Surface-Anchored MOF-Based Photonic Antennae
The loading of a metal‐organic framework (MOF), [Cu3(btc)2xH2O] HKUST‐1, with europium β‐diketonate complexes is studied with the goal to using the porous molecular framework as a photonic antenna. Whereas loading of HKUST‐1 powder particles produced via the conventional solvothermal synthesis metho...
Saved in:
Published in | Chemphyschem Vol. 13; no. 11; pp. 2699 - 2702 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag
06.08.2012
WILEY‐VCH Verlag Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The loading of a metal‐organic framework (MOF), [Cu3(btc)2xH2O] HKUST‐1, with europium β‐diketonate complexes is studied with the goal to using the porous molecular framework as a photonic antenna. Whereas loading of HKUST‐1 powder particles produced via the conventional solvothermal synthesis method was strongly hindered, for HKUST‐1 SURMOFs, thin MOF films fabricated using the liquid phase epitaxy method, a high filling factor can be achieved. The optical properties of the HKUST‐1‐MOFs before and after loading were analysed with the aid of luminescence spectroscopy. Careful analysis of the absorption spectra reveals the presence of an effective energy transfer between the HKUST‐1 framework and the Eu3+ centers.
The optical properties of HKUST‐1 MOFs before and after loading a Eu3+ complex are analysed with the aid of luminescence spectroscopy (see graphic). The presence of an effective energy transfer between the HKUST‐1 framework and the Eu3+ centers was found as is described herein. |
---|---|
Bibliography: | DFG - No. SPP 1362 ArticleID:CPHC201200262 ark:/67375/WNG-KDDJ1Q7C-H istex:2F9E8D036BFAA11C447312EA6152A11CCA5C5119 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1439-4235 1439-7641 |
DOI: | 10.1002/cphc.201200262 |