Rationally engineered double substituted variants of Yarrowia lipolytica lipase with enhanced activity coupled with highly inverted enantioselectivity towards 2-bromo phenyl acetic acid esters

Inverting enzyme enantioselectivity by protein engineering is still a great challenge. Lip2p lipase from Yarrowia lipolytica, which demonstrates a low S-enantioselectivity (E-value = 5) during the hydrolytic kinetic resolution of 2-bromo-phenyl acetic acid octyl esters (an important class of chemica...

Full description

Saved in:
Bibliographic Details
Published inBiotechnology and bioengineering Vol. 106; no. 6; pp. 852 - 859
Main Authors Cambon, Emmanuelle, Piamtongkam, Rungtiwa, Bordes, Florence, Duquesne, Sophie, André, Isabelle, Marty, Alain
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 15.08.2010
Wiley Subscription Services, Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Inverting enzyme enantioselectivity by protein engineering is still a great challenge. Lip2p lipase from Yarrowia lipolytica, which demonstrates a low S-enantioselectivity (E-value = 5) during the hydrolytic kinetic resolution of 2-bromo-phenyl acetic acid octyl esters (an important class of chemical intermediates in the pharmaceutical industry), was converted, by a rational engineering approach, into a totally R-selective enzyme (E-value > 200). This tremendous change in selectivity is the result of only two amino acid changes. The starting point of our strategy was the prior identification of two key positions, 97 and 232, for enantiomer discrimination. Four single substitution variants were recently identified as exhibiting a low inversion of selectivity coupled to a low-hydrolytic activity. On the basis of these results, six double substituted variants, combining relevant mutations at both 97 and 232 positions, were constructed by site-directed mutagenesis. This work led to the isolation of one double substituted variant (D97A-V232F), which displays a total preference for the R-enantiomer. The highly reversed enantioselectivity of this variant is accompanied by a 4.5-fold enhancement of its activity toward the preferred enantiomer. The molecular docking of the R- and S-enantiomers in the wild-type enzyme and the D97A-V232F variant suggests that V232F mutation provides a more favorable stacking interaction for the phenyl group of the R-enantiomer, that could explain both the enhanced activity and the reversal of enantioselectivity. These results demonstrate the potential of rationally engineered mutations to further enhance enzyme activity and to modulate selectivity. Biotechnol. Bioeng. 2010;106: 852-859.
AbstractList Inverting enzyme enantioselectivity by protein engineering is still a great challenge. Lip2p lipase from Yarrowia lipolytica, which demonstrates a low S‐enantioselectivity (E‐value = 5) during the hydrolytic kinetic resolution of 2‐bromo‐phenyl acetic acid octyl esters (an important class of chemical intermediates in the pharmaceutical industry), was converted, by a rational engineering approach, into a totally R‐selective enzyme (E‐value > 200). This tremendous change in selectivity is the result of only two amino acid changes. The starting point of our strategy was the prior identification of two key positions, 97 and 232, for enantiomer discrimination. Four single substitution variants were recently identified as exhibiting a low inversion of selectivity coupled to a low‐hydrolytic activity. On the basis of these results, six double substituted variants, combining relevant mutations at both 97 and 232 positions, were constructed by site‐directed mutagenesis. This work led to the isolation of one double substituted variant (D97A‐V232F), which displays a total preference for the R‐enantiomer. The highly reversed enantioselectivity of this variant is accompanied by a 4.5‐fold enhancement of its activity toward the preferred enantiomer. The molecular docking of the R‐ and S‐enantiomers in the wild‐type enzyme and the D97A‐V232F variant suggests that V232F mutation provides a more favorable stacking interaction for the phenyl group of the R‐enantiomer, that could explain both the enhanced activity and the reversal of enantioselectivity. These results demonstrate the potential of rationally engineered mutations to further enhance enzyme activity and to modulate selectivity. Biotechnol. Bioeng. 2010;106: 852–859. © 2010 Wiley Periodicals, Inc.
Inverting enzyme enantioselectivity by protein engineering is still a great challenge. Lip2p lipase from Yarrowia lipolytica , which demonstrates a low S ‐enantioselectivity ( E ‐value = 5) during the hydrolytic kinetic resolution of 2‐bromo‐phenyl acetic acid octyl esters (an important class of chemical intermediates in the pharmaceutical industry), was converted, by a rational engineering approach, into a totally R ‐selective enzyme ( E ‐value > 200). This tremendous change in selectivity is the result of only two amino acid changes. The starting point of our strategy was the prior identification of two key positions, 97 and 232, for enantiomer discrimination. Four single substitution variants were recently identified as exhibiting a low inversion of selectivity coupled to a low‐hydrolytic activity. On the basis of these results, six double substituted variants, combining relevant mutations at both 97 and 232 positions, were constructed by site‐directed mutagenesis. This work led to the isolation of one double substituted variant (D97A‐V232F), which displays a total preference for the R ‐enantiomer. The highly reversed enantioselectivity of this variant is accompanied by a 4.5‐fold enhancement of its activity toward the preferred enantiomer. The molecular docking of the R ‐ and S ‐enantiomers in the wild‐type enzyme and the D97A‐V232F variant suggests that V232F mutation provides a more favorable stacking interaction for the phenyl group of the R ‐enantiomer, that could explain both the enhanced activity and the reversal of enantioselectivity. These results demonstrate the potential of rationally engineered mutations to further enhance enzyme activity and to modulate selectivity. Biotechnol. Bioeng. 2010;106: 852–859. © 2010 Wiley Periodicals, Inc.
Inverting enzyme enantioselectivity by protein engineering is still a great challenge. Lip2p lipase from Yarrowia lipolytica, which demonstrates a low S-enantioselectivity (E-value...=...5) during the hydrolytic kinetic resolution of 2-bromo-phenyl acetic acid octyl esters (an important class of chemical intermediates in the pharmaceutical industry), was converted, by a rational engineering approach, into a totally R-selective enzyme (E-value...>...200). This tremendous change in selectivity is the result of only two amino acid changes. The starting point of our strategy was the prior identification of two key positions, 97 and 232, for enantiomer discrimination. Four single substitution variants were recently identified as exhibiting a low inversion of selectivity coupled to a low-hydrolytic activity. On the basis of these results, six double substituted variants, combining relevant mutations at both 97 and 232 positions, were constructed by site-directed mutagenesis. This work led to the isolation of one double substituted variant (D97A-V232F), which displays a total preference for the R-enantiomer. The highly reversed enantioselectivity of this variant is accompanied by a 4.5-fold enhancement of its activity toward the preferred enantiomer. The molecular docking of the R- and S-enantiomers in the wild-type enzyme and the D97A-V232F variant suggests that V232F mutation provides a more favorable stacking interaction for the phenyl group of the R-enantiomer, that could explain both the enhanced activity and the reversal of enantioselectivity. These results demonstrate the potential of rationally engineered mutations to further enhance enzyme activity and to modulate selectivity. (ProQuest: ... denotes formulae/symbols omitted.)
Inverting enzyme enantioselectivity by protein engineering is still a great challenge. Lip2p lipase from Yarrowia lipolytica, which demonstrates a low S-enantioselectivity (E-value = 5) during the hydrolytic kinetic resolution of 2-bromo-phenyl acetic acid octyl esters (an important class of chemical intermediates in the pharmaceutical industry), was converted, by a rational engineering approach, into a totally R-selective enzyme (E-value > 200). This tremendous change in selectivity is the result of only two amino acid changes. The starting point of our strategy was the prior identification of two key positions, 97 and 232, for enantiomer discrimination. Four single substitution variants were recently identified as exhibiting a low inversion of selectivity coupled to a low-hydrolytic activity. On the basis of these results, six double substituted variants, combining relevant mutations at both 97 and 232 positions, were constructed by site-directed mutagenesis. This work led to the isolation of one double substituted variant (D97A-V232F), which displays a total preference for the R-enantiomer. The highly reversed enantioselectivity of this variant is accompanied by a 4.5-fold enhancement of its activity toward the preferred enantiomer. The molecular docking of the R- and S-enantiomers in the wild-type enzyme and the D97A-V232F variant suggests that V232F mutation provides a more favorable stacking interaction for the phenyl group of the R-enantiomer, that could explain both the enhanced activity and the reversal of enantioselectivity. These results demonstrate the potential of rationally engineered mutations to further enhance enzyme activity and to modulate selectivity.
Inverting enzyme enantioselectivity by protein engineering is still a great challenge. Lip2p lipase from Yarrowia lipolytica, which demonstrates a low S-enantioselectivity (E-value=5) during the hydrolytic kinetic resolution of 2-bromo-phenyl acetic acid octyl esters (an important class of chemical intermediates in the pharmaceutical industry), was converted, by a rational engineering approach, into a totally R-selective enzyme (E-value>200). This tremendous change in selectivity is the result of only two amino acid changes. The starting point of our strategy was the prior identification of two key positions, 97 and 232, for enantiomer discrimination. Four single substitution variants were recently identified as exhibiting a low inversion of selectivity coupled to a low-hydrolytic activity. On the basis of these results, six double substituted variants, combining relevant mutations at both 97 and 232 positions, were constructed by site-directed mutagenesis. This work led to the isolation of one double substituted variant (D97A-V232F), which displays a total preference for the R-enantiomer. The highly reversed enantioselectivity of this variant is accompanied by a 4.5-fold enhancement of its activity toward the preferred enantiomer. The molecular docking of the R- and S-enantiomers in the wild-type enzyme and the D97A-V232F variant suggests that V232F mutation provides a more favorable stacking interaction for the phenyl group of the R-enantiomer, that could explain both the enhanced activity and the reversal of enantioselectivity. These results demonstrate the potential of rationally engineered mutations to further enhance enzyme activity and to modulate selectivity. Biotechnol. Bioeng. 2010; 106: 852-859. [copy 2010 Wiley Periodicals, Inc.
Inverting enzyme enantioselectivity by protein engineering is still a great challenge. Lip2p lipase from Yarrowia lipolytica, which demonstrates a low S-enantioselectivity (E-value = 5) during the hydrolytic kinetic resolution of 2-bromo-phenyl acetic acid octyl esters (an important class of chemical intermediates in the pharmaceutical industry), was converted, by a rational engineering approach, into a totally R-selective enzyme (E-value > 200). This tremendous change in selectivity is the result of only two amino acid changes. The starting point of our strategy was the prior identification of two key positions, 97 and 232, for enantiomer discrimination. Four single substitution variants were recently identified as exhibiting a low inversion of selectivity coupled to a low-hydrolytic activity. On the basis of these results, six double substituted variants, combining relevant mutations at both 97 and 232 positions, were constructed by site-directed mutagenesis. This work led to the isolation of one double substituted variant (D97A-V232F), which displays a total preference for the R-enantiomer. The highly reversed enantioselectivity of this variant is accompanied by a 4.5-fold enhancement of its activity toward the preferred enantiomer. The molecular docking of the R- and S-enantiomers in the wild-type enzyme and the D97A-V232F variant suggests that V232F mutation provides a more favorable stacking interaction for the phenyl group of the R-enantiomer, that could explain both the enhanced activity and the reversal of enantioselectivity. These results demonstrate the potential of rationally engineered mutations to further enhance enzyme activity and to modulate selectivity. Biotechnol. Bioeng. 2010;106: 852-859.
Inverting enzyme enantioselectivity by protein engineering is still a great challenge. Lip2p lipase from Yarrowia lipolytica, which demonstrates a low S-enantioselectivity (E-value = 5) during the hydrolytic kinetic resolution of 2-bromo-phenyl acetic acid octyl esters (an important class of chemical intermediates in the pharmaceutical industry), was converted, by a rational engineering approach, into a totally R-selective enzyme (E-value > 200). This tremendous change in selectivity is the result of only two amino acid changes. The starting point of our strategy was the prior identification of two key positions, 97 and 232, for enantiomer discrimination. Four single substitution variants were recently identified as exhibiting a low inversion of selectivity coupled to a low-hydrolytic activity. On the basis of these results, six double substituted variants, combining relevant mutations at both 97 and 232 positions, were constructed by site-directed mutagenesis. This work led to the isolation of one double substituted variant (D97A-V232F), which displays a total preference for the R-enantiomer. The highly reversed enantioselectivity of this variant is accompanied by a 4.5-fold enhancement of its activity toward the preferred enantiomer. The molecular docking of the R- and S-enantiomers in the wild-type enzyme and the D97A-V232F variant suggests that V232F mutation provides a more favorable stacking interaction for the phenyl group of the R-enantiomer, that could explain both the enhanced activity and the reversal of enantioselectivity. These results demonstrate the potential of rationally engineered mutations to further enhance enzyme activity and to modulate selectivity.Inverting enzyme enantioselectivity by protein engineering is still a great challenge. Lip2p lipase from Yarrowia lipolytica, which demonstrates a low S-enantioselectivity (E-value = 5) during the hydrolytic kinetic resolution of 2-bromo-phenyl acetic acid octyl esters (an important class of chemical intermediates in the pharmaceutical industry), was converted, by a rational engineering approach, into a totally R-selective enzyme (E-value > 200). This tremendous change in selectivity is the result of only two amino acid changes. The starting point of our strategy was the prior identification of two key positions, 97 and 232, for enantiomer discrimination. Four single substitution variants were recently identified as exhibiting a low inversion of selectivity coupled to a low-hydrolytic activity. On the basis of these results, six double substituted variants, combining relevant mutations at both 97 and 232 positions, were constructed by site-directed mutagenesis. This work led to the isolation of one double substituted variant (D97A-V232F), which displays a total preference for the R-enantiomer. The highly reversed enantioselectivity of this variant is accompanied by a 4.5-fold enhancement of its activity toward the preferred enantiomer. The molecular docking of the R- and S-enantiomers in the wild-type enzyme and the D97A-V232F variant suggests that V232F mutation provides a more favorable stacking interaction for the phenyl group of the R-enantiomer, that could explain both the enhanced activity and the reversal of enantioselectivity. These results demonstrate the potential of rationally engineered mutations to further enhance enzyme activity and to modulate selectivity.
