Recent Trends in Advanced Photoinitiators for Vat Photopolymerization 3D Printing
3D printing has revolutionized the way of manufacturing with a huge impact on various fields, in particular biomedicine. Vat photopolymerization‐based 3D printing techniques such as stereolithography (SLA) and digital light processing (DLP) attract considerable attention owing to their superior prin...
Saved in:
Published in | Macromolecular rapid communications. Vol. 43; no. 14; pp. e2200202 - n/a |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.07.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | 3D printing has revolutionized the way of manufacturing with a huge impact on various fields, in particular biomedicine. Vat photopolymerization‐based 3D printing techniques such as stereolithography (SLA) and digital light processing (DLP) attract considerable attention owing to their superior print resolution, relatively high speed, low cost, and flexibility in resin material design. As one key element of the SLA/DLP resin, photoinitiators or photoinitiating systems have experienced significant development in recent years, in parallel with the exploration of 3D printing (macro)monomers. The design of new photoinitiating systems cannot only offer faster 3D printing speed and enable low‐energy visible light fabrication, but also can bring new functions to the 3D printed products and even generate new printing methods in combination with advanced optics. This review evaluates recent trends in the development and application of advanced photoinitiators and photoinitiating systems for vat photopolymerization 3D printing, with a wide range of small molecules, polymers, and nanoassemblies involved. Personal perspectives on the current limitations and future directions are eventually provided.
This review summarizes emerging trends in the development and application of advanced photoinitiators and photoinitiating systems for vat photopolymerization 3D printing. Blue‐to‐NIR light photoinitiators, reversible addition−fragmentation chain‐transfer (RAFT) photoinitiating systems, functional photoswitches, macrophotoinitiators, and nanophotoinitiators based on a wide range of small molecules, polymers, and nanoassemblies are discussed. |
---|---|
AbstractList | 3D printing has revolutionized the way of manufacturing with a huge impact on various fields, in particular biomedicine. Vat photopolymerization‐based 3D printing techniques such as stereolithography (SLA) and digital light processing (DLP) attract considerable attention owing to their superior print resolution, relatively high speed, low cost, and flexibility in resin material design. As one key element of the SLA/DLP resin, photoinitiators or photoinitiating systems have experienced significant development in recent years, in parallel with the exploration of 3D printing (macro)monomers. The design of new photoinitiating systems cannot only offer faster 3D printing speed and enable low‐energy visible light fabrication, but also can bring new functions to the 3D printed products and even generate new printing methods in combination with advanced optics. This review evaluates recent trends in the development and application of advanced photoinitiators and photoinitiating systems for vat photopolymerization 3D printing, with a wide range of small molecules, polymers, and nanoassemblies involved. Personal perspectives on the current limitations and future directions are eventually provided. 3D printing has revolutionized the way of manufacturing with a huge impact on various fields, in particular biomedicine. Vat photopolymerization-based 3D printing techniques such as stereolithography (SLA) and digital light processing (DLP) attract considerable attention owing to their superior print resolution, relatively high speed, low cost, and flexibility in resin material design. As one key element of the SLA/DLP resin, photoinitiators or photoinitiating systems have experienced significant development in recent years, in parallel with the exploration of 3D printing (macro)monomers. The design of new photoinitiating systems cannot only offer faster 3D printing speed and enable low-energy visible light fabrication, but also can bring new functions to the 3D printed products and even generate new printing methods in combination with advanced optics. This review evaluates recent trends in the development and application of advanced photoinitiators and photoinitiating systems for vat photopolymerization 3D printing, with a wide range of small molecules, polymers, and nanoassemblies involved. Personal perspectives on the current limitations and future directions are eventually provided.3D printing has revolutionized the way of manufacturing with a huge impact on various fields, in particular biomedicine. Vat photopolymerization-based 3D printing techniques such as stereolithography (SLA) and digital light processing (DLP) attract considerable