of 5.0-4.2 GPa. (ProQuest: ... denotes formulae/symbols omitted.)
Understanding the role of V 2 O 5 within borosilicate glass matrices is important for the development of novel matrices toward immobilization of sulfate containing high‐level nuclear wastes. Present investigation shows, within sodium barium borosilicate glass matrix V 2 O 5 can be homogeneously added up to 5 mol% and beyond which it separates out into three phases, for example, (i) silica (ii) Barium (Ba) – Vanadium (V) oxide, and (iii) glass matrix. 29 Si MAS NMR (Nuclear Magnetic Resonance) studies of the samples show that below 5 mol% V 2 O 5 addition, silicate network is dominantly constituted of Q 2 and Q 3 structural units, whereas above this, the network gets more polymerized through formation of Q 3 and Q 4 units. In case of borate network, 11 B MAS NMR investigations revealed that the concentration of BO 4 [(0B, 4Si)] unit increases gradually up to 5 mol% and then it decreases at the cost of BO 4 [(1B, 3Si)], BO 3 (symmetric) and BO 3 (asymmetric) units. Micro‐Raman analyses of the samples showed that with additions of V 2 O 5 in diluted concentrations, amorphous silicate network remained unaltered, whereas some amplification in signals corresponding to ring‐type metaborate and VO 5 units exists. It is therefore apparent from both MAS ‐ NMR and micro‐Raman studies that with V 2 O 5 additions within the solubility limit (≤5 mol%), borate network gets depolymerized leading to decrease in hardness from an average value of 5.0–4.2 GPa.
Understanding the role of V2O5 within borosilicate glass matrices is important for the development of novel matrices toward immobilization of sulfate containing high-level nuclear wastes. Present investigation shows, within sodium barium borosilicate glass matrix V2O5 can be homogeneously added up to 5 mol% and beyond which it separates out into three phases, for example, (i) silica (ii) Barium (Ba) - Vanadium (V) oxide, and (iii) glass matrix. 29Si MAS NMR (Nuclear Magnetic Resonance) studies of the samples show that below 5 mol% V2O5 addition, silicate network is dominantly constituted of Q2 and Q3 structural units, whereas above this, the network gets more polymerized through formation of Q3 and Q4 units. In case of borate network, 11B MAS NMR investigations revealed that the concentration of BO4 [(0B, 4Si)] unit increases gradually up to 5 mol% and then it decreases at the cost of BO4 [(1B, 3Si)], BO3 (symmetric) and BO3 (asymmetric) units. Micro-Raman analyses of the samples showed that with additions of V2O5 in diluted concentrations, amorphous silicate network remained unaltered, whereas some amplification in signals corresponding to ring-type metaborate and VO5 units exists. It is therefore apparent from both MAS-NMR and micro-Raman studies that with V2O5 additions within the solubility limit ( less than or equal to 5 mol%), borate network gets depolymerized leading to decrease in hardness from an average value of 5.0-4.2 GPa.
Understanding the role of V2O5 within borosilicate glass matrices is important for the development of novel matrices toward immobilization of sulfate containing high‐level nuclear wastes. Present investigation shows, within sodium barium borosilicate glass matrix V2O5 can be homogeneously added up to 5 mol% and beyond which it separates out into three phases, for example, (i) silica (ii) Barium (Ba) – Vanadium (V) oxide, and (iii) glass matrix. 29Si MAS NMR (Nuclear Magnetic Resonance) studies of the samples show that below 5 mol% V2O5 addition, silicate network is dominantly constituted of Q2 and Q3 structural units, whereas above this, the network gets more polymerized through formation of Q3 and Q4 units. In case of borate network, 11B MAS NMR investigations revealed that the concentration of BO4 [(0B, 4Si)] unit increases gradually up to 5 mol% and then it decreases at the cost of BO4 [(1B, 3Si)], BO3 (symmetric) and BO3 (asymmetric) units. Micro‐Raman analyses of the samples showed that with additions of V2O5 in diluted concentrations, amorphous silicate network remained unaltered, whereas some amplification in signals corresponding to ring‐type metaborate and VO5 units exists. It is therefore apparent from both MAS‐NMR and micro‐Raman studies that with V2O5 additions within the solubility limit (≤5 mol%), borate network gets depolymerized leading to decrease in hardness from an average value of 5.0–4.2 GPa.
Author Sengupta, Pranesh
Dey, Goutam K.
Dey, Krishna K.
Halder, Rumu
Mishra, Raman K.
Kaushik, Chetan P.
Abraham, Geogy
Ajithkumar, Thalasseril G.
Author_xml – sequence: 1
  givenname: Pranesh
  surname: Sengupta
  fullname: Sengupta, Pranesh
  email: praneshsengupta@gmail.com
  organization: Materials Science Division, Bhabha Atomic Research Centre, 400 085, Mumbai, India
– sequence: 2
  givenname: Krishna K.
  surname: Dey
  fullname: Dey, Krishna K.
  organization: Department of Physics, Dr HS Gour University, 470 003, Madhya Pradesh, India
– sequence: 3
  givenname: Rumu
  surname: Halder
  fullname: Halder, Rumu
  organization: Materials Science Division, Bhabha Atomic Research Centre, 400 085, Mumbai, India
– sequence: 4
  givenname: Thalasseril G.
  surname: Ajithkumar
  fullname: Ajithkumar, Thalasseril G.
  organization: Central NMR Facility, National Chemical Laboratory, 411 008, Pune, India
– sequence: 5
  givenname: Geogy
  surname: Abraham
  fullname: Abraham, Geogy
  organization: Materials Science Division, Bhabha Atomic Research Centre, 400 085, Mumbai, India
– sequence: 6
  givenname: Raman K.
  surname: Mishra
  fullname: Mishra, Raman K.
  organization: Waste Management Division, Bhabha Atomic Research Centre, 400 085, Mumbai, India
– sequence: 7
  givenname: Chetan P.
  surname: Kaushik
  fullname: Kaushik, Chetan P.
  organization: Waste Management Division, Bhabha Atomic Research Centre, 400 085, Mumbai, India
– sequence: 8
  givenname: Goutam K.
  surname: Dey
  fullname: Dey, Goutam K.
  organization: Materials Science Division, Bhabha Atomic Research Centre, 400 085, Mumbai, India
BookMark eNp9kE1LAzEQhoNUsK1e_AFS8CLC1szma3OspR9KUUStx5AmKaRud-tmF-2_d-uqhyLOZRh4nmHm7aBWlmcOoVPAfajraqWN6wMhmBygNjAGUSyBt1AbYxxHIonxEeqEsKpHkAlto7O5zrT11brns951XuTBp97o0vUmqQ7hGB0udRrcyXfvoufx6Gk4jWb3k5vhYBYZKiSJKMRAY7BmaQ2jGjjjVmK2pHYRS0sYlxZrLTVgS_kiTjA4iUE4bmlikkVMuuii2bsp8rfKhVKtfTAuTXXm8ioo4BxjKnePddH5HrrKqyKrr6spyoQATpKawg1l6pdC4ZbK-FKXPs_KQvtUAVa7wNQuMPUVWK1c7imbwq91sf0bhgZ-96nb_kOq28Fw9ONEjeND6T5-HV28Ki6IYOrlbqIeBJ1PxZirR_IJa8GI6w
CODEN JACTAW
CitedBy_id crossref_primary_10_1007_s10967_017_5206_1
crossref_primary_10_1007_s10973_023_12632_0
crossref_primary_10_1021_acs_jced_5b00985
crossref_primary_10_1007_s10967_015_4672_6
crossref_primary_10_1016_j_jnoncrysol_2018_10_009
crossref_primary_10_1080_00295450_2023_2266612
crossref_primary_10_1088_2053_1591_ab82ca
crossref_primary_10_1007_s12034_024_03257_6
crossref_primary_10_1021_acs_jpcb_1c07134
crossref_primary_10_1016_j_jnucmat_2024_155005
crossref_primary_10_1016_j_anucene_2023_110175
crossref_primary_10_1016_j_jnoncrysol_2021_121223
crossref_primary_10_1016_j_radphyschem_2017_05_003
crossref_primary_10_1111_jace_19851
crossref_primary_10_1111_jace_15331
crossref_primary_10_1111_jace_17057
crossref_primary_10_1111_jace_19333
crossref_primary_10_1016_j_jhazmat_2015_01_061
crossref_primary_10_1557_s43580_021_00034_z
crossref_primary_10_1016_j_jnoncrysol_2023_122554
crossref_primary_10_1016_j_jnoncrysol_2019_04_009
crossref_primary_10_1016_j_jpcs_2018_10_030
crossref_primary_10_1021_acs_cgd_7b00576
crossref_primary_10_1039_D3RA00069A
crossref_primary_10_1016_j_jnoncrysol_2016_08_026
crossref_primary_10_1021_acs_jced_7b00362
crossref_primary_10_1088_2053_1591_ab67f6
crossref_primary_10_1016_j_jnoncrysol_2022_121933
crossref_primary_10_1016_j_jnoncrysol_2025_123516
crossref_primary_10_1111_jace_18850
Cites_doi 10.1016/S0016-7037(01)00775-X
10.1016/j.jnucmat.2005.11.012
10.1021/ja00310a004
10.1515/9781501509384-008
10.1016/S0022-3093(96)00596-0
10.1016/S0926-2040(00)00050-3
10.1021/ic3016832
10.1016/S0022-3093(02)00945-6
10.1016/j.jnoncrysol.2007.02.013
10.1016/0022-3093(83)90032-7
10.1016/0022-3697(93)90242-J
10.1016/0191-815X(84)90045-7
10.1021/ic010305u
10.1111/j.1551-2916.2008.02773.x
10.1080/01418619108204878
10.1007/BF02402831
10.1016/j.jhazmat.2011.03.031
10.1016/S0022-3093(99)00693-6
10.1016/j.jnucmat.2006.07.004
10.1016/j.jnoncrysol.2009.05.015
10.1016/0038-1098(82)90329-5
10.1016/j.jnoncrysol.2006.09.041
10.1016/0022-3093(75)90137-4
10.2138/rmg.2011.73.6
10.1021/jp961439
10.2172/890179
10.1179/174367606X81669
10.1016/j.jnoncrysol.2007.04.029
10.1016/0025-5408(94)90004-3
10.1021/jp100530m
10.1016/0022-2860(93)80349-Z
10.1515/9781501509384-007
10.1016/0022-3093(76)90132-0
10.1002/jrs.2763
10.1021/ja00109a026
10.1016/S0022-3115(01)00591-8
10.1016/0167-577X(95)00148-4
10.1016/S0022-3093(99)00352-X
10.1007/s11661-005-0201-5
10.1111/j.1551-2916.2007.01853.x
10.1016/j.jnucmat.2006.09.012
10.1088/0953-8984/14/25/322
10.1016/j.gca.2004.08.029
10.1007/978-3-642-32917-3_2
10.1016/0022-3093(90)90823-5
10.1021/cm1006058
10.1016/j.jhazmat.2012.07.039
10.1016/j.chemgeo.2008.07.002
10.1016/j.jnoncrysol.2006.02.085
10.1080/13642818908209739
10.1016/j.jnucmat.2012.08.012
10.1002/jrs.1250120110
10.1016/j.jnucmat.2011.01.122
10.2172/219300
10.1016/j.jnoncrysol.2003.08.070
10.1023/A:1018646507438
10.1021/jp034048l
10.1016/S0022-3093(97)00491-2
10.1021/jp993416b
10.1016/B978-0-08-056033-5.00107-5
10.2172/145022
10.1007/978-1-4615-9107-8_7
10.1016/S0022-3093(01)00624-X
10.1016/j.jnucmat.2008.07.046
10.1016/S0022-2860(96)09674-3
10.1016/j.jnucmat.2007.08.005
10.1016/0025-5408(78)90173-3
ContentType Journal Article
Copyright 2014 The American Ceramic Society
Copyright Wiley Subscription Services, Inc. Jan 2015
Copyright_xml – notice: 2014 The American Ceramic Society
– notice: Copyright Wiley Subscription Services, Inc. Jan 2015
DBID BSCLL
AAYXX
CITATION
7QQ
7SR
8FD
JG9
DOI 10.1111/jace.13303
DatabaseName Istex
CrossRef
Ceramic Abstracts
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Ceramic Abstracts
Technology Research Database
DatabaseTitleList Materials Research Database
CrossRef
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
Engineering
EISSN 1551-2916
Editor Pinckney, L.
Editor_xml – sequence: 9
  givenname: L.
  surname: Pinckney
  fullname: Pinckney, L.
EndPage 96
ExternalDocumentID 3558889391
10_1111_jace_13303
JACE13303
ark_67375_WNG_Q74VH7F6_S
Genre article
Feature
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1OB
1OC
29L
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEFU
ABEML
ABJNI
ABPVW
ABTAH
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACKIV
ACNCT
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHG
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHEFC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
CO8
COF
CS3
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBO
EBS
EDO
EJD
EMK
ESX
F00
F01
F04
FEDTE
FOJGT
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
H~9
I-F
IRD
ITF
ITG
ITH
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NDZJH
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QF4
QM1
QN7
QO4
R.K
RAX
RIWAO
RJQFR
ROL
RX1
SAMSI
SJN
SUPJJ
TAE
TH9
TN5
TUS
UB1
UPT
V8K
VH1
W8V
W99
WBKPD
WFSAM
WH7
WIH
WIK
WOHZO
WQJ
WRC
WTY
WXSBR
WYISQ
XG1
YQT
ZCG
ZE2
ZY4
ZZTAW
~02
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACUHS
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
ADMLS
ADXHL
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7QQ
7SR
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
ID FETCH-LOGICAL-c4793-4121421dcfdc54a1656d905f4db29d3569d0aa9a10d46b2801e9017e6d48c8b23
IEDL.DBID DR2
ISSN 0002-7820
IngestDate Fri Jul 11 10:18:27 EDT 2025
Fri Jul 25 19:19:39 EDT 2025
Thu Apr 24 23:04:06 EDT 2025
Tue Jul 01 01:35:25 EDT 2025
Wed Jan 22 16:56:57 EST 2025
Wed Oct 30 09:59:36 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4793-4121421dcfdc54a1656d905f4db29d3569d0aa9a10d46b2801e9017e6d48c8b23
Notes istex:8C31F80FC7202546F86CCACF8C6201DE3E69A57B
ark:/67375/WNG-Q74VH7F6-S
ArticleID:JACE13303
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1645771638
PQPubID 41752
PageCount 9
ParticipantIDs proquest_miscellaneous_1660049330
proquest_journals_1645771638
crossref_citationtrail_10_1111_jace_13303
crossref_primary_10_1111_jace_13303
wiley_primary_10_1111_jace_13303_JACE13303
istex_primary_ark_67375_WNG_Q74VH7F6_S
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2015
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: January 2015
PublicationDecade 2010
PublicationPlace Columbus
PublicationPlace_xml – name: Columbus
PublicationTitle Journal of the American Ceramic Society
PublicationTitleAlternate J. Am. Ceram. Soc
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References C. P. Kaushik, R. K. Mishra, P. Sengupta, D. Das, G. B. Kale, and K. Raj, "Barium Borosilicate Glass: A Potential Matrix for Immobilization of Sulfate Bearing High Level Radioactive Waste," J. Nucl. Mater., 358, 129-38 (2006).
R. S. Dutta, C. Yusufali, B. Paul, S. Majumdar, P. Sengupta, R. K. Mishra, C. P. Kaushik, R. J. Kshirsagar, U. D. Kulkarni, and G. K. Dey, "Formation of Diffusion Barrier Coating on Superalloy 690 Substrate and its Stability in Borosilicate Melt at Elevated Temperature," J. Nucl. Mater., 432, 72-7 (2013).
B. A. Moyer, R. Custelcean, B. P. Hay, J. L. Sessler, K. B. James, V. W. Day, and S. O. Kang, "A Case for Molecular Recognition in Nuclear Separations: Sulphate Separation from Nuclear Wastes," Inorg. Chem., 52, 3473-90 (2013).
N. Janes and E. Oldfield, "Prediction of Silicon-29 Nuclear Magnetic Resonance Chemical Shifts Using a Group Electronegativity Approach: Applications to Silicate and Aluminosilicate Structures," J. Am. Chem. Soc., 107, 6769-75 (1985).
C. Martineau, V. K. Michaelis, S. Schiller, and S. Kroeker, "Liquid−Liquid Phase Separation in Model Nuclear Waste Glasses: A Solid-State Double-Resonance NMR Study," Chem. Mater., 22, 4896-903 (2010).
D. Maniu, I. Ardelean, and T. Iliescu, "Raman Spectroscopic Investigations of the Structure of XV2O5 1−x [3B2O3 -K2O] Glasses," Mater. Lett., 25 [3-4] 147-9 (1995).
V. Pirlet, "Overview of Actinides Np, Pu, Am and Tc Release from Waste Glasses: Influence of Solution Composition," J. Nucl. Mater., 298, 47-54 (2001).
D. W. Matson, S. K. Sharma, and J. A. Philpotts, "The Structure of High-Silica Alkali-Silicate Glasses. A Raman Spectroscopic Investigation," J. Non-Cryst. Solids, 58 [2-3] 323-52 (1983).
P. Sengupta, C. P. Kaushik, R. K. Mishra, and G. B. Kale, "Microstructural Characterization and Role of Glassy Layer Developed on Process Pot Wall During Nuclear High Level Waste Vitrification Process," J. Amer. Ceram. Soc., 90, 3085-90 (2007).
P. Sengupta, "Interaction Study Between Nuclear Waste Glass Melt and Ceramic Melter Bellow Liner Materials," J. Nucl. Mater., 411, 181-4 (2011).
E. Vernaz, S. Gin, and C. Veyer, "Waste Glass," Comprehensive Nucl.Mater, 5, 451-83 (2012).
M. Lenoir, A. Grandjean, S. Poissonnet, and D. R. Neuville, "Quantitation of Sulfate Solubility in Borosilicate Glasses Using Raman Spectroscopy," J. Non Crys. Solids, 355, 1468-73 (2009).
T. Yazawa, K. Kuraoka, T. Akai, N. Umesaki, and W. F. Du, "Clarification of Phase Separation Mechanism of Sodium Borosilicate Glasses in Early Stage by Nuclear Magnetic Resonance," J. Phys. Chem. B, 104 [9] 2109-16 (2000).
S. Prasad, T. M. Clark, T. H. Sefzik, H. T. Kwak, Z. Gan, and P. J. Grandinetti, "Solid State Multinuclear Magnetic Resonance Investigation of Pyrex," J. Non-Cryst. Solids, 352, 2834-40 (2006).
P. M. Aguiar and S. Kroeker, "Boron Speciation and Non-Bridging Oxygens in High-Alkali Borate Glasses," J. Non-Cryst. Solids, 353 [18-21] 1834-9 (2007).
T. Iliescu, S. Simon, D. Maniu, and I. Ardelean, "Raman Spectroscopy of Oxide Glass System 1−x [YB2O3.ZLi2O].XGd2O3," J. Mol. Struct., 294, 201-3 (1992).
D. Maniu, I. Ardelean, T. Iliescu, S. Cinta, and O. Cozar, "Raman Spectroscopic Investigations of the Oxide Glass System 1−x 3B2O3·K2O xMO MO = V2O5 or Cu," J. Mol. Struct., 410-411, 291-4 (1997).
P. Sengupta, N. Soudamini, C. P. Kaushik, Jagannath, R. K. Mishra, G. B. Kale, K. Raj, D. Das, and B. P. Sharma, "Corrosion of Alloy 690 Process Pot by Sulfate Containing High Level Radioactive Waste at Feed Stage," J. Nucl. Mater., 374, 185-91 (2008).
B. N. Meera, A. K. Sood, N. Chandrabhas, and J. Ramakrishna, "Raman Study of Lead Borate Glasses," J. Non-Cryst. Solids, 126 [3] 224-30 (1990).
K. Raj and C. P. Kaushik, "Glass Matrices for Vitrification of Radioactive Waste- An Update on R&D Efforts," ISSTGM-2009. IOP Conf Series: Mater. Sci. Engg., 2, 1-6 (2009).
K. A. Smith, R. J. Kirkpatrick, E. Oldfield, and D. M. Henderson, "High Resolution Si NMR Spectroscopic Study of Rock Forming Silicates," Am. Miner., 68, 1206-15 (1983).
P. Sengupta, D. Rogalla, H. W. Becker, G. K. Dey, and S. Chakraborty, "Development of Graded Ni-YSZ Composite Coating on Alloy 690 by Pulsed Laser Deposition Technique to Reduce Hazardous Metallic Nuclear Waste Inventory," J. Hazar. Mater., 192, 208-21 (2011).
A. D. Pelton and P. Wu, "Thermodynamic Modelling of Glass Forming Melts," J. Non-Cryst. Solids, 253, 178-91 (1999).
M. Lenoir, A. Grandjean, Y. Linard, B. Cochain, and D. R. Neuville, "The Influence of Si, B Substitution and the Nature of Network Modifying Cations on the Properties and Structure of Borosilicate Glasses and Melts," Chem. Geo., 256, 316-25 (2008).
B. P. Dwivedi, M. H. Rahman, Y. Kumar, and B. N. Khanna, "Raman Scattering Study of Lithium Borate Glasses," J. Phys. Chem. Solids, 54 [5] 621-8 (1993).
G. L. Turner, K. Smith, R. J. Kirkpatrick, and E. Oldfield, "Boron-11 Nuclear Magnetic Resonance Spectroscopic Study of Borate and Borosilicate Minerals and a Borosilicate Glass," J. Magn. Reson., 67 [3] 544-50 (1986).
D. Manara, A. Grandjean, O. Pinet, J. L. Dussossoy, and D. R. Neuville, "Sulfur Behavior in Silicate Glasses and Melts: Implications for Sulfate Incorporation in Nuclear Waste Glasses as a Function of Alkali Cation and V2O5 Content," J. Non-Cryst. Solids, 353, 12-23 (2007).
C. Sanchez, J. Livage, and G. Lucazeau, "Infrared and Raman Study of Amorphous V2O5," J. Raman Spectrosc., 12 [1] 68-72 (1982).
D. de Waal and C. Huter, "Vibrational Spectra of Two Phases of Copper Pyrovanadate and Some Solid Solutions of Copper and Magnesium Pyrovanadate," Mater. Res. Bull., 29 [8] 843-9 (1994).
P. Sengupta, "A Review on Immobilization of Phosphate Containing High Level Nuclear Wastes Within Glass Matrix - Present Status and Future Challenges," J. Hazar. Mater., 235-236, 17-28 (2012).
B. C. Bunker, D. R. Tellant, R. J. Kirkpatrick, and G. I. Turner, "Multinuclear Nuclear Magnetic Resonance and Raman Investigation of Sodium Borosilicate Glass Structures," Phys. Chem. Glasses, 31 [1] 30-41 (1990).
I. W. Donald, B. L. Metcalfe, and J. R. N. Taylor, "Review: The Immobilization of High Level Radioactive Wastes Using Ceramics and Glasses," J. Mater. Sci., 32 851-87 (1997).
V. K. Michaelis, P. M. Aguiar, and S. Kroeker, "Probing Alkali Coordination Environments in Alkali Borate Glasses by Multinuclear Magnetic Resonance," J. Non-Cryst. Solids, 353 [26] 2582-90 (2007).
J. F. Stebbins, P. Zhao, and S. Kroeker, "Non-Bridging Oxygens in Borate Glasses: Characterization by 11B and 17O MAS and 3QMAS NMR," Solid State Nucl. Magn. Reson., 16 [1-2] 9-19 (2000).
V. Sudarsan, V. K. Shrikhande, G. P. Kothiyal, and S. K. Kulshreshtha, "Structural Aspects of B2O3-Substituted (PbO)0.5(SiO2)0.5 Glasses," J. Phys.: Condens. Matter, 14, 6553-65 (2002).
L. Backnaes and J. Deubener, "Experimental Studies on Sulfur Solubility in Silicate Melts at Near Atmospheric Pressure," Rev. Miner. Geochem., 73, 143-65 (2011).
M. D. Ingram, "Ionic Conductivity and Glass Structure," Philos. Mag. B, 60 [6] 729-40 (1989).
R. G. C. Beerkens and K. Kahl, "Chemistry of Sulphur in Soda-Lime-Silica Glass Melts," Phys. Chem. Glasses, 43 [4] 189-98 (2002).
P. Sengupta, J. Mittra, and G. B. Kale, "Interaction Between Borosilicate Melt and Inconel," J. Nucl. Mater., 350, 66-73 (2006).
L. S. Du and J. F. Stebbins, "Nature of Silicon−Boron Mixing in Sodium Borosilicate Glasses:  A High-Resolution 11B and 17O NMR Study," J. Phys. Chem. B, 107 [37] 10063-76 (2003).
R. Martens and W. Muller-Warmuth, "Structural Groups and Their Mixing in Borosilicate Glasses of Various Compositions - An NMR Study," J. Non-Cryst. Solids, 265, 167-75 (2000).
S. Kroeker and J. F. Stebbins, "Three-Coordinated Boron-11 Chemical Shifts in Borates," Inorg. Chem., 40, 6239-46 (2001).
Y. Dimitrev and V. Dimitrov, "X-Ray Diffraction Studies of Glasses in the TeO2-V2O5 System," Mater. Res. Bull., 13, 1071-5 (1978).
W. E. Lee, M. I. Ojovan, and M. C. Stennett, "Immobilization of Radioactive Waste in Glasses, Glass Composite," Mater. Ceram. Adv. Appl. Ceram., 105, 3-12 (2006).
O. Attos, M. Massot, M. Balkanski, E. Haro-Poniatowski, and M. Asomoza, "Structure of Borovandate Glasses Studied by Raman Spectroscopy," J. Non-Cryst. Solids, 210 [2-3] 163-70 (1997).
F. I. Galeneer, "Planar Rings in Glasses," Solid State Commun., 44 [7] 1037-40 (1982).
R. K. Mishra, P. Sengupta, C. P. Kaushik, A. K. Tyagi, G. B. Kale, and K. Raj, "Studies on Immobilization of Thorium in Barium Borosilicate Glass," J. Nucl. Mater., 360, 143-50 (2007).
T. Furukawa and W. B. White, "Raman Spectroscopic Investigation of Sodium Borosilicate Glass Structure," J. Mat. Sci., 16, 2689-700 (1981).
M. I. Ojovan and W. E. Lee, An Introduction to Nuclear Waste Immobilization. Elseiver, Amsterdam, the Netherlands, 2005.
V. Kain, P. Sengupta, P. K. De, and S. Banerjee, "Case Reviews on the Effect of Microstructure on the Corrosion Behavior of Austenitic Alloys for Processing and Storage of Nuclear Waste," Metall. Mater. Trans. A, 36A, 1075-84 (2005).
D. A. McKeown, I. S. Muller, H. Gan, I. L. Pegg, and C. A. Kendizora, "Raman Studies of Sulfur in Borosilicate Waste Glasses: Sulfate Environments," J. Non-Cryst. Solids, 288 [1-3] 191-9 (2001).
S. Sen, Z. Xu, and J. F. Stebbins, "Temperature Dependent Structural Changes in Borate, Borosilicate and Boroaluminate Liquids: High-Resolution 11B, 29Si and 27Al NMR Studies," J. Non-Cryst. Solids, 226 [1-2] 29-40 (1998).
T. Tsujimura, X. Xue, M. Kanzaki, and M. J. Walker, "Sulfur Speciation and Network Structural Changes in Sodium Silicate Glasses: Constraints from NMR and Raman Spectroscopy," Geochim. Cosmochim. Acta, 68 [24] 5081-101 (2004).
T. W. Bril, "Raman Spectroscopy of Crystalline and Vitreous Borates," Philips Res. Rept. Suppl, 2, 117-23 (1976).
R. K. Mishra, V. Sudarsan, P. Sengupta, R. K. Vatsa, A. K. Tyagi, C. P. Kaushik, D. Das, and K. Raj, "Role of Sulphate in Structural Modifications of Sodium Barium Borosilicate Glasses Developed for Nuclear Waste Immobilization," J. Am. Ceram. Soc., 91, 3903-7 (2008).
S. K. Le
1982; 12
1976; 20
2002; 14
1995; 32
2004; 68
1975; 18
1997; 410–411
2009; 355
2011; 192
2009; 392
1996; 100
2011; 190
1994; 29
2001; 40
1979
1983; 58
2001; 298
2010; 22
1989; 31
2000; 16
1995; 25
2010; 114
2011; 73
2002; 43
2013; 52
1986
1999; 253
2013; 432
2012; 235–236
1983; 68
2011; 411
1989; 60
1990; 31
2001; 288
1990; 126
2007; 360
2002; 298
1997; 210
2006; 350
1995; 117
1976; 2
2007; 90
2007
1996
2006; 352
1995
2005
1994
2004
1985; 107
1978; 13
2006; 358
2003; 331
2008; 91
2003; 107
1992; 294
1997; 32
2000; 104
1986; 67
1999; 38
2007; 353
1991; 64
1993; 54
1984; 5
2002; 66
1982; 44
2011; 42
1981; 16
2005; 36A
2000; 265
2013
1998; 226
2008; 256
2006; 105
2009; 2
2008; 374
2012; 5
e_1_2_5_27_1
e_1_2_5_25_1
e_1_2_5_48_1
Navrotsky A. (e_1_2_5_49_1) 1995
e_1_2_5_23_1
e_1_2_5_46_1
e_1_2_5_21_1
e_1_2_5_44_1
e_1_2_5_65_1
e_1_2_5_67_1
Bril T. W. (e_1_2_5_75_1) 1976; 2
e_1_2_5_69_1
e_1_2_5_29_1
e_1_2_5_80_1
e_1_2_5_82_1
e_1_2_5_61_1
Janetzen C. (e_1_2_5_7_1) 1986
e_1_2_5_42_1
e_1_2_5_40_1
Ojovan M. I. (e_1_2_5_6_1) 2007
e_1_2_5_15_1
e_1_2_5_17_1
e_1_2_5_59_1
e_1_2_5_9_1
e_1_2_5_11_1
e_1_2_5_57_1
e_1_2_5_13_1
e_1_2_5_32_1
Stefanovskii S. V. (e_1_2_5_37_1) 1995
e_1_2_5_55_1
e_1_2_5_76_1
e_1_2_5_3_1
Bunker B. C. (e_1_2_5_72_1) 1990; 31
e_1_2_5_78_1
e_1_2_5_19_1
Stefanovskii S. V. (e_1_2_5_36_1) 1989; 31
e_1_2_5_70_1
e_1_2_5_74_1
e_1_2_5_30_1
e_1_2_5_53_1
e_1_2_5_51_1
e_1_2_5_28_1
e_1_2_5_26_1
e_1_2_5_47_1
e_1_2_5_24_1
Jantzen C. M. (e_1_2_5_38_1) 1986
e_1_2_5_45_1
e_1_2_5_22_1
e_1_2_5_66_1
e_1_2_5_68_1
Ewing R. C. (e_1_2_5_10_1) 1999
e_1_2_5_81_1
e_1_2_5_60_1
e_1_2_5_83_1
e_1_2_5_62_1
e_1_2_5_64_1
e_1_2_5_20_1
e_1_2_5_14_1
e_1_2_5_39_1
Ojovan M. I. (e_1_2_5_5_1) 2005
e_1_2_5_16_1
e_1_2_5_58_1
e_1_2_5_8_1
e_1_2_5_35_1
e_1_2_5_56_1
Beerkens R. G. C. (e_1_2_5_41_1) 2002; 43
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_54_1
e_1_2_5_4_1
Sengupta P. (e_1_2_5_18_1) 2011; 192
e_1_2_5_77_1
e_1_2_5_2_1
e_1_2_5_79_1
Turner G. L. (e_1_2_5_63_1) 1986; 67
Smith K. A. (e_1_2_5_43_1) 1983; 68
e_1_2_5_71_1
e_1_2_5_73_1
Raj K. (e_1_2_5_34_1) 2009; 2
e_1_2_5_31_1
e_1_2_5_52_1
e_1_2_5_50_1
References_xml – reference: V. Sudarsan, V. K. Shrikhande, G. P. Kothiyal, and S. K. Kulshreshtha, "Structural Aspects of B2O3-Substituted (PbO)0.5(SiO2)0.5 Glasses," J. Phys.: Condens. Matter, 14, 6553-65 (2002).
– reference: R. G. C. Beerkens and K. Kahl, "Chemistry of Sulphur in Soda-Lime-Silica Glass Melts," Phys. Chem. Glasses, 43 [4] 189-98 (2002).
– reference: T. Yazawa, K. Kuraoka, T. Akai, N. Umesaki, and W. F. Du, "Clarification of Phase Separation Mechanism of Sodium Borosilicate Glasses in Early Stage by Nuclear Magnetic Resonance," J. Phys. Chem. B, 104 [9] 2109-16 (2000).
– reference: R. K. Mishra, P. Sengupta, C. P. Kaushik, A. K. Tyagi, G. B. Kale, and K. Raj, "Studies on Immobilization of Thorium in Barium Borosilicate Glass," J. Nucl. Mater., 360, 143-50 (2007).
– reference: K. A. Smith, R. J. Kirkpatrick, E. Oldfield, and D. M. Henderson, "High Resolution Si NMR Spectroscopic Study of Rock Forming Silicates," Am. Miner., 68, 1206-15 (1983).
– reference: D. Maniu, I. Ardelean, T. Iliescu, S. Cinta, and O. Cozar, "Raman Spectroscopic Investigations of the Oxide Glass System 1−x 3B2O3·K2O xMO MO = V2O5 or Cu," J. Mol. Struct., 410-411, 291-4 (1997).
– reference: E. Vernaz, S. Gin, and C. Veyer, "Waste Glass," Comprehensive Nucl.Mater, 5, 451-83 (2012).
– reference: V. K. Michaelis, P. M. Aguiar, and S. Kroeker, "Probing Alkali Coordination Environments in Alkali Borate Glasses by Multinuclear Magnetic Resonance," J. Non-Cryst. Solids, 353 [26] 2582-90 (2007).
– reference: D. A. McKeown, I. S. Muller, H. Gan, I. L. Pegg, and C. A. Kendizora, "Raman Studies of Sulfur in Borosilicate Waste Glasses: Sulfate Environments," J. Non-Cryst. Solids, 288 [1-3] 191-9 (2001).
– reference: L. S. Du and J. F. Stebbins, "Nature of Silicon−Boron Mixing in Sodium Borosilicate Glasses:  A High-Resolution 11B and 17O NMR Study," J. Phys. Chem. B, 107 [37] 10063-76 (2003).
– reference: B. C. Bunker, D. R. Tellant, R. J. Kirkpatrick, and G. I. Turner, "Multinuclear Nuclear Magnetic Resonance and Raman Investigation of Sodium Borosilicate Glass Structures," Phys. Chem. Glasses, 31 [1] 30-41 (1990).
– reference: V. Pirlet, "Overview of Actinides Np, Pu, Am and Tc Release from Waste Glasses: Influence of Solution Composition," J. Nucl. Mater., 298, 47-54 (2001).
– reference: R. E. Youngman and J. W. Zwanziger, "On the Formation of Tetracoordinate Boron in Rubidium Borate Glasses," J. Am. Chem. Soc., 117 [4] 1397-402 (1995).
– reference: C. P. Kaushik, R. K. Mishra, P. Sengupta, D. Das, G. B. Kale, and K. Raj, "Barium Borosilicate Glass: A Potential Matrix for Immobilization of Sulfate Bearing High Level Radioactive Waste," J. Nucl. Mater., 358, 129-38 (2006).
– reference: D. Maniu, I. Ardelean, and T. Iliescu, "Raman Spectroscopic Investigations of the Structure of XV2O5 1−x [3B2O3 -K2O] Glasses," Mater. Lett., 25 [3-4] 147-9 (1995).
– reference: W. L. Konijnendijk and J. M. Stevels, "The Structure of Borosilicate Glasses Studied by Raman Scattering," J. Non-Cryst. Solids, 20 [2] 193-224 (1976).
– reference: T. Furukawa and W. B. White, "Raman Spectroscopic Investigation of Sodium Borosilicate Glass Structure," J. Mat. Sci., 16, 2689-700 (1981).
– reference: D. A. McKeown, I. S. Muller, H. Gan, and I. L. Pegg, "X-Ray Absorption Studies of Vanadium Valence and Local Environment in Borosilicate Waste Glasses Using Vanadium Sulfide, Silicate, and Oxide Standards," J. Non-Cryst. Solids, 298, 160-75 (2002).
– reference: M. C. Davis, D. C. Kaseman, S. M. Parvani, K. J. Sanders, P. J. Grandinetti, D. Massiot, and P. Florian, "Q n Species Distribution in K2O·2SiO2 Glass by 29Si Magic Angle Flipping NMR," J. Phys. Chem. A, 114 [17] 5503-8 (2010).
– reference: P. Sengupta, "A Review on Immobilization of Phosphate Containing High Level Nuclear Wastes Within Glass Matrix - Present Status and Future Challenges," J. Hazar. Mater., 235-236, 17-28 (2012).
– reference: W. E. Lee, M. I. Ojovan, and M. C. Stennett, "Immobilization of Radioactive Waste in Glasses, Glass Composite," Mater. Ceram. Adv. Appl. Ceram., 105, 3-12 (2006).
– reference: M. I. Ojovan and W. E. Lee, An Introduction to Nuclear Waste Immobilization. Elseiver, Amsterdam, the Netherlands, 2005.
– reference: P. Sengupta, "Interaction Study Between Nuclear Waste Glass Melt and Ceramic Melter Bellow Liner Materials," J. Nucl. Mater., 411, 181-4 (2011).
– reference: C. Sanchez, J. Livage, and G. Lucazeau, "Infrared and Raman Study of Amorphous V2O5," J. Raman Spectrosc., 12 [1] 68-72 (1982).
– reference: P. Sengupta, D. Rogalla, H. W. Becker, G. K. Dey, and S. Chakraborty, "Development of Graded Ni-YSZ Composite Coating on Alloy 690 by Pulsed Laser Deposition Technique to Reduce Hazardous Metallic Nuclear Waste Inventory," J. Hazar. Mater., 192, 208-21 (2011).
– reference: G. N. Greaves, S. J. Gurman, C. R. A. Catlow, A. V. Chadwick, S. Houde-Walter, C. M. B. Henderson, and B. R. Dobson, "A Structural Basis for Ionic Diffusion in Oxide Glasses," Philos. Mag. A, 64, 1059-72 (1991).
– reference: S. V. Stefanovskii, F. A. Livanov, and A. N. Gulin, Scientific Basis for Nuclear Waste Management, vol. XVIII, pp. 101-6. Materials Research Society, Pittsburgh, PA, 1995.
– reference: D. W. Matson, S. K. Sharma, and J. A. Philpotts, "The Structure of High-Silica Alkali-Silicate Glasses. A Raman Spectroscopic Investigation," J. Non-Cryst. Solids, 58 [2-3] 323-52 (1983).
– reference: I. W. Donald, B. L. Metcalfe, and J. R. N. Taylor, "Review: The Immobilization of High Level Radioactive Wastes Using Ceramics and Glasses," J. Mater. Sci., 32 851-87 (1997).
– reference: R. Martens and W. Muller-Warmuth, "Structural Groups and Their Mixing in Borosilicate Glasses of Various Compositions - An NMR Study," J. Non-Cryst. Solids, 265, 167-75 (2000).
– reference: M. I. Ojovan and W. E. Lee, New Developments in Glassy Nuclear Wasteforms. Nova Science Pub Inc., New York, 2007.
– reference: P. Sengupta, J. Mittra, and G. B. Kale, "Interaction Between Borosilicate Melt and Inconel," J. Nucl. Mater., 350, 66-73 (2006).
– reference: N. Trcera, S. Rossano, and M. Tarrida, "Structural Study of Mg-Bearing Sodosilicate Glasses by Raman Spectroscopy," J. Raman Spect., 42, 765-72 (2011).
– reference: G. L. Turner, K. Smith, R. J. Kirkpatrick, and E. Oldfield, "Boron-11 Nuclear Magnetic Resonance Spectroscopic Study of Borate and Borosilicate Minerals and a Borosilicate Glass," J. Magn. Reson., 67 [3] 544-50 (1986).
– reference: T. Iliescu, S. Simon, D. Maniu, and I. Ardelean, "Raman Spectroscopy of Oxide Glass System 1−x [YB2O3.ZLi2O].XGd2O3," J. Mol. Struct., 294, 201-3 (1992).
– reference: D. Manara, A. Grandjean, O. Pinet, J. L. Dussossoy, and D. R. Neuville, "Sulfur Behavior in Silicate Glasses and Melts: Implications for Sulfate Incorporation in Nuclear Waste Glasses as a Function of Alkali Cation and V2O5 Content," J. Non-Cryst. Solids, 353, 12-23 (2007).
– reference: R. S. Dutta, C. Yusufali, B. Paul, S. Majumdar, P. Sengupta, R. K. Mishra, C. P. Kaushik, R. J. Kshirsagar, U. D. Kulkarni, and G. K. Dey, "Formation of Diffusion Barrier Coating on Superalloy 690 Substrate and its Stability in Borosilicate Melt at Elevated Temperature," J. Nucl. Mater., 432, 72-7 (2013).
– reference: V. Kain, P. Sengupta, P. K. De, and S. Banerjee, "Case Reviews on the Effect of Microstructure on the Corrosion Behavior of Austenitic Alloys for Processing and Storage of Nuclear Waste," Metall. Mater. Trans. A, 36A, 1075-84 (2005).
– reference: S. V. Stefanovskii and F. A. Livanov, "Glasses for Immobilization of Sulfate Containing Radioactive Wastes," Radiokhimiya, 31, 129-34 (1989).
– reference: W. L. Konijnendijk and J. M. Stevels, "The Structure of Borate Glasses Studied by Raman Scattering," J. Non-Cryst. Solids, 18 [3] 307-31 (1975).
– reference: S. Sen, Z. Xu, and J. F. Stebbins, "Temperature Dependent Structural Changes in Borate, Borosilicate and Boroaluminate Liquids: High-Resolution 11B, 29Si and 27Al NMR Studies," J. Non-Cryst. Solids, 226 [1-2] 29-40 (1998).
– reference: D. de Waal and C. Huter, "Vibrational Spectra of Two Phases of Copper Pyrovanadate and Some Solid Solutions of Copper and Magnesium Pyrovanadate," Mater. Res. Bull., 29 [8] 843-9 (1994).
– reference: P. Sengupta, C. P. Kaushik, R. K. Mishra, and G. B. Kale, "Microstructural Characterization and Role of Glassy Layer Developed on Process Pot Wall During Nuclear High Level Waste Vitrification Process," J. Amer. Ceram. Soc., 90, 3085-90 (2007).
– reference: P. Sengupta, N. Soudamini, C. P. Kaushik, Jagannath, R. K. Mishra, G. B. Kale, K. Raj, D. Das, and B. P. Sharma, "Corrosion of Alloy 690 Process Pot by Sulfate Containing High Level Radioactive Waste at Feed Stage," J. Nucl. Mater., 374, 185-91 (2008).
– reference: M. D. Ingram, "Ionic Conductivity and Glass Structure," Philos. Mag. B, 60 [6] 729-40 (1989).
– reference: M. Lenoir, A. Grandjean, S. Poissonnet, and D. R. Neuville, "Quantitation of Sulfate Solubility in Borosilicate Glasses Using Raman Spectroscopy," J. Non Crys. Solids, 355, 1468-73 (2009).
– reference: P. Sengupta, S. Fanara, and S. Chakraborty, "Preliminary Study on Calcium Aluminosilicate Glass as a Potential Host Matrix for Radioactive 90Sr - An Approach Based on Natural Analogue Study," J. Hazar. Mater., 190, 229-39 (2011).
– reference: P. M. Aguiar and S. Kroeker, "Boron Speciation and Non-Bridging Oxygens in High-Alkali Borate Glasses," J. Non-Cryst. Solids, 353 [18-21] 1834-9 (2007).
– reference: F. I. Galeneer, "Planar Rings in Glasses," Solid State Commun., 44 [7] 1037-40 (1982).
– reference: S. K. Lee and J. F. Stebbins, "Extent of Intermixing Among Framework Units in Silicate Glasses and Melts," Geochim. Cosmochim. Acta, 66 [2] 303-9 (2002).
– reference: T. Tsujimura, X. Xue, M. Kanzaki, and M. J. Walker, "Sulfur Speciation and Network Structural Changes in Sodium Silicate Glasses: Constraints from NMR and Raman Spectroscopy," Geochim. Cosmochim. Acta, 68 [24] 5081-101 (2004).
– reference: L. L. Hench, D. E. Clark, and J. Campbell, "High Level Waste Immobilization Forms," Nucl. Chem. Waste Mgt., 5 149-73 (1984).
– reference: Y. Dimitrev and V. Dimitrov, "X-Ray Diffraction Studies of Glasses in the TeO2-V2O5 System," Mater. Res. Bull., 13, 1071-5 (1978).
– reference: K. Raj and C. P. Kaushik, "Glass Matrices for Vitrification of Radioactive Waste- An Update on R&D Efforts," ISSTGM-2009. IOP Conf Series: Mater. Sci. Engg., 2, 1-6 (2009).
– reference: S. Kroeker and J. F. Stebbins, "Three-Coordinated Boron-11 Chemical Shifts in Borates," Inorg. Chem., 40, 6239-46 (2001).
– reference: L. Backnaes and J. Deubener, "Experimental Studies on Sulfur Solubility in Silicate Melts at Near Atmospheric Pressure," Rev. Miner. Geochem., 73, 143-65 (2011).
– reference: C. W. Kim and D. E. Day, "Immobilization of Hanford LAW in Iron Phosphate Glasses," J. Non-Cryst. Solids, 331 [1-3] 20-31 (2003).
– reference: M. Lenoir, A. Grandjean, Y. Linard, B. Cochain, and D. R. Neuville, "The Influence of Si, B Substitution and the Nature of Network Modifying Cations on the Properties and Structure of Borosilicate Glasses and Melts," Chem. Geo., 256, 316-25 (2008).
– reference: R. E. Youngman and J. W. Zwanziger, "Network Modification in Potassium Borate Glasses: Structural Studies with NMR and Raman Spectroscopies," J. Phys. Chem., 100 [41] 16720-8 (1996).
– reference: A. D. Pelton and P. Wu, "Thermodynamic Modelling of Glass Forming Melts," J. Non-Cryst. Solids, 253, 178-91 (1999).
– reference: N. Janes and E. Oldfield, "Prediction of Silicon-29 Nuclear Magnetic Resonance Chemical Shifts Using a Group Electronegativity Approach: Applications to Silicate and Aluminosilicate Structures," J. Am. Chem. Soc., 107, 6769-75 (1985).
– reference: B. N. Meera, A. K. Sood, N. Chandrabhas, and J. Ramakrishna, "Raman Study of Lead Borate Glasses," J. Non-Cryst. Solids, 126 [3] 224-30 (1990).
– reference: B. A. Moyer, R. Custelcean, B. P. Hay, J. L. Sessler, K. B. James, V. W. Day, and S. O. Kang, "A Case for Molecular Recognition in Nuclear Separations: Sulphate Separation from Nuclear Wastes," Inorg. Chem., 52, 3473-90 (2013).
– reference: R. K. Mishra, V. Sudarsan, P. Sengupta, R. K. Vatsa, A. K. Tyagi, C. P. Kaushik, D. Das, and K. Raj, "Role of Sulphate in Structural Modifications of Sodium Barium Borosilicate Glasses Developed for Nuclear Waste Immobilization," J. Am. Ceram. Soc., 91, 3903-7 (2008).
– reference: O. Attos, M. Massot, M. Balkanski, E. Haro-Poniatowski, and M. Asomoza, "Structure of Borovandate Glasses Studied by Raman Spectroscopy," J. Non-Cryst. Solids, 210 [2-3] 163-70 (1997).
– reference: C. Martineau, V. K. Michaelis, S. Schiller, and S. Kroeker, "Liquid−Liquid Phase Separation in Model Nuclear Waste Glasses: A Solid-State Double-Resonance NMR Study," Chem. Mater., 22, 4896-903 (2010).
– reference: P. Sengupta, C. P. Kaushik, G. B. Kale, D. Das, K. Raj, and B. P. Sharma, "Evaluation of Alloy 690 Process Pot at the Contact with Borosilicate Melt Pool During Vitrification of High Level Nuclear Waste," J. Nucl. Mater., 392, 379-85 (2009).
– reference: B. P. Dwivedi, M. H. Rahman, Y. Kumar, and B. N. Khanna, "Raman Scattering Study of Lithium Borate Glasses," J. Phys. Chem. Solids, 54 [5] 621-8 (1993).
– reference: J. F. Stebbins, P. Zhao, and S. Kroeker, "Non-Bridging Oxygens in Borate Glasses: Characterization by 11B and 17O MAS and 3QMAS NMR," Solid State Nucl. Magn. Reson., 16 [1-2] 9-19 (2000).
– reference: S. Prasad, T. M. Clark, T. H. Sefzik, H. T. Kwak, Z. Gan, and P. J. Grandinetti, "Solid State Multinuclear Magnetic Resonance Investigation of Pyrex," J. Non-Cryst. Solids, 352, 2834-40 (2006).
– reference: T. W. Bril, "Raman Spectroscopy of Crystalline and Vitreous Borates," Philips Res. Rept. Suppl, 2, 117-23 (1976).
– volume: 353
  start-page: 1834
  issue: 18–21
  year: 2007
  end-page: 9
  article-title: Boron Speciation and Non‐Bridging Oxygens in High‐Alkali Borate Glasses
  publication-title: J. Non‐Cryst. Solids
– volume: 331
  start-page: 20
  issue: 1–3
  year: 2003
  end-page: 31
  article-title: Immobilization of Hanford LAW in Iron Phosphate Glasses
  publication-title: J. Non‐Cryst. Solids
– volume: 60
  start-page: 729
  issue: 6
  year: 1989
  end-page: 40
  article-title: Ionic Conductivity and Glass Structure
  publication-title: Philos. Mag. B
– volume: 29
  start-page: 843
  issue: 8
  year: 1994
  end-page: 9
  article-title: Vibrational Spectra of Two Phases of Copper Pyrovanadate and Some Solid Solutions of Copper and Magnesium Pyrovanadate
  publication-title: Mater. Res. Bull.
– volume: 117
  start-page: 1397
  issue: 4
  year: 1995
  end-page: 402
  article-title: On the Formation of Tetracoordinate Boron in Rubidium Borate Glasses
  publication-title: J. Am. Chem. Soc.
– start-page: 57
  year: 1979
  end-page: 68
– volume: 353
  start-page: 12
  year: 2007
  end-page: 23
  article-title: Sulfur Behavior in Silicate Glasses and Melts: Implications for Sulfate Incorporation in Nuclear Waste Glasses as a Function of Alkali Cation and V O Content
  publication-title: J. Non‐Cryst. Solids
– year: 2005
– volume: 32
  start-page: 121
  year: 1995
  end-page: 43
– volume: 105
  start-page: 3
  year: 2006
  end-page: 12
  article-title: Immobilization of Radioactive Waste in Glasses, Glass Composite
  publication-title: Mater. Ceram. Adv. Appl. Ceram.
– volume: 73
  start-page: 143
  year: 2011
  end-page: 65
  article-title: Experimental Studies on Sulfur Solubility in Silicate Melts at Near Atmospheric Pressure
  publication-title: Rev. Miner. Geochem.
– volume: 32
  start-page: 851
  year: 1997
  end-page: 87
  article-title: Review: The Immobilization of High Level Radioactive Wastes Using Ceramics and Glasses
  publication-title: J. Mater. Sci.
– volume: 58
  start-page: 323
  issue: 2–3
  year: 1983
  end-page: 52
  article-title: The Structure of High‐Silica Alkali‐Silicate Glasses. A Raman Spectroscopic Investigation
  publication-title: J. Non‐Cryst. Solids
– volume: 38
  start-page: 1
  year: 1999
  end-page: 22
– volume: 42
  start-page: 765
  year: 2011
  end-page: 72
  article-title: Structural Study of Mg‐Bearing Sodosilicate Glasses by Raman Spectroscopy
  publication-title: J. Raman Spect.
– volume: 90
  start-page: 3085
  year: 2007
  end-page: 90
  article-title: Microstructural Characterization and Role of Glassy Layer Developed on Process Pot Wall During Nuclear High Level Waste Vitrification Process
  publication-title: J. Amer. Ceram. Soc.
– volume: 32
  start-page: 145
  year: 1995
  end-page: 90
– volume: 256
  start-page: 316
  year: 2008
  end-page: 25
  article-title: The Influence of Si, B Substitution and the Nature of Network Modifying Cations on the Properties and Structure of Borosilicate Glasses and Melts
  publication-title: Chem. Geo.
– start-page: 157
  year: 1986
  end-page: 65
– year: 1994
– volume: 192
  start-page: 208
  year: 2011
  end-page: 21
  article-title: Development of Graded Ni‐YSZ Composite Coating on Alloy 690 by Pulsed Laser Deposition Technique to Reduce Hazardous Metallic Nuclear Waste Inventory
  publication-title: J. Hazar. Mater.
– volume: 410–411
  start-page: 291
  year: 1997
  end-page: 4
  article-title: Raman Spectroscopic Investigations of the Oxide Glass System 1− 3B O ·K O MO MO = V O or Cu
  publication-title: J. Mol. Struct.
– volume: 68
  start-page: 1206
  year: 1983
  end-page: 15
  article-title: High Resolution Si NMR Spectroscopic Study of Rock Forming Silicates
  publication-title: Am. Miner.
– volume: 114
  start-page: 5503
  issue: 17
  year: 2010
  end-page: 8
  article-title: Species Distribution in K O·2SiO Glass by Si Magic Angle Flipping NMR
  publication-title: J. Phys. Chem. A
– volume: 432
  start-page: 72
  year: 2013
  end-page: 7
  article-title: Formation of Diffusion Barrier Coating on Superalloy 690 Substrate and its Stability in Borosilicate Melt at Elevated Temperature
  publication-title: J. Nucl. Mater.
– start-page: 25
  year: 2013
  end-page: 51
– year: 2004
– volume: 288
  start-page: 191
  issue: 1–3
  year: 2001
  end-page: 9
  article-title: Raman Studies of Sulfur in Borosilicate Waste Glasses: Sulfate Environments
  publication-title: J. Non‐Cryst. Solids
– volume: 360
  start-page: 143
  year: 2007
  end-page: 50
  article-title: Studies on Immobilization of Thorium in Barium Borosilicate Glass
  publication-title: J. Nucl. Mater.
– volume: 52
  start-page: 3473
  year: 2013
  end-page: 90
  article-title: A Case for Molecular Recognition in Nuclear Separations: Sulphate Separation from Nuclear Wastes
  publication-title: Inorg. Chem.
– volume: 353
  start-page: 2582
  issue: 26
  year: 2007
  end-page: 90
  article-title: Probing Alkali Coordination Environments in Alkali Borate Glasses by Multinuclear Magnetic Resonance
  publication-title: J. Non‐Cryst. Solids
– volume: 5
  start-page: 451
  year: 2012
  end-page: 83
  article-title: Waste Glass
  publication-title: Comprehensive Nucl.Mater
– volume: 67
  start-page: 544
  issue: 3
  year: 1986
  end-page: 50
  article-title: Boron‐11 Nuclear Magnetic Resonance Spectroscopic Study of Borate and Borosilicate Minerals and a Borosilicate Glass
  publication-title: J. Magn. Reson.
– volume: 20
  start-page: 193
  issue: 2
  year: 1976
  end-page: 224
  article-title: The Structure of Borosilicate Glasses Studied by Raman Scattering
  publication-title: J. Non‐Cryst. Solids
– volume: 235–236
  start-page: 17
  year: 2012
  end-page: 28
  article-title: A Review on Immobilization of Phosphate Containing High Level Nuclear Wastes Within Glass Matrix ‐ Present Status and Future Challenges
  publication-title: J. Hazar. Mater.
– volume: 22
  start-page: 4896
  year: 2010
  end-page: 903
  article-title: Liquid−Liquid Phase Separation in Model Nuclear Waste Glasses: A Solid‐State Double‐Resonance NMR Study
  publication-title: Chem. Mater.
– volume: 265
  start-page: 167
  year: 2000
  end-page: 75
  article-title: Structural Groups and Their Mixing in Borosilicate Glasses of Various Compositions – An NMR Study
  publication-title: J. Non‐Cryst. Solids
– volume: 355
  start-page: 1468
  year: 2009
  end-page: 73
  article-title: Quantitation of Sulfate Solubility in Borosilicate Glasses Using Raman Spectroscopy
  publication-title: J. Non Crys. Solids
– volume: 12
  start-page: 68
  issue: 1
  year: 1982
  end-page: 72
  article-title: Infrared and Raman Study of Amorphous V O
  publication-title: J. Raman Spectrosc.
– volume: 91
  start-page: 3903
  year: 2008
  end-page: 7
  article-title: Role of Sulphate in Structural Modifications of Sodium Barium Borosilicate Glasses Developed for Nuclear Waste Immobilization
  publication-title: J. Am. Ceram. Soc.
– volume: 392
  start-page: 379
  year: 2009
  end-page: 85
  article-title: Evaluation of Alloy 690 Process Pot at the Contact with Borosilicate Melt Pool During Vitrification of High Level Nuclear Waste
  publication-title: J. Nucl. Mater.
– volume: 36A
  start-page: 1075
  year: 2005
  end-page: 84
  article-title: Case Reviews on the Effect of Microstructure on the Corrosion Behavior of Austenitic Alloys for Processing and Storage of Nuclear Waste
  publication-title: Metall. Mater. Trans. A
– volume: 358
  start-page: 129
  year: 2006
  end-page: 38
  article-title: Barium Borosilicate Glass: A Potential Matrix for Immobilization of Sulfate Bearing High Level Radioactive Waste
  publication-title: J. Nucl. Mater.
– volume: 25
  start-page: 147
  issue: 3–4
  year: 1995
  end-page: 9
  article-title: Raman Spectroscopic Investigations of the Structure of V O 1− [3B O ‐K O] Glasses
  publication-title: Mater. Lett.
– year: 2007
– volume: 100
  start-page: 16720
  issue: 41
  year: 1996
  end-page: 8
  article-title: Network Modification in Potassium Borate Glasses: Structural Studies with NMR and Raman Spectroscopies
  publication-title: J. Phys. Chem.
– volume: 16
  start-page: 9
  issue: 1–2
  year: 2000
  end-page: 19
  article-title: Non‐Bridging Oxygens in Borate Glasses: Characterization by B and O MAS and 3QMAS NMR
  publication-title: Solid State Nucl. Magn. Reson.
– year: 1996
– volume: 5
  start-page: 149
  year: 1984
  end-page: 73
  article-title: High Level Waste Immobilization Forms
  publication-title: Nucl. Chem. Waste Mgt.
– volume: 16
  start-page: 2689
  year: 1981
  end-page: 700
  article-title: Raman Spectroscopic Investigation of Sodium Borosilicate Glass Structure
  publication-title: J. Mat. Sci.
– volume: 66
  start-page: 303
  issue: 2
  year: 2002
  end-page: 9
  article-title: Extent of Intermixing Among Framework Units in Silicate Glasses and Melts
  publication-title: Geochim. Cosmochim. Acta
– volume: 226
  start-page: 29
  issue: 1–2
  year: 1998
  end-page: 40
  article-title: Temperature Dependent Structural Changes in Borate, Borosilicate and Boroaluminate Liquids: High‐Resolution B, Si and Al NMR Studies
  publication-title: J. Non‐Cryst. Solids
– volume: 18
  start-page: 307
  issue: 3
  year: 1975
  end-page: 31
  article-title: The Structure of Borate Glasses Studied by Raman Scattering
  publication-title: J. Non‐Cryst. Solids
– volume: 40
  start-page: 6239
  year: 2001
  end-page: 46
  article-title: Three‐Coordinated Boron‐11 Chemical Shifts in Borates
  publication-title: Inorg. Chem.
– volume: 374
  start-page: 185
  year: 2008
  end-page: 91
  article-title: Corrosion of Alloy 690 Process Pot by Sulfate Containing High Level Radioactive Waste at Feed Stage
  publication-title: J. Nucl. Mater.
– volume: 352
  start-page: 2834
  year: 2006
  end-page: 40
  article-title: Solid State Multinuclear Magnetic Resonance Investigation of Pyrex
  publication-title: J. Non‐Cryst. Solids
– volume: 31
  start-page: 30
  issue: 1
  year: 1990
  end-page: 41
  article-title: Multinuclear Nuclear Magnetic Resonance and Raman Investigation of Sodium Borosilicate Glass Structures
  publication-title: Phys. Chem. Glasses
– volume: 253
  start-page: 178
  year: 1999
  end-page: 91
  article-title: Thermodynamic Modelling of Glass Forming Melts
  publication-title: J. Non‐Cryst. Solids
– volume: 54
  start-page: 621
  issue: 5
  year: 1993
  end-page: 8
  article-title: Raman Scattering Study of Lithium Borate Glasses
  publication-title: J. Phys. Chem. Solids
– volume: 107
  start-page: 6769
  year: 1985
  end-page: 75
  article-title: Prediction of Silicon‐29 Nuclear Magnetic Resonance Chemical Shifts Using a Group Electronegativity Approach: Applications to Silicate and Aluminosilicate Structures
  publication-title: J. Am. Chem. Soc.
– volume: 43
  start-page: 189
  issue: 4
  year: 2002
  end-page: 98
  article-title: Chemistry of Sulphur in Soda–Lime–Silica Glass Melts
  publication-title: Phys. Chem. Glasses
– volume: 104
  start-page: 2109
  issue: 9
  year: 2000
  end-page: 16
  article-title: Clarification of Phase Separation Mechanism of Sodium Borosilicate Glasses in Early Stage by Nuclear Magnetic Resonance
  publication-title: J. Phys. Chem. B
– volume: 107
  start-page: 10063
  issue: 37
  year: 2003
  end-page: 76
  article-title: Nature of Silicon−Boron Mixing in Sodium Borosilicate Glasses:  A High‐Resolution B and O NMR Study
  publication-title: J. Phys. Chem. B
– volume: 126
  start-page: 224
  issue: 3
  year: 1990
  end-page: 30
  article-title: Raman Study of Lead Borate Glasses
  publication-title: J. Non‐Cryst. Solids
– volume: 13
  start-page: 1071
  year: 1978
  end-page: 5
  article-title: X‐Ray Diffraction Studies of Glasses in the TeO ‐V O System
  publication-title: Mater. Res. Bull.
– volume: 210
  start-page: 163
  issue: 2–3
  year: 1997
  end-page: 70
  article-title: Structure of Borovandate Glasses Studied by Raman Spectroscopy
  publication-title: J. Non‐Cryst. Solids
– volume: 294
  start-page: 201
  year: 1992
  end-page: 3
  article-title: Raman Spectroscopy of Oxide Glass System 1−x [YB O .ZLi O].XGd O
  publication-title: J. Mol. Struct.
– volume: 298
  start-page: 160
  year: 2002
  end-page: 75
  article-title: X‐Ray Absorption Studies of Vanadium Valence and Local Environment in Borosilicate Waste Glasses Using Vanadium Sulfide, Silicate, and Oxide Standards
  publication-title: J. Non‐Cryst. Solids
– volume: 2
  start-page: 1
  year: 2009
  end-page: 6
  article-title: Glass Matrices for Vitrification of Radioactive Waste‐ An Update on R&D Efforts
  publication-title: ISSTGM‐2009. IOP Conf Series: Mater. Sci. Engg.
– volume: 350
  start-page: 66
  year: 2006
  end-page: 73
  article-title: Interaction Between Borosilicate Melt and Inconel
  publication-title: J. Nucl. Mater.
– start-page: 101
  year: 1995
  end-page: 6
– volume: 411
  start-page: 181
  year: 2011
  end-page: 4
  article-title: Interaction Study Between Nuclear Waste Glass Melt and Ceramic Melter Bellow Liner Materials
  publication-title: J. Nucl. Mater.
– volume: 31
  start-page: 129
  year: 1989
  end-page: 34
  article-title: Glasses for Immobilization of Sulfate Containing Radioactive Wastes
  publication-title: Radiokhimiya
– volume: 64
  start-page: 1059
  year: 1991
  end-page: 72
  article-title: A Structural Basis for Ionic Diffusion in Oxide Glasses
  publication-title: Philos. Mag. A
– volume: 190
  start-page: 229
  year: 2011
  end-page: 39
  article-title: Preliminary Study on Calcium Aluminosilicate Glass as a Potential Host Matrix for Radioactive Sr – An Approach Based on Natural Analogue Study
  publication-title: J. Hazar. Mater.
– volume: 68
  start-page: 5081
  issue: 24
  year: 2004
  end-page: 101
  article-title: Sulfur Speciation and Network Structural Changes in Sodium Silicate Glasses: Constraints from NMR and Raman Spectroscopy
  publication-title: Geochim. Cosmochim. Acta
– volume: 2
  start-page: 117
  year: 1976
  end-page: 23
  article-title: Raman Spectroscopy of Crystalline and Vitreous Borates
  publication-title: Philips Res. Rept. Suppl
– volume: 14
  start-page: 6553
  year: 2002
  end-page: 65
  article-title: Structural Aspects of B O ‐Substituted (PbO) (SiO ) Glasses
  publication-title: J. Phys.: Condens. Matter
– volume: 298
  start-page: 47
  year: 2001
  end-page: 54
  article-title: Overview of Actinides Np, Pu, Am and Tc Release from Waste Glasses: Influence of Solution Composition
  publication-title: J. Nucl. Mater.
– volume: 44
  start-page: 1037
  issue: 7
  year: 1982
  end-page: 40
  article-title: Planar Rings in Glasses
  publication-title: Solid State Commun.
– ident: e_1_2_5_55_1
  doi: 10.1016/S0016-7037(01)00775-X
– ident: e_1_2_5_12_1
– start-page: 157
  volume-title: Nuclear Waste Management
  year: 1986
  ident: e_1_2_5_38_1
– ident: e_1_2_5_23_1
  doi: 10.1016/j.jnucmat.2005.11.012
– ident: e_1_2_5_44_1
  doi: 10.1021/ja00310a004
– ident: e_1_2_5_50_1
  doi: 10.1515/9781501509384-008
– volume: 43
  start-page: 189
  issue: 4
  year: 2002
  ident: e_1_2_5_41_1
  article-title: Chemistry of Sulphur in Soda–Lime–Silica Glass Melts
  publication-title: Phys. Chem. Glasses
– ident: e_1_2_5_69_1
  doi: 10.1016/S0022-3093(96)00596-0
– ident: e_1_2_5_53_1
  doi: 10.1016/S0926-2040(00)00050-3
– volume: 67
  start-page: 544
  issue: 3
  year: 1986
  ident: e_1_2_5_63_1
  article-title: Boron‐11 Nuclear Magnetic Resonance Spectroscopic Study of Borate and Borosilicate Minerals and a Borosilicate Glass
  publication-title: J. Magn. Reson.
– ident: e_1_2_5_25_1
  doi: 10.1021/ic3016832
– ident: e_1_2_5_39_1
  doi: 10.1016/S0022-3093(02)00945-6
– ident: e_1_2_5_60_1
  doi: 10.1016/j.jnoncrysol.2007.02.013
– ident: e_1_2_5_66_1
  doi: 10.1016/0022-3093(83)90032-7
– ident: e_1_2_5_74_1
  doi: 10.1016/0022-3697(93)90242-J
– ident: e_1_2_5_3_1
  doi: 10.1016/0191-815X(84)90045-7
– ident: e_1_2_5_54_1
  doi: 10.1021/ic010305u
– ident: e_1_2_5_31_1
  doi: 10.1111/j.1551-2916.2008.02773.x
– ident: e_1_2_5_46_1
  doi: 10.1080/01418619108204878
– ident: e_1_2_5_80_1
  doi: 10.1007/BF02402831
– ident: e_1_2_5_29_1
  doi: 10.1016/j.jhazmat.2011.03.031
– ident: e_1_2_5_56_1
  doi: 10.1016/S0022-3093(99)00693-6
– ident: e_1_2_5_30_1
  doi: 10.1016/j.jnucmat.2006.07.004
– ident: e_1_2_5_70_1
  doi: 10.1016/j.jnoncrysol.2009.05.015
– ident: e_1_2_5_73_1
  doi: 10.1016/0038-1098(82)90329-5
– ident: e_1_2_5_13_1
  doi: 10.1016/j.jnoncrysol.2006.09.041
– volume: 2
  start-page: 117
  year: 1976
  ident: e_1_2_5_75_1
  article-title: Raman Spectroscopy of Crystalline and Vitreous Borates
  publication-title: Philips Res. Rept. Suppl
– ident: e_1_2_5_67_1
  doi: 10.1016/0022-3093(75)90137-4
– ident: e_1_2_5_14_1
  doi: 10.2138/rmg.2011.73.6
– ident: e_1_2_5_58_1
  doi: 10.1021/jp961439
– ident: e_1_2_5_33_1
  doi: 10.2172/890179
– ident: e_1_2_5_4_1
  doi: 10.1179/174367606X81669
– ident: e_1_2_5_61_1
  doi: 10.1016/j.jnoncrysol.2007.04.029
– ident: e_1_2_5_83_1
  doi: 10.1016/0025-5408(94)90004-3
– ident: e_1_2_5_48_1
  doi: 10.1021/jp100530m
– ident: e_1_2_5_78_1
  doi: 10.1016/0022-2860(93)80349-Z
– start-page: 121
  volume-title: Structure, Dynamics and Properties of Silicate Melts
  year: 1995
  ident: e_1_2_5_49_1
  doi: 10.1515/9781501509384-007
– ident: e_1_2_5_68_1
  doi: 10.1016/0022-3093(76)90132-0
– ident: e_1_2_5_71_1
  doi: 10.1002/jrs.2763
– ident: e_1_2_5_57_1
  doi: 10.1021/ja00109a026
– ident: e_1_2_5_15_1
  doi: 10.1016/S0022-3115(01)00591-8
– ident: e_1_2_5_76_1
  doi: 10.1016/0167-577X(95)00148-4
– ident: e_1_2_5_35_1
  doi: 10.1016/S0022-3093(99)00352-X
– ident: e_1_2_5_24_1
  doi: 10.1007/s11661-005-0201-5
– start-page: 1
  volume-title: Mineralogical Society of America, Reviews in Mineralogy
  year: 1999
  ident: e_1_2_5_10_1
– volume: 31
  start-page: 129
  year: 1989
  ident: e_1_2_5_36_1
  article-title: Glasses for Immobilization of Sulfate Containing Radioactive Wastes
  publication-title: Radiokhimiya
– ident: e_1_2_5_22_1
  doi: 10.1111/j.1551-2916.2007.01853.x
– ident: e_1_2_5_32_1
  doi: 10.1016/j.jnucmat.2006.09.012
– ident: e_1_2_5_42_1
  doi: 10.1088/0953-8984/14/25/322
– volume-title: New Developments in Glassy Nuclear Wasteforms
  year: 2007
  ident: e_1_2_5_6_1
– ident: e_1_2_5_65_1
  doi: 10.1016/j.gca.2004.08.029
– ident: e_1_2_5_8_1
  doi: 10.1007/978-3-642-32917-3_2
– ident: e_1_2_5_77_1
  doi: 10.1016/0022-3093(90)90823-5
– volume: 192
  start-page: 208
  year: 2011
  ident: e_1_2_5_18_1
  article-title: Development of Graded Ni‐YSZ Composite Coating on Alloy 690 by Pulsed Laser Deposition Technique to Reduce Hazardous Metallic Nuclear Waste Inventory
  publication-title: J. Hazar. Mater.
– ident: e_1_2_5_45_1
  doi: 10.1021/cm1006058
– ident: e_1_2_5_28_1
  doi: 10.1016/j.jhazmat.2012.07.039
– ident: e_1_2_5_81_1
  doi: 10.1016/j.chemgeo.2008.07.002
– ident: e_1_2_5_62_1
  doi: 10.1016/j.jnoncrysol.2006.02.085
– ident: e_1_2_5_47_1
  doi: 10.1080/13642818908209739
– ident: e_1_2_5_17_1
  doi: 10.1016/j.jnucmat.2012.08.012
– ident: e_1_2_5_82_1
  doi: 10.1002/jrs.1250120110
– ident: e_1_2_5_19_1
  doi: 10.1016/j.jnucmat.2011.01.122
– volume: 2
  start-page: 1
  year: 2009
  ident: e_1_2_5_34_1
  article-title: Glass Matrices for Vitrification of Radioactive Waste‐ An Update on R&D Efforts
  publication-title: ISSTGM‐2009. IOP Conf Series: Mater. Sci. Engg.
– start-page: 157
  volume-title: Nuclear Waste Management
  year: 1986
  ident: e_1_2_5_7_1
– volume-title: An Introduction to Nuclear Waste Immobilization
  year: 2005
  ident: e_1_2_5_5_1
– ident: e_1_2_5_26_1
  doi: 10.2172/219300
– ident: e_1_2_5_27_1
  doi: 10.1016/j.jnoncrysol.2003.08.070
– start-page: 101
  volume-title: Scientific Basis for Nuclear Waste Management
  year: 1995
  ident: e_1_2_5_37_1
– volume: 31
  start-page: 30
  issue: 1
  year: 1990
  ident: e_1_2_5_72_1
  article-title: Multinuclear Nuclear Magnetic Resonance and Raman Investigation of Sodium Borosilicate Glass Structures
  publication-title: Phys. Chem. Glasses
– ident: e_1_2_5_2_1
  doi: 10.1023/A:1018646507438
– ident: e_1_2_5_51_1
  doi: 10.1021/jp034048l
– ident: e_1_2_5_59_1
  doi: 10.1016/S0022-3093(97)00491-2
– ident: e_1_2_5_52_1
  doi: 10.1021/jp993416b
– volume: 68
  start-page: 1206
  year: 1983
  ident: e_1_2_5_43_1
  article-title: High Resolution Si NMR Spectroscopic Study of Rock Forming Silicates
  publication-title: Am. Miner.
– ident: e_1_2_5_9_1
  doi: 10.1016/B978-0-08-056033-5.00107-5
– ident: e_1_2_5_16_1
  doi: 10.2172/145022
– ident: e_1_2_5_11_1
  doi: 10.1007/978-1-4615-9107-8_7
– ident: e_1_2_5_64_1
  doi: 10.1016/S0022-3093(01)00624-X
– ident: e_1_2_5_20_1
  doi: 10.1016/j.jnucmat.2008.07.046
– ident: e_1_2_5_79_1
  doi: 10.1016/S0022-2860(96)09674-3
– ident: e_1_2_5_21_1
  doi: 10.1016/j.jnucmat.2007.08.005
– ident: e_1_2_5_40_1
  doi: 10.1016/0025-5408(78)90173-3
SSID ssj0001984
Score 2.305895
Snippet Understanding the role of V2O5 within borosilicate glass matrices is important for the development of novel matrices toward immobilization of sulfate...
Understanding the role of V 2 O 5 within borosilicate glass matrices is important for the development of novel matrices toward immobilization of sulfate...
Understanding the role of ... within borosilicate glass matrices is important for the development of novel matrices toward immobilization of sulfate containing...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 88
SubjectTerms Addition polymerization
Borates
Borosilicate glasses
Ceramics
Glass
Networks
NMR
Nuclear magnetic resonance
Polymers
Silica
Silicates
Vanadium
Vanadium pentoxide
Title Vanadium in Borosilicate Glass
URI https://api.istex.fr/ark:/67375/WNG-Q74VH7F6-S/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjace.13303
https://www.proquest.com/docview/1645771638
https://www.proquest.com/docview/1660049330
Volume 98
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEB9EX9qHqm2lqfaIWAoKOZLb3XxAX-7U8xAqtOrpS1n2K3BczYl3AfGvd2fz4VmKUN_yMSG7szvZ30xmfgvwVYVxlkolAhaGMqCaREGa5WGQp5JoFWYmEhjQ_3EWjy7p6TW7XoHvTS1MxQ_RBtzQMtz3Gg1cyPmykQtlutbDclSfEYmROP_o1xN3lPWmaYN9kRSu5iZ1aTzto89WozVU7P0zqLkMWN2KM1yH301bq0STabdcyK56-IvG8bWd2YB3NRT1-9Xc2YQVU7yHt0sEhfZsPJmXlcz8A3TGLkOsvPEnhT-Y2R5NqhI6_wQx-Ee4HB5fHI6Cen-FQGE8LaAR8q1FWuVaMSqQh0dnIcuplr1MExZnOhQiE1GoaSx7di0zFj0kJtY0VanskS1YLWaF-QQ-YXmONdlW0TklhkiaUClIzyiZ2svag_1Gz1zV5OO4B8Yf3johVgPcacCDvVb2tqLc-KfUNzdcrYi4m2KSWsL41dkJ_5nQ8SgZxvzcg51mPHltn3NunUSWJIhFPdhtb1vLwt8lojCzEmVi9J_syzw4cIP3QnP4af_w2B19_h_hbXhjERirYjo7sLq4K80Xi3IWsgNr_cHRYNhxs_oRoNb02w
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZT9tAEB5V8NDyUI6CMEdw1aoSSI7seNfHI4SENECkcgTeVntZiigOIrGE-PXsrB03VAipffMxlndnd7zfjGe-Bfgu_ShNhOQe9X3hERUGXpJmvpclIlTST3XAMaB_Poh616R_S2-r3ByshSn5IeqAG1qG_V6jgWNAet7KudRN42Ih1-ciMUgDfa_jiz_sUcafJjP0i7RwFTupTeSpn321Hi2iap9egc15yGrXnO5yubHqxFIVYqrJXbOYiqZ8_ovI8b-7swKfKzTqHpbTZxU-6HwNluY4Cs3ZcDQpSpnJF2gMbZJYce-OcvdobLo0Kqvo3BOE4etw3e1ctXtetcWCJzGk5pEAKdcCJTMlKeFIxaNSn2ZEiVaqQhqlyuc85YGvSCRaZjnTBkDEOlIkkYlohRuwkI9zvQluSLMMy7KNpjMS6lCQmAgetrQUibmsHNifKZrJin8ct8H4zWo_xGiAWQ048K2WfShZN96U-mHHqxbhj3eYpxZTdjM4Yb9iMuzF3YhdOrAzG1BWmeiEGT-RxjHCUQe-1reNceEfE57rcYEyEbpQ5mUOHNjRe6c5rH_Y7tijrX8R3oOPvavzM3b2c3C6DZ8MIKNliGcHFqaPhd41oGcqGnZqvwBND_eI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rS9xAEB9EQeqH-mjF1FekIrSQI7ns5gF-8XWeVo_W1tMvsuwrcNjmxLuA-Ne7s3l4FinUb3lMyO7sTvY3k5nfAmxLP0oTIblHfV94RIWBl6SZ72WJCJX0Ux1wDOif96LuJTm9ptdTsFvXwpT8EE3ADS3Dfq_RwO9UNmnkXOqW8bCQ6nOGRAZKICS6eCaPMu40qcEvssJV5KQ2j6d59sVyNIOafXiBNScRq11yOvNwUze2zDS5bRVj0ZKPf_E4vrU3C_C-wqLuXjl5FmFK50swN8FQaM76g1FRyow-wEbfpogVf9xB7u4PTY8GZQ2de4wg_CNcdo5-HXS9aoMFT2JAzSMBEq4FSmZKUsKRiEelPs2IEu1UhTRKlc95ygNfkUi0zWKmDXyIdaRIIhPRDpdhOh_megXckGYZFmUbRWck1KEgMRE8bGspEnNZOfCl1jOTFfs4boLxmzVeiNEAsxpw4HMje1dybrwqtWOHqxHh97eYpRZTdtU7Zj9i0u_GnYj9dGCtHk9WGeiIGS-RxjGCUQe2mtvGtPB_Cc_1sECZCB0o8zIHvtrB-0dz2OnewZE9-vQ_wpsw-_2ww85Oet9W4Z1BY7SM76zB9Pi-0OsG8YzFhp3YT2Xn9jc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vanadium+in+Borosilicate+Glass&rft.jtitle=Journal+of+the+American+Ceramic+Society&rft.au=Sengupta%2C+Pranesh&rft.au=Dey%2C+Krishna+K.&rft.au=Halder%2C+Rumu&rft.au=Ajithkumar%2C+Thalasseril+G.&rft.date=2015-01-01&rft.issn=0002-7820&rft.eissn=1551-2916&rft.volume=98&rft.issue=1&rft.spage=88&rft.epage=96&rft_id=info:doi/10.1111%2Fjace.13303&rft.externalDBID=10.1111%252Fjace.13303&rft.externalDocID=JACE13303
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7820&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7820&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7820&client=summon