Author André, Isabelle
Duquesne, Sophie
Piamtongkam, Rungtiwa
Marty, Alain
Cambon, Emmanuelle
Bordes, Florence
Author_xml – sequence: 1
  fullname: Cambon, Emmanuelle
– sequence: 2
  fullname: Piamtongkam, Rungtiwa
– sequence: 3
  fullname: Bordes, Florence
– sequence: 4
  fullname: Duquesne, Sophie
– sequence: 5
  fullname: André, Isabelle
– sequence: 6
  fullname: Marty, Alain
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20506522$$D View this record in MEDLINE/PubMed
https://hal.inrae.fr/hal-02956412$$DView record in HAL
BookMark eNqFks9uEzEQxleoiP6BAy8AKy6Iw7ZjO7ubPZYK2ooIBG2pOFleZ9y4OOtgexPydjwak6QpUiXgNPb49322Z2Y_2-l8h1n2nMEhA-BHrU2HnNc1PMr2GDR1AbyBnWwPAKpClA3fzfZjvKVtPayqJ9kuhxKqkvO97NcXlazvlHPLHLsb2yEGHOdj37cO89i3MdnUJ0rNVbCqSzH3Jv-mQvALq3JnZ94tk9XrpYqYL2yakNNEdZpESic7t2mZa9_PHCXWxxN7M6H7bDfHsLLGjoytj-hwyye_UGEcc160wU99Pptgt3Tkh3QZBUuqmDDEp9ljo1zEZ3fxILt6_-7y5KwYfTo9PzkeFXpQN1C0uh4LDo0pa2y1MaYa1qxhiAaEoFpAxRkbVpo1nJWgcIBgDCelBt0Yo8VB9mbjO1FOzoKdqrCUXll5djySqxzVvKwGjM8Zsa837Cz4Hz29U05t1Oic6tD3UQ6HQ2iqUvyfrIWoBJQlJ_LVA_LW94EaR9BgwMtaNIKgF3dQ305xfP_Obb___EIHH2NAc48wkKtZkjRLcj1LxB49YLVN62lJQVn3L8XCOlz-3Vq-Pb_cKoqNwlIzf94rVPguq1rUpbz-eCr5BXy4hs9f5RnxLze8UV6qm2CjvLrgwARQ88oKBuI3bcT2Ug
CODEN BIBIAU
CitedBy_id crossref_primary_10_1186_s12934_019_1218_6
crossref_primary_10_1016_j_enzmictec_2019_03_008
crossref_primary_10_1007_s11274_012_1167_2
crossref_primary_10_1016_j_biotechadv_2011_04_005
crossref_primary_10_1016_j_ibiod_2019_104822
crossref_primary_10_1039_C5CY01723H
crossref_primary_10_1016_j_molcatb_2013_11_008
crossref_primary_10_1016_j_procbio_2015_04_022
crossref_primary_10_1007_s12010_015_1561_y
crossref_primary_10_1371_journal_pone_0143096
crossref_primary_10_1007_s00253_013_5136_y
crossref_primary_10_1002_yea_1724
crossref_primary_10_1016_j_jbiotec_2012_08_023
crossref_primary_10_1039_c2ob25614b
crossref_primary_10_1002_cbic_201500529
crossref_primary_10_1016_j_supflu_2016_11_012
crossref_primary_10_1016_j_jbiotec_2011_06_035
crossref_primary_10_1016_j_tetlet_2013_07_151
crossref_primary_10_1016_j_enzmictec_2014_10_007
crossref_primary_10_1016_j_molcatb_2013_11_016
crossref_primary_10_1007_s10529_013_1405_1
crossref_primary_10_1016_j_pep_2014_05_007
crossref_primary_10_3390_ijms160920774
crossref_primary_10_1016_j_plipres_2014_12_001
crossref_primary_10_1021_cr100386u
crossref_primary_10_1093_femsyr_fov052
crossref_primary_10_1016_j_tetasy_2017_01_014
crossref_primary_10_1007_s00253_018_8858_z
crossref_primary_10_5936_csbj_201209005
crossref_primary_10_1134_S0003683814040024
crossref_primary_10_3390_fermentation10050263
Cites_doi 10.1002/anie.200502746
10.1039/a807232i
10.3109/10242429408992121
10.1016/j.tetasy.2008.06.009
10.1016/S0957-4166(02)00784-X
10.1016/S0141-0229(02)00335-6
