Recent Trends in Advanced Photoinitiators for Vat Photopolymerization 3D Printing

3D printing has revolutionized the way of manufacturing with a huge impact on various fields, in particular biomedicine. Vat photopolymerization‐based 3D printing techniques such as stereolithography (SLA) and digital light processing (DLP) attract considerable attention owing to their superior prin...

Full description

Saved in:
Bibliographic Details
Published inMacromolecular rapid communications. Vol. 43; no. 14; pp. e2200202 - n/a
Main Author Bao, Yinyin
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.07.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract 3D printing has revolutionized the way of manufacturing with a huge impact on various fields, in particular biomedicine. Vat photopolymerization‐based 3D printing techniques such as stereolithography (SLA) and digital light processing (DLP) attract considerable attention owing to their superior print resolution, relatively high speed, low cost, and flexibility in resin material design. As one key element of the SLA/DLP resin, photoinitiators or photoinitiating systems have experienced significant development in recent years, in parallel with the exploration of 3D printing (macro)monomers. The design of new photoinitiating systems cannot only offer faster 3D printing speed and enable low‐energy visible light fabrication, but also can bring new functions to the 3D printed products and even generate new printing methods in combination with advanced optics. This review evaluates recent trends in the development and application of advanced photoinitiators and photoinitiating systems for vat photopolymerization 3D printing, with a wide range of small molecules, polymers, and nanoassemblies involved. Personal perspectives on the current limitations and future directions are eventually provided. This review summarizes emerging trends in the development and application of advanced photoinitiators and photoinitiating systems for vat photopolymerization 3D printing. Blue‐to‐NIR light photoinitiators, reversible addition−fragmentation chain‐transfer (RAFT) photoinitiating systems, functional photoswitches, macrophotoinitiators, and nanophotoinitiators based on a wide range of small molecules, polymers, and nanoassemblies are discussed.
AbstractList 3D printing has revolutionized the way of manufacturing with a huge impact on various fields, in particular biomedicine. Vat photopolymerization‐based 3D printing techniques such as stereolithography (SLA) and digital light processing (DLP) attract considerable attention owing to their superior print resolution, relatively high speed, low cost, and flexibility in resin material design. As one key element of the SLA/DLP resin, photoinitiators or photoinitiating systems have experienced significant development in recent years, in parallel with the exploration of 3D printing (macro)monomers. The design of new photoinitiating systems cannot only offer faster 3D printing speed and enable low‐energy visible light fabrication, but also can bring new functions to the 3D printed products and even generate new printing methods in combination with advanced optics. This review evaluates recent trends in the development and application of advanced photoinitiators and photoinitiating systems for vat photopolymerization 3D printing, with a wide range of small molecules, polymers, and nanoassemblies involved. Personal perspectives on the current limitations and future directions are eventually provided.
3D printing has revolutionized the way of manufacturing with a huge impact on various fields, in particular biomedicine. Vat photopolymerization-based 3D printing techniques such as stereolithography (SLA) and digital light processing (DLP) attract considerable attention owing to their superior print resolution, relatively high speed, low cost, and flexibility in resin material design. As one key element of the SLA/DLP resin, photoinitiators or photoinitiating systems have experienced significant development in recent years, in parallel with the exploration of 3D printing (macro)monomers. The design of new photoinitiating systems cannot only offer faster 3D printing speed and enable low-energy visible light fabrication, but also can bring new functions to the 3D printed products and even generate new printing methods in combination with advanced optics. This review evaluates recent trends in the development and application of advanced photoinitiators and photoinitiating systems for vat photopolymerization 3D printing, with a wide range of small molecules, polymers, and nanoassemblies involved. Personal perspectives on the current limitations and future directions are eventually provided.3D printing has revolutionized the way of manufacturing with a huge impact on various fields, in particular biomedicine. Vat photopolymerization-based 3D printing techniques such as stereolithography (SLA) and digital light processing (DLP) attract considerable attention owing to their superior print resolution, relatively high speed, low cost, and flexibility in resin material design. As one key element of the SLA/DLP resin, photoinitiators or photoinitiating systems have experienced significant development in recent years, in parallel with the exploration of 3D printing (macro)monomers. The design of new photoinitiating systems cannot only offer faster 3D printing speed and enable low-energy visible light fabrication, but also can bring new functions to the 3D printed products and even generate new printing methods in combination with advanced optics. This review evaluates recent trends in the development and application of advanced photoinitiators and photoinitiating systems for vat photopolymerization 3D printing, with a wide range of small molecules, polymers, and nanoassemblies involved. Personal perspectives on the current limitations and future directions are eventually provided.
3D printing has revolutionized the way of manufacturing with a huge impact on various fields, in particular biomedicine. Vat photopolymerization‐based 3D printing techniques such as stereolithography (SLA) and digital light processing (DLP) attract considerable attention owing to their superior print resolution, relatively high speed, low cost, and flexibility in resin material design. As one key element of the SLA/DLP resin, photoinitiators or photoinitiating systems have experienced significant development in recent years, in parallel with the exploration of 3D printing (macro)monomers. The design of new photoinitiating systems cannot only offer faster 3D printing speed and enable low‐energy visible light fabrication, but also can bring new functions to the 3D printed products and even generate new printing methods in combination with advanced optics. This review evaluates recent trends in the development and application of advanced photoinitiators and photoinitiating systems for vat photopolymerization 3D printing, with a wide range of small molecules, polymers, and nanoassemblies involved. Personal perspectives on the current limitations and future directions are eventually provided. This review summarizes emerging trends in the development and application of advanced photoinitiators and photoinitiating systems for vat photopolymerization 3D printing. Blue‐to‐NIR light photoinitiators, reversible addition−fragmentation chain‐transfer (RAFT) photoinitiating systems, functional photoswitches, macrophotoinitiators, and nanophotoinitiators based on a wide range of small molecules, polymers, and nanoassemblies are discussed.
Author Bao, Yinyin
Author_xml – sequence: 1
  givenname: Yinyin
  orcidid: 0000-0001-5264-1211
  surname: Bao
  fullname: Bao, Yinyin
  email: yinyin.bao@pharma.ethz.ch
  organization: Department of Chemistry and Applied Biosciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35579565$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtLAzEUhYNUbK1uXcqAGzdT85ikM8tSn6BYRd0OmcwdTZkmNUmV-uuNVisIIgSSe_lOcnPONuoYawChPYIHBGN6NJNODSimNBaYbqAe4ZSkrKDDTjzHfkoYE1207f0UY5xnmG6hLuN8WHDBe-jmFhSYkNw5MLVPtElG9Ys0Cupk8mSD1UYHLYN1PmmsSx5kWPXntl3OwOk3GbQ1CTtOJk6boM3jDtpsZOth92vvo_vTk7vxeXp5fXYxHl2mKhsWNK14JkEpWmChGlUB8LzOM1ZBTYTKK0F5IxpKJcakJrJRuRoWkgHmFS4qSRrWR4ere-fOPi_Ah3KmvYK2lQbswpdUCM4FjR-O6MEvdGoXzsTpIlUQnjMWVx_tf1GLagZ1OXc6urssv82KwGAFKGe9d9CsEYLLjzTKjzTKdRpRkP0SKB0-DQtO6vZvWbGSveoWlv88Ul6Nbsc_2neAvZ6s
CitedBy_id crossref_primary_10_1002_adma_202305537
crossref_primary_10_1002_app_54694
crossref_primary_10_1016_j_eurpolymj_2024_113552
crossref_primary_10_1002_adma_202306468
crossref_primary_10_1038_s42004_023_00985_4
crossref_primary_10_1016_j_mser_2024_100917
crossref_primary_10_1002_admt_202300052
crossref_primary_10_1016_j_cclet_2024_109573
crossref_primary_10_3390_polym15122690
crossref_primary_10_1007_s00170_023_12847_3
crossref_primary_10_1021_acsapm_4c03976
crossref_primary_10_1039_D3CC04147F
crossref_primary_10_1021_acsaenm_3c00452
crossref_primary_10_1002_smll_202207637
crossref_primary_10_1016_j_eurpolymj_2023_111885
crossref_primary_10_1016_j_jeurceramsoc_2024_03_048
crossref_primary_10_1002_slct_202301297
crossref_primary_10_1039_D4PY00454J
crossref_primary_10_1039_D4BM00674G
crossref_primary_10_1088_2631_8695_adbc47
crossref_primary_10_1016_j_bprint_2024_e00353
crossref_primary_10_3390_polym15193940
crossref_primary_10_3390_ma17040950
crossref_primary_10_3390_polym15214202
crossref_primary_10_1016_j_addma_2024_104189
crossref_primary_10_1021_acscentsci_3c01263
crossref_primary_10_1007_s10853_024_10449_2
crossref_primary_10_1002_adma_202304104
crossref_primary_10_1016_j_ddj_2025_100001
crossref_primary_10_1021_acsapm_4c00513
crossref_primary_10_1016_j_mtadv_2023_100388
crossref_primary_10_1039_D3MA00943B
crossref_primary_10_1039_D4BM01174K
crossref_primary_10_1002_adfm_202302157
crossref_primary_10_1039_D4MH01160K
crossref_primary_10_1002_ange_202405337
crossref_primary_10_1016_j_ceramint_2023_10_272
crossref_primary_10_1016_j_apmt_2025_102667
crossref_primary_10_1021_acs_chemrev_3c00570
crossref_primary_10_3762_bjoc_19_116
crossref_primary_10_1016_j_jphotochem_2023_114870
crossref_primary_10_1021_acsapm_3c02891
crossref_primary_10_3390_polym16010017
crossref_primary_10_1016_j_asems_2025_100139
crossref_primary_10_1039_D3LP00077J
crossref_primary_10_1016_j_cej_2024_157184
crossref_primary_10_1039_D3TA04462A
crossref_primary_10_1021_acsabm_4c00561
crossref_primary_10_1016_j_mtbio_2024_101284
crossref_primary_10_3390_coatings15010006
crossref_primary_10_1002_anie_202405337
crossref_primary_10_1002_marc_202400293
crossref_primary_10_1016_j_addma_2024_104443
crossref_primary_10_1002_macp_202400398
crossref_primary_10_1002_adma_202411223
crossref_primary_10_1016_j_watres_2024_123070
crossref_primary_10_1007_s40964_024_00910_8
crossref_primary_10_1021_acs_biomac_4c01004
crossref_primary_10_1016_j_ohx_2024_e00520
crossref_primary_10_1016_j_mtcomm_2023_106071
crossref_primary_10_1021_jacs_3c05373
crossref_primary_10_1016_j_pnsc_2024_07_013
crossref_primary_10_1002_ange_202316431
crossref_primary_10_1038_s44222_024_00251_9
crossref_primary_10_1002_marc_202300661
crossref_primary_10_1002_anie_202316431
crossref_primary_10_1016_j_dyepig_2023_111202
crossref_primary_10_1021_acsapm_4c01980
crossref_primary_10_1055_a_1976_0453
crossref_primary_10_1088_2752_5724_ad69af
crossref_primary_10_1016_j_cej_2023_147104
crossref_primary_10_1016_j_eurpolymj_2023_112241
crossref_primary_10_1002_ejic_202400153
crossref_primary_10_1016_j_jmps_2024_105830
crossref_primary_10_1002_biot_202400550
crossref_primary_10_1039_D2QM00644H
crossref_primary_10_1039_D4LP00032C
crossref_primary_10_1073_pnas_2303648121
crossref_primary_10_1016_j_ccr_2024_216050
crossref_primary_10_1038_s41578_023_00587_5
crossref_primary_10_1007_s11465_024_0787_1
crossref_primary_10_1016_j_apmt_2023_101854
crossref_primary_10_1007_s11426_024_2422_2
crossref_primary_10_1016_j_cej_2023_146247
crossref_primary_10_1016_j_device_2023_100067
crossref_primary_10_1002_mame_202300272
crossref_primary_10_1016_j_bprint_2025_e00395
crossref_primary_10_1016_j_polymer_2024_127384
crossref_primary_10_1126_sciadv_adg4272
crossref_primary_10_1016_j_cej_2025_160857
crossref_primary_10_1039_D4MH01680G
crossref_primary_10_1016_j_mtcomm_2023_106764
crossref_primary_10_3390_ma16155327
crossref_primary_10_1002_cssc_202402117
crossref_primary_10_3390_jmmp7010035
crossref_primary_10_1002_rpm_20240008
crossref_primary_10_1021_acsapm_3c01136
crossref_primary_10_1002_appl_202300030
Cites_doi 10.1021/acscentsci.0c00929
10.1002/adma.202003387
10.1039/C4CS00235K
10.1002/cptc.201900167
10.1038/s41467-020-17251-z
10.1126/sciadv.1501381
10.1002/macp.1991.021921010
10.1002/anie.201912608
10.1021/acsmacrolett.1c00555
10.1016/j.jconrel.2020.10.008
10.1002/adfm.202009691
10.3390/polym12051073
10.1021/acs.macromol.9b00252
10.1021/jacs.0c07136
10.1039/C5TC03315B
10.1038/nmat4782
10.1038/s41467-020-14630-4
10.1016/j.jiec.2020.12.011
10.1126/sciadv.aao6804
10.1126/sciadv.abe9499
10.1016/j.isci.2021.103372
10.1039/D1PY00705J
10.1002/marc.200700620
10.1002/adma.201800001
10.1039/D0CS01411G
10.1002/adfm.202108436
10.1002/adfm.202103334
10.1021/acs.macromol.5b00201
10.1038/s41467-019-08639-7
10.1007/s10462-020-09876-9
10.1016/j.ijpharm.2021.121199
10.1016/j.biomaterials.2010.04.050
10.1021/acsmacrolett.9b00412
10.1021/acsami.1c06062
10.1126/science.aaa2397
10.1126/sciadv.aau8723
10.1038/nmat3776
10.1126/science.aau7114
10.1126/sciadv.aba7406
10.1016/j.progpolymsci.2014.09.001
10.1126/sciadv.aao5496
10.1039/C6PY01787H
10.1021/jacs.6b07434
10.1021/acs.macromol.1c00856
10.1039/C5PY00258C
10.1021/acsami.8b13031
10.1002/anie.201710951
10.1021/acscentsci.8b00700
10.1038/s41586-020-3029-7
10.1021/acs.nanolett.7b01870
10.1038/s41598-018-21793-0
10.1021/acsapm.8b00165
10.1016/S0079-6700(01)00004-1
10.1038/s41467-021-23170-4
10.1021/acs.macromol.8b00044
10.1016/j.progpolymsci.2020.101277
10.1021/acs.macromol.8b02145
10.1002/smll.202101337
10.1039/D1PY01283E
10.1002/adfm.202109864
10.1002/smll.201902347
10.1016/j.biomaterials.2012.01.048
10.1088/1758-5090/7/4/045009
10.1002/anie.201504382
10.1021/acs.chemrev.5b00148
10.1126/sciadv.aav5790
10.26434/chemrxiv‐2022‐tklpl
10.1021/acsami.1c22046
10.1002/macp.202100217
10.1021/ja9534213
10.1021/acs.chemrev.5b00671
10.1002/adma.201901269
10.1002/adma.202107643
10.1002/pola.27903
10.1126/sciadv.abd1794
10.1002/adma.201405933
10.1039/C8PY00157J
10.1016/j.progpolymsci.2016.06.005
10.1016/j.progpolymsci.2016.09.007
10.1039/C9PY01419E
10.1021/acsami.7b08399
10.1021/acs.chemrev.9b00810
10.1002/adma.201703404
10.1126/science.aav9750
10.1038/s41586-022-04485-8
10.1002/cptc.202000146
10.1021/acs.chemmater.5b00858
10.1021/acs.chemrev.5b00586
10.1021/acs.nanolett.6b01298
10.1016/j.progpolymsci.2019.101165
10.1002/adma.201606000
10.1039/D2PY00113F
10.1039/C7CC09313F
10.1016/j.dental.2020.11.030
10.1002/anie.202016523
10.1016/j.biomaterials.2017.06.005
10.1021/acs.macromol.6b02596
10.1039/C6PY00184J
10.1039/D0QM00961J
10.22203/eCM.v022a04
10.1016/j.dental.2017.01.018
10.1002/adma.202102153
10.1016/j.dental.2011.11.018
10.1021/acsami.1c15636
10.1016/j.tips.2021.06.002
10.3390/ma10121445
10.1016/j.biomaterials.2009.08.055
10.1089/3dp.2021.0204
10.1038/s41467-018-04813-5
10.1021/acsami.0c18255
10.1021/acsapm.9b01076
10.1039/D1PY00228G
10.1002/adma.201800364
10.1021/acsami.8b06607
10.1021/acssuschemeng.8b05357
10.1021/acsapm.1c00048
10.1016/j.addr.2021.03.022
10.1021/cr60252a001
10.1021/acsapm.9b00140
10.1021/acsbiomaterials.6b00149
10.1016/j.apmt.2021.101060
10.1021/bk-1997-0673
10.1039/D0CC01732A
10.2147/NSA.S64386
10.1021/acs.macromol.1c02521
10.1039/C7PY00536A
10.1038/s41591-018-0296-z
10.1038/s41467-018-03759-y
ContentType Journal Article
Copyright 2022 The Authors. Macromolecular Rapid Communications published by Wiley‐VCH GmbH
2022 The Authors. Macromolecular Rapid Communications published by Wiley-VCH GmbH.
2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. Macromolecular Rapid Communications published by Wiley‐VCH GmbH
– notice: 2022 The Authors. Macromolecular Rapid Communications published by Wiley-VCH GmbH.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
7SR
7U5
8FD
JG9
JQ2
L7M
7X8
DOI 10.1002/marc.202200202
DatabaseName Wiley Open Access Collection
CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic

CrossRef
PubMed
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access (Activated by CARLI)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3927
EndPage n/a
ExternalDocumentID 35579565
10_1002_marc_202200202
MARC202200202
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Swiss National Science Foundation
  funderid: Sinergia No. 177178; Spark No. 190313
– fundername: Swiss National Science Foundation
  grantid: Spark No. 190313
– fundername: Swiss National Science Foundation
  grantid: Sinergia No. 177178
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
GYXMG
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6T
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWB
RWI
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZY4
ZZTAW
~IA
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
7SR
7U5
8FD
JG9
JQ2
L7M
7X8
ID FETCH-LOGICAL-c4792-b54aecc2906cfcbee58d843bed16c8b625f6f22a001d1afc8c79a3e05b09ba1f3
IEDL.DBID DR2
ISSN 1022-1336
1521-3927
IngestDate Fri Jul 11 10:18:18 EDT 2025
Fri Jul 25 10:23:46 EDT 2025
Mon Jul 21 05:52:59 EDT 2025
Thu Apr 24 22:54:48 EDT 2025
Tue Jul 01 03:31:46 EDT 2025
Wed Jan 22 16:25:33 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords volumetric printing
photoinitiating systems
photoinitiators
stereolithography
vat photopolymerization
digital light processing
3D printing
Language English
License Attribution
2022 The Authors. Macromolecular Rapid Communications published by Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4792-b54aecc2906cfcbee58d843bed16c8b625f6f22a001d1afc8c79a3e05b09ba1f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-5264-1211
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmarc.202200202
PMID 35579565
PQID 2691583383
PQPubID 1016394
PageCount 15
ParticipantIDs proquest_miscellaneous_2665562402
proquest_journals_2691583383
pubmed_primary_35579565
crossref_primary_10_1002_marc_202200202
crossref_citationtrail_10_1002_marc_202200202
wiley_primary_10_1002_marc_202200202_MARC202200202
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2022
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: July 2022
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Macromolecular rapid communications.
PublicationTitleAlternate Macromol Rapid Commun
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 329
2021; 24
2017; 8
2021; 609
2017; 3
2015 2018; 48 51
2021; 23
2015; 347
2019; 52
2020; 120
2019; 99
2019; 10
2017 2008; 29
2019; 15
2019; 58
2020; 56
2020; 12
2020; 11
2019; 364
2017; 9
2020 2015; 107 41
2019; 363
2020; 8
2018; 9
2020; 6
2021; 37
2018; 8
2020; 4
2021; 31
2020; 2
2021; 33
2013; 12
2017; 33
2019; 25
2022; 34
2011; 22
2018; 30
2016; 116
2012; 28
2022; 604
2001 2017 1968 1997; 26 65 68 673
2021 2021 2009 1991 2021; 13 95 30 192 222
2019; 8
2021; 7
2010; 31
2015; 6
2021; 5
2019; 3
2021; 42
2021; 3
2019; 5
2019; 31
2020; 142
2019; 1
2016; 54
2020; 588
2017; 29
2019 2018; 7 10
2016; 16
2012; 33
2015; 7
2014; 43
2016; 55
2015 2021; 8 31
2016; 4
2017; 50
2021; 13
2018 2022; 54
2016; 7
2021; 54
2021; 10
2015; 27
2016; 2
2021; 12
2022
2022 2022; 32 13
2017; 17
2017; 16
2021 2020 2021; 12 50
2017; 10
2021; 17
2022; 13
2021; 173
2016; 62
2017
2017; 140
2016; 138
2022; 55
2018 2019; 51 1
2021; 60
2018; 10
1996; 118
2018; 57
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_5_1
e_1_2_8_9_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_113_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_109_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_99_1
Zhu D. (e_1_2_8_31_1) 2021
e_1_2_8_105_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_101_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_29_2
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_110_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_79_2
e_1_2_8_37_1
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_90_1
e_1_2_8_98_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_106_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_71_1
e_1_2_8_28_1
e_1_2_8_28_2
e_1_2_8_28_3
e_1_2_8_28_4
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_47_2
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_81_2
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_55_3
e_1_2_8_70_1
e_1_2_8_97_1
e_1_2_8_97_2
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_55_2
e_1_2_8_107_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_93_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
e_1_2_8_4_1
e_1_2_8_8_1
Zhang X. (e_1_2_8_80_1) 2020; 8
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_84_1
e_1_2_8_112_1
e_1_2_8_61_1
e_1_2_8_39_2
e_1_2_8_35_2
e_1_2_8_35_1
e_1_2_8_77_5
e_1_2_8_77_4
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_77_3
Zhang Z. (e_1_2_8_63_1) 2022
e_1_2_8_92_1
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_31_2
e_1_2_8_77_2
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_31_3
Wang J. (e_1_2_8_39_1) 2017
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_104_1
References_xml – volume: 27
  start-page: 2203
  year: 2015
  publication-title: Adv. Mater.
– volume: 3
  start-page: 1109
  year: 2019
  publication-title: ChemPhotoChem
– volume: 55
  start-page: 3862
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 609
  year: 2021
  publication-title: Int. J. Pharm.
– volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 55
  start-page: 1620
  year: 2022
  publication-title: Macromolecules
– volume: 8
  start-page: 899
  year: 2019
  publication-title: ACS Macro Lett.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 52
  start-page: 3448
  year: 2019
  publication-title: Macromolecules
– volume: 25
  start-page: 263
  year: 2019
  publication-title: Nat. Med.
– volume: 118
  start-page: 6477
  year: 1996
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 991
  year: 2013
  publication-title: Nat. Mater.
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 1
  start-page: 593
  year: 2019
  publication-title: ACS Appl. Polym. Mater.
– volume: 8
  year: 2020
  publication-title: ACS Sustainable Chem. Eng.
– volume: 3
  start-page: 2921
  year: 2021
  publication-title: ACS Appl. Polym. Mater.
– volume: 22
  start-page: 43
  year: 2011
  publication-title: Eur. Cells Mater.
– volume: 62
  start-page: 73
  year: 2016
  publication-title: Prog. Polym. Sci.
– volume: 99
  year: 2019
  publication-title: Prog. Polym. Sci.
– volume: 37
  start-page: 336
  year: 2021
  publication-title: Dent. Mater.
– volume: 12
  start-page: 5106
  year: 2021
  publication-title: Polym. Chem.
– volume: 7
  year: 2015
  publication-title: Biofabrication
– volume: 8
  start-page: 3663
  year: 2018
  publication-title: Sci. Rep.
– volume: 11
  start-page: 3462
  year: 2020
  publication-title: Nat. Commun.
– year: 2022
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 48 51
  start-page: 2054 1811
  year: 2015 2018
  publication-title: Macromolecules Macromolecules
– volume: 32 13
  start-page: 2271
  year: 2022 2022
  publication-title: Adv. Funct. Mater. Polym. Chem.
– volume: 17
  year: 2021
  publication-title: Small
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 11
  start-page: 852
  year: 2020
  publication-title: Nat. Commun.
– volume: 10
  start-page: 1445
  year: 2017
  publication-title: Materials
– volume: 11
  start-page: 641
  year: 2020
  publication-title: Polym. Chem.
– volume: 13
  start-page: 44
  year: 2022
  publication-title: Polym. Chem.
– volume: 4
  start-page: 5296
  year: 2020
  publication-title: ChemPhotoChem
– volume: 10
  start-page: 1315
  year: 2021
  publication-title: ACS Macro Lett.
– volume: 27
  start-page: 3450
  year: 2015
  publication-title: Chem. Mater.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 1555
  year: 2020
  publication-title: ACS Cent. Sci.
– volume: 120
  year: 2020
  publication-title: Chem. Rev.
– volume: 5
  year: 2019
  publication-title: Sci. Adv.
– volume: 12
  start-page: 2873
  year: 2021
  publication-title: Nat. Commun.
– volume: 107 41
  start-page: 32
  year: 2020 2015
  publication-title: Prog. Polym. Sci. Prog. Polym. Sci.
– volume: 56
  start-page: 4828
  year: 2020
  publication-title: Chem. Commun.
– volume: 17
  start-page: 4497
  year: 2017
  publication-title: Nano Lett.
– volume: 5
  start-page: 419
  year: 2019
  publication-title: ACS Cent. Sci.
– volume: 604
  start-page: 474
  year: 2022
  publication-title: Nature
– volume: 142
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 2271
  year: 2021
  publication-title: Mater. Chem. Front.
– year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 54
  start-page: 63
  year: 2021
  publication-title: Artif. Intell. Rev.
– volume: 31
  start-page: 6121
  year: 2010
  publication-title: Biomaterials
– volume: 9
  start-page: 1620
  year: 2018
  publication-title: Nat. Commun.
– volume: 8
  start-page: 5174
  year: 2017
  publication-title: Polym. Chem.
– volume: 16
  start-page: 4266
  year: 2016
  publication-title: Nano Lett.
– volume: 54
  start-page: 473
  year: 2016
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
– volume: 173
  start-page: 349
  year: 2021
  publication-title: Adv. Drug Delivery Rev.
– volume: 7
  start-page: 2457
  year: 2016
  publication-title: Polym. Chem.
– volume: 10
  start-page: 791
  year: 2019
  publication-title: Nat. Commun.
– volume: 116
  start-page: 2826
  year: 2016
  publication-title: Chem. Rev.
– volume: 26 65 68 673
  start-page: 605 1 125
  year: 2001 2017 1968 1997
  publication-title: Prog. Polym. Sci. Prog. Polym. Sci. Chem. Rev.
– volume: 16
  start-page: 303
  year: 2017
  publication-title: Nat. Mater.
– volume: 2
  year: 2016
  publication-title: Sci. Adv.
– volume: 329
  start-page: 743
  year: 2021
  publication-title: J. Controlled Release
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 364
  start-page: 458
  year: 2019
  publication-title: Science
– volume: 140
  start-page: 170
  year: 2017
  publication-title: Biomaterials
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 9
  start-page: 2415
  year: 2018
  publication-title: Nat. Commun.
– volume: 28
  start-page: 304
  year: 2012
  publication-title: Dent. Mater.
– volume: 24
  year: 2021
  publication-title: iScience
– volume: 51 1
  start-page: 1129
  year: 2018 2019
  publication-title: Macromolecules ACS Appl. Polym. Mater. 3D Print. Addit. Manuf.
– volume: 363
  start-page: 1075
  year: 2019
  publication-title: Science
– volume: 9
  start-page: 1530
  year: 2018
  publication-title: Polym. Chem.
– volume: 3
  year: 2017
  publication-title: Sci. Adv.
– volume: 12
  start-page: 3661
  year: 2021
  publication-title: Polym. Chem.
– volume: 4
  start-page: 801
  year: 2016
  publication-title: J. Mater. Chem. C
– volume: 23
  year: 2021
  publication-title: Appl. Mater. Today
– volume: 54
  start-page: 7830
  year: 2021
  publication-title: Macromolecules
– volume: 29
  start-page: 57
  year: 2017 2008
  publication-title: Macromol. Rapid Commun.
– volume: 588
  start-page: 620
  year: 2020
  publication-title: Nature
– volume: 2
  start-page: 1752
  year: 2016
  publication-title: ACS Biomater. Sci. Eng.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 54
  start-page: 920
  year: 2018 2022
  publication-title: Chem. Commun. ChemRxiv
– volume: 43
  start-page: 7485
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 2
  start-page: 782
  year: 2020
  publication-title: ACS Appl. Polym. Mater.
– volume: 13 95 30 192 222
  start-page: 126 6702 2307
  year: 2021 2021 2009 1991 2021
  publication-title: ACS Appl. Mater. Interfaces J. Ind. Eng. Chem. Biomaterials Makromol. Chem. Macromol. Chem. Phys.
– volume: 42
  start-page: 745
  year: 2021
  publication-title: Trends Pharmacol. Sci.
– volume: 33
  start-page: 3824
  year: 2012
  publication-title: Biomaterials
– volume: 60
  start-page: 8839
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 6
  start-page: 3895
  year: 2015
  publication-title: Polym. Chem.
– volume: 33
  start-page: 477
  year: 2017
  publication-title: Dent. Mater.
– volume: 15
  year: 2019
  publication-title: Small
– volume: 8 31
  start-page: 45
  year: 2015 2021
  publication-title: Nanotechnol. Sci. Appl. Adv. Funct. Mater.
– volume: 12 50
  start-page: 1073 3824
  year: 2021 2020 2021
  publication-title: Polymers Chem. Soc. Rev.
– volume: 50
  start-page: 746
  year: 2017
  publication-title: Macromolecules
– volume: 347
  start-page: 1349
  year: 2015
  publication-title: Science
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7 10
  start-page: 4004
  year: 2019 2018
  publication-title: ACS Sustainable Chem. Eng. ACS Appl. Mater. Interfaces
– volume: 57
  start-page: 2353
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 116
  year: 2016
  publication-title: Chem. Rev.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 7
  year: 2021
  publication-title: Sci. Adv.
– volume: 138
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 451
  year: 2017
  publication-title: Polym. Chem.
– year: 2017
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– ident: e_1_2_8_32_1
  doi: 10.1021/acscentsci.0c00929
– ident: e_1_2_8_17_1
  doi: 10.1002/adma.202003387
– ident: e_1_2_8_78_1
  doi: 10.1039/C4CS00235K
– ident: e_1_2_8_58_1
  doi: 10.1002/cptc.201900167
– ident: e_1_2_8_106_1
  doi: 10.1038/s41467-020-17251-z
– ident: e_1_2_8_37_1
  doi: 10.1126/sciadv.1501381
– ident: e_1_2_8_77_4
  doi: 10.1002/macp.1991.021921010
– ident: e_1_2_8_34_1
  doi: 10.1002/anie.201912608
– ident: e_1_2_8_67_1
  doi: 10.1021/acsmacrolett.1c00555
– ident: e_1_2_8_6_1
  doi: 10.1016/j.jconrel.2020.10.008
– ident: e_1_2_8_90_1
  doi: 10.1002/adfm.202009691
– ident: e_1_2_8_31_2
  doi: 10.3390/polym12051073
– ident: e_1_2_8_85_1
  doi: 10.1021/acs.macromol.9b00252
– ident: e_1_2_8_56_1
  doi: 10.1021/jacs.0c07136
– ident: e_1_2_8_102_1
  doi: 10.1039/C5TC03315B
– ident: e_1_2_8_3_1
  doi: 10.1038/nmat4782
– ident: e_1_2_8_26_1
  doi: 10.1038/s41467-020-14630-4
– ident: e_1_2_8_108_1
– ident: e_1_2_8_77_2
  doi: 10.1016/j.jiec.2020.12.011
– ident: e_1_2_8_1_1
  doi: 10.1126/sciadv.aao6804
– ident: e_1_2_8_15_1
  doi: 10.1126/sciadv.abe9499
– ident: e_1_2_8_54_1
  doi: 10.1016/j.isci.2021.103372
– ident: e_1_2_8_95_1
  doi: 10.1039/D1PY00705J
– ident: e_1_2_8_39_2
  doi: 10.1002/marc.200700620
– ident: e_1_2_8_22_1
  doi: 10.1002/adma.201800001
– ident: e_1_2_8_31_3
  doi: 10.1039/D0CS01411G
– ident: e_1_2_8_16_1
  doi: 10.1002/adfm.202108436
– ident: e_1_2_8_97_2
  doi: 10.1002/adfm.202103334
– ident: e_1_2_8_47_1
  doi: 10.1021/acs.macromol.5b00201
– ident: e_1_2_8_75_1
  doi: 10.1038/s41467-019-08639-7
– ident: e_1_2_8_109_1
  doi: 10.1007/s10462-020-09876-9
– ident: e_1_2_8_53_1
  doi: 10.1016/j.ijpharm.2021.121199
– ident: e_1_2_8_7_1
  doi: 10.1016/j.biomaterials.2010.04.050
– ident: e_1_2_8_74_1
  doi: 10.1021/acsmacrolett.9b00412
– start-page: e202114111
  year: 2022
  ident: e_1_2_8_63_1
  publication-title: Angew. Chem., Int. Ed.
– ident: e_1_2_8_72_1
  doi: 10.1021/acsami.1c06062
– ident: e_1_2_8_11_1
  doi: 10.1126/science.aaa2397
– ident: e_1_2_8_73_1
  doi: 10.1126/sciadv.aau8723
– ident: e_1_2_8_87_1
  doi: 10.1038/nmat3776
– ident: e_1_2_8_25_1
  doi: 10.1126/science.aau7114
– ident: e_1_2_8_105_1
  doi: 10.1126/sciadv.aba7406
– ident: e_1_2_8_29_2
  doi: 10.1016/j.progpolymsci.2014.09.001
– ident: e_1_2_8_24_1
  doi: 10.1126/sciadv.aao5496
– ident: e_1_2_8_86_1
  doi: 10.1039/C6PY01787H
– ident: e_1_2_8_69_1
  doi: 10.1021/jacs.6b07434
– ident: e_1_2_8_36_1
  doi: 10.1021/acs.macromol.1c00856
– ident: e_1_2_8_40_1
  doi: 10.1039/C5PY00258C
– ident: e_1_2_8_79_2
  doi: 10.1021/acsami.8b13031
– ident: e_1_2_8_38_1
  doi: 10.1002/anie.201710951
– ident: e_1_2_8_12_1
  doi: 10.1021/acscentsci.8b00700
– ident: e_1_2_8_27_1
  doi: 10.1038/s41586-020-3029-7
– ident: e_1_2_8_93_1
  doi: 10.1021/acs.nanolett.7b01870
– ident: e_1_2_8_100_1
  doi: 10.1038/s41598-018-21793-0
– ident: e_1_2_8_5_1
  doi: 10.1021/acsapm.8b00165
– ident: e_1_2_8_28_1
  doi: 10.1016/S0079-6700(01)00004-1
– ident: e_1_2_8_59_1
  doi: 10.1038/s41467-021-23170-4
– ident: e_1_2_8_47_2
  doi: 10.1021/acs.macromol.8b00044
– ident: e_1_2_8_29_1
  doi: 10.1016/j.progpolymsci.2020.101277
– ident: e_1_2_8_55_1
  doi: 10.1021/acs.macromol.8b02145
– ident: e_1_2_8_71_1
  doi: 10.1002/smll.202101337
– ident: e_1_2_8_64_1
  doi: 10.1039/D1PY01283E
– ident: e_1_2_8_81_1
  doi: 10.1002/adfm.202109864
– ident: e_1_2_8_89_1
  doi: 10.1002/smll.201902347
– ident: e_1_2_8_14_1
  doi: 10.1016/j.biomaterials.2012.01.048
– ident: e_1_2_8_48_1
  doi: 10.1088/1758-5090/7/4/045009
– ident: e_1_2_8_21_1
  doi: 10.1002/anie.201504382
– ident: e_1_2_8_88_1
  doi: 10.1021/acs.chemrev.5b00148
– ident: e_1_2_8_10_1
  doi: 10.1126/sciadv.aav5790
– ident: e_1_2_8_35_2
  doi: 10.26434/chemrxiv‐2022‐tklpl
– ident: e_1_2_8_57_1
  doi: 10.1021/acsami.1c22046
– ident: e_1_2_8_77_5
  doi: 10.1002/macp.202100217
– ident: e_1_2_8_91_1
  doi: 10.1021/ja9534213
– ident: e_1_2_8_43_1
  doi: 10.1021/acs.chemrev.5b00671
– ident: e_1_2_8_70_1
  doi: 10.1002/adma.201901269
– ident: e_1_2_8_65_1
  doi: 10.1002/adma.202107643
– ident: e_1_2_8_94_1
  doi: 10.1002/pola.27903
– ident: e_1_2_8_113_1
  doi: 10.1126/sciadv.abd1794
– ident: e_1_2_8_99_1
  doi: 10.1002/adma.201405933
– ident: e_1_2_8_30_1
  doi: 10.1039/C8PY00157J
– volume-title: Ph.D. Thesis
  year: 2017
  ident: e_1_2_8_39_1
– ident: e_1_2_8_45_1
  doi: 10.1016/j.progpolymsci.2016.06.005
– ident: e_1_2_8_28_2
  doi: 10.1016/j.progpolymsci.2016.09.007
– ident: e_1_2_8_60_1
  doi: 10.1039/C9PY01419E
– ident: e_1_2_8_84_1
  doi: 10.1021/acsami.7b08399
– ident: e_1_2_8_4_1
  doi: 10.1021/acs.chemrev.9b00810
– ident: e_1_2_8_51_1
  doi: 10.1002/adma.201703404
– ident: e_1_2_8_13_1
  doi: 10.1126/science.aav9750
– ident: e_1_2_8_101_1
  doi: 10.1038/s41586-022-04485-8
– ident: e_1_2_8_112_1
  doi: 10.1002/cptc.202000146
– ident: e_1_2_8_115_1
  doi: 10.1021/acs.chemmater.5b00858
– ident: e_1_2_8_44_1
  doi: 10.1021/acs.chemrev.5b00586
– ident: e_1_2_8_92_1
  doi: 10.1021/acs.nanolett.6b01298
– ident: e_1_2_8_76_1
  doi: 10.1016/j.progpolymsci.2019.101165
– ident: e_1_2_8_18_1
  doi: 10.1002/adma.201606000
– ident: e_1_2_8_81_2
  doi: 10.1039/D2PY00113F
– ident: e_1_2_8_35_1
  doi: 10.1039/C7CC09313F
– ident: e_1_2_8_19_1
  doi: 10.1016/j.dental.2020.11.030
– ident: e_1_2_8_62_1
  doi: 10.1002/anie.202016523
– ident: e_1_2_8_8_1
  doi: 10.1016/j.biomaterials.2017.06.005
– ident: e_1_2_8_41_1
  doi: 10.1021/acs.macromol.6b02596
– ident: e_1_2_8_103_1
  doi: 10.1039/C6PY00184J
– ident: e_1_2_8_111_1
  doi: 10.1039/D0QM00961J
– ident: e_1_2_8_49_1
  doi: 10.22203/eCM.v022a04
– ident: e_1_2_8_20_1
  doi: 10.1016/j.dental.2017.01.018
– ident: e_1_2_8_52_1
  doi: 10.1002/adma.202102153
– volume: 8
  start-page: 10959
  year: 2020
  ident: e_1_2_8_80_1
  publication-title: ACS Sustainable Chem. Eng.
– ident: e_1_2_8_104_1
  doi: 10.1016/j.dental.2011.11.018
– volume-title: 3D Printing with Light
  year: 2021
  ident: e_1_2_8_31_1
– ident: e_1_2_8_77_1
  doi: 10.1021/acsami.1c15636
– ident: e_1_2_8_110_1
  doi: 10.1016/j.tips.2021.06.002
– ident: e_1_2_8_46_1
  doi: 10.3390/ma10121445
– ident: e_1_2_8_77_3
  doi: 10.1016/j.biomaterials.2009.08.055
– ident: e_1_2_8_55_3
  doi: 10.1089/3dp.2021.0204
– ident: e_1_2_8_98_1
  doi: 10.1038/s41467-018-04813-5
– ident: e_1_2_8_107_1
  doi: 10.1021/acsami.0c18255
– ident: e_1_2_8_61_1
  doi: 10.1021/acsapm.9b01076
– ident: e_1_2_8_96_1
  doi: 10.1039/D1PY00228G
– ident: e_1_2_8_33_1
  doi: 10.1002/adma.201800364
– ident: e_1_2_8_42_1
  doi: 10.1021/acsami.8b06607
– ident: e_1_2_8_79_1
  doi: 10.1021/acssuschemeng.8b05357
– ident: e_1_2_8_66_1
  doi: 10.1021/acsapm.1c00048
– ident: e_1_2_8_23_1
  doi: 10.1016/j.addr.2021.03.022
– ident: e_1_2_8_28_3
  doi: 10.1021/cr60252a001
– ident: e_1_2_8_55_2
  doi: 10.1021/acsapm.9b00140
– ident: e_1_2_8_50_1
  doi: 10.1021/acsbiomaterials.6b00149
– ident: e_1_2_8_83_1
  doi: 10.1016/j.apmt.2021.101060
– ident: e_1_2_8_28_4
  doi: 10.1021/bk-1997-0673
– ident: e_1_2_8_82_1
  doi: 10.1039/D0CC01732A
– ident: e_1_2_8_97_1
  doi: 10.2147/NSA.S64386
– ident: e_1_2_8_68_1
  doi: 10.1021/acs.macromol.1c02521
– ident: e_1_2_8_114_1
  doi: 10.1039/C7PY00536A
– ident: e_1_2_8_2_1
  doi: 10.1038/s41591-018-0296-z
– ident: e_1_2_8_9_1
  doi: 10.1038/s41467-018-03759-y
SSID ssj0008402
Score 2.6521692
SecondaryResourceType review_article
Snippet 3D printing has revolutionized the way of manufacturing with a huge impact on various fields, in particular biomedicine. Vat photopolymerization‐based 3D...
3D printing has revolutionized the way of manufacturing with a huge impact on various fields, in particular biomedicine. Vat photopolymerization-based 3D...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2200202
SubjectTerms 3-D printers
3D printing
digital light processing
Fabrication
Lithography
Monomers
Optics
photoinitiating systems
Photoinitiators
Photopolymerization
Polymers
Printing
Resins
stereolithography
Three dimensional printing
Trends
vat photopolymerization
volumetric printing
Title Recent Trends in Advanced Photoinitiators for Vat Photopolymerization 3D Printing
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmarc.202200202
https://www.ncbi.nlm.nih.gov/pubmed/35579565
https://www.proquest.com/docview/2691583383
https://www.proquest.com/docview/2665562402
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9xADLYoF3ppC30tBTRIlXoKJJPJ67jaFiEk0BaVilvkeURdgRLEZg_tr8fOJKHbqqrU3vJwksl4HH_O2N8AvJcpIhNJBRGiCQiBJwGaWAUqyirrCCHEFRcKn1-kp1fq7Dq5_qmK3_NDjD_c2DK67zUbOOrl8SNpKFM9UHwnOcugY5PkhC1GRZeP_FEUvfjpToq4KBhLB9bGUB6vX77ulX6DmuvItXM9J88Bh0b7jJObo1Wrj8yPX_gc_-etXsCzHpeKqR9I27Dh6h3Ymg3Lwb2EzwQwyUEJn0QrFrWY9ukDYv6taZsFZyFxBL8UhIPFV2z98bvm9jvPCvlyTxF_FPP7Rbc8xSu4Ovn0ZXYa9OsxBEZlhQx0opA0zgTxpjLauSS3uYq1s1Fqck2RVJVWUiJ5PhthZXKTFRi7MNFhoTGq4tewWTe1ewvC5AqL2GbOolVoWCwKLYWmIdqwknYCwaCP0vRk5bxmxm3paZZlyR1Vjh01gQ-j_J2n6fij5N6g3rI312Up0yLi8rM8nsDheJo6mGdPsHbNimXShMCi4lu88cNifBSBtowCzWQCslPuX9pQnk8vZ-Pe7r9c9A6e8rZPHN6DzfZ-5fYJHrX6AJ5INT_oDOEB-0UHpA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5VcIALpaXAUkpdCamnQOI4r-NqAW1bFlEEiFvkV8SqKEGQPdBfz0ycBG0RQqLHOOPE8SP-Pnv8DcAuj6UkISkvkFJ7iMAjT-pQeCJICmMRIYQFHRSenMTjC_HzKuq8CeksjNOH6BfcaGQ0_2sa4LQgvf-kGkpaD0jwOLkZkJzkIoX1bljV2ZOCFPIXt-GJnAvpWNzpNvp8fz7__Lz0DGzOY9dm8jl6D6ortvM5-bM3q9We_vuPouN_fdcqrLTQlA1dX_oA72z5EZZGXUS4NfiNGBPnKOb8aNm0ZMPWg4CdXld1NSVHJCLx9wyhMLuUtUu_rW4eaGPInfhk4QE7vZs2ESo-wcXR4flo7LUhGTwtkox7KhISG5004nWhlbVRalIRKmuCWKcKyVQRF5xLnPxMIAud6iSTofUj5WdKBkW4DgtlVdpNYDoVMgtNYo00QmoyC3yD7NSXxi-4GYDXNUiuW71yCptxkzulZZ5TReV9RQ3ge29_65Q6XrTc7to3b0fsfc7jLKATaGk4gG_9baxg2kCRpa1mZBNHiBcFPWLD9Yv-VYjbEuSa0QB407qvlCGfDM9G_dXWWzJ9haXx-eQ4P_5x8uszLFO68yPehoX6bma_IFqq1U4zHh4BPEkK6A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hIgEX3pSFAkZC4pQ2cZzXcbXLqjxaLRVFvUUTP8SKKlm12QP8embiJGVBCAmOcSaJ4_HE38Qz3wC8kikiE0kFEaIOCIEnAepYBSrKnLGEEGLHicJHx-nhqXp3lpz9lMXv-SHGH25sGd33mg18bdzBFWkoUz2Qfyc5yoDZJK-rNMx5Xs9PrgikyH3x-53kcpE3lg60jaE82L5-e1n6DWtuQ9du7VncARx67UNOvu5v2mpff_-F0PF_Xusu3O6BqZj6mXQPrtn6PtycDfXgHsBHQpi0QgkfRStWtZj28QNi-aVpmxWHIbELfykICIvP2Pr2dXP-jbeFfL6niOdiebHq6lM8hNPFm0-zw6AvyBBolRUyqBKFpHJmiNdOV9YmuclVXFkTpTqvyJVyqZMSaekzETqd66zA2IZJFRYVRi5-BDt1U9vHIHSusIhNZg0ahZrFotCQbxqiCZ00EwgGfZS6ZyvnohnnpedZliUPVDkO1ARej_Jrz9PxR8m9Qb1lb6-XpUyLiPPP8ngCL8fTNMC8fYK1bTYskyaEFhXfYtdPi_FRhNoy8jSTCchOuX_pQ3k0PZmNR0_-5aIXcGM5X5Qf3h6_fwq3uNkHEe_BTnuxsc8IKrXV884afgApyAmg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Trends+in+Advanced+Photoinitiators+for+Vat+Photopolymerization+3D+Printing&rft.jtitle=Macromolecular+rapid+communications.&rft.au=Bao%2C+Yinyin&rft.date=2022-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1022-1336&rft.eissn=1521-3927&rft.volume=43&rft.issue=14&rft_id=info:doi/10.1002%2Fmarc.202200202&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-1336&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-1336&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-1336&client=summon