attention owing to their superior print resolution, relatively high speed, low cost, and flexibility in resin material design. As one key element of the SLA/DLP resin, photoinitiators or photoinitiating systems have experienced significant development in recent years, in parallel with the exploration of 3D printing (macro)monomers. The design of new photoinitiating systems cannot only offer faster 3D printing speed and enable low-energy visible light fabrication, but also can bring new functions to the 3D printed products and even generate new printing methods in combination with advanced optics. This review evaluates recent trends in the development and application of advanced photoinitiators and photoinitiating systems for vat photopolymerization 3D printing, with a wide range of small molecules, polymers, and nanoassemblies involved. Personal perspectives on the current limitations and future directions are eventually provided. 3D printing has revolutionized the way of manufacturing with a huge impact on various fields, in particular biomedicine. Vat photopolymerization‐based 3D printing techniques such as stereolithography (SLA) and digital light processing (DLP) attract considerable attention owing to their superior print resolution, relatively high speed, low cost, and flexibility in resin material design. As one key element of the SLA/DLP resin, photoinitiators or photoinitiating systems have experienced significant development in recent years, in parallel with the exploration of 3D printing (macro)monomers. The design of new photoinitiating systems cannot only offer faster 3D printing speed and enable low‐energy visible light fabrication, but also can bring new functions to the 3D printed products and even generate new printing methods in combination with advanced optics. This review evaluates recent trends in the development and application of advanced photoinitiators and photoinitiating systems for vat photopolymerization 3D printing, with a wide range of small molecules, polymers, and nanoassemblies involved. Personal perspectives on the current limitations and future directions are eventually provided. This review summarizes emerging trends in the development and application of advanced photoinitiators and photoinitiating systems for vat photopolymerization 3D printing. Blue‐to‐NIR light photoinitiators, reversible addition−fragmentation chain‐transfer (RAFT) photoinitiating systems, functional photoswitches, macrophotoinitiators, and nanophotoinitiators based on a wide range of small molecules, polymers, and nanoassemblies are discussed. |
Author | Bao, Yinyin |
Author_xml | – sequence: 1 givenname: Yinyin orcidid: 0000-0001-5264-1211 surname: Bao fullname: Bao, Yinyin email: yinyin.bao@pharma.ethz.ch organization: Department of Chemistry and Applied Biosciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35579565$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtLAzEUhYNUbK1uXcqAGzdT85ikM8tSn6BYRd0OmcwdTZkmNUmV-uuNVisIIgSSe_lOcnPONuoYawChPYIHBGN6NJNODSimNBaYbqAe4ZSkrKDDTjzHfkoYE1207f0UY5xnmG6hLuN8WHDBe-jmFhSYkNw5MLVPtElG9Ys0Cupk8mSD1UYHLYN1PmmsSx5kWPXntl3OwOk3GbQ1CTtOJk6boM3jDtpsZOth92vvo_vTk7vxeXp5fXYxHl2mKhsWNK14JkEpWmChGlUB8LzOM1ZBTYTKK0F5IxpKJcakJrJRuRoWkgHmFS4qSRrWR4ere-fOPi_Ah3KmvYK2lQbswpdUCM4FjR-O6MEvdGoXzsTpIlUQnjMWVx_tf1GLagZ1OXc6urssv82KwGAFKGe9d9CsEYLLjzTKjzTKdRpRkP0SKB0-DQtO6vZvWbGSveoWlv88Ul6Nbsc_2neAvZ6s |
CitedBy_id | crossref_primary_10_1002_adma_202305537 crossref_primary_10_1002_app_54694 crossref_primary_10_1016_j_eurpolymj_2024_113552 crossref_primary_10_1002_adma_202306468 crossref_primary_10_1038_s42004_023_00985_4 crossref_primary_10_1016_j_mser_2024_100917 crossref_primary_10_1002_admt_202300052 crossref_primary_10_1016_j_cclet_2024_109573 crossref_primary_10_3390_polym15122690 crossref_primary_10_1007_s00170_023_12847_3 crossref_primary_10_1021_acsapm_4c03976 crossref_primary_10_1039_D3CC04147F crossref_primary_10_1021_acsaenm_3c00452 crossref_primary_10_1002_smll_202207637 crossref_primary_10_1016_j_eurpolymj_2023_111885 crossref_primary_10_1016_j_jeurceramsoc_2024_03_048 crossref_primary_10_1002_slct_202301297 crossref_primary_10_1039_D4PY00454J crossref_primary_10_1039_D4BM00674G crossref_primary_10_1088_2631_8695_adbc47 crossref_primary_10_1016_j_bprint_2024_e00353 crossref_primary_10_3390_polym15193940 crossref_primary_10_3390_ma17040950 crossref_primary_10_3390_polym15214202 crossref_primary_10_1016_j_addma_2024_104189 crossref_primary_10_1021_acscentsci_3c01263 crossref_primary_10_1007_s10853_024_10449_2 crossref_primary_10_1002_adma_202304104 crossref_primary_10_1016_j_ddj_2025_100001 crossref_primary_10_1021_acsapm_4c00513 crossref_primary_10_1016_j_mtadv_2023_100388 crossref_primary_10_1039_D3MA00943B crossref_primary_10_1039_D4BM01174K crossref_primary_10_1002_adfm_202302157 crossref_primary_10_1039_D4MH01160K crossref_primary_10_1002_ange_202405337 crossref_primary_10_1016_j_ceramint_2023_10_272 crossref_primary_10_1016_j_apmt_2025_102667 crossref_primary_10_1021_acs_chemrev_3c00570 crossref_primary_10_3762_bjoc_19_116 crossref_primary_10_1016_j_jphotochem_2023_114870 crossref_primary_10_1021_acsapm_3c02891 crossref_primary_10_3390_polym16010017 crossref_primary_10_1016_j_asems_2025_100139 crossref_primary_10_1039_D3LP00077J crossref_primary_10_1016_j_cej_2024_157184 crossref_primary_10_1039_D3TA04462A crossref_primary_10_1021_acsabm_4c00561 crossref_primary_10_1016_j_mtbio_2024_101284 crossref_primary_10_3390_coatings15010006 crossref_primary_10_1002_anie_202405337 crossref_primary_10_1002_marc_202400293 crossref_primary_10_1016_j_addma_2024_104443 crossref_primary_10_1002_macp_202400398 crossref_primary_10_1002_adma_202411223 crossref_primary_10_1016_j_watres_2024_123070 crossref_primary_10_1007_s40964_024_00910_8 crossref_primary_10_1021_acs_biomac_4c01004 crossref_primary_10_1016_j_ohx_2024_e00520 crossref_primary_10_1016_j_mtcomm_2023_106071 crossref_primary_10_1021_jacs_3c05373 crossref_primary_10_1016_j_pnsc_2024_07_013 crossref_primary_10_1002_ange_202316431 crossref_primary_10_1038_s44222_024_00251_9 crossref_primary_10_1002_marc_202300661 crossref_primary_10_1002_anie_202316431 crossref_primary_10_1016_j_dyepig_2023_111202 crossref_primary_10_1021_acsapm_4c01980 crossref_primary_10_1055_a_1976_0453 crossref_primary_10_1088_2752_5724_ad69af crossref_primary_10_1016_j_cej_2023_147104 crossref_primary_10_1016_j_eurpolymj_2023_112241 crossref_primary_10_1002_ejic_202400153 crossref_primary_10_1016_j_jmps_2024_105830 crossref_primary_10_1002_biot_202400550 crossref_primary_10_1039_D2QM00644H crossref_primary_10_1039_D4LP00032C crossref_primary_10_1073_pnas_2303648121 crossref_primary_10_1016_j_ccr_2024_216050 crossref_primary_10_1038_s41578_023_00587_5 crossref_primary_10_1007_s11465_024_0787_1 crossref_primary_10_1016_j_apmt_2023_101854 crossref_primary_10_1007_s11426_024_2422_2 crossref_primary_10_1016_j_cej_2023_146247 crossref_primary_10_1016_j_device_2023_100067 crossref_primary_10_1002_mame_202300272 crossref_primary_10_1016_j_bprint_2025_e00395 crossref_primary_10_1016_j_polymer_2024_127384 crossref_primary_10_1126_sciadv_adg4272 crossref_primary_10_1016_j_cej_2025_160857 crossref_primary_10_1039_D4MH01680G crossref_primary_10_1016_j_mtcomm_2023_106764 crossref_primary_10_3390_ma16155327 crossref_primary_10_1002_cssc_202402117 crossref_primary_10_3390_jmmp7010035 crossref_primary_10_1002_rpm_20240008 crossref_primary_10_1021_acsapm_3c01136 crossref_primary_10_1002_appl_202300030 |
Cites_doi | 10.1021/acscentsci.0c00929 10.1002/adma.202003387 10.1039/C4CS00235K 10.1002/cptc.201900167 10.1038/s41467-020-17251-z 10.1126/sciadv.1501381 10.1002/macp.1991.021921010 10.1002/anie.201912608 10.1021/acsmacrolett.1c00555 10.1016/j.jconrel.2020.10.008 10.1002/adfm.202009691 10.3390/polym12051073 10.1021/acs.macromol.9b00252 10.1021/jacs.0c07136 10.1039/C5TC03315B 10.1038/nmat4782 10.1038/s41467-020-14630-4 10.1016/j.jiec.2020.12.011 10.1126/sciadv.aao6804 10.1126/sciadv.abe9499 10.1016/j.isci.2021.103372 10.1039/D1PY00705J 10.1002/marc.200700620 10.1002/adma.201800001 10.1039/D0CS01411G 10.1002/adfm.202108436 10.1002/adfm.202103334 10.1021/acs.macromol.5b00201 10.1038/s41467-019-08639-7 10.1007/s10462-020-09876-9 10.1016/j.ijpharm.2021.121199 10.1016/j.biomaterials.2010.04.050 10.1021/acsmacrolett.9b00412 10.1021/acsami.1c06062 10.1126/science.aaa2397 10.1126/sciadv.aau8723 10.1038/nmat3776 10.1126/science.aau7114 10.1126/sciadv.aba7406 10.1016/j.progpolymsci.2014.09.001 10.1126/sciadv.aao5496 10.1039/C6PY01787H 10.1021/jacs.6b07434 10.1021/acs.macromol.1c00856 10.1039/C5PY00258C 10.1021/acsami.8b13031 10.1002/anie.201710951 10.1021/acscentsci.8b00700 10.1038/s41586-020-3029-7 10.1021/acs.nanolett.7b01870 10.1038/s41598-018-21793-0 10.1021/acsapm.8b00165 10.1016/S0079-6700(01)00004-1 10.1038/s41467-021-23170-4 10.1021/acs.macromol.8b00044 10.1016/j.progpolymsci.2020.101277 10.1021/acs.macromol.8b02145 10.1002/smll.202101337 10.1039/D1PY01283E 10.1002/adfm.202109864 10.1002/smll.201902347 10.1016/j.biomaterials.2012.01.048 10.1088/1758-5090/7/4/045009 10.1002/anie.201504382 10.1021/acs.chemrev.5b00148 10.1126/sciadv.aav5790 10.26434/chemrxiv‐2022‐tklpl 10.1021/acsami.1c22046 10.1002/macp.202100217 10.1021/ja9534213 10.1021/acs.chemrev.5b00671 10.1002/adma.201901269 10.1002/adma.202107643 10.1002/pola.27903 10.1126/sciadv.abd1794 10.1002/adma.201405933 10.1039/C8PY00157J 10.1016/j.progpolymsci.2016.06.005 10.1016/j.progpolymsci.2016.09.007 10.1039/C9PY01419E 10.1021/acsami.7b08399 10.1021/acs.chemrev.9b00810 10.1002/adma.201703404 10.1126/science.aav9750 10.1038/s41586-022-04485-8 10.1002/cptc.202000146 10.1021/acs.chemmater.5b00858 10.1021/acs.chemrev.5b00586 10.1021/acs.nanolett.6b01298 10.1016/j.progpolymsci.2019.101165 10.1002/adma.201606000 10.1039/D2PY00113F 10.1039/C7CC09313F 10.1016/j.dental.2020.11.030 10.1002/anie.202016523 10.1016/j.biomaterials.2017.06.005 10.1021/acs.macromol.6b02596 10.1039/C6PY00184J 10.1039/D0QM00961J 10.22203/eCM.v022a04 10.1016/j.dental.2017.01.018 10.1002/adma.202102153 10.1016/j.dental.2011.11.018 10.1021/acsami.1c15636 10.1016/j.tips.2021.06.002 10.3390/ma10121445 10.1016/j.biomaterials.2009.08.055 10.1089/3dp.2021.0204 10.1038/s41467-018-04813-5 10.1021/acsami.0c18255 10.1021/acsapm.9b01076 10.1039/D1PY00228G 10.1002/adma.201800364 10.1021/acsami.8b06607 10.1021/acssuschemeng.8b05357 10.1021/acsapm.1c00048 10.1016/j.addr.2021.03.022 10.1021/cr60252a001 10.1021/acsapm.9b00140 10.1021/acsbiomaterials.6b00149 10.1016/j.apmt.2021.101060 10.1021/bk-1997-0673 10.1039/D0CC01732A 10.2147/NSA.S64386 10.1021/acs.macromol.1c02521 10.1039/C7PY00536A 10.1038/s41591-018-0296-z 10.1038/s41467-018-03759-y |
ContentType | Journal Article |
Copyright | 2022 The Authors. Macromolecular Rapid Communications published by Wiley‐VCH GmbH 2022 The Authors. Macromolecular Rapid Communications published by Wiley-VCH GmbH. 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. Macromolecular Rapid Communications published by Wiley‐VCH GmbH – notice: 2022 The Authors. Macromolecular Rapid Communications published by Wiley-VCH GmbH. – notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION NPM 7SR 7U5 8FD JG9 JQ2 L7M 7X8 |
DOI | 10.1002/marc.202200202 |
DatabaseName | Wiley Open Access Collection CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace ProQuest Computer Science Collection MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access (Activated by CARLI) url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3927 |
EndPage | n/a |
ExternalDocumentID | 35579565 10_1002_marc_202200202 MARC202200202 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: Swiss National Science Foundation funderid: Sinergia No. 177178; Spark No. 190313 – fundername: Swiss National Science Foundation grantid: Spark No. 190313 – fundername: Swiss National Science Foundation grantid: Sinergia No. 177178 |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA GYXMG H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6T MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RWB RWI RX1 RYL SAMSI SUPJJ TUS UB1 V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZY4 ZZTAW ~IA ~WT AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 7SR 7U5 8FD JG9 JQ2 L7M 7X8 |
ID | FETCH-LOGICAL-c4792-b54aecc2906cfcbee58d843bed16c8b625f6f22a001d1afc8c79a3e05b09ba1f3 |
IEDL.DBID | DR2 |
ISSN | 1022-1336 1521-3927 |
IngestDate | Fri Jul 11 10:18:18 EDT 2025 Fri Jul 25 10:23:46 EDT 2025 Mon Jul 21 05:52:59 EDT 2025 Thu Apr 24 22:54:48 EDT 2025 Tue Jul 01 03:31:46 EDT 2025 Wed Jan 22 16:25:33 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | volumetric printing photoinitiating systems photoinitiators stereolithography vat photopolymerization digital light processing 3D printing |
Language | English |
License | Attribution 2022 The Authors. Macromolecular Rapid Communications published by Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4792-b54aecc2906cfcbee58d843bed16c8b625f6f22a001d1afc8c79a3e05b09ba1f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-5264-1211 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmarc.202200202 |
PMID | 35579565 |
PQID | 2691583383 |
PQPubID | 1016394 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2665562402 proquest_journals_2691583383 pubmed_primary_35579565 crossref_primary_10_1002_marc_202200202 crossref_citationtrail_10_1002_marc_202200202 wiley_primary_10_1002_marc_202200202_MARC202200202 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2022 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: July 2022 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Macromolecular rapid communications. |
PublicationTitleAlternate | Macromol Rapid Commun |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 329 2021; 24 2017; 8 2021; 609 2017; 3 2015 2018; 48 51 2021; 23 2015; 347 2019; 52 2020; 120 2019; 99 2019; 10 2017 2008; 29 2019; 15 2019; 58 2020; 56 2020; 12 2020; 11 2019; 364 2017; 9 2020 2015; 107 41 2019; 363 2020; 8 2018; 9 2020; 6 2021; 37 2018; 8 2020; 4 2021; 31 2020; 2 2021; 33 2013; 12 2017; 33 2019; 25 2022; 34 2011; 22 2018; 30 2016; 116 2012; 28 2022; 604 2001 2017 1968 1997; 26 65 68 673 2021 2021 2009 1991 2021; 13 95 30 192 222 2019; 8 2021; 7 2010; 31 2015; 6 2021; 5 2019; 3 2021; 42 2021; 3 2019; 5 2019; 31 2020; 142 2019; 1 2016; 54 2020; 588 2017; 29 2019 2018; 7 10 2016; 16 2012; 33 2015; 7 2014; 43 2016; 55 2015 2021; 8 31 2016; 4 2017; 50 2021; 13 2018 2022; 54 2016; 7 2021; 54 2021; 10 2015; 27 2016; 2 2021; 12 2022 2022 2022; 32 13 2017; 17 2017; 16 2021 2020 2021; 12 50 2017; 10 2021; 17 2022; 13 2021; 173 2016; 62 2017 2017; 140 2016; 138 2022; 55 2018 2019; 51 1 2021; 60 2018; 10 1996; 118 2018; 57 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_5_1 e_1_2_8_9_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_113_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_99_1 Zhu D. (e_1_2_8_31_1) 2021 e_1_2_8_105_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_101_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_29_2 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_110_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_79_2 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_90_1 e_1_2_8_98_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_106_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_71_1 e_1_2_8_28_1 e_1_2_8_28_2 e_1_2_8_28_3 e_1_2_8_28_4 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_47_2 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_81_2 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_55_3 e_1_2_8_70_1 e_1_2_8_97_1 e_1_2_8_97_2 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_55_2 e_1_2_8_107_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_93_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 e_1_2_8_4_1 e_1_2_8_8_1 Zhang X. (e_1_2_8_80_1) 2020; 8 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_84_1 e_1_2_8_112_1 e_1_2_8_61_1 e_1_2_8_39_2 e_1_2_8_35_2 e_1_2_8_35_1 e_1_2_8_77_5 e_1_2_8_77_4 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_77_3 Zhang Z. (e_1_2_8_63_1) 2022 e_1_2_8_92_1 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_31_2 e_1_2_8_77_2 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_31_3 Wang J. (e_1_2_8_39_1) 2017 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_104_1 |
References_xml | – volume: 27 start-page: 2203 year: 2015 publication-title: Adv. Mater. – volume: 3 start-page: 1109 year: 2019 publication-title: ChemPhotoChem – volume: 55 start-page: 3862 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 609 year: 2021 publication-title: Int. J. Pharm. – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 55 start-page: 1620 year: 2022 publication-title: Macromolecules – volume: 8 start-page: 899 year: 2019 publication-title: ACS Macro Lett. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 52 start-page: 3448 year: 2019 publication-title: Macromolecules – volume: 25 start-page: 263 year: 2019 publication-title: Nat. Med. – volume: 118 start-page: 6477 year: 1996 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 991 year: 2013 publication-title: Nat. Mater. – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 1 start-page: 593 year: 2019 publication-title: ACS Appl. Polym. Mater. – volume: 8 year: 2020 publication-title: ACS Sustainable Chem. Eng. – volume: 3 start-page: 2921 year: 2021 publication-title: ACS Appl. Polym. Mater. – volume: 22 start-page: 43 year: 2011 publication-title: Eur. Cells Mater. – volume: 62 start-page: 73 year: 2016 publication-title: Prog. Polym. Sci. – volume: 99 year: 2019 publication-title: Prog. Polym. Sci. – volume: 37 start-page: 336 year: 2021 publication-title: Dent. Mater. – volume: 12 start-page: 5106 year: 2021 publication-title: Polym. Chem. – volume: 7 year: 2015 publication-title: Biofabrication – volume: 8 start-page: 3663 year: 2018 publication-title: Sci. Rep. – volume: 11 start-page: 3462 year: 2020 publication-title: Nat. Commun. – year: 2022 publication-title: ACS Appl. Mater. Interfaces – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 48 51 start-page: 2054 1811 year: 2015 2018 publication-title: Macromolecules Macromolecules – volume: 32 13 start-page: 2271 year: 2022 2022 publication-title: Adv. Funct. Mater. Polym. Chem. – volume: 17 year: 2021 publication-title: Small – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 11 start-page: 852 year: 2020 publication-title: Nat. Commun. – volume: 10 start-page: 1445 year: 2017 publication-title: Materials – volume: 11 start-page: 641 year: 2020 publication-title: Polym. Chem. – volume: 13 start-page: 44 year: 2022 publication-title: Polym. Chem. – volume: 4 start-page: 5296 year: 2020 publication-title: ChemPhotoChem – volume: 10 start-page: 1315 year: 2021 publication-title: ACS Macro Lett. – volume: 27 start-page: 3450 year: 2015 publication-title: Chem. Mater. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 6 start-page: 1555 year: 2020 publication-title: ACS Cent. Sci. – volume: 120 year: 2020 publication-title: Chem. Rev. – volume: 5 year: 2019 publication-title: Sci. Adv. – volume: 12 start-page: 2873 year: 2021 publication-title: Nat. Commun. – volume: 107 41 start-page: 32 year: 2020 2015 publication-title: Prog. Polym. Sci. Prog. Polym. Sci. – volume: 56 start-page: 4828 year: 2020 publication-title: Chem. Commun. – volume: 17 start-page: 4497 year: 2017 publication-title: Nano Lett. – volume: 5 start-page: 419 year: 2019 publication-title: ACS Cent. Sci. – volume: 604 start-page: 474 year: 2022 publication-title: Nature – volume: 142 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 2271 year: 2021 publication-title: Mater. Chem. Front. – year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 54 start-page: 63 year: 2021 publication-title: Artif. Intell. Rev. – volume: 31 start-page: 6121 year: 2010 publication-title: Biomaterials – volume: 9 start-page: 1620 year: 2018 publication-title: Nat. Commun. – volume: 8 start-page: 5174 year: 2017 publication-title: Polym. Chem. – volume: 16 start-page: 4266 year: 2016 publication-title: Nano Lett. – volume: 54 start-page: 473 year: 2016 publication-title: J. Polym. Sci., Part A: Polym. Chem. – volume: 173 start-page: 349 year: 2021 publication-title: Adv. Drug Delivery Rev. – volume: 7 start-page: 2457 year: 2016 publication-title: Polym. Chem. – volume: 10 start-page: 791 year: 2019 publication-title: Nat. Commun. – volume: 116 start-page: 2826 year: 2016 publication-title: Chem. Rev. – volume: 26 65 68 673 start-page: 605 1 125 year: 2001 2017 1968 1997 publication-title: Prog. Polym. Sci. Prog. Polym. Sci. Chem. Rev. – volume: 16 start-page: 303 year: 2017 publication-title: Nat. Mater. – volume: 2 year: 2016 publication-title: Sci. Adv. – volume: 329 start-page: 743 year: 2021 publication-title: J. Controlled Release – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 364 start-page: 458 year: 2019 publication-title: Science – volume: 140 start-page: 170 year: 2017 publication-title: Biomaterials – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 9 start-page: 2415 year: 2018 publication-title: Nat. Commun. – volume: 28 start-page: 304 year: 2012 publication-title: Dent. Mater. – volume: 24 year: 2021 publication-title: iScience – volume: 51 1 start-page: 1129 year: 2018 2019 publication-title: Macromolecules ACS Appl. Polym. Mater. 3D Print. Addit. Manuf. – volume: 363 start-page: 1075 year: 2019 publication-title: Science – volume: 9 start-page: 1530 year: 2018 publication-title: Polym. Chem. – volume: 3 year: 2017 publication-title: Sci. Adv. – volume: 12 start-page: 3661 year: 2021 publication-title: Polym. Chem. – volume: 4 start-page: 801 year: 2016 publication-title: J. Mater. Chem. C – volume: 23 year: 2021 publication-title: Appl. Mater. Today – volume: 54 start-page: 7830 year: 2021 publication-title: Macromolecules – volume: 29 start-page: 57 year: 2017 2008 publication-title: Macromol. Rapid Commun. – volume: 588 start-page: 620 year: 2020 publication-title: Nature – volume: 2 start-page: 1752 year: 2016 publication-title: ACS Biomater. Sci. Eng. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 54 start-page: 920 year: 2018 2022 publication-title: Chem. Commun. ChemRxiv – volume: 43 start-page: 7485 year: 2014 publication-title: Chem. Soc. Rev. – volume: 2 start-page: 782 year: 2020 publication-title: ACS Appl. Polym. Mater. – volume: 13 95 30 192 222 start-page: 126 6702 2307 year: 2021 2021 2009 1991 2021 publication-title: ACS Appl. Mater. Interfaces J. Ind. Eng. Chem. Biomaterials Makromol. Chem. Macromol. Chem. Phys. – volume: 42 start-page: 745 year: 2021 publication-title: Trends Pharmacol. Sci. – volume: 33 start-page: 3824 year: 2012 publication-title: Biomaterials – volume: 60 start-page: 8839 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 6 start-page: 3895 year: 2015 publication-title: Polym. Chem. – volume: 33 start-page: 477 year: 2017 publication-title: Dent. Mater. – volume: 15 year: 2019 publication-title: Small – volume: 8 31 start-page: 45 year: 2015 2021 publication-title: Nanotechnol. Sci. Appl. Adv. Funct. Mater. – volume: 12 50 start-page: 1073 3824 year: 2021 2020 2021 publication-title: Polymers Chem. Soc. Rev. – volume: 50 start-page: 746 year: 2017 publication-title: Macromolecules – volume: 347 start-page: 1349 year: 2015 publication-title: Science – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 7 10 start-page: 4004 year: 2019 2018 publication-title: ACS Sustainable Chem. Eng. ACS Appl. Mater. Interfaces – volume: 57 start-page: 2353 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 116 year: 2016 publication-title: Chem. Rev. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 7 year: 2021 publication-title: Sci. Adv. – volume: 138 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 451 year: 2017 publication-title: Polym. Chem. – year: 2017 – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – ident: e_1_2_8_32_1 doi: 10.1021/acscentsci.0c00929 – ident: e_1_2_8_17_1 doi: 10.1002/adma.202003387 – ident: e_1_2_8_78_1 doi: 10.1039/C4CS00235K – ident: e_1_2_8_58_1 doi: 10.1002/cptc.201900167 – ident: e_1_2_8_106_1 doi: 10.1038/s41467-020-17251-z – ident: e_1_2_8_37_1 doi: 10.1126/sciadv.1501381 – ident: e_1_2_8_77_4 doi: 10.1002/macp.1991.021921010 – ident: e_1_2_8_34_1 doi: 10.1002/anie.201912608 – ident: e_1_2_8_67_1 doi: 10.1021/acsmacrolett.1c00555 – ident: e_1_2_8_6_1 doi: 10.1016/j.jconrel.2020.10.008 – ident: e_1_2_8_90_1 doi: 10.1002/adfm.202009691 – ident: e_1_2_8_31_2 doi: 10.3390/polym12051073 – ident: e_1_2_8_85_1 doi: 10.1021/acs.macromol.9b00252 – ident: e_1_2_8_56_1 doi: 10.1021/jacs.0c07136 – ident: e_1_2_8_102_1 doi: 10.1039/C5TC03315B – ident: e_1_2_8_3_1 doi: 10.1038/nmat4782 – ident: e_1_2_8_26_1 doi: 10.1038/s41467-020-14630-4 – ident: e_1_2_8_108_1 – ident: e_1_2_8_77_2 doi: 10.1016/j.jiec.2020.12.011 – ident: e_1_2_8_1_1 doi: 10.1126/sciadv.aao6804 – ident: e_1_2_8_15_1 doi: 10.1126/sciadv.abe9499 – ident: e_1_2_8_54_1 doi: 10.1016/j.isci.2021.103372 – ident: e_1_2_8_95_1 doi: 10.1039/D1PY00705J – ident: e_1_2_8_39_2 doi: 10.1002/marc.200700620 – ident: e_1_2_8_22_1 doi: 10.1002/adma.201800001 – ident: e_1_2_8_31_3 doi: 10.1039/D0CS01411G – ident: e_1_2_8_16_1 doi: 10.1002/adfm.202108436 – ident: e_1_2_8_97_2 doi: 10.1002/adfm.202103334 – ident: e_1_2_8_47_1 doi: 10.1021/acs.macromol.5b00201 – ident: e_1_2_8_75_1 doi: 10.1038/s41467-019-08639-7 – ident: e_1_2_8_109_1 doi: 10.1007/s10462-020-09876-9 – ident: e_1_2_8_53_1 doi: 10.1016/j.ijpharm.2021.121199 – ident: e_1_2_8_7_1 doi: 10.1016/j.biomaterials.2010.04.050 – ident: e_1_2_8_74_1 doi: 10.1021/acsmacrolett.9b00412 – start-page: e202114111 year: 2022 ident: e_1_2_8_63_1 publication-title: Angew. Chem., Int. Ed. – ident: e_1_2_8_72_1 doi: 10.1021/acsami.1c06062 – ident: e_1_2_8_11_1 doi: 10.1126/science.aaa2397 – ident: e_1_2_8_73_1 doi: 10.1126/sciadv.aau8723 – ident: e_1_2_8_87_1 doi: 10.1038/nmat3776 – ident: e_1_2_8_25_1 doi: 10.1126/science.aau7114 – ident: e_1_2_8_105_1 doi: 10.1126/sciadv.aba7406 – ident: e_1_2_8_29_2 doi: 10.1016/j.progpolymsci.2014.09.001 – ident: e_1_2_8_24_1 doi: 10.1126/sciadv.aao5496 – ident: e_1_2_8_86_1 doi: 10.1039/C6PY01787H – ident: e_1_2_8_69_1 doi: 10.1021/jacs.6b07434 – ident: e_1_2_8_36_1 doi: 10.1021/acs.macromol.1c00856 – ident: e_1_2_8_40_1 doi: 10.1039/C5PY00258C – ident: e_1_2_8_79_2 doi: 10.1021/acsami.8b13031 – ident: e_1_2_8_38_1 doi: 10.1002/anie.201710951 – ident: e_1_2_8_12_1 doi: 10.1021/acscentsci.8b00700 – ident: e_1_2_8_27_1 doi: 10.1038/s41586-020-3029-7 – ident: e_1_2_8_93_1 doi: 10.1021/acs.nanolett.7b01870 – ident: e_1_2_8_100_1 doi: 10.1038/s41598-018-21793-0 – ident: e_1_2_8_5_1 doi: 10.1021/acsapm.8b00165 – ident: e_1_2_8_28_1 doi: 10.1016/S0079-6700(01)00004-1 – ident: e_1_2_8_59_1 doi: 10.1038/s41467-021-23170-4 – ident: e_1_2_8_47_2 doi: 10.1021/acs.macromol.8b00044 – ident: e_1_2_8_29_1 doi: 10.1016/j.progpolymsci.2020.101277 – ident: e_1_2_8_55_1 doi: 10.1021/acs.macromol.8b02145 – ident: e_1_2_8_71_1 doi: 10.1002/smll.202101337 – ident: e_1_2_8_64_1 doi: 10.1039/D1PY01283E – ident: e_1_2_8_81_1 doi: 10.1002/adfm.202109864 – ident: e_1_2_8_89_1 doi: 10.1002/smll.201902347 – ident: e_1_2_8_14_1 doi: 10.1016/j.biomaterials.2012.01.048 – ident: e_1_2_8_48_1 doi: 10.1088/1758-5090/7/4/045009 – ident: e_1_2_8_21_1 doi: 10.1002/anie.201504382 – ident: e_1_2_8_88_1 doi: 10.1021/acs.chemrev.5b00148 – ident: e_1_2_8_10_1 doi: 10.1126/sciadv.aav5790 – ident: e_1_2_8_35_2 doi: 10.26434/chemrxiv‐2022‐tklpl – ident: e_1_2_8_57_1 doi: 10.1021/acsami.1c22046 – ident: e_1_2_8_77_5 doi: 10.1002/macp.202100217 – ident: e_1_2_8_91_1 doi: 10.1021/ja9534213 – ident: e_1_2_8_43_1 doi: 10.1021/acs.chemrev.5b00671 – ident: e_1_2_8_70_1 doi: 10.1002/adma.201901269 – ident: e_1_2_8_65_1 doi: 10.1002/adma.202107643 – ident: e_1_2_8_94_1 doi: 10.1002/pola.27903 – ident: e_1_2_8_113_1 doi: 10.1126/sciadv.abd1794 – ident: e_1_2_8_99_1 doi: 10.1002/adma.201405933 – ident: e_1_2_8_30_1 doi: 10.1039/C8PY00157J – volume-title: Ph.D. Thesis year: 2017 ident: e_1_2_8_39_1 – ident: e_1_2_8_45_1 doi: 10.1016/j.progpolymsci.2016.06.005 – ident: e_1_2_8_28_2 doi: 10.1016/j.progpolymsci.2016.09.007 – ident: e_1_2_8_60_1 doi: 10.1039/C9PY01419E – ident: e_1_2_8_84_1 doi: 10.1021/acsami.7b08399 – ident: e_1_2_8_4_1 doi: 10.1021/acs.chemrev.9b00810 – ident: e_1_2_8_51_1 doi: 10.1002/adma.201703404 – ident: e_1_2_8_13_1 doi: 10.1126/science.aav9750 – ident: e_1_2_8_101_1 doi: 10.1038/s41586-022-04485-8 – ident: e_1_2_8_112_1 doi: 10.1002/cptc.202000146 – ident: e_1_2_8_115_1 doi: 10.1021/acs.chemmater.5b00858 – ident: e_1_2_8_44_1 doi: 10.1021/acs.chemrev.5b00586 – ident: e_1_2_8_92_1 doi: 10.1021/acs.nanolett.6b01298 – ident: e_1_2_8_76_1 doi: 10.1016/j.progpolymsci.2019.101165 – ident: e_1_2_8_18_1 doi: 10.1002/adma.201606000 – ident: e_1_2_8_81_2 doi: 10.1039/D2PY00113F – ident: e_1_2_8_35_1 doi: 10.1039/C7CC09313F – ident: e_1_2_8_19_1 doi: 10.1016/j.dental.2020.11.030 – ident: e_1_2_8_62_1 doi: 10.1002/anie.202016523 – ident: e_1_2_8_8_1 doi: 10.1016/j.biomaterials.2017.06.005 – ident: e_1_2_8_41_1 doi: 10.1021/acs.macromol.6b02596 – ident: e_1_2_8_103_1 doi: 10.1039/C6PY00184J – ident: e_1_2_8_111_1 doi: 10.1039/D0QM00961J – ident: e_1_2_8_49_1 doi: 10.22203/eCM.v022a04 – ident: e_1_2_8_20_1 doi: 10.1016/j.dental.2017.01.018 – ident: e_1_2_8_52_1 doi: 10.1002/adma.202102153 – volume: 8 start-page: 10959 year: 2020 ident: e_1_2_8_80_1 publication-title: ACS Sustainable Chem. Eng. – ident: e_1_2_8_104_1 doi: 10.1016/j.dental.2011.11.018 – volume-title: 3D Printing with Light year: 2021 ident: e_1_2_8_31_1 – ident: e_1_2_8_77_1 doi: 10.1021/acsami.1c15636 – ident: e_1_2_8_110_1 doi: 10.1016/j.tips.2021.06.002 – ident: e_1_2_8_46_1 doi: 10.3390/ma10121445 – ident: e_1_2_8_77_3 doi: 10.1016/j.biomaterials.2009.08.055 – ident: e_1_2_8_55_3 doi: 10.1089/3dp.2021.0204 – ident: e_1_2_8_98_1 doi: 10.1038/s41467-018-04813-5 – ident: e_1_2_8_107_1 doi: 10.1021/acsami.0c18255 – ident: e_1_2_8_61_1 doi: 10.1021/acsapm.9b01076 – ident: e_1_2_8_96_1 doi: 10.1039/D1PY00228G – ident: e_1_2_8_33_1 doi: 10.1002/adma.201800364 – ident: e_1_2_8_42_1 doi: 10.1021/acsami.8b06607 – ident: e_1_2_8_79_1 doi: 10.1021/acssuschemeng.8b05357 – ident: e_1_2_8_66_1 doi: 10.1021/acsapm.1c00048 – ident: e_1_2_8_23_1 doi: 10.1016/j.addr.2021.03.022 – ident: e_1_2_8_28_3 doi: 10.1021/cr60252a001 – ident: e_1_2_8_55_2 doi: 10.1021/acsapm.9b00140 – ident: e_1_2_8_50_1 doi: 10.1021/acsbiomaterials.6b00149 – ident: e_1_2_8_83_1 doi: 10.1016/j.apmt.2021.101060 – ident: e_1_2_8_28_4 doi: 10.1021/bk-1997-0673 – ident: e_1_2_8_82_1 doi: 10.1039/D0CC01732A – ident: e_1_2_8_97_1 doi: 10.2147/NSA.S64386 – ident: e_1_2_8_68_1 doi: 10.1021/acs.macromol.1c02521 – ident: e_1_2_8_114_1 doi: 10.1039/C7PY00536A – ident: e_1_2_8_2_1 doi: 10.1038/s41591-018-0296-z – ident: e_1_2_8_9_1 doi: 10.1038/s41467-018-03759-y |
SSID | ssj0008402 |
Score | 2.6521692 |
SecondaryResourceType | review_article |
Snippet | 3D printing has revolutionized the way of manufacturing with a huge impact on various fields, in particular biomedicine. Vat photopolymerization‐based 3D... 3D printing has revolutionized the way of manufacturing with a huge impact on various fields, in particular biomedicine. Vat photopolymerization-based 3D... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2200202 |
SubjectTerms | 3-D printers 3D printing digital light processing Fabrication Lithography Monomers Optics photoinitiating systems Photoinitiators Photopolymerization Polymers Printing Resins stereolithography Three dimensional printing Trends vat photopolymerization volumetric printing |
Title | Recent Trends in Advanced Photoinitiators for Vat Photopolymerization 3D Printing |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmarc.202200202 https://www.ncbi.nlm.nih.gov/pubmed/35579565 https://www.proquest.com/docview/2691583383 https://www.proquest.com/docview/2665562402 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9xADLYoF3ppC30tBTRIlXoKJJPJ67jaFiEk0BaVilvkeURdgRLEZg_tr8fOJKHbqqrU3vJwksl4HH_O2N8AvJcpIhNJBRGiCQiBJwGaWAUqyirrCCHEFRcKn1-kp1fq7Dq5_qmK3_NDjD_c2DK67zUbOOrl8SNpKFM9UHwnOcugY5PkhC1GRZeP_FEUvfjpToq4KBhLB9bGUB6vX77ulX6DmuvItXM9J88Bh0b7jJObo1Wrj8yPX_gc_-etXsCzHpeKqR9I27Dh6h3Ymg3Lwb2EzwQwyUEJn0QrFrWY9ukDYv6taZsFZyFxBL8UhIPFV2z98bvm9jvPCvlyTxF_FPP7Rbc8xSu4Ovn0ZXYa9OsxBEZlhQx0opA0zgTxpjLauSS3uYq1s1Fqck2RVJVWUiJ5PhthZXKTFRi7MNFhoTGq4tewWTe1ewvC5AqL2GbOolVoWCwKLYWmIdqwknYCwaCP0vRk5bxmxm3paZZlyR1Vjh01gQ-j_J2n6fij5N6g3rI312Up0yLi8rM8nsDheJo6mGdPsHbNimXShMCi4lu88cNifBSBtowCzWQCslPuX9pQnk8vZ-Pe7r9c9A6e8rZPHN6DzfZ-5fYJHrX6AJ5INT_oDOEB-0UHpA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5VcIALpaXAUkpdCamnQOI4r-NqAW1bFlEEiFvkV8SqKEGQPdBfz0ycBG0RQqLHOOPE8SP-Pnv8DcAuj6UkISkvkFJ7iMAjT-pQeCJICmMRIYQFHRSenMTjC_HzKuq8CeksjNOH6BfcaGQ0_2sa4LQgvf-kGkpaD0jwOLkZkJzkIoX1bljV2ZOCFPIXt-GJnAvpWNzpNvp8fz7__Lz0DGzOY9dm8jl6D6ortvM5-bM3q9We_vuPouN_fdcqrLTQlA1dX_oA72z5EZZGXUS4NfiNGBPnKOb8aNm0ZMPWg4CdXld1NSVHJCLx9wyhMLuUtUu_rW4eaGPInfhk4QE7vZs2ESo-wcXR4flo7LUhGTwtkox7KhISG5004nWhlbVRalIRKmuCWKcKyVQRF5xLnPxMIAud6iSTofUj5WdKBkW4DgtlVdpNYDoVMgtNYo00QmoyC3yD7NSXxi-4GYDXNUiuW71yCptxkzulZZ5TReV9RQ3ge29_65Q6XrTc7to3b0fsfc7jLKATaGk4gG_9baxg2kCRpa1mZBNHiBcFPWLD9Yv-VYjbEuSa0QB407qvlCGfDM9G_dXWWzJ9haXx-eQ4P_5x8uszLFO68yPehoX6bma_IFqq1U4zHh4BPEkK6A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hIgEX3pSFAkZC4pQ2cZzXcbXLqjxaLRVFvUUTP8SKKlm12QP8embiJGVBCAmOcSaJ4_HE38Qz3wC8kikiE0kFEaIOCIEnAepYBSrKnLGEEGLHicJHx-nhqXp3lpz9lMXv-SHGH25sGd33mg18bdzBFWkoUz2Qfyc5yoDZJK-rNMx5Xs9PrgikyH3x-53kcpE3lg60jaE82L5-e1n6DWtuQ9du7VncARx67UNOvu5v2mpff_-F0PF_Xusu3O6BqZj6mXQPrtn6PtycDfXgHsBHQpi0QgkfRStWtZj28QNi-aVpmxWHIbELfykICIvP2Pr2dXP-jbeFfL6niOdiebHq6lM8hNPFm0-zw6AvyBBolRUyqBKFpHJmiNdOV9YmuclVXFkTpTqvyJVyqZMSaekzETqd66zA2IZJFRYVRi5-BDt1U9vHIHSusIhNZg0ahZrFotCQbxqiCZ00EwgGfZS6ZyvnohnnpedZliUPVDkO1ARej_Jrz9PxR8m9Qb1lb6-XpUyLiPPP8ngCL8fTNMC8fYK1bTYskyaEFhXfYtdPi_FRhNoy8jSTCchOuX_pQ3k0PZmNR0_-5aIXcGM5X5Qf3h6_fwq3uNkHEe_BTnuxsc8IKrXV884afgApyAmg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Trends+in+Advanced+Photoinitiators+for+Vat+Photopolymerization+3D+Printing&rft.jtitle=Macromolecular+rapid+communications.&rft.au=Bao%2C+Yinyin&rft.date=2022-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1022-1336&rft.eissn=1521-3927&rft.volume=43&rft.issue=14&rft_id=info:doi/10.1002%2Fmarc.202200202&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-1336&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-1336&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-1336&client=summon |