10.1002/cbic.200900439
10.1128/JB.182.10.2802-2810.2000
10.1055/s-2001-13395
10.1002/anie.200704606
10.1016/j.mimet.2007.06.008
10.1006/jmbi.1996.0477
10.1016/S1381-1177(02)00143-1
10.1016/j.jbiotec.2006.10.007
10.1016/S0022-2836(03)00782-4
10.1002/cbic.200900215
10.1016/j.tetasy.2004.09.008
10.1016/j.enzmictec.2003.11.002
10.1016/S1381-1177(03)00066-3
10.1016/S1046-5928(03)00009-3
10.1039/b109913m
10.1016/j.enzmictec.2010.06.001
10.1002/(SICI)1097-0134(19991101)37:2<228::AID-PROT8>3.0.CO;2-8
ContentType Journal Article
Copyright Copyright © 2010 Wiley Periodicals, Inc.
Copyright John Wiley and Sons, Limited Aug 15, 2010
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright © 2010 Wiley Periodicals, Inc.
– notice: Copyright John Wiley and Sons, Limited Aug 15, 2010
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID FBQ
BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
1XC
DOI 10.1002/bit.22770
DatabaseName AGRIS
Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList
CrossRef
Materials Research Database
MEDLINE
Engineering Research Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Biology
Anatomy & Physiology
EISSN 1097-0290
EndPage 859
ExternalDocumentID oai_HAL_hal_02956412v1
2112254571
20506522
10_1002_bit_22770
BIT22770
ark_67375_WNG_2S0KW0QV_H
US201301865604
Genre article
Journal Article
Feature
GroupedDBID ---
-~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23N
31~
33P
3EH
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJUZ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABCVL
ABEML
ABHUG
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACSMX
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AI.
AIAGR
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FBQ
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RBB
RIWAO
RJQFR
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TN5
UB1
V2E
VH1
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WSB
WXSBR
WYISQ
XFK
XG1
XPP
XSW
XV2
Y6R
ZGI
ZXP
ZZTAW
~02
~IA
~KM
~WT
AHBTC
AITYG
BSCLL
HGLYW
OIG
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
1XC
AGHNM
ID FETCH-LOGICAL-c4790-bc7d3209f57ebcfff687191eef0330650621186c192150ae4e0ff2790c0c9ffc3
IEDL.DBID DR2
ISSN 0006-3592
1097-0290
IngestDate Fri May 09 12:19:52 EDT 2025
Fri Jul 11 03:44:41 EDT 2025
Fri Jul 11 09:15:04 EDT 2025
Fri Jul 25 11:06:25 EDT 2025
Wed Feb 19 01:47:28 EST 2025
Thu Apr 24 22:52:28 EDT 2025
Tue Jul 01 01:08:43 EDT 2025
Wed Jan 22 16:58:58 EST 2025
Wed Oct 30 09:48:33 EDT 2024
Wed Dec 27 19:22:45 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4790-bc7d3209f57ebcfff687191eef0330650621186c192150ae4e0ff2790c0c9ffc3
Notes http://dx.doi.org/10.1002/bit.22770
ArticleID:BIT22770
Emmanuelle Cambon and Rungtiwa Piamtongkam, equally contributed to the study.
ark:/67375/WNG-2S0KW0QV-H
istex:6A2E29BAB549A4DA9A49ADFF8FA70287C70DF505
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9829-9394
0000-0001-6280-4109
PMID 20506522
PQID 744257393
PQPubID 48814
PageCount 8
ParticipantIDs hal_primary_oai_HAL_hal_02956412v1
proquest_miscellaneous_888096531
proquest_miscellaneous_733630552
proquest_journals_744257393
pubmed_primary_20506522
crossref_primary_10_1002_bit_22770
crossref_citationtrail_10_1002_bit_22770
wiley_primary_10_1002_bit_22770_BIT22770
istex_primary_ark_67375_WNG_2S0KW0QV_H
fao_agris_US201301865604
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 15 August 2010
PublicationDateYYYYMMDD 2010-08-15
PublicationDate_xml – month: 08
  year: 2010
  text: 15 August 2010
  day: 15
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
– name: New York
PublicationTitle Biotechnology and bioengineering
PublicationTitleAlternate Biotechnol. Bioeng
PublicationYear 2010
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley Subscription Services, Inc
– name: Wiley
References Ceynowa J, Rauchfleisz M. 2003. High enantioselective resolution of racemic 2-arylpropionic acids in an enzyme membrane reactor. J Mol Catal B: Enzyme 23(1): 43.
Bordes F, Cambon E, Dossat-Letisse V, André I, Croux C, Nicaud JM, Marty A. 2009. Improvement of Yarrowia lipolytica lipase enantioselectivity by using mutagenesis targeted to the substrate binding site. ChemBioChem 10(10): 1705-1713.
DeLano WL. 2002. The PyMOL Molecular Graphics System (2002) on World Wide Web. CA, USA: San Carlos. http://www.pymol.org.
Lafaquière V, Barbe S, Puech-Guenot S, Guieysse D, Cortés J, Monsan P, Siméon T, André I, Remaud-Siméon M. 2009. Control of lipase enantioselectivity by engineering the substrate binding site and access channel. ChemBioChem 10(17): 2760-2771.
Choi G-S, Kim J-Y, Kim J-H, Ryu Y-W, Kim G-J. 2003. Construction and characterization of a recombinant esterase with high activity and enantioselectivity to (S)-ketoprofen ethyl ester. Protein Expr Purif 29(1): 85.
Kramer B, Rarey M, Lengauer T. 1999. Evaluation of the FLEXX incremental construction algorithm for protein-ligand docking. Proteins 37(2): 228-241.
Cancino M, Bauchart P, Sandoval G, Nicaud JM, André I, Dossat V, Marty A. 2008. A variant of Yarrowia lipolytica lipase with improved activity and enantioselectivity for resolution of 2-bromo-arylacetic acid esters. Tetrahedron: Asymmetry 19(13): 1608-1612.
Rarey M, Kramer B, Lengauer T, Klebe G. 1996. A fast flexible docking method using an incremental construction algorithm. J Mol Biol 261(3): 470-489.
Koga Y, Kato K, Nakano H, Yamane T. 2003. Inverting enantioselectivity of Burkholderia cepacia KWI-56 lipase by combinatorial mutation and high-throughput screening using single-molecule PCR and in vitro expression. J Mol Biol 331(3): 585-592.
Pignede G, Wang H, Fudalej F, Gaillardin C, Seman M, Nicaud JM. 2000. Characterization of an extracellular lipase encoded by LIP2 in Yarrowia lipolytica . J Bacteriol 182(10): 2802-2810.
Haughton L, Williams JMJ. 2001. Enzymatic hydrolysis and selective racemisation reactions of alpha-chloro esters. Synthesis-Stuttgart 6: 943-946.
Zha D, Wilensek S, Hermes M, Jaeger KE, Reetz MT. 2001. Complete reversal of enantioselectivity of an enzyme-catalyzed reaction by directed evolution. Chem Commun 2001(24): 2664-2665.
Bartsch S, Kourist R, Bornscheuer UT. 2008. Complete inversion of enantioselectivity towards acetylated tertiary alcohols by a double mutant of a Bacillus subtilis esterase. Angew Chem Int Ed Engl 47: 1508-1511.
Cambon E, Piamtongkam R, Bordes F, Duquesne S, Laguerre S, Nicaud J, Marty A. 2010. A new Yarrowia lipolytica expression system: an efficient tool for rapid and reliable kinetic analysis of improved enzymes. Enzyme Microb Technol Submitted.
Steenkamp L, Brady D. 2003. Screening of commercial enzymes for the enantioselective hydrolysis of R,S-naproxen ester. Enzyme Microb Technol 32(3-4): 472.
Guieysse D, Sandoval G, Faure L, Nicaud J-M, Monsan P, Marty A. 2004. New efficient lipase from Yarrowia lipolytica for the resolution of 2-bromo-arylacetic acid esters. Tetrahedron: Asymmetry 15(22): 3539.
Guieysse D, Salagnad C, Monsan P, Remaud-Simeon M. 2003. Lipase-catalyzed enantioselective transesterification toward esters of 2-bromo-tolylacetic acids. Tetrahedron: Asymmetry 14(3): 317-323.
Jones MM, Williams JMJ. 1998. Dynamic kinetic resolution in the hydrolysis of an a-bromo ester. Chem Commun 1998(22): 2519-2520.
Bordes F, Fudalej F, Dossat V, Nicaud JM, Marty A. 2007. A new recombinant protein expression system for high-throughput screening in the yeast Yarrowia lipolytica . J Microbiol Methods 70(3): 493-502.
Ivancic M, Valinger G, Gruber K, Schwab H. 2007. Inverting enantioselectivity of Burkholderia gladioli esterase EstB by directed and designed evolution. J Biotechnol 129(1): 109-122.
Brady D, Steenkamp L, Skein E, Chaplin JA, Reddy S. 2004. Optimisation of the enantioselective biocatalytic hydrolysis of naproxen ethyl ester using ChiroCLEC-CR. Enzyme Microb Technol 34(3-4): 283-291.
Reetz MT, Wang LW, Bocola M. 2006. Directed evolution of enantioselective enzymes: Iterative cycles of CASTing for probing protein-sequence space. Angew Chem Int Ed Engl 45(8): 1236-1241.
Overbeeke PLA, Jongejan JA. 2003. Enantioselectivity of Candida rugosa lipase in the hydrolysis of 2-chloropropionic acid methyl ester. J Mol Catal B: Enzyme 21(1-2): 89.
Ahmed SN, Kazlauskas RJ, Morinville AH, Grochulski P, Schrag JD, Cygler M. 1994. Enantioselectivity of Candida rugosa lipase toward carboxylic acids: A predictive rule from substrate mapping and X-ray crystallography. Biocatal Biotransform 9(1): 209-225.
1994; 9
1998; 1998
2007; 129
2009; 10
2006; 45
2001; 6
2010
2008; 19
2004; 15
2004; 34
1999; 37
2008; 47
2000; 182
1996; 261
2003; 14
2007; 70
2003; 29
2002
2003; 331
2003; 21
2003; 32
2001; 2001
2003; 23
e_1_2_6_21_1
e_1_2_6_10_1
e_1_2_6_20_1
DeLano WL (e_1_2_6_11_1) 2002
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_19_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_13_1
e_1_2_6_25_1
e_1_2_6_14_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_12_1
e_1_2_6_22_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
References_xml – reference: Brady D, Steenkamp L, Skein E, Chaplin JA, Reddy S. 2004. Optimisation of the enantioselective biocatalytic hydrolysis of naproxen ethyl ester using ChiroCLEC-CR. Enzyme Microb Technol 34(3-4): 283-291.
– reference: Kramer B, Rarey M, Lengauer T. 1999. Evaluation of the FLEXX incremental construction algorithm for protein-ligand docking. Proteins 37(2): 228-241.
– reference: Overbeeke PLA, Jongejan JA. 2003. Enantioselectivity of Candida rugosa lipase in the hydrolysis of 2-chloropropionic acid methyl ester. J Mol Catal B: Enzyme 21(1-2): 89.
– reference: Reetz MT, Wang LW, Bocola M. 2006. Directed evolution of enantioselective enzymes: Iterative cycles of CASTing for probing protein-sequence space. Angew Chem Int Ed Engl 45(8): 1236-1241.
– reference: Haughton L, Williams JMJ. 2001. Enzymatic hydrolysis and selective racemisation reactions of alpha-chloro esters. Synthesis-Stuttgart 6: 943-946.
– reference: Bordes F, Fudalej F, Dossat V, Nicaud JM, Marty A. 2007. A new recombinant protein expression system for high-throughput screening in the yeast Yarrowia lipolytica . J Microbiol Methods 70(3): 493-502.
– reference: Choi G-S, Kim J-Y, Kim J-H, Ryu Y-W, Kim G-J. 2003. Construction and characterization of a recombinant esterase with high activity and enantioselectivity to (S)-ketoprofen ethyl ester. Protein Expr Purif 29(1): 85.
– reference: Lafaquière V, Barbe S, Puech-Guenot S, Guieysse D, Cortés J, Monsan P, Siméon T, André I, Remaud-Siméon M. 2009. Control of lipase enantioselectivity by engineering the substrate binding site and access channel. ChemBioChem 10(17): 2760-2771.
– reference: Guieysse D, Sandoval G, Faure L, Nicaud J-M, Monsan P, Marty A. 2004. New efficient lipase from Yarrowia lipolytica for the resolution of 2-bromo-arylacetic acid esters. Tetrahedron: Asymmetry 15(22): 3539.
– reference: Bartsch S, Kourist R, Bornscheuer UT. 2008. Complete inversion of enantioselectivity towards acetylated tertiary alcohols by a double mutant of a Bacillus subtilis esterase. Angew Chem Int Ed Engl 47: 1508-1511.
– reference: Zha D, Wilensek S, Hermes M, Jaeger KE, Reetz MT. 2001. Complete reversal of enantioselectivity of an enzyme-catalyzed reaction by directed evolution. Chem Commun 2001(24): 2664-2665.
– reference: Pignede G, Wang H, Fudalej F, Gaillardin C, Seman M, Nicaud JM. 2000. Characterization of an extracellular lipase encoded by LIP2 in Yarrowia lipolytica . J Bacteriol 182(10): 2802-2810.
– reference: Cancino M, Bauchart P, Sandoval G, Nicaud JM, André I, Dossat V, Marty A. 2008. A variant of Yarrowia lipolytica lipase with improved activity and enantioselectivity for resolution of 2-bromo-arylacetic acid esters. Tetrahedron: Asymmetry 19(13): 1608-1612.
– reference: Rarey M, Kramer B, Lengauer T, Klebe G. 1996. A fast flexible docking method using an incremental construction algorithm. J Mol Biol 261(3): 470-489.
– reference: Ahmed SN, Kazlauskas RJ, Morinville AH, Grochulski P, Schrag JD, Cygler M. 1994. Enantioselectivity of Candida rugosa lipase toward carboxylic acids: A predictive rule from substrate mapping and X-ray crystallography. Biocatal Biotransform 9(1): 209-225.
– reference: Cambon E, Piamtongkam R, Bordes F, Duquesne S, Laguerre S, Nicaud J, Marty A. 2010. A new Yarrowia lipolytica expression system: an efficient tool for rapid and reliable kinetic analysis of improved enzymes. Enzyme Microb Technol Submitted.
– reference: Jones MM, Williams JMJ. 1998. Dynamic kinetic resolution in the hydrolysis of an a-bromo ester. Chem Commun 1998(22): 2519-2520.
– reference: Ivancic M, Valinger G, Gruber K, Schwab H. 2007. Inverting enantioselectivity of Burkholderia gladioli esterase EstB by directed and designed evolution. J Biotechnol 129(1): 109-122.
– reference: DeLano WL. 2002. The PyMOL Molecular Graphics System (2002) on World Wide Web. CA, USA: San Carlos. http://www.pymol.org.
– reference: Koga Y, Kato K, Nakano H, Yamane T. 2003. Inverting enantioselectivity of Burkholderia cepacia KWI-56 lipase by combinatorial mutation and high-throughput screening using single-molecule PCR and in vitro expression. J Mol Biol 331(3): 585-592.
– reference: Bordes F, Cambon E, Dossat-Letisse V, André I, Croux C, Nicaud JM, Marty A. 2009. Improvement of Yarrowia lipolytica lipase enantioselectivity by using mutagenesis targeted to the substrate binding site. ChemBioChem 10(10): 1705-1713.
– reference: Ceynowa J, Rauchfleisz M. 2003. High enantioselective resolution of racemic 2-arylpropionic acids in an enzyme membrane reactor. J Mol Catal B: Enzyme 23(1): 43.
– reference: Guieysse D, Salