Enhanced Light Utilization in Semitransparent Organic Photovoltaics Using an Optical Outcoupling Architecture

Building‐integrated photovoltaics employing transparent photovoltaic cells on window panes provide an opportunity to convert solar energy to electricity rather than generating waste heat. Semitransparent organic photovoltaic cells (ST‐OPVs) that utilize a nonfullerene acceptor‐based near‐infrared (N...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 31; no. 40; pp. e1903173 - n/a
Main Authors Li, Yongxi, Ji, Chengang, Qu, Yue, Huang, Xinjing, Hou, Shaocong, Li, Chang‐Zhi, Liao, Liang‐Sheng, Guo, L. Jay, Forrest, Stephen R.
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.10.2019
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Building‐integrated photovoltaics employing transparent photovoltaic cells on window panes provide an opportunity to convert solar energy to electricity rather than generating waste heat. Semitransparent organic photovoltaic cells (ST‐OPVs) that utilize a nonfullerene acceptor‐based near‐infrared (NIR) absorbing ternary cell combined with a thin, semitransparent, high conductivity Cu‐Ag alloy electrode are demonstrated. A combination of optical outcoupling and antireflection coatings leads to enhanced visible transmission, while reflecting the NIR back into the cell where it is absorbed. This combination of coatings results in doubling of the light utilization efficiency (LUE), which is equal to the product of the power conversion efficiency (PCE) and the average photopic transparency, compared with a conventional semitransparent cell lacking these coatings. A maximum LUE = 3.56 ± 0.11% is achieved for an ST‐OPV with a PCE = 8.0 ± 0.2% at 1 sun, reference AM1.5G spectrum. Moreover, neutral colored ST‐OPVs are also demonstrated, with LUE = 2.56 ± 0.2%, along with Commission Internationale d'Eclairage chromaticity coordinates of CIE = (0.337, 0.349) and a color rendering index of CRI = 87. An efficient and neutral colored semitransparent organic photovoltaic cell (ST‐OPV) is realized by utilizing a near‐infrared (NIR) absorbing ternary cell combined with a thin, semitransparent, high‐conductivity Cu–Ag alloy electrode. A combination of optical outcoupling and antireflection coatings leads to enhanced visible transmission, while reflecting the NIR back into the cell where it is absorbed.
AbstractList Building‐integrated photovoltaics employing transparent photovoltaic cells on window panes provide an opportunity to convert solar energy to electricity rather than generating waste heat. Semitransparent organic photovoltaic cells (ST‐OPVs) that utilize a nonfullerene acceptor‐based near‐infrared (NIR) absorbing ternary cell combined with a thin, semitransparent, high conductivity Cu‐Ag alloy electrode are demonstrated. A combination of optical outcoupling and antireflection coatings leads to enhanced visible transmission, while reflecting the NIR back into the cell where it is absorbed. This combination of coatings results in doubling of the light utilization efficiency (LUE), which is equal to the product of the power conversion efficiency (PCE) and the average photopic transparency, compared with a conventional semitransparent cell lacking these coatings. A maximum LUE = 3.56 ± 0.11% is achieved for an ST‐OPV with a PCE = 8.0 ± 0.2% at 1 sun, reference AM1.5G spectrum. Moreover, neutral colored ST‐OPVs are also demonstrated, with LUE = 2.56 ± 0.2%, along with Commission Internationale d'Eclairage chromaticity coordinates of CIE = (0.337, 0.349) and a color rendering index of CRI = 87. An efficient and neutral colored semitransparent organic photovoltaic cell (ST‐OPV) is realized by utilizing a near‐infrared (NIR) absorbing ternary cell combined with a thin, semitransparent, high‐conductivity Cu–Ag alloy electrode. A combination of optical outcoupling and antireflection coatings leads to enhanced visible transmission, while reflecting the NIR back into the cell where it is absorbed.
Building‐integrated photovoltaics employing transparent photovoltaic cells on window panes provide an opportunity to convert solar energy to electricity rather than generating waste heat. Semitransparent organic photovoltaic cells (ST‐OPVs) that utilize a nonfullerene acceptor‐based near‐infrared (NIR) absorbing ternary cell combined with a thin, semitransparent, high conductivity Cu‐Ag alloy electrode are demonstrated. A combination of optical outcoupling and antireflection coatings leads to enhanced visible transmission, while reflecting the NIR back into the cell where it is absorbed. This combination of coatings results in doubling of the light utilization efficiency (LUE), which is equal to the product of the power conversion efficiency (PCE) and the average photopic transparency, compared with a conventional semitransparent cell lacking these coatings. A maximum LUE = 3.56 ± 0.11% is achieved for an ST‐OPV with a PCE = 8.0 ± 0.2% at 1 sun, reference AM1.5G spectrum. Moreover, neutral colored ST‐OPVs are also demonstrated, with LUE = 2.56 ± 0.2%, along with Commission Internationale d'Eclairage chromaticity coordinates of CIE = (0.337, 0.349) and a color rendering index of CRI = 87.
Building‐integrated photovoltaics employing transparent photovoltaic cells on window panes provide an opportunity to convert solar energy to electricity rather than generating waste heat. Semitransparent organic photovoltaic cells (ST‐OPVs) that utilize a nonfullerene acceptor‐based near‐infrared (NIR) absorbing ternary cell combined with a thin, semitransparent, high conductivity Cu‐Ag alloy electrode are demonstrated. A combination of optical outcoupling and antireflection coatings leads to enhanced visible transmission, while reflecting the NIR back into the cell where it is absorbed. This combination of coatings results in doubling of the light utilization efficiency ( LUE ), which is equal to the product of the power conversion efficiency ( PCE ) and the average photopic transparency, compared with a conventional semitransparent cell lacking these coatings. A maximum LUE = 3.56 ± 0.11% is achieved for an ST‐OPV with a PCE = 8.0 ± 0.2% at 1 sun, reference AM1.5G spectrum. Moreover, neutral colored ST‐OPVs are also demonstrated, with LUE = 2.56 ± 0.2%, along with Commission Internationale d'Eclairage chromaticity coordinates of CIE = (0.337, 0.349) and a color rendering index of CRI = 87.
Building-integrated photovoltaics employing transparent photovoltaic cells on window panes provide an opportunity to convert solar energy to electricity rather than generating waste heat. Semitransparent organic photovoltaic cells (ST-OPVs) that utilize a nonfullerene acceptor-based near-infrared (NIR) absorbing ternary cell combined with a thin, semitransparent, high conductivity Cu-Ag alloy electrode are demonstrated. A combination of optical outcoupling and antireflection coatings leads to enhanced visible transmission, while reflecting the NIR back into the cell where it is absorbed. This combination of coatings results in doubling of the light utilization efficiency (LUE), which is equal to the product of the power conversion efficiency (PCE) and the average photopic transparency, compared with a conventional semitransparent cell lacking these coatings. A maximum LUE = 3.56 ± 0.11% is achieved for an ST-OPV with a PCE = 8.0 ± 0.2% at 1 sun, reference AM1.5G spectrum. Moreover, neutral colored ST-OPVs are also demonstrated, with LUE = 2.56 ± 0.2%, along with Commission Internationale d'Eclairage chromaticity coordinates of CIE = (0.337, 0.349) and a color rendering index of CRI = 87.Building-integrated photovoltaics employing transparent photovoltaic cells on window panes provide an opportunity to convert solar energy to electricity rather than generating waste heat. Semitransparent organic photovoltaic cells (ST-OPVs) that utilize a nonfullerene acceptor-based near-infrared (NIR) absorbing ternary cell combined with a thin, semitransparent, high conductivity Cu-Ag alloy electrode are demonstrated. A combination of optical outcoupling and antireflection coatings leads to enhanced visible transmission, while reflecting the NIR back into the cell where it is absorbed. This combination of coatings results in doubling of the light utilization efficiency (LUE), which is equal to the product of the power conversion efficiency (PCE) and the average photopic transparency, compared with a conventional semitransparent cell lacking these coatings. A maximum LUE = 3.56 ± 0.11% is achieved for an ST-OPV with a PCE = 8.0 ± 0.2% at 1 sun, reference AM1.5G spectrum. Moreover, neutral colored ST-OPVs are also demonstrated, with LUE = 2.56 ± 0.2%, along with Commission Internationale d'Eclairage chromaticity coordinates of CIE = (0.337, 0.349) and a color rendering index of CRI = 87.
Author Hou, Shaocong
Guo, L. Jay
Liao, Liang‐Sheng
Forrest, Stephen R.
Ji, Chengang
Li, Yongxi
Huang, Xinjing
Qu, Yue
Li, Chang‐Zhi
Author_xml – sequence: 1
  givenname: Yongxi
  surname: Li
  fullname: Li, Yongxi
  organization: University of Michigan
– sequence: 2
  givenname: Chengang
  surname: Ji
  fullname: Ji, Chengang
  organization: University of Michigan
– sequence: 3
  givenname: Yue
  surname: Qu
  fullname: Qu, Yue
  organization: University of Michigan
– sequence: 4
  givenname: Xinjing
  surname: Huang
  fullname: Huang, Xinjing
  organization: University of Michigan
– sequence: 5
  givenname: Shaocong
  surname: Hou
  fullname: Hou, Shaocong
  organization: University of Michigan
– sequence: 6
  givenname: Chang‐Zhi
  surname: Li
  fullname: Li, Chang‐Zhi
  organization: Zhejiang University
– sequence: 7
  givenname: Liang‐Sheng
  surname: Liao
  fullname: Liao, Liang‐Sheng
  organization: Soochow University
– sequence: 8
  givenname: L. Jay
  surname: Guo
  fullname: Guo, L. Jay
  email: guo@umich.edu
  organization: University of Michigan
– sequence: 9
  givenname: Stephen R.
  orcidid: 0000-0003-0131-1903
  surname: Forrest
  fullname: Forrest, Stephen R.
  email: stevefor@umich.edu, forrest@princeton.edu
  organization: University of Michigan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31420924$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1566209$$D View this record in Osti.gov
BookMark eNqFkUtv1DAUhS1URKcDW5bIgg2bDH4kTrwclfKQBg0SzNpynJuJq8QebAfU_vp6mBakSojVka6-cx_nXqAz5x0g9JKSFSWEvdPdpFeMUEk4rfkTtKAVo0VJZHWGFkTyqpCibM7RRYzXhBApiHiGzjktGZGsXKDpyg3aGejwxu6HhHfJjvZWJ-sdtg5_g8mmoF086AAu4W3Ya2cN_jr45H_6MWlrIt5F6_ZYO7w9JGv0iLdzMn4-jMfyOpjBJjBpDvAcPe31GOHFvS7R7sPV98tPxWb78fPlelOYspa84Fn6DmRFpBQAvWwFMEmzNEILw1rR9pkTtIdOy5rzvjV113JaQdMQSvkSvT719TFZFc1x_mC8c3kNRSsh8vUZenuCDsH_mCEmNdloYBy1Az9HxVhdcSJYHrBEbx6h134OLp-QKSl5w6umzNSre2puJ-jUIdhJhxv1kHYGyhNggo8xQK_yZr-zzhnbUVGijk9Vx6eqP0_NttUj20PnfxrkyfDLjnDzH1qt339Z__XeAatTtI8
CitedBy_id crossref_primary_10_1002_adma_202201604
crossref_primary_10_1016_j_joule_2023_11_010
crossref_primary_10_1038_s41560_020_00732_2
crossref_primary_10_1016_j_cej_2022_139423
crossref_primary_10_1002_advs_202201487
crossref_primary_10_1002_adma_202305092
crossref_primary_10_1002_solr_202200679
crossref_primary_10_1002_aenm_202102526
crossref_primary_10_1021_acsapm_3c01184
crossref_primary_10_1002_aenm_202100225
crossref_primary_10_1073_pnas_2007799117
crossref_primary_10_3390_nano13081308
crossref_primary_10_1002_solr_202300211
crossref_primary_10_3390_nano11010158
crossref_primary_10_1002_aenm_202003581
crossref_primary_10_1021_acsami_1c02046
crossref_primary_10_1021_jacs_0c04084
crossref_primary_10_1002_adma_202311305
crossref_primary_10_1002_solr_202100041
crossref_primary_10_1002_solr_202100162
crossref_primary_10_1016_j_mtener_2021_100852
crossref_primary_10_1002_adma_202300360
crossref_primary_10_1021_acsenergylett_1c02244
crossref_primary_10_1039_D3EE04476A
crossref_primary_10_1063_5_0005172
crossref_primary_10_1021_acsami_1c18473
crossref_primary_10_1038_s41578_022_00514_0
crossref_primary_10_1021_acsami_1c16691
crossref_primary_10_1002_adfm_202009996
crossref_primary_10_1021_acsenergylett_3c01178
crossref_primary_10_1016_j_cej_2023_148481
crossref_primary_10_1002_adom_202202827
crossref_primary_10_1039_D2TC00025C
crossref_primary_10_1021_acsapm_0c00791
crossref_primary_10_1002_solr_202400399
crossref_primary_10_1002_adma_202200337
crossref_primary_10_3390_molecules28052145
crossref_primary_10_1016_j_optlastec_2023_110002
crossref_primary_10_1039_D1TA01135A
crossref_primary_10_1039_D2TC02689A
crossref_primary_10_1002_solr_202000564
crossref_primary_10_1039_D1TC02413B
crossref_primary_10_1002_solr_202100818
crossref_primary_10_1007_s40843_024_3210_y
crossref_primary_10_1039_D2EE00977C
crossref_primary_10_1002_solr_202300037
crossref_primary_10_1063_5_0037104
crossref_primary_10_1002_chem_202003925
crossref_primary_10_1039_D4EE01659A
crossref_primary_10_1002_cey2_97
crossref_primary_10_1002_aenm_202301367
crossref_primary_10_1039_D1QM00151E
crossref_primary_10_1002_solr_202300561
crossref_primary_10_1002_smtd_202301695
crossref_primary_10_1016_j_cej_2021_132640
crossref_primary_10_1039_D2EE02392J
crossref_primary_10_1039_D3CS00233K
crossref_primary_10_1002_aenm_202301098
crossref_primary_10_1016_j_nanoen_2020_105376
crossref_primary_10_1016_j_nanoen_2023_108472
crossref_primary_10_1002_adfm_202107934
crossref_primary_10_1002_aenm_202400970
crossref_primary_10_1021_acsenergylett_0c01554
crossref_primary_10_1021_acsenergylett_4c00149
crossref_primary_10_1039_D2TC04507A
crossref_primary_10_1021_acssuschemeng_1c08404
crossref_primary_10_1002_adfm_202406070
crossref_primary_10_1002_aenm_201904196
crossref_primary_10_1002_adfm_202314116
crossref_primary_10_1016_j_solener_2020_05_027
crossref_primary_10_1002_adom_202100064
crossref_primary_10_1002_solr_202400126
crossref_primary_10_1021_acsaem_4c01498
crossref_primary_10_1002_adma_202303844
crossref_primary_10_1002_adfm_202107827
crossref_primary_10_1002_adma_202001621
crossref_primary_10_1016_j_porgcoat_2023_107790
crossref_primary_10_1021_acsaem_4c01493
crossref_primary_10_1002_adpr_202400128
crossref_primary_10_1002_aenm_202404129
crossref_primary_10_1002_aenm_202003408
crossref_primary_10_1038_s41467_021_25718_w
crossref_primary_10_1002_adfm_202108634
crossref_primary_10_1016_j_joule_2021_07_004
crossref_primary_10_1002_adfm_202007931
crossref_primary_10_1002_adfm_202111760
crossref_primary_10_1002_solr_202200527
crossref_primary_10_1038_s41467_020_17107_6
crossref_primary_10_1002_aenm_202200453
crossref_primary_10_1002_adma_202400342
crossref_primary_10_1039_D0SE00910E
crossref_primary_10_1002_adfm_202110435
crossref_primary_10_1002_adma_201907604
crossref_primary_10_1002_aenm_202301555
crossref_primary_10_1002_adom_202202982
crossref_primary_10_1002_advs_202202150
crossref_primary_10_1002_adma_202201348
crossref_primary_10_1002_admt_202101638
crossref_primary_10_1002_adfm_202002181
crossref_primary_10_1002_adma_202302927
crossref_primary_10_1021_acsami_0c10906
crossref_primary_10_1002_inf2_12276
crossref_primary_10_1002_aenm_202102908
crossref_primary_10_1002_aesr_202400268
crossref_primary_10_1002_marc_202200199
crossref_primary_10_1039_D3TA05351B
crossref_primary_10_1002_pip_3684
crossref_primary_10_1007_s00339_021_05025_3
crossref_primary_10_1016_j_orgel_2021_106276
crossref_primary_10_1002_aenm_202002774
crossref_primary_10_1016_j_orgel_2024_107106
crossref_primary_10_1039_D2EE04137E
crossref_primary_10_1016_j_device_2024_100369
crossref_primary_10_3938_jkps_77_806
crossref_primary_10_1002_adom_202001298
crossref_primary_10_1002_aesr_202000035
crossref_primary_10_1002_ppap_202100098
crossref_primary_10_1007_s40820_024_01547_6
crossref_primary_10_1002_inf2_12285
crossref_primary_10_1007_s11426_024_2056_9
crossref_primary_10_1007_s11467_020_0997_x
Cites_doi 10.1039/C8EE00154E
10.1063/1.4738896
10.1039/C8TA08891H
10.1088/1361-6463/aa53d7
10.1038/nphoton.2013.276
10.1039/C5EE02162F
10.1016/j.joule.2018.06.006
10.1002/adma.201703080
10.1002/adma.201701308
10.1063/1.3567516
10.1021/nl073296g
10.1002/adma.201700192
10.1016/j.tsf.2003.11.038
10.1063/1.3660708
10.1063/1.2209176
10.1002/adfm201301557
10.1002/adfm.201605908
10.1002/adma.201807159
10.1002/aenm.201701791
10.1063/1.2209887
10.1021/jacs.7b11278
10.3390/coatings8100329
10.1364/OL.31.000601
10.1021/nl048435y
10.1002/adma.201804416
10.1038/s41560-017-0016-9
10.1021/nn3029327
10.1002/adfm.201800627
10.1021/acsnano.5b04858
10.1002/adma.201705969
10.1021/nn1005232
10.1002/adfm.201000176
10.1002/adma.201606574
10.1039/C8TA11484F
10.1039/c2ee03429h
10.1038/nnano.2010.132
10.1039/c2ee22623e
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
OTOTI
DOI 10.1002/adma.201903173
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
CrossRef
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 1566209
31420924
10_1002_adma_201903173
ADMA201903173
Genre article
Journal Article
GrantInformation_xml – fundername: University of Michigan
– fundername: Universal Display
– fundername: Department of Energy
  funderid: DE‐EE0008561
– fundername: Office of Naval Research
  funderid: N00014‐17‐1‐2211
– fundername: Office of Naval Research
  grantid: N00014-17-1-2211
– fundername: Department of Energy
  grantid: DE-EE0008561
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
AAPBV
ABHUG
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
OTOTI
ID FETCH-LOGICAL-c4793-3c47fde950996eef9b6e2919b686a6c2b6bf79361feda9733fbc7db315e880113
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri May 19 00:43:56 EDT 2023
Fri Jul 11 07:27:51 EDT 2025
Sun Jul 13 04:29:44 EDT 2025
Wed Feb 19 02:31:31 EST 2025
Thu Apr 24 22:55:54 EDT 2025
Tue Jul 01 00:44:54 EDT 2025
Wed Jan 22 16:38:35 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 40
Keywords nonfullerene acceptors
transparent electronics
solar cells
Language English
License 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4793-3c47fde950996eef9b6e2919b686a6c2b6bf79361feda9733fbc7db315e880113
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
EE0008561
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
ORCID 0000-0003-0131-1903
0000000301311903
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adma.201903173
PMID 31420924
PQID 2299383584
PQPubID 2045203
PageCount 8
ParticipantIDs osti_scitechconnect_1566209
proquest_miscellaneous_2275306297
proquest_journals_2299383584
pubmed_primary_31420924
crossref_citationtrail_10_1002_adma_201903173
crossref_primary_10_1002_adma_201903173
wiley_primary_10_1002_adma_201903173_ADMA201903173
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-01
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley
References 2019; 7
2018; 28
2017; 2
2006; 31
2012; 101
2019; 31
2013; 23
2017; 27
2004; 4
2011; 99
2011; 98
2008; 8
2017; 29
2013; 7
2015; 9
2015; 8
2004; 451–452
2017; 139
2017; 50
2018; 6
2010; 20
2018; 8
2018; 2
2006; 88
2017
2018; 30
2012; 6
2018; 11
2010; 5
2012; 5
2010; 4
e_1_2_5_27_1
e_1_2_5_28_1
e_1_2_5_25_1
e_1_2_5_26_1
e_1_2_5_23_1
e_1_2_5_24_1
e_1_2_5_21_1
e_1_2_5_22_1
e_1_2_5_29_1
e_1_2_5_20_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_1_1
e_1_2_5_19_1
e_1_2_5_18_1
e_1_2_5_30_1
e_1_2_5_31_1
References_xml – volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 6513
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 23
  start-page: 5084
  year: 2013
  publication-title: Adv. Funct. Mater.
– volume: 4
  start-page: 2955
  year: 2010
  publication-title: ACS Nano
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 7
  start-page: 3745
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 574
  year: 2010
  publication-title: Nat. Nanotechnol.
– volume: 101
  year: 2012
  publication-title: Appl. Phys. Lett.
– volume: 9
  year: 2015
  publication-title: ACS Nano
– volume: 6
  start-page: 7185
  year: 2012
  publication-title: ACS Nano
– volume: 4
  start-page: 2513
  year: 2004
  publication-title: Nano Lett.
– volume: 11
  start-page: 1688
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 2
  start-page: 1816
  year: 2018
  publication-title: Joule
– volume: 8
  start-page: 329
  year: 2018
  publication-title: Coatings
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 139
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 9551
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 31
  start-page: 601
  year: 2006
  publication-title: Opt. Lett.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 451–452
  start-page: 22
  year: 2004
  publication-title: Thin Solid Films
– volume: 99
  year: 2011
  publication-title: Appl. Phys. Lett.
– volume: 2
  start-page: 849
  year: 2017
  publication-title: Nat. Energy
– volume: 98
  year: 2011
  publication-title: Appl. Phys. Lett.
– volume: 20
  start-page: 1592
  year: 2010
  publication-title: Adv. Funct. Mater.
– volume: 88
  year: 2006
  publication-title: Appl. Phys. Lett.
– volume: 8
  start-page: 3266
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– year: 2017
– volume: 50
  year: 2017
  publication-title: J. Phys. D: Appl. Phys.
– volume: 7
  start-page: 995
  year: 2013
  publication-title: Nat. Photonics
– volume: 8
  start-page: 689
  year: 2008
  publication-title: Nano Lett.
– ident: e_1_2_5_9_1
  doi: 10.1039/C8EE00154E
– ident: e_1_2_5_6_1
  doi: 10.1063/1.4738896
– ident: e_1_2_5_24_1
  doi: 10.1039/C8TA08891H
– ident: e_1_2_5_10_1
  doi: 10.1088/1361-6463/aa53d7
– ident: e_1_2_5_7_1
  doi: 10.1038/nphoton.2013.276
– ident: e_1_2_5_31_1
  doi: 10.1039/C5EE02162F
– ident: e_1_2_5_11_1
  doi: 10.1016/j.joule.2018.06.006
– ident: e_1_2_5_19_1
  doi: 10.1002/adma.201703080
– ident: e_1_2_5_21_1
  doi: 10.1002/adma.201701308
– ident: e_1_2_5_4_1
  doi: 10.1063/1.3567516
– ident: e_1_2_5_33_1
  doi: 10.1021/nl073296g
– ident: e_1_2_5_13_1
  doi: 10.1002/adma.201700192
– ident: e_1_2_5_32_1
  doi: 10.1016/j.tsf.2003.11.038
– ident: e_1_2_5_15_1
  doi: 10.1063/1.3660708
– ident: e_1_2_5_3_1
  doi: 10.1063/1.2209176
– ident: e_1_2_5_17_1
  doi: 10.1002/adfm201301557
– ident: e_1_2_5_30_1
  doi: 10.1002/adfm.201605908
– ident: e_1_2_5_26_1
  doi: 10.1002/adma.201807159
– ident: e_1_2_5_12_1
  doi: 10.1002/aenm.201701791
– ident: e_1_2_5_36_1
  doi: 10.1063/1.2209887
– ident: e_1_2_5_18_1
  doi: 10.1021/jacs.7b11278
– ident: e_1_2_5_39_1
– ident: e_1_2_5_14_1
  doi: 10.3390/coatings8100329
– ident: e_1_2_5_29_1
  doi: 10.1364/OL.31.000601
– ident: e_1_2_5_35_1
  doi: 10.1021/nl048435y
– ident: e_1_2_5_27_1
  doi: 10.1002/adma.201804416
– ident: e_1_2_5_1_1
  doi: 10.1038/s41560-017-0016-9
– ident: e_1_2_5_8_1
  doi: 10.1021/nn3029327
– ident: e_1_2_5_23_1
  doi: 10.1002/adfm.201800627
– ident: e_1_2_5_38_1
  doi: 10.1021/acsnano.5b04858
– ident: e_1_2_5_22_1
  doi: 10.1002/adma.201705969
– ident: e_1_2_5_34_1
  doi: 10.1021/nn1005232
– ident: e_1_2_5_5_1
  doi: 10.1002/adfm.201000176
– ident: e_1_2_5_20_1
  doi: 10.1002/adma.201606574
– ident: e_1_2_5_2_1
– ident: e_1_2_5_25_1
  doi: 10.1039/C8TA11484F
– ident: e_1_2_5_28_1
  doi: 10.1039/c2ee03429h
– ident: e_1_2_5_37_1
  doi: 10.1038/nnano.2010.132
– ident: e_1_2_5_16_1
  doi: 10.1039/c2ee22623e
SSID ssj0009606
Score 2.625595
Snippet Building‐integrated photovoltaics employing transparent photovoltaic cells on window panes provide an opportunity to convert solar energy to electricity rather...
Building-integrated photovoltaics employing transparent photovoltaic cells on window panes provide an opportunity to convert solar energy to electricity rather...
SourceID osti
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1903173
SubjectTerms Antireflection coatings
Chromaticity
Coated electrodes
Copper
Energy conversion efficiency
Materials science
nonfullerene acceptors
Photovoltaic cells
Silver base alloys
solar cells
Solar energy conversion
transparent electronics
Title Enhanced Light Utilization in Semitransparent Organic Photovoltaics Using an Optical Outcoupling Architecture
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201903173
https://www.ncbi.nlm.nih.gov/pubmed/31420924
https://www.proquest.com/docview/2299383584
https://www.proquest.com/docview/2275306297
https://www.osti.gov/biblio/1566209
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbQnuDA-xFakJGQOKVN7MSJjytoVSFKEbBSb5bt2HTVNqm6zqW_nhknm-4iEBKcnCjjyElmPN84M58JeVu7SpaaFWnpGwhQeFOkNRciNZnXoD6ZzyOV0vFncbQoPp6WpxtV_AM_xLTghpYR52s0cG1W-7ekobqJvEHg0MAFIt0nJmwhKvp6yx-F8DyS7fEylaKo16yNGdvf7r7llWYdWNfvEOc2gI0e6PAB0euxD4kn53t9MHv25hdax_95uIfk_ghP6XzQp0fkjmsfk3sbpIVPyOVBexbTBugnDOzpIiwvxmJOumzpN3e5DJExHcvMAh2KPS39ctaFDubCoJd2RWOmAtUtPbmKi-n0pA-267E8-Aedb_zceEoWhwff3x-l46YNqcVFupRD4xsnAYhI4ZyXRjgmc2hqoYVlRhgPciL3rtGy4twbWzWG56WDqSTP-TMya7vWvSDUg5RzzGmd1YVHbKulF9q4SmfSlTwh6fqjKTsymuPGGhdq4GJmCl-jml5jQt5N8lcDl8cfJXdQBxSgEKTStZhzZIPCWJdlMiG7a9VQo8WvFAO_DtE-4LmEvJkug63iDxjduq5HGQgOM8FklZDng0pNA-F5Abdm0JtFxfjLCNX8w_F8Onv5L512yF08HjITd8ksXPfuFSCsYF5HK_oJGlYcqw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6V5QAc-IeGFjASiFPaxE6c-MBhxbba0t0WQVfqLXUSm67aJhWbCMFb8So8EWPnp10EQkLqgZOVZGw59oxnxp75DPAyVpEIJQ3cUOfooLA8cGPGuZt6WiL7eNq3UErTPT6eBe8Ow8MV-N7lwjT4EP2Gm5EMu14bATcb0psXqKEyt8BBqNFQB3b3V--qr1_Qa1u82RnhFL-idHvr4O3YbS8WcDOzkeQyLHSuBCpLwZXSIuWKCh-LmEue0ZSnGum4r1UuRcSYTrMoT5kfKmR332fY7jW4bq4RN3D9ow8XiFXGIbDwfix0BQ_iDifSo5vL_V3Sg4MS5fl3Nu6yyWx13vYd-NGNVhPqcrJRV-lG9u0XIMn_ajjvwu3WAifDRmTuwYoq7sOtS7iMD-Bsqzi2kRFkYvYuyKyan7b5qmRekI_qbF5ZUHiTSVeRJp81I--Py6rE5b6S82xBbDAGkQXZP7fnBWS_rrKyNhnQn8jw0vnNQ5hdyf8-gkFRFmoViEYqpaiS0osDbcx3KTSXqYqkJ1TIHHA7LkmyFrTd3B1ymjRw0zQx05b00-bA657-vIEr-SPlmmG6BA0tgxacmbCqrEqMO0894cB6x4tJu6gtEoqmC0OLPQ4ceNF_xuXInDHJQpW1oUH_1-NURA48bni47wjzA2yaYm1qOfEvPUyGo-mwf3ryL5Wew43xwXSSTHb2dtfgpnnfBGKuw6D6XKunaFBW6TMrwgSOrprJfwJQQ3r_
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VRUJw4P0ILWAkEKe0iZ048YHDiu2qpU8BK_XmOolNV7TJis0Kwa_ir_CPGDuPdhEICakHTlaSseXYM54Ze-YzwItUJyJWNPJjU6CDworITxnnfhYYhewTmNBBKe3t861J9PYoPlqB710uTIMP0W-4Wclw67UV8FlhNs5BQ1XhcINQoaEK7K6v3tFfv6DTNn-9PcIZfknpePPDmy2_vVfAz-0-ks-wMIUWqCsF19qIjGsqQixSrnhOM54ZpOOh0YUSCWMmy5MiY2GskdvDkGG7V-BqxANhL4sYvTsHrLL-gEP3Y7EveJR2MJEB3Vju75IaHFQozr8zcZctZqfyxrfgRzdYTaTLp_VFna3n337BkfyfRvM23GztbzJsBOYOrOjyLty4gMp4D842yxMXF0F27c4FmdTT0zZblUxL8l6fTWsHCW_z6GrSZLPm5PCkqitc7Gs1zefEhWIQVZKDmTstIAeLOq8WNv_5IxleOL25D5NL-d8HMCirUj8CYpBKa6qVCtLIWONdCcNVphMVCB0zD_yOSWTeQrbbm0NOZQM2TaWdNtlPmwevevpZA1byR8pVy3MSzSyLFZzboKq8ltaZp4HwYK1jRdkuaXNJ0XBhaK-nkQfP-8-4GNkTJlXqamFp0PsNOBWJBw8bFu47wsIIm6ZYmzpG_EsP5XC0N-yfHv9LpWdw7XA0lrvb-zurcN2-bqIw12BQf17oJ2hN1tlTJ8AEji-bx38CSh95rg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Light+Utilization+in+Semitransparent+Organic+Photovoltaics+Using+an+Optical+Outcoupling+Architecture&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Li%2C+Yongxi&rft.au=Ji%2C+Chengang&rft.au=Qu%2C+Yue&rft.au=Huang%2C+Xinjing&rft.date=2019-10-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=31&rft.issue=40&rft_id=info:doi/10.1002%2Fadma.201903173&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_201903173
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon