Enhanced Light Utilization in Semitransparent Organic Photovoltaics Using an Optical Outcoupling Architecture
Building‐integrated photovoltaics employing transparent photovoltaic cells on window panes provide an opportunity to convert solar energy to electricity rather than generating waste heat. Semitransparent organic photovoltaic cells (ST‐OPVs) that utilize a nonfullerene acceptor‐based near‐infrared (N...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 31; no. 40; pp. e1903173 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.10.2019
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Building‐integrated photovoltaics employing transparent photovoltaic cells on window panes provide an opportunity to convert solar energy to electricity rather than generating waste heat. Semitransparent organic photovoltaic cells (ST‐OPVs) that utilize a nonfullerene acceptor‐based near‐infrared (NIR) absorbing ternary cell combined with a thin, semitransparent, high conductivity Cu‐Ag alloy electrode are demonstrated. A combination of optical outcoupling and antireflection coatings leads to enhanced visible transmission, while reflecting the NIR back into the cell where it is absorbed. This combination of coatings results in doubling of the light utilization efficiency (LUE), which is equal to the product of the power conversion efficiency (PCE) and the average photopic transparency, compared with a conventional semitransparent cell lacking these coatings. A maximum LUE = 3.56 ± 0.11% is achieved for an ST‐OPV with a PCE = 8.0 ± 0.2% at 1 sun, reference AM1.5G spectrum. Moreover, neutral colored ST‐OPVs are also demonstrated, with LUE = 2.56 ± 0.2%, along with Commission Internationale d'Eclairage chromaticity coordinates of CIE = (0.337, 0.349) and a color rendering index of CRI = 87.
An efficient and neutral colored semitransparent organic photovoltaic cell (ST‐OPV) is realized by utilizing a near‐infrared (NIR) absorbing ternary cell combined with a thin, semitransparent, high‐conductivity Cu–Ag alloy electrode. A combination of optical outcoupling and antireflection coatings leads to enhanced visible transmission, while reflecting the NIR back into the cell where it is absorbed. |
---|---|
AbstractList | Building‐integrated photovoltaics employing transparent photovoltaic cells on window panes provide an opportunity to convert solar energy to electricity rather than generating waste heat. Semitransparent organic photovoltaic cells (ST‐OPVs) that utilize a nonfullerene acceptor‐based near‐infrared (NIR) absorbing ternary cell combined with a thin, semitransparent, high conductivity Cu‐Ag alloy electrode are demonstrated. A combination of optical outcoupling and antireflection coatings leads to enhanced visible transmission, while reflecting the NIR back into the cell where it is absorbed. This combination of coatings results in doubling of the light utilization efficiency (LUE), which is equal to the product of the power conversion efficiency (PCE) and the average photopic transparency, compared with a conventional semitransparent cell lacking these coatings. A maximum LUE = 3.56 ± 0.11% is achieved for an ST‐OPV with a PCE = 8.0 ± 0.2% at 1 sun, reference AM1.5G spectrum. Moreover, neutral colored ST‐OPVs are also demonstrated, with LUE = 2.56 ± 0.2%, along with Commission Internationale d'Eclairage chromaticity coordinates of CIE = (0.337, 0.349) and a color rendering index of CRI = 87.
An efficient and neutral colored semitransparent organic photovoltaic cell (ST‐OPV) is realized by utilizing a near‐infrared (NIR) absorbing ternary cell combined with a thin, semitransparent, high‐conductivity Cu–Ag alloy electrode. A combination of optical outcoupling and antireflection coatings leads to enhanced visible transmission, while reflecting the NIR back into the cell where it is absorbed. Building‐integrated photovoltaics employing transparent photovoltaic cells on window panes provide an opportunity to convert solar energy to electricity rather than generating waste heat. Semitransparent organic photovoltaic cells (ST‐OPVs) that utilize a nonfullerene acceptor‐based near‐infrared (NIR) absorbing ternary cell combined with a thin, semitransparent, high conductivity Cu‐Ag alloy electrode are demonstrated. A combination of optical outcoupling and antireflection coatings leads to enhanced visible transmission, while reflecting the NIR back into the cell where it is absorbed. This combination of coatings results in doubling of the light utilization efficiency (LUE), which is equal to the product of the power conversion efficiency (PCE) and the average photopic transparency, compared with a conventional semitransparent cell lacking these coatings. A maximum LUE = 3.56 ± 0.11% is achieved for an ST‐OPV with a PCE = 8.0 ± 0.2% at 1 sun, reference AM1.5G spectrum. Moreover, neutral colored ST‐OPVs are also demonstrated, with LUE = 2.56 ± 0.2%, along with Commission Internationale d'Eclairage chromaticity coordinates of CIE = (0.337, 0.349) and a color rendering index of CRI = 87. Building‐integrated photovoltaics employing transparent photovoltaic cells on window panes provide an opportunity to convert solar energy to electricity rather than generating waste heat. Semitransparent organic photovoltaic cells (ST‐OPVs) that utilize a nonfullerene acceptor‐based near‐infrared (NIR) absorbing ternary cell combined with a thin, semitransparent, high conductivity Cu‐Ag alloy electrode are demonstrated. A combination of optical outcoupling and antireflection coatings leads to enhanced visible transmission, while reflecting the NIR back into the cell where it is absorbed. This combination of coatings results in doubling of the light utilization efficiency ( LUE ), which is equal to the product of the power conversion efficiency ( PCE ) and the average photopic transparency, compared with a conventional semitransparent cell lacking these coatings. A maximum LUE = 3.56 ± 0.11% is achieved for an ST‐OPV with a PCE = 8.0 ± 0.2% at 1 sun, reference AM1.5G spectrum. Moreover, neutral colored ST‐OPVs are also demonstrated, with LUE = 2.56 ± 0.2%, along with Commission Internationale d'Eclairage chromaticity coordinates of CIE = (0.337, 0.349) and a color rendering index of CRI = 87. Building-integrated photovoltaics employing transparent photovoltaic cells on window panes provide an opportunity to convert solar energy to electricity rather than generating waste heat. Semitransparent organic photovoltaic cells (ST-OPVs) that utilize a nonfullerene acceptor-based near-infrared (NIR) absorbing ternary cell combined with a thin, semitransparent, high conductivity Cu-Ag alloy electrode are demonstrated. A combination of optical outcoupling and antireflection coatings leads to enhanced visible transmission, while reflecting the NIR back into the cell where it is absorbed. This combination of coatings results in doubling of the light utilization efficiency (LUE), which is equal to the product of the power conversion efficiency (PCE) and the average photopic transparency, compared with a conventional semitransparent cell lacking these coatings. A maximum LUE = 3.56 ± 0.11% is achieved for an ST-OPV with a PCE = 8.0 ± 0.2% at 1 sun, reference AM1.5G spectrum. Moreover, neutral colored ST-OPVs are also demonstrated, with LUE = 2.56 ± 0.2%, along with Commission Internationale d'Eclairage chromaticity coordinates of CIE = (0.337, 0.349) and a color rendering index of CRI = 87.Building-integrated photovoltaics employing transparent photovoltaic cells on window panes provide an opportunity to convert solar energy to electricity rather than generating waste heat. Semitransparent organic photovoltaic cells (ST-OPVs) that utilize a nonfullerene acceptor-based near-infrared (NIR) absorbing ternary cell combined with a thin, semitransparent, high conductivity Cu-Ag alloy electrode are demonstrated. A combination of optical outcoupling and antireflection coatings leads to enhanced visible transmission, while reflecting the NIR back into the cell where it is absorbed. This combination of coatings results in doubling of the light utilization efficiency (LUE), which is equal to the product of the power conversion efficiency (PCE) and the average photopic transparency, compared with a conventional semitransparent cell lacking these coatings. A maximum LUE = 3.56 ± 0.11% is achieved for an ST-OPV with a PCE = 8.0 ± 0.2% at 1 sun, reference AM1.5G spectrum. Moreover, neutral colored ST-OPVs are also demonstrated, with LUE = 2.56 ± 0.2%, along with Commission Internationale d'Eclairage chromaticity coordinates of CIE = (0.337, 0.349) and a color rendering index of CRI = 87. |
Author | Hou, Shaocong Guo, L. Jay Liao, Liang‐Sheng Forrest, Stephen R. Ji, Chengang Li, Yongxi Huang, Xinjing Qu, Yue Li, Chang‐Zhi |
Author_xml | – sequence: 1 givenname: Yongxi surname: Li fullname: Li, Yongxi organization: University of Michigan – sequence: 2 givenname: Chengang surname: Ji fullname: Ji, Chengang organization: University of Michigan – sequence: 3 givenname: Yue surname: Qu fullname: Qu, Yue organization: University of Michigan – sequence: 4 givenname: Xinjing surname: Huang fullname: Huang, Xinjing organization: University of Michigan – sequence: 5 givenname: Shaocong surname: Hou fullname: Hou, Shaocong organization: University of Michigan – sequence: 6 givenname: Chang‐Zhi surname: Li fullname: Li, Chang‐Zhi organization: Zhejiang University – sequence: 7 givenname: Liang‐Sheng surname: Liao fullname: Liao, Liang‐Sheng organization: Soochow University – sequence: 8 givenname: L. Jay surname: Guo fullname: Guo, L. Jay email: guo@umich.edu organization: University of Michigan – sequence: 9 givenname: Stephen R. orcidid: 0000-0003-0131-1903 surname: Forrest fullname: Forrest, Stephen R. email: stevefor@umich.edu, forrest@princeton.edu organization: University of Michigan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31420924$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1566209$$D View this record in Osti.gov |
BookMark | eNqFkUtv1DAUhS1URKcDW5bIgg2bDH4kTrwclfKQBg0SzNpynJuJq8QebAfU_vp6mBakSojVka6-cx_nXqAz5x0g9JKSFSWEvdPdpFeMUEk4rfkTtKAVo0VJZHWGFkTyqpCibM7RRYzXhBApiHiGzjktGZGsXKDpyg3aGejwxu6HhHfJjvZWJ-sdtg5_g8mmoF086AAu4W3Ya2cN_jr45H_6MWlrIt5F6_ZYO7w9JGv0iLdzMn4-jMfyOpjBJjBpDvAcPe31GOHFvS7R7sPV98tPxWb78fPlelOYspa84Fn6DmRFpBQAvWwFMEmzNEILw1rR9pkTtIdOy5rzvjV113JaQdMQSvkSvT719TFZFc1x_mC8c3kNRSsh8vUZenuCDsH_mCEmNdloYBy1Az9HxVhdcSJYHrBEbx6h134OLp-QKSl5w6umzNSre2puJ-jUIdhJhxv1kHYGyhNggo8xQK_yZr-zzhnbUVGijk9Vx6eqP0_NttUj20PnfxrkyfDLjnDzH1qt339Z__XeAatTtI8 |
CitedBy_id | crossref_primary_10_1002_adma_202201604 crossref_primary_10_1016_j_joule_2023_11_010 crossref_primary_10_1038_s41560_020_00732_2 crossref_primary_10_1016_j_cej_2022_139423 crossref_primary_10_1002_advs_202201487 crossref_primary_10_1002_adma_202305092 crossref_primary_10_1002_solr_202200679 crossref_primary_10_1002_aenm_202102526 crossref_primary_10_1021_acsapm_3c01184 crossref_primary_10_1002_aenm_202100225 crossref_primary_10_1073_pnas_2007799117 crossref_primary_10_3390_nano13081308 crossref_primary_10_1002_solr_202300211 crossref_primary_10_3390_nano11010158 crossref_primary_10_1002_aenm_202003581 crossref_primary_10_1021_acsami_1c02046 crossref_primary_10_1021_jacs_0c04084 crossref_primary_10_1002_adma_202311305 crossref_primary_10_1002_solr_202100041 crossref_primary_10_1002_solr_202100162 crossref_primary_10_1016_j_mtener_2021_100852 crossref_primary_10_1002_adma_202300360 crossref_primary_10_1021_acsenergylett_1c02244 crossref_primary_10_1039_D3EE04476A crossref_primary_10_1063_5_0005172 crossref_primary_10_1021_acsami_1c18473 crossref_primary_10_1038_s41578_022_00514_0 crossref_primary_10_1021_acsami_1c16691 crossref_primary_10_1002_adfm_202009996 crossref_primary_10_1021_acsenergylett_3c01178 crossref_primary_10_1016_j_cej_2023_148481 crossref_primary_10_1002_adom_202202827 crossref_primary_10_1039_D2TC00025C crossref_primary_10_1021_acsapm_0c00791 crossref_primary_10_1002_solr_202400399 crossref_primary_10_1002_adma_202200337 crossref_primary_10_3390_molecules28052145 crossref_primary_10_1016_j_optlastec_2023_110002 crossref_primary_10_1039_D1TA01135A crossref_primary_10_1039_D2TC02689A crossref_primary_10_1002_solr_202000564 crossref_primary_10_1039_D1TC02413B crossref_primary_10_1002_solr_202100818 crossref_primary_10_1007_s40843_024_3210_y crossref_primary_10_1039_D2EE00977C crossref_primary_10_1002_solr_202300037 crossref_primary_10_1063_5_0037104 crossref_primary_10_1002_chem_202003925 crossref_primary_10_1039_D4EE01659A crossref_primary_10_1002_cey2_97 crossref_primary_10_1002_aenm_202301367 crossref_primary_10_1039_D1QM00151E crossref_primary_10_1002_solr_202300561 crossref_primary_10_1002_smtd_202301695 crossref_primary_10_1016_j_cej_2021_132640 crossref_primary_10_1039_D2EE02392J crossref_primary_10_1039_D3CS00233K crossref_primary_10_1002_aenm_202301098 crossref_primary_10_1016_j_nanoen_2020_105376 crossref_primary_10_1016_j_nanoen_2023_108472 crossref_primary_10_1002_adfm_202107934 crossref_primary_10_1002_aenm_202400970 crossref_primary_10_1021_acsenergylett_0c01554 crossref_primary_10_1021_acsenergylett_4c00149 crossref_primary_10_1039_D2TC04507A crossref_primary_10_1021_acssuschemeng_1c08404 crossref_primary_10_1002_adfm_202406070 crossref_primary_10_1002_aenm_201904196 crossref_primary_10_1002_adfm_202314116 crossref_primary_10_1016_j_solener_2020_05_027 crossref_primary_10_1002_adom_202100064 crossref_primary_10_1002_solr_202400126 crossref_primary_10_1021_acsaem_4c01498 crossref_primary_10_1002_adma_202303844 crossref_primary_10_1002_adfm_202107827 crossref_primary_10_1002_adma_202001621 crossref_primary_10_1016_j_porgcoat_2023_107790 crossref_primary_10_1021_acsaem_4c01493 crossref_primary_10_1002_adpr_202400128 crossref_primary_10_1002_aenm_202404129 crossref_primary_10_1002_aenm_202003408 crossref_primary_10_1038_s41467_021_25718_w crossref_primary_10_1002_adfm_202108634 crossref_primary_10_1016_j_joule_2021_07_004 crossref_primary_10_1002_adfm_202007931 crossref_primary_10_1002_adfm_202111760 crossref_primary_10_1002_solr_202200527 crossref_primary_10_1038_s41467_020_17107_6 crossref_primary_10_1002_aenm_202200453 crossref_primary_10_1002_adma_202400342 crossref_primary_10_1039_D0SE00910E crossref_primary_10_1002_adfm_202110435 crossref_primary_10_1002_adma_201907604 crossref_primary_10_1002_aenm_202301555 crossref_primary_10_1002_adom_202202982 crossref_primary_10_1002_advs_202202150 crossref_primary_10_1002_adma_202201348 crossref_primary_10_1002_admt_202101638 crossref_primary_10_1002_adfm_202002181 crossref_primary_10_1002_adma_202302927 crossref_primary_10_1021_acsami_0c10906 crossref_primary_10_1002_inf2_12276 crossref_primary_10_1002_aenm_202102908 crossref_primary_10_1002_aesr_202400268 crossref_primary_10_1002_marc_202200199 crossref_primary_10_1039_D3TA05351B crossref_primary_10_1002_pip_3684 crossref_primary_10_1007_s00339_021_05025_3 crossref_primary_10_1016_j_orgel_2021_106276 crossref_primary_10_1002_aenm_202002774 crossref_primary_10_1016_j_orgel_2024_107106 crossref_primary_10_1039_D2EE04137E crossref_primary_10_1016_j_device_2024_100369 crossref_primary_10_3938_jkps_77_806 crossref_primary_10_1002_adom_202001298 crossref_primary_10_1002_aesr_202000035 crossref_primary_10_1002_ppap_202100098 crossref_primary_10_1007_s40820_024_01547_6 crossref_primary_10_1002_inf2_12285 crossref_primary_10_1007_s11426_024_2056_9 crossref_primary_10_1007_s11467_020_0997_x |
Cites_doi | 10.1039/C8EE00154E 10.1063/1.4738896 10.1039/C8TA08891H 10.1088/1361-6463/aa53d7 10.1038/nphoton.2013.276 10.1039/C5EE02162F 10.1016/j.joule.2018.06.006 10.1002/adma.201703080 10.1002/adma.201701308 10.1063/1.3567516 10.1021/nl073296g 10.1002/adma.201700192 10.1016/j.tsf.2003.11.038 10.1063/1.3660708 10.1063/1.2209176 10.1002/adfm201301557 10.1002/adfm.201605908 10.1002/adma.201807159 10.1002/aenm.201701791 10.1063/1.2209887 10.1021/jacs.7b11278 10.3390/coatings8100329 10.1364/OL.31.000601 10.1021/nl048435y 10.1002/adma.201804416 10.1038/s41560-017-0016-9 10.1021/nn3029327 10.1002/adfm.201800627 10.1021/acsnano.5b04858 10.1002/adma.201705969 10.1021/nn1005232 10.1002/adfm.201000176 10.1002/adma.201606574 10.1039/C8TA11484F 10.1039/c2ee03429h 10.1038/nnano.2010.132 10.1039/c2ee22623e |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 OTOTI |
DOI | 10.1002/adma.201903173 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic OSTI.GOV |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 1566209 31420924 10_1002_adma_201903173 ADMA201903173 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: University of Michigan – fundername: Universal Display – fundername: Department of Energy funderid: DE‐EE0008561 – fundername: Office of Naval Research funderid: N00014‐17‐1‐2211 – fundername: Office of Naval Research grantid: N00014-17-1-2211 – fundername: Department of Energy grantid: DE-EE0008561 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 AAPBV ABHUG ACXME ADAWD ADDAD AFVGU AGJLS OTOTI |
ID | FETCH-LOGICAL-c4793-3c47fde950996eef9b6e2919b686a6c2b6bf79361feda9733fbc7db315e880113 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri May 19 00:43:56 EDT 2023 Fri Jul 11 07:27:51 EDT 2025 Sun Jul 13 04:29:44 EDT 2025 Wed Feb 19 02:31:31 EST 2025 Thu Apr 24 22:55:54 EDT 2025 Tue Jul 01 00:44:54 EDT 2025 Wed Jan 22 16:38:35 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 40 |
Keywords | nonfullerene acceptors transparent electronics solar cells |
Language | English |
License | 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4793-3c47fde950996eef9b6e2919b686a6c2b6bf79361feda9733fbc7db315e880113 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 EE0008561 USDOE Office of Energy Efficiency and Renewable Energy (EERE) |
ORCID | 0000-0003-0131-1903 0000000301311903 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adma.201903173 |
PMID | 31420924 |
PQID | 2299383584 |
PQPubID | 2045203 |
PageCount | 8 |
ParticipantIDs | osti_scitechconnect_1566209 proquest_miscellaneous_2275306297 proquest_journals_2299383584 pubmed_primary_31420924 crossref_citationtrail_10_1002_adma_201903173 crossref_primary_10_1002_adma_201903173 wiley_primary_10_1002_adma_201903173_ADMA201903173 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-10-01 |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc Wiley |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley |
References | 2019; 7 2018; 28 2017; 2 2006; 31 2012; 101 2019; 31 2013; 23 2017; 27 2004; 4 2011; 99 2011; 98 2008; 8 2017; 29 2013; 7 2015; 9 2015; 8 2004; 451–452 2017; 139 2017; 50 2018; 6 2010; 20 2018; 8 2018; 2 2006; 88 2017 2018; 30 2012; 6 2018; 11 2010; 5 2012; 5 2010; 4 e_1_2_5_27_1 e_1_2_5_28_1 e_1_2_5_25_1 e_1_2_5_26_1 e_1_2_5_23_1 e_1_2_5_24_1 e_1_2_5_21_1 e_1_2_5_22_1 e_1_2_5_29_1 e_1_2_5_20_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_1_1 e_1_2_5_19_1 e_1_2_5_18_1 e_1_2_5_30_1 e_1_2_5_31_1 |
References_xml | – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 6513 year: 2012 publication-title: Energy Environ. Sci. – volume: 23 start-page: 5084 year: 2013 publication-title: Adv. Funct. Mater. – volume: 4 start-page: 2955 year: 2010 publication-title: ACS Nano – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 7 start-page: 3745 year: 2019 publication-title: J. Mater. Chem. A – volume: 5 start-page: 574 year: 2010 publication-title: Nat. Nanotechnol. – volume: 101 year: 2012 publication-title: Appl. Phys. Lett. – volume: 9 year: 2015 publication-title: ACS Nano – volume: 6 start-page: 7185 year: 2012 publication-title: ACS Nano – volume: 4 start-page: 2513 year: 2004 publication-title: Nano Lett. – volume: 11 start-page: 1688 year: 2018 publication-title: Energy Environ. Sci. – volume: 2 start-page: 1816 year: 2018 publication-title: Joule – volume: 8 start-page: 329 year: 2018 publication-title: Coatings – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 139 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 9551 year: 2012 publication-title: Energy Environ. Sci. – volume: 31 start-page: 601 year: 2006 publication-title: Opt. Lett. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 451–452 start-page: 22 year: 2004 publication-title: Thin Solid Films – volume: 99 year: 2011 publication-title: Appl. Phys. Lett. – volume: 2 start-page: 849 year: 2017 publication-title: Nat. Energy – volume: 98 year: 2011 publication-title: Appl. Phys. Lett. – volume: 20 start-page: 1592 year: 2010 publication-title: Adv. Funct. Mater. – volume: 88 year: 2006 publication-title: Appl. Phys. Lett. – volume: 8 start-page: 3266 year: 2015 publication-title: Energy Environ. Sci. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – year: 2017 – volume: 50 year: 2017 publication-title: J. Phys. D: Appl. Phys. – volume: 7 start-page: 995 year: 2013 publication-title: Nat. Photonics – volume: 8 start-page: 689 year: 2008 publication-title: Nano Lett. – ident: e_1_2_5_9_1 doi: 10.1039/C8EE00154E – ident: e_1_2_5_6_1 doi: 10.1063/1.4738896 – ident: e_1_2_5_24_1 doi: 10.1039/C8TA08891H – ident: e_1_2_5_10_1 doi: 10.1088/1361-6463/aa53d7 – ident: e_1_2_5_7_1 doi: 10.1038/nphoton.2013.276 – ident: e_1_2_5_31_1 doi: 10.1039/C5EE02162F – ident: e_1_2_5_11_1 doi: 10.1016/j.joule.2018.06.006 – ident: e_1_2_5_19_1 doi: 10.1002/adma.201703080 – ident: e_1_2_5_21_1 doi: 10.1002/adma.201701308 – ident: e_1_2_5_4_1 doi: 10.1063/1.3567516 – ident: e_1_2_5_33_1 doi: 10.1021/nl073296g – ident: e_1_2_5_13_1 doi: 10.1002/adma.201700192 – ident: e_1_2_5_32_1 doi: 10.1016/j.tsf.2003.11.038 – ident: e_1_2_5_15_1 doi: 10.1063/1.3660708 – ident: e_1_2_5_3_1 doi: 10.1063/1.2209176 – ident: e_1_2_5_17_1 doi: 10.1002/adfm201301557 – ident: e_1_2_5_30_1 doi: 10.1002/adfm.201605908 – ident: e_1_2_5_26_1 doi: 10.1002/adma.201807159 – ident: e_1_2_5_12_1 doi: 10.1002/aenm.201701791 – ident: e_1_2_5_36_1 doi: 10.1063/1.2209887 – ident: e_1_2_5_18_1 doi: 10.1021/jacs.7b11278 – ident: e_1_2_5_39_1 – ident: e_1_2_5_14_1 doi: 10.3390/coatings8100329 – ident: e_1_2_5_29_1 doi: 10.1364/OL.31.000601 – ident: e_1_2_5_35_1 doi: 10.1021/nl048435y – ident: e_1_2_5_27_1 doi: 10.1002/adma.201804416 – ident: e_1_2_5_1_1 doi: 10.1038/s41560-017-0016-9 – ident: e_1_2_5_8_1 doi: 10.1021/nn3029327 – ident: e_1_2_5_23_1 doi: 10.1002/adfm.201800627 – ident: e_1_2_5_38_1 doi: 10.1021/acsnano.5b04858 – ident: e_1_2_5_22_1 doi: 10.1002/adma.201705969 – ident: e_1_2_5_34_1 doi: 10.1021/nn1005232 – ident: e_1_2_5_5_1 doi: 10.1002/adfm.201000176 – ident: e_1_2_5_20_1 doi: 10.1002/adma.201606574 – ident: e_1_2_5_2_1 – ident: e_1_2_5_25_1 doi: 10.1039/C8TA11484F – ident: e_1_2_5_28_1 doi: 10.1039/c2ee03429h – ident: e_1_2_5_37_1 doi: 10.1038/nnano.2010.132 – ident: e_1_2_5_16_1 doi: 10.1039/c2ee22623e |
SSID | ssj0009606 |
Score | 2.625595 |
Snippet | Building‐integrated photovoltaics employing transparent photovoltaic cells on window panes provide an opportunity to convert solar energy to electricity rather... Building-integrated photovoltaics employing transparent photovoltaic cells on window panes provide an opportunity to convert solar energy to electricity rather... |
SourceID | osti proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1903173 |
SubjectTerms | Antireflection coatings Chromaticity Coated electrodes Copper Energy conversion efficiency Materials science nonfullerene acceptors Photovoltaic cells Silver base alloys solar cells Solar energy conversion transparent electronics |
Title | Enhanced Light Utilization in Semitransparent Organic Photovoltaics Using an Optical Outcoupling Architecture |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201903173 https://www.ncbi.nlm.nih.gov/pubmed/31420924 https://www.proquest.com/docview/2299383584 https://www.proquest.com/docview/2275306297 https://www.osti.gov/biblio/1566209 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbQnuDA-xFakJGQOKVN7MSJjytoVSFKEbBSb5bt2HTVNqm6zqW_nhknm-4iEBKcnCjjyElmPN84M58JeVu7SpaaFWnpGwhQeFOkNRciNZnXoD6ZzyOV0vFncbQoPp6WpxtV_AM_xLTghpYR52s0cG1W-7ekobqJvEHg0MAFIt0nJmwhKvp6yx-F8DyS7fEylaKo16yNGdvf7r7llWYdWNfvEOc2gI0e6PAB0euxD4kn53t9MHv25hdax_95uIfk_ghP6XzQp0fkjmsfk3sbpIVPyOVBexbTBugnDOzpIiwvxmJOumzpN3e5DJExHcvMAh2KPS39ctaFDubCoJd2RWOmAtUtPbmKi-n0pA-267E8-Aedb_zceEoWhwff3x-l46YNqcVFupRD4xsnAYhI4ZyXRjgmc2hqoYVlRhgPciL3rtGy4twbWzWG56WDqSTP-TMya7vWvSDUg5RzzGmd1YVHbKulF9q4SmfSlTwh6fqjKTsymuPGGhdq4GJmCl-jml5jQt5N8lcDl8cfJXdQBxSgEKTStZhzZIPCWJdlMiG7a9VQo8WvFAO_DtE-4LmEvJkug63iDxjduq5HGQgOM8FklZDng0pNA-F5Abdm0JtFxfjLCNX8w_F8Onv5L512yF08HjITd8ksXPfuFSCsYF5HK_oJGlYcqw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6V5QAc-IeGFjASiFPaxE6c-MBhxbba0t0WQVfqLXUSm67aJhWbCMFb8So8EWPnp10EQkLqgZOVZGw59oxnxp75DPAyVpEIJQ3cUOfooLA8cGPGuZt6WiL7eNq3UErTPT6eBe8Ow8MV-N7lwjT4EP2Gm5EMu14bATcb0psXqKEyt8BBqNFQB3b3V--qr1_Qa1u82RnhFL-idHvr4O3YbS8WcDOzkeQyLHSuBCpLwZXSIuWKCh-LmEue0ZSnGum4r1UuRcSYTrMoT5kfKmR332fY7jW4bq4RN3D9ow8XiFXGIbDwfix0BQ_iDifSo5vL_V3Sg4MS5fl3Nu6yyWx13vYd-NGNVhPqcrJRV-lG9u0XIMn_ajjvwu3WAifDRmTuwYoq7sOtS7iMD-Bsqzi2kRFkYvYuyKyan7b5qmRekI_qbF5ZUHiTSVeRJp81I--Py6rE5b6S82xBbDAGkQXZP7fnBWS_rrKyNhnQn8jw0vnNQ5hdyf8-gkFRFmoViEYqpaiS0osDbcx3KTSXqYqkJ1TIHHA7LkmyFrTd3B1ymjRw0zQx05b00-bA657-vIEr-SPlmmG6BA0tgxacmbCqrEqMO0894cB6x4tJu6gtEoqmC0OLPQ4ceNF_xuXInDHJQpW1oUH_1-NURA48bni47wjzA2yaYm1qOfEvPUyGo-mwf3ryL5Wew43xwXSSTHb2dtfgpnnfBGKuw6D6XKunaFBW6TMrwgSOrprJfwJQQ3r_ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VRUJw4P0ILWAkEKe0iZ048YHDiu2qpU8BK_XmOolNV7TJis0Kwa_ir_CPGDuPdhEICakHTlaSseXYM54Ze-YzwItUJyJWNPJjU6CDworITxnnfhYYhewTmNBBKe3t861J9PYoPlqB710uTIMP0W-4Wclw67UV8FlhNs5BQ1XhcINQoaEK7K6v3tFfv6DTNn-9PcIZfknpePPDmy2_vVfAz-0-ks-wMIUWqCsF19qIjGsqQixSrnhOM54ZpOOh0YUSCWMmy5MiY2GskdvDkGG7V-BqxANhL4sYvTsHrLL-gEP3Y7EveJR2MJEB3Vju75IaHFQozr8zcZctZqfyxrfgRzdYTaTLp_VFna3n337BkfyfRvM23GztbzJsBOYOrOjyLty4gMp4D842yxMXF0F27c4FmdTT0zZblUxL8l6fTWsHCW_z6GrSZLPm5PCkqitc7Gs1zefEhWIQVZKDmTstIAeLOq8WNv_5IxleOL25D5NL-d8HMCirUj8CYpBKa6qVCtLIWONdCcNVphMVCB0zD_yOSWTeQrbbm0NOZQM2TaWdNtlPmwevevpZA1byR8pVy3MSzSyLFZzboKq8ltaZp4HwYK1jRdkuaXNJ0XBhaK-nkQfP-8-4GNkTJlXqamFp0PsNOBWJBw8bFu47wsIIm6ZYmzpG_EsP5XC0N-yfHv9LpWdw7XA0lrvb-zurcN2-bqIw12BQf17oJ2hN1tlTJ8AEji-bx38CSh95rg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Light+Utilization+in+Semitransparent+Organic+Photovoltaics+Using+an+Optical+Outcoupling+Architecture&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Li%2C+Yongxi&rft.au=Ji%2C+Chengang&rft.au=Qu%2C+Yue&rft.au=Huang%2C+Xinjing&rft.date=2019-10-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=31&rft.issue=40&rft_id=info:doi/10.1002%2Fadma.201903173&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_201903173 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |