Disturbance is the principal α-scale filter determining niche differentiation, coexistence and biodiversity in an alpine community

1 Many current biodiversity theories assume that resource competition determines niche segregation and thus coexistence within communities (i.e. at the α-scale). However, the action of disturbance, creating heterogeneous environments and suppressing potential dominants, may also be important for bio...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of ecology Vol. 95; no. 4; pp. 698 - 706
Main Authors PIERCE, SIMON, LUZZARO, ALESSANDRA, CACCIANIGA, MARCO, CERIANI, ROBERTA M, CERABOLINI, BRUNO
Format Journal Article
LanguageEnglish
Published Oxford, UK Oxford, UK : Blackwell Publishing Ltd 01.07.2007
Blackwell Publishing Ltd
Blackwell Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract 1 Many current biodiversity theories assume that resource competition determines niche segregation and thus coexistence within communities (i.e. at the α-scale). However, the action of disturbance, creating heterogeneous environments and suppressing potential dominants, may also be important for biodiversity maintenance. 2 Hypothesis: subordinate species exhibit primarily opportunistic (ruderal) survival strategies, with increasing disturbance intensity constraining dominant species - favouring opportunistic strategies and thus functional and species diversity. 3 The diversity, character and frequency of strategies in an alpine sedge-dominated vascular plant community were quantified in situ using CSR (competitor, stress-tolerator, ruderal) classification, and compared with a pasture in the same alpine vegetation belt (i.e. with additional disturbance). Adaptive trends were confirmed by independent multivariate analysis [detrended correspondence analysis (DCA) and non-metric multidimensional scaling (NMDS)]. 4 The extremely stress-tolerant sedge Carex curvula (C : S : R = 17.2 : 72.9 : 9.9%) dominated the relatively undisturbed community (frequency = 52%), with 32 subordinates (typically < 5%) exhibiting a functional spectrum encompassing stress tolerance to ruderalism, but not competitive strategies. With grazing, the community exhibited weaker co-dominance by five species, greater biodiversity (76 species) and greater functional diversity, characterized by larger numbers of ruderals and some competitive-ruderals. The principal variation in both DCA1 and NMDS1 for both communities directly reflected CSR strategy spectra, confirmed by Spearman's correlation. 5 Dominance by stress-tolerators and restricted functional diversity demonstrates habitat-level (β-scale) functional convergence in response to stress. A spectrum of S to R strategies demonstrates α-scale functional divergence in response to differential stress and disturbance. Grazing suppresses potentially dominant species and favours diversity, with the additional presence of competitive-ruderals suggestive of a more intricate niche topology including more relaxed abiotic opportunities. 6 Natural communities are not necessarily structured according to the rules of resource competition models, as these fail to account for disturbance and facilitation processes.
AbstractList 1 Many current biodiversity theories assume that resource competition determines niche segregation and thus coexistence within communities (i.e. at the α-scale). However, the action of disturbance, creating heterogeneous environments and suppressing potential dominants, may also be important for biodiversity maintenance. 2 Hypothesis: subordinate species exhibit primarily opportunistic (ruderal) survival strategies, with increasing disturbance intensity constraining dominant species - favouring opportunistic strategies and thus functional and species diversity. 3 The diversity, character and frequency of strategies in an alpine sedge-dominated vascular plant community were quantified in situ using CSR (competitor, stress-tolerator, ruderal) classification, and compared with a pasture in the same alpine vegetation belt (i.e. with additional disturbance). Adaptive trends were confirmed by independent multivariate analysis [detrended correspondence analysis (DCA) and non-metric multidimensional scaling (NMDS)]. 4 The extremely stress-tolerant sedge Carex curvula (C : S : R = 17.2 : 72.9 : 9.9%) dominated the relatively undisturbed community (frequency = 52%), with 32 subordinates (typically < 5%) exhibiting a functional spectrum encompassing stress tolerance to ruderalism, but not competitive strategies. With grazing, the community exhibited weaker co-dominance by five species, greater biodiversity (76 species) and greater functional diversity, characterized by larger numbers of ruderals and some competitive-ruderals. The principal variation in both DCA1 and NMDS1 for both communities directly reflected CSR strategy spectra, confirmed by Spearman's correlation. 5 Dominance by stress-tolerators and restricted functional diversity demonstrates habitat-level (β-scale) functional convergence in response to stress. A spectrum of S to R strategies demonstrates α-scale functional divergence in response to differential stress and disturbance. Grazing suppresses potentially dominant species and favours diversity, with the additional presence of competitive-ruderals suggestive of a more intricate niche topology including more relaxed abiotic opportunities. 6 Natural communities are not necessarily structured according to the rules of resource competition models, as these fail to account for disturbance and facilitation processes.
Many current biodiversity theories assume that resource competition determines niche segregation and thus coexistence within communities (i.e. at the alpha -scale). However, the action of disturbance, creating heterogeneous environments and suppressing potential dominants, may also be important for biodiversity maintenance.Hypothesis: subordinate species exhibit primarily opportunistic (ruderal) survival strategies, with increasing disturbance intensity constraining dominant species - favouring opportunistic strategies and thus functional and species diversity.The diversity, character and frequency of strategies in an alpine sedge-dominated vascular plant community were quantified in situ using CSR (competitor, stress-tolerator, ruderal) classification, and compared with a pasture in the same alpine vegetation belt (i.e. with additional disturbance). Adaptive trends were confirmed by independent multivariate analysis [lsqb]detrended correspondence analysis (DCA) and non-metric multidimensional scaling (NMDS)[rsqb].The extremely stress-tolerant sedge Carex curvula (C : S : R = 17.2 : 72.9 : 9.9%) dominated the relatively undisturbed community (frequency = 52%), with 32 subordinates (typically < 5%) exhibiting a functional spectrum encompassing stress tolerance to ruderalism, but not competitive strategies. With grazing, the community exhibited weaker co-dominance by five species, greater biodiversity (76 species) and greater functional diversity, characterized by larger numbers of ruderals and some competitive-ruderals. The principal variation in both DCA1 and NMDS1 for both communities directly reflected CSR strategy spectra, confirmed by Spearman's correlation.Dominance by stress-tolerators and restricted functional diversity demonstrates habitat-level ( beta -scale) functional convergence in response to stress. A spectrum of S to R strategies demonstrates alpha -scale functional divergence in response to differential stress and disturbance. Grazing suppresses potentially dominant species and favours diversity, with the additional presence of competitive-ruderals suggestive of a more intricate niche topology including more relaxed abiotic opportunities.Natural communities are not necessarily structured according to the rules of resource competition models, as these fail to account for disturbance and facilitation processes.
Summary 1 Many current biodiversity theories assume that resource competition determines niche segregation and thus coexistence within communities (i.e. at the α‐scale). However, the action of disturbance, creating heterogeneous environments and suppressing potential dominants, may also be important for biodiversity maintenance. 2 Hypothesis: subordinate species exhibit primarily opportunistic (ruderal) survival strategies, with increasing disturbance intensity constraining dominant species – favouring opportunistic strategies and thus functional and species diversity. 3 The diversity, character and frequency of strategies in an alpine sedge‐dominated vascular plant community were quantified in situ using CSR (competitor, stress‐tolerator, ruderal) classification, and compared with a pasture in the same alpine vegetation belt (i.e. with additional disturbance). Adaptive trends were confirmed by independent multivariate analysis [detrended correspondence analysis (DCA) and non‐metric multidimensional scaling (NMDS)]. 4 The extremely stress‐tolerant sedge Carex curvula (C : S : R = 17.2 : 72.9 : 9.9%) dominated the relatively undisturbed community (frequency = 52%), with 32 subordinates (typically < 5%) exhibiting a functional spectrum encompassing stress tolerance to ruderalism, but not competitive strategies. With grazing, the community exhibited weaker co‐dominance by five species, greater biodiversity (76 species) and greater functional diversity, characterized by larger numbers of ruderals and some competitive‐ruderals. The principal variation in both DCA1 and NMDS1 for both communities directly reflected CSR strategy spectra, confirmed by Spearman's correlation. 5 Dominance by stress‐tolerators and restricted functional diversity demonstrates habitat‐level (β‐scale) functional convergence in response to stress. A spectrum of S to R strategies demonstrates α‐scale functional divergence in response to differential stress and disturbance. Grazing suppresses potentially dominant species and favours diversity, with the additional presence of competitive‐ruderals suggestive of a more intricate niche topology including more relaxed abiotic opportunities. 6 Natural communities are not necessarily structured according to the rules of resource competition models, as these fail to account for disturbance and facilitation processes.
Many current biodiversity theories assume that resource competition determines niche segregation and thus coexistence within communities (i.e. at the α‐scale). However, the action of disturbance, creating heterogeneous environments and suppressing potential dominants, may also be important for biodiversity maintenance. Hypothesis: subordinate species exhibit primarily opportunistic (ruderal) survival strategies, with increasing disturbance intensity constraining dominant species – favouring opportunistic strategies and thus functional and species diversity. The diversity, character and frequency of strategies in an alpine sedge‐dominated vascular plant community were quantified in situ using CSR (competitor, stress‐tolerator, ruderal) classification, and compared with a pasture in the same alpine vegetation belt (i.e. with additional disturbance). Adaptive trends were confirmed by independent multivariate analysis [detrended correspondence analysis (DCA) and non‐metric multidimensional scaling (NMDS)]. The extremely stress‐tolerant sedge Carex curvula (C : S : R  =  17.2 : 72.9 : 9.9%) dominated the relatively undisturbed community (frequency = 52%), with 32 subordinates (typically < 5%) exhibiting a functional spectrum encompassing stress tolerance to ruderalism, but not competitive strategies. With grazing, the community exhibited weaker co‐dominance by five species, greater biodiversity (76 species) and greater functional diversity, characterized by larger numbers of ruderals and some competitive‐ruderals. The principal variation in both DCA1 and NMDS1 for both communities directly reflected CSR strategy spectra, confirmed by Spearman's correlation. Dominance by stress‐tolerators and restricted functional diversity demonstrates habitat‐level (β‐scale) functional convergence in response to stress. A spectrum of S to R strategies demonstrates α‐scale functional divergence in response to differential stress and disturbance. Grazing suppresses potentially dominant species and favours diversity, with the additional presence of competitive‐ruderals suggestive of a more intricate niche topology including more relaxed abiotic opportunities. Natural communities are not necessarily structured according to the rules of resource competition models, as these fail to account for disturbance and facilitation processes.
Author CERIANI, ROBERTA M
PIERCE, SIMON
CACCIANIGA, MARCO
LUZZARO, ALESSANDRA
CERABOLINI, BRUNO
Author_xml – sequence: 1
  fullname: PIERCE, SIMON
– sequence: 2
  fullname: LUZZARO, ALESSANDRA
– sequence: 3
  fullname: CACCIANIGA, MARCO
– sequence: 4
  fullname: CERIANI, ROBERTA M
– sequence: 5
  fullname: CERABOLINI, BRUNO
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18849739$$DView record in Pascal Francis
BookMark eNqNkc1u1DAUhS1UJKaFZ8AbWJHg-Cd2FiChoRRQJRaUteU4N-WOEmewMzCz5ol4kT4TTqcCiQ31wrauv3Ose88pOQlTAEJoxcoqr5ebshK1KriWquSM6ZJVXPJy_4Cs_jyckBVjnBdMav2InKa0YYzVWrEV-fkW07yLrQseKCY6fwW6jRg8bt1Ab34VybsBaI_DDJF2kPcRA4ZrGtBntsO-hwhhRjfjFF5QP8E-W8Li50JHW5w6_A4x4XygGHKNumGLATI5jruQy4_Jw94NCZ7cnWfk6t351fp9cfnp4sP6zWXhpW540bZgAHzTNqZTEoTv2rr2jWyAq7rPDRoNvmu6RjrtNXMdVJUBJZUSulIgzsjzo-02Tt92kGY7YvIwDC7AtEtWaqGEYeq_IGeSc1GLDD67A90ypj7mKWKyeX6jiwdbGSMbLZrMmSPn45RShP4vwuySot3YJSy7hGWXFO1tinafpa__kXqcb0c9R4fDfQxeHQ1-4ACHe39sP56vl1vWPz3qezdZdx1zf18-c1aJDBshBBO_Ab4ZxOw
CODEN JECOAB
CitedBy_id crossref_primary_10_1007_s00035_009_0059_z
crossref_primary_10_1007_s12210_017_0664_5
crossref_primary_10_1890_08_0144_1
crossref_primary_10_1007_s00442_014_2903_0
crossref_primary_10_3389_fpls_2022_815011
crossref_primary_10_1007_s10531_015_0904_x
crossref_primary_10_1007_s11258_014_0302_6
crossref_primary_10_1371_journal_pone_0029674
crossref_primary_10_1038_s41598_020_68618_7
crossref_primary_10_1038_s41598_021_93722_7
crossref_primary_10_1007_s11104_022_05303_w
crossref_primary_10_1080_11263504_2014_987848
crossref_primary_10_30616_ajb_873328
crossref_primary_10_1093_biolinnean_blaa181
crossref_primary_10_1111_jvs_13311
crossref_primary_10_1093_aob_mcs021
crossref_primary_10_1371_journal_pone_0023006
crossref_primary_10_1007_s11629_024_8859_6
crossref_primary_10_1016_j_agee_2016_04_028
crossref_primary_10_1016_j_ecolind_2025_113102
crossref_primary_10_1556_ComEc_9_2008_1_1
crossref_primary_10_1002_ldr_3050
crossref_primary_10_3389_fpls_2023_1088643
crossref_primary_10_3389_fevo_2022_1053548
crossref_primary_10_1007_s11258_010_9753_6
crossref_primary_10_1007_s11629_011_2121_8
crossref_primary_10_1007_s11258_014_0318_y
crossref_primary_10_1002_ece3_4284
crossref_primary_10_1111_mec_14817
crossref_primary_10_7717_peerj_6282
crossref_primary_10_1007_s10531_022_02427_4
crossref_primary_10_1016_j_biocon_2018_03_008
crossref_primary_10_1016_j_flora_2023_152399
crossref_primary_10_3732_ajb_1200614
crossref_primary_10_1111_jvs_12592
crossref_primary_10_1016_j_scitotenv_2022_159174
crossref_primary_10_1111_j_1556_4029_2012_02071_x
crossref_primary_10_1007_s10342_023_01535_2
crossref_primary_10_1016_j_ecolind_2021_107812
crossref_primary_10_1556_ComEc_11_2010_2_11
crossref_primary_10_1007_s10531_013_0484_6
crossref_primary_10_1007_s40333_013_0164_0
crossref_primary_10_1111_gfs_12460
crossref_primary_10_1177_1940082918804680
crossref_primary_10_1111_1365_2435_12722
crossref_primary_10_1890_08_0924_1
crossref_primary_10_1111_j_1365_2745_2010_01762_x
crossref_primary_10_1016_j_scitotenv_2023_168131
crossref_primary_10_1016_j_scitotenv_2021_149572
crossref_primary_10_1080_15659801_2015_1035507
crossref_primary_10_1080_11263504_2018_1559250
crossref_primary_10_3390_rs14102401
crossref_primary_10_1111_1365_2435_12095
crossref_primary_10_1007_s11258_024_01422_9
crossref_primary_10_1016_j_jhydrol_2024_131038
crossref_primary_10_1038_s41559_021_01616_8
crossref_primary_10_1016_j_ppees_2012_12_003
crossref_primary_10_1111_nph_17086
crossref_primary_10_1071_RJ14050
crossref_primary_10_1016_j_ppees_2022_125675
crossref_primary_10_1016_j_agee_2012_04_008
crossref_primary_10_1038_nature16489
crossref_primary_10_1111_jvs_12889
crossref_primary_10_1134_S2079086421010035
crossref_primary_10_1016_j_scitotenv_2022_156512
crossref_primary_10_1111_2041_210X_14100
crossref_primary_10_1111_j_1600_0706_2009_17695_x
crossref_primary_10_1016_j_gecco_2023_e02759
crossref_primary_10_1016_j_biocon_2008_04_008
crossref_primary_10_1111_njb_02386
crossref_primary_10_1080_17429145_2020_1738570
crossref_primary_10_1038_s41597_022_01774_9
crossref_primary_10_1111_btp_12347
crossref_primary_10_1016_j_ecolind_2022_109035
crossref_primary_10_1016_j_flora_2023_152337
crossref_primary_10_1038_s41467_020_15014_4
crossref_primary_10_1007_s11258_009_9677_1
crossref_primary_10_1111_1365_2745_12989
crossref_primary_10_3390_plants12233990
crossref_primary_10_1029_2021JG006606
crossref_primary_10_2112_JCOASTRES_D_19_00106_1
crossref_primary_10_1007_s42974_020_00012_9
crossref_primary_10_1016_j_flora_2023_152297
crossref_primary_10_1016_j_apsoil_2021_103965
crossref_primary_10_1111_j_1654_1103_2009_01042_x
crossref_primary_10_1111_nph_12789
crossref_primary_10_1111_jvs_12732
crossref_primary_10_1080_24694452_2016_1218267
crossref_primary_10_1016_j_jnc_2013_08_004
crossref_primary_10_1111_j_1365_2745_2008_01476_x
crossref_primary_10_1002_ecs2_4404
crossref_primary_10_7717_peerj_3552
crossref_primary_10_1016_j_baae_2011_05_003
crossref_primary_10_1007_s11258_016_0628_3
Cites_doi 10.1890/05-0141
10.1111/j.1469-8137.2005.01358.x
10.1890/0012-9658(2001)082[3295:FACOGI]2.0.CO;2
10.1111/j.1654-1103.2006.tb02444.x
10.2307/3546494
10.1038/250026a0
10.1890/0012-9658(2006)87[1465:ATTFHF]2.0.CO;2
10.1111/j.0030-1299.2006.14107.x
10.1890/0012-9658(2006)87[39:PATHOO]2.0.CO;2
10.2307/2255283
10.1086/283244
10.1111/j.0030-1299.2004.13250.x
10.1038/21877
10.1890/03-4022
10.1111/j.1365-2745.2007.01212.x
10.1111/j.1469-8137.1976.tb01532.x
10.1016/j.tree.2004.09.003
10.1073/pnas.0403458101
10.1111/j.1365-2745.2005.01043.x
10.1111/j.1365-2435.2005.01028.x
10.2307/3237076
10.5642/aliso.20072301.06
10.1111/j.1365-2745.2007.01201.x
10.1146/annurev.ecolsys.29.1.263
10.1071/BT02124
10.2307/2666186
10.1111/j.1654-1103.2006.tb02425.x
10.1007/s00442-003-1225-4
10.1111/j.0269-8463.2005.00965.x
10.1007/s004420050771
10.1038/415068a
10.1111/j.0022-0477.2004.00951.x
10.1046/j.1469-8137.1999.00428.x
10.1111/j.1365-2745.2006.01163.x
ContentType Journal Article
Copyright 2007 INIST-CNRS
Copyright_xml – notice: 2007 INIST-CNRS
DBID FBQ
AAYXX
CITATION
IQODW
7SN
C1K
7S9
L.6
DOI 10.1111/j.1365-2745.2007.01242.x
DatabaseName AGRIS
CrossRef
Pascal-Francis
Ecology Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Ecology Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Ecology Abstracts


CrossRef
Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Botany
EISSN 1365-2745
EndPage 706
ExternalDocumentID 18849739
10_1111_j_1365_2745_2007_01242_x
JEC1242
US201300783330
Genre article
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1OC
24P
29K
2AX
2WC
3-9
31~
33P
3SF
4.4
42X
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHHS
AAHKG
AAISJ
AAJUZ
AAKGQ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABBHK
ABCQN
ABCUV
ABCVL
ABEFU
ABEML
ABHUG
ABJNI
ABLJU
ABPFR
ABPLY
ABPPZ
ABPTK
ABPVW
ABTAH
ABTLG
ABWRO
ABYAD
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACNCT
ACPOU
ACPRK
ACSCC
ACSTJ
ACTWD
ACUBG
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZLD
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AESBF
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFDAS
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFXHP
AFZJQ
AGJLS
AGUYK
AIAGR
AIHXQ
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AS~
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BKOMP
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CBGCD
COF
CUYZI
CWIXF
D-E
D-F
D-I
DCZOG
DEVKO
DIK
DOOOF
DPXWK
DR2
DRFUL
DRSTM
DU5
DWIUU
E3Z
EAU
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FBQ
FVMVE
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HQ2
HTVGU
HVGLF
HZI
HZ~
IHE
IX1
J0M
JAAYA
JAS
JBMMH
JBS
JBZCM
JEB
JENOY
JHFFW
JKQEH
JLEZI
JLS
JLXEF
JPL
JPM
JSODD
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OK1
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SA0
SUPJJ
TN5
UB1
UPT
V8K
W8V
W99
WBKPD
WH7
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XIH
Y6R
YF5
YQT
YXE
YZZ
ZCA
ZCG
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AAHQN
AAMNL
AAYCA
ABPQH
ABXSQ
ACHIC
ADMHG
AFWVQ
AHBTC
AHXOZ
AILXY
AITYG
ALVPJ
AQVQM
HGLYW
IPSME
OIG
AAYXX
ABAWQ
ABSQW
ACHJO
AEYWJ
AGHNM
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
7SN
C1K
7S9
L.6
ID FETCH-LOGICAL-c4792-bbe8eec9b98d54e3cdb66c949e256f00287ecd9d94a7c70ade118e54553715e3
IEDL.DBID DR2
ISSN 0022-0477
IngestDate Fri Jul 11 12:14:50 EDT 2025
Fri Jul 11 15:55:06 EDT 2025
Mon Jul 21 09:14:21 EDT 2025
Thu Apr 24 23:11:05 EDT 2025
Tue Jul 01 03:13:30 EDT 2025
Wed Jan 22 16:21:23 EST 2025
Wed Dec 27 19:20:57 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords niche differentiation
Theory
CSR theory
functional diversity index
Coexistence
Perturbation
Biodiversity
Functional diversity
co-occurrence
Ecological niche
Differentiation
Community
Species richness
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4792-bbe8eec9b98d54e3cdb66c949e256f00287ecd9d94a7c70ade118e54553715e3
Notes http://dx.doi.org/10.1111/j.1365-2745.2007.01242.x
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1365-2745.2007.01242.x
PQID 20422363
PQPubID 23462
PageCount 9
ParticipantIDs proquest_miscellaneous_47353805
proquest_miscellaneous_20422363
pascalfrancis_primary_18849739
crossref_primary_10_1111_j_1365_2745_2007_01242_x
crossref_citationtrail_10_1111_j_1365_2745_2007_01242_x
wiley_primary_10_1111_j_1365_2745_2007_01242_x_JEC1242
fao_agris_US201300783330
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2007
PublicationDateYYYYMMDD 2007-07-01
PublicationDate_xml – month: 07
  year: 2007
  text: July 2007
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
PublicationTitle The Journal of ecology
PublicationYear 2007
Publisher Oxford, UK : Blackwell Publishing Ltd
Blackwell Publishing Ltd
Blackwell Science
Publisher_xml – name: Oxford, UK : Blackwell Publishing Ltd
– name: Blackwell Publishing Ltd
– name: Blackwell Science
References 2004; 101
1998; 29
2006; 17
1998
2002; 415
1999; 143
2005; 86
1999; 86
2004
1993
1999; 85
1999; 400
2007; 95
2002; 417
2003; 51
2004; 107
2003; 135
2006; 112
1859
1979
1955
2004; 74
2001; 82
2005; 19
1925; 13
2001
2005; 166
2004; 19
2006; 87
1999; 10
1982
2005; 93
1977; 111
2007; 23
1974; 250
1999; 119
1988
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
Pignatti S. (e_1_2_6_32_1) 1982
Dawkins R. (e_1_2_6_12_1) 2004
Grabherr G. (e_1_2_6_14_1) 1993
e_1_2_6_19_1
Poorter H. (e_1_2_6_34_1) 1998
e_1_2_6_36_1
e_1_2_6_35_1
e_1_2_6_33_1
Hubbell S.P. (e_1_2_6_22_1) 2001
e_1_2_6_39_1
Darwin C. (e_1_2_6_11_1) 1859
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
Giacomini V. (e_1_2_6_13_1) 1955
Grime J.P. (e_1_2_6_17_1) 1979
e_1_2_6_43_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_40_1
Grime J.P. (e_1_2_6_18_1) 2001
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
Tilman D. (e_1_2_6_42_1) 1988
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 119
  start-page: 149
  year: 1999
  end-page: 158
  article-title: Protection against photoinhibition in the alpine plant
  publication-title: Oecologia
– volume: 93
  start-page: 87
  year: 2005
  end-page: 98
  article-title: The impact of hemiparasitic plant litter on decomposition: direct, seasonal and litter mixing effects
  publication-title: Journal of Ecology
– volume: 86
  start-page: 2365
  year: 2005
  end-page: 2372
  article-title: Species and functional diversity of native and human‐dominated plant communities
  publication-title: Ecology
– volume: 74
  start-page: 25
  year: 2004
  end-page: 44
  article-title: Functional strategies of chaparral shrubs in relation to seasonal water deficit and disturbance
  publication-title: Ecological Monographs
– volume: 17
  start-page: 77
  year: 2006
  end-page: 82
  article-title: Seasonal shifts in competition and facilitation in subalpine plant communities of the central Caucasus
  publication-title: Journal of Vegetation Science
– volume: 417
  start-page: 844
  year: 2002
  end-page: 848
  article-title: Positive interactions among alpine plants increase with stress
  publication-title: Nature
– volume: 19
  start-page: 166
  year: 2005
  end-page: 172
  article-title: Neutral theory in community ecology and the hypothesis of functional equivalence
  publication-title: Functional Ecology
– volume: 95
  start-page: 231
  year: 2007
  end-page: 234
  article-title: Resource competition and plant traits: a response to Craine . 2005
  publication-title: Journal of Ecology
– volume: 250
  start-page: 26
  year: 1974
  end-page: 31
  article-title: Vegetation classification by reference to strategies
  publication-title: Nature
– year: 2001
– year: 1859
– volume: 82
  start-page: 3295
  year: 2001
  end-page: 3308
  article-title: Facilitation and competition on gradients in alpine plant communities
  publication-title: Ecology
– volume: 112
  start-page: 10
  year: 2006
  end-page: 20
  article-title: The functional basis of a primary succession resolved by CSR classification
  publication-title: Oikos
– volume: 19
  start-page: 763
  year: 2005
  end-page: 776
  article-title: From ancient genes to modern communities: the cellular stress response and the evolution of plant strategies
  publication-title: Functional Ecology
– volume: 95
  start-page: 227
  year: 2007
  end-page: 230
  article-title: Plant strategy theories: a comment on Craine (2005)
  publication-title: Journal of Ecology
– volume: 19
  start-page: 605
  year: 2004
  end-page: 611
  article-title: Plant coexistence and the niche
  publication-title: Trends in Ecology and Evolution
– year: 1979
– volume: 107
  start-page: 433
  year: 2004
  end-page: 438
  article-title: Rethinking plant community theory
  publication-title: Oikos
– volume: 87
  start-page: S39
  year: 2006
  end-page: S49
  article-title: Phylogeny and the hierarchical organisation of plant diversity
  publication-title: Ecology
– volume: 400
  start-page: 61
  year: 1999
  end-page: 63
  article-title: Hydrologically defined niches reveal a basis for species richness in plant communities
  publication-title: Nature
– volume: 86
  start-page: 590
  year: 1999
  end-page: 643
  article-title: The origin of grass‐dominated ecosystems
  publication-title: Annals of the Missouri Botanic Garden
– volume: 101
  start-page: 10854
  year: 2004
  end-page: 10861
  article-title: Niche tradeoffs, neutrality, and community structure: a stochastic theory of resource competition, invasion, and community assembly
  publication-title: Proceedings of the National Academy of Science of the USA
– volume: 111
  start-page: 1169
  year: 1977
  end-page: 1194
  article-title: Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory
  publication-title: American Naturalist
– volume: 143
  start-page: 163
  year: 1999
  end-page: 176
  article-title: A comparison of specific leaf area, chemical composition and leaf construction costs of field plants from 15 habitats differing in productivity
  publication-title: New Phytologist
– volume: 17
  start-page: 255
  year: 2006
  end-page: 260
  article-title: Trait convergence and trait divergence in herbaceous plant communities: mechanisms and consequences
  publication-title: Journal of Vegetation Science
– year: 1982
– volume: 13
  start-page: 177
  year: 1925
  end-page: 223
  article-title: Studies of the vegetation of the English Chalk. III. The chalk grasslands of the Hampshire–Sussex Border
  publication-title: Journal of Ecology
– volume: 93
  start-page: 1041
  year: 2005
  end-page: 1052
  article-title: Reconciling plant strategy theories of Grime and Tilman
  publication-title: Journal of Ecology
– volume: 166
  start-page: 737
  year: 2005
  end-page: 751
  article-title: Impacts of parasitic plants on natural communities
  publication-title: New Phytologist
– volume: 95
  start-page: 235
  year: 2007
  end-page: 240
  article-title: Plant strategy theories: replies to Grime and Tilman
  publication-title: Journal of Ecology
– year: 1988
– volume: 87
  start-page: 1465
  year: 2006
  end-page: 1471
  article-title: A trait‐based test for habitat filtering: convex hull volume
  publication-title: Ecology
– volume: 415
  start-page: 68
  year: 2002
  end-page: 71
  article-title: Resource‐based niches provide a basis for plant species diversity and dominance in arctic tundra
  publication-title: Nature
– year: 2004
– volume: 23
  start-page: 44
  year: 2007
  end-page: 52
  article-title: The jeweled armor of – multifaceted or elongated trichomes provide photoprotection
  publication-title: Aliso
– volume: 135
  start-page: 606
  year: 2003
  end-page: 614
  article-title: Litter of the hemiparasite enhances plant growth: evidence for a functional role in nutrient cycling
  publication-title: Oecologia
– year: 1955
– volume: 10
  start-page: 609
  year: 1999
  end-page: 620
  article-title: Challenging Theophrastus: a common core list of plant traits for functional ecology
  publication-title: Journal of Vegetation Science
– year: 1993
– volume: 85
  start-page: 282
  year: 1999
  end-page: 294
  article-title: Allocating CSR plant functional types: a soft approach to a hard problem
  publication-title: Oikos
– start-page: 309
  year: 1998
  end-page: 336
– volume: 29
  start-page: 263
  year: 1998
  end-page: 292
  article-title: Early evolution of land plants: phylogeny, physiology, and ecology of the primary terrestrial radiation
  publication-title: Annual Review of Ecology and Systematics
– volume: 51
  start-page: 335
  year: 2003
  end-page: 380
  article-title: A handbook of protocols for standardised and easy measurement of plant functional traits worldwide
  publication-title: Australian Journal of Botany
– volume-title: Plant Strategies, Vegetation Processes and Ecosystem Properties
  year: 2001
  ident: e_1_2_6_18_1
– ident: e_1_2_6_28_1
  doi: 10.1890/05-0141
– ident: e_1_2_6_35_1
  doi: 10.1111/j.1469-8137.2005.01358.x
– ident: e_1_2_6_6_1
  doi: 10.1890/0012-9658(2001)082[3295:FACOGI]2.0.CO;2
– ident: e_1_2_6_19_1
  doi: 10.1111/j.1654-1103.2006.tb02444.x
– ident: e_1_2_6_21_1
  doi: 10.2307/3546494
– ident: e_1_2_6_15_1
  doi: 10.1038/250026a0
– ident: e_1_2_6_8_1
  doi: 10.1890/0012-9658(2006)87[1465:ATTFHF]2.0.CO;2
– ident: e_1_2_6_4_1
  doi: 10.1111/j.0030-1299.2006.14107.x
– volume-title: The Unified Neutral Theory of Biodiversity and Biogeography
  year: 2001
  ident: e_1_2_6_22_1
– ident: e_1_2_6_39_1
  doi: 10.1890/0012-9658(2006)87[39:PATHOO]2.0.CO;2
– ident: e_1_2_6_41_1
  doi: 10.2307/2255283
– ident: e_1_2_6_16_1
  doi: 10.1086/283244
– ident: e_1_2_6_26_1
  doi: 10.1111/j.0030-1299.2004.13250.x
– ident: e_1_2_6_40_1
  doi: 10.1038/21877
– ident: e_1_2_6_2_1
  doi: 10.1890/03-4022
– ident: e_1_2_6_10_1
  doi: 10.1111/j.1365-2745.2007.01212.x
– volume-title: Flora e vegetazione dell’alta valle del Braulio con speciale riferimento ai pascoli di altitudine
  year: 1955
  ident: e_1_2_6_13_1
– ident: e_1_2_6_5_1
  doi: 10.1111/j.1469-8137.1976.tb01532.x
– ident: e_1_2_6_38_1
  doi: 10.1016/j.tree.2004.09.003
– ident: e_1_2_6_43_1
  doi: 10.1073/pnas.0403458101
– volume-title: Die Pflanzengesellschaften Österreichs. Teil II. Natürliche waldfreie Vegetation
  year: 1993
  ident: e_1_2_6_14_1
– ident: e_1_2_6_9_1
  doi: 10.1111/j.1365-2745.2005.01043.x
– ident: e_1_2_6_31_1
  doi: 10.1111/j.1365-2435.2005.01028.x
– volume-title: Flora d’Italia
  year: 1982
  ident: e_1_2_6_32_1
– ident: e_1_2_6_45_1
  doi: 10.2307/3237076
– ident: e_1_2_6_30_1
  doi: 10.5642/aliso.20072301.06
– volume-title: The Origin of Species by Means of Natural Selection or the Preservation of Favoured Races in the Struggle for Life
  year: 1859
  ident: e_1_2_6_11_1
– ident: e_1_2_6_44_1
  doi: 10.1111/j.1365-2745.2007.01201.x
– ident: e_1_2_6_3_1
  doi: 10.1146/annurev.ecolsys.29.1.263
– ident: e_1_2_6_7_1
  doi: 10.1071/BT02124
– volume-title: The Ancestor's Tale. A Pilgrimage to the Dawn of Life
  year: 2004
  ident: e_1_2_6_12_1
– ident: e_1_2_6_24_1
  doi: 10.2307/2666186
– ident: e_1_2_6_25_1
  doi: 10.1111/j.1654-1103.2006.tb02425.x
– ident: e_1_2_6_37_1
  doi: 10.1007/s00442-003-1225-4
– ident: e_1_2_6_23_1
  doi: 10.1111/j.0269-8463.2005.00965.x
– start-page: 309
  volume-title: Inherent Variation in Plant Growth. Physiological Mechanisms and Ecological Consequences
  year: 1998
  ident: e_1_2_6_34_1
– volume-title: Plant Strategies and Vegetation Processes
  year: 1979
  ident: e_1_2_6_17_1
– ident: e_1_2_6_27_1
  doi: 10.1007/s004420050771
– ident: e_1_2_6_29_1
  doi: 10.1038/415068a
– ident: e_1_2_6_36_1
  doi: 10.1111/j.0022-0477.2004.00951.x
– ident: e_1_2_6_33_1
  doi: 10.1046/j.1469-8137.1999.00428.x
– volume-title: Plant Strategies and the Dynamics and Structure of Plant Communities
  year: 1988
  ident: e_1_2_6_42_1
– ident: e_1_2_6_20_1
  doi: 10.1111/j.1365-2745.2006.01163.x
SSID ssj0006750
Score 2.222054
Snippet 1 Many current biodiversity theories assume that resource competition determines niche segregation and thus coexistence within communities (i.e. at the...
Summary 1 Many current biodiversity theories assume that resource competition determines niche segregation and thus coexistence within communities (i.e. at the...
Many current biodiversity theories assume that resource competition determines niche segregation and thus coexistence within communities (i.e. at the α‐scale)....
Many current biodiversity theories assume that resource competition determines niche segregation and thus coexistence within communities (i.e. at the alpha...
SourceID proquest
pascalfrancis
crossref
wiley
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 698
SubjectTerms Animal and plant ecology
Animal, plant and microbial ecology
Biological and medical sciences
Carex
Carex curvula
co-occurrence
coexistence
correspondence analysis
CSR theory
functional diversity
functional diversity index
Fundamental and applied biological sciences. Psychology
General aspects
grazing
multidimensional scaling
multivariate analysis
niche differentiation
pastures
plant communities
species diversity
species richness
stress response
stress tolerance
topology
vegetation
Title Disturbance is the principal α-scale filter determining niche differentiation, coexistence and biodiversity in an alpine community
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2745.2007.01242.x
https://www.proquest.com/docview/20422363
https://www.proquest.com/docview/47353805
Volume 95
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELagohIXKAXU8FN84EhW3rUTx0coW1WV4ACt1Jvlv6BVq2TVzUpsT71w76v0RXgInoSZOGkbVKQKcYsS24knM57P9vgbQt6qzHObS5MWwbJU2GBSq5hJyywo5l2hCofnnT99zvcOxf5RdtTFP-FZmMgPcbXghpbRjtdo4MYuhkYez1OJrGMiBFc1GSGexAeIj75cM0kBLmY9cTgTUg6Dem5taOCp7pemxrhJswDRlTHnxQCU3oS2rW_afUyO-17FkJTj0bKxI3f2B-Hj_-n2BnnUQVj6PurcE3IvVJtkPSa1XG2SBx9qAJxwsT5tGbFXT8mPj6BMy1OLGkZnCwqgk87jKj809PPy1_kFdjjQcoab99R3MTrgVmmFsaq0z-PSRE16R12NHJ4t4Kem8tTOat-HmNBZBfeoOZlDb6FkewSmWT0jB7vTg529tMv_kDoh1SS1NhQhOGVV4TMRuPM2z50SKgBOK3G2KIPzyithpJPM-ACzpQCQMONynAX-nKxVdRW2CEXQ6gFKQVErSusNt8LC5F-VYw7i9AmR_a_WruNGxxQdJ_rGHAnErlHsmLlT6lbs-ntCxlc155Ef5A51tkCbtPkGw7g-_DrBzWPcTeWcJWR7oGLXbRaFUJKrhLzpdU7DQIC7O6YK9XIBbxAA9XL-9xKYZZoXLEtI3mrYnT9Y70938OrFv1Z8SR72a-Js_IqsNafL8BrAXGO3WzP9DczeO_o
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07bxNBEB4lgQgaHiEo5pFsAR0XnX17t7cFBcSOnGcBjpRuta9DFtGdFdsipqKh56_Q8iP4A3T8EmbukcQIpAgpBd3ptLt3msfutzuz3wA8k7GLTCJ0kHoTBtx4HRgZ6iCLvQydTWVq6b7zwWHSP-K7x_HxAnxr7sJU_BDnB27kGeV8TQ5OB9LzXl5dqOJxTUWIa1Vn86zOsNzzsw-4fxu_3Omisp93Otu9wVY_qEsMBJYL2QmM8an3VhqZupj7yDqTJFZy6REKZLQhEd466STXwopQO4-A3CPqiCPRjn2Ewy7CDaonTrz93TcX1FUIxMOGqTzkQsxnEf3xx-eWxsVMF5Soqceoq6wqsjGHgi9j6XIx3L4LPxoxVjkw7zenE7NpP_7GMPl_yvke3KkxOntVOdV9WPD5CixXVTtnK3DzdYGIGh-WeyXl9-wBfO6it0xPDbkQG44Zomo2qsIYOND3rz8_fSEBe5YNKTuBuToJCXEDyykZlzWFaiaVq7xgtiCS0nJHw3TumBkWrsmhYcMc3zF9MkLpYsvyjs9ktgqD65DKQ1jKi9yvASNU7hArYlPDM-N0ZLgRaSqzdoTacy0QjWkpW5O_Uw2SE3VpE4haVqRlKk0qVKllddaC9nnPUUWAcoU-a2i9Sr_DdUodve1QdJzCxVEUtmB9zqQvxkxTLkUkW7DR2LjCmY7CVzr3xXSMX-CIZZPo7y2ojHaUhnELktKir_zDare3RU-P_rXjBtzqDw721f7O4d5juN0EAML2E1ianE79U0SuE7NeThEM1DW7yi-sH5ok
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL1qC6264VFAHR6tF7Ajo8zYieMFC-jMqA-oELRSd5ZfQSOqZNTJiA4rNuz5FZb8BB_Aki_hOo-2QSBVSF2wsyLbse7DPravzwV4LCJLdcxVkDgdBkw7FWgRqiCNnAitSURi_HvnV_vx9iHbPYqOFuBb8xam4oc4O3DznlHO197BJzZtO3n1nopFNRMhLlX97mkdYLnn5h9w-zZ9tjNAXT_p90fDg63toM4wEBjGRT_Q2iXOGaFFYiPmqLE6jo1gwiESSP1-hDtjhRVMccNDZR3icYegI6K8FzmK3S7CNRaHwmeNGLw5Z65CHB42ROUh47wdRPTHgbdWxsVU5T5OU01RVWmVY6MFgi9C6XItHN2EH40UqxCY991Zobvm428Ek_-lmG_BjRqhk-eVS92GBZetwXKVs3O-Btdf5IinsbA8LAm_53fg8wB9ZXaivQOR8ZQgpiaT6hIDO_r-9eenL16-jqRjH5tAbB2ChKiBZD4UlzRpaorKUZ4Sk3uK0nI_Q1RmiR7ntomgIeMMvxF1PEHhYs3yhU8xvwsHVyGVe7CU5ZlbB-IxuUWkiFU1S7VVVDPNk0SkPYrasx3gjWVJU1O_-wwkx_LCFhC1LL2WfWJSLksty9MO9M5aTir6k0u0WUfjleodrlLy8G3f3437y2JKww5stCz6vM8kYYJT0YHNxsQlznP-8kplLp9N8Q8MkWxM_17DJ9GmSRh1IC4N-tIDlrvDLV-6_68NN2Hl9WAkX-7s7z2A1eb0P-w9hKXiZOYeIWwt9EY5QRCQV-wpvwAnP5jT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Disturbance+is+the+principal+%CE%B1-scale+filter+determining+niche+differentiation%2C+coexistence+and+biodiversity+in+an+alpine+community&rft.jtitle=The+Journal+of+ecology&rft.au=Pierce%2C+Simon&rft.au=LUZZARO%2C+ALESSANDRA&rft.au=Caccianiga%2C+Marco&rft.au=Ceriani%2C+Roberta+M&rft.date=2007-07-01&rft.issn=0022-0477&rft.volume=95&rft.issue=4+p.698-706&rft.spage=698&rft.epage=706&rft_id=info:doi/10.1111%2Fj.1365-2745.2007.01242.x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0477&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0477&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0477&client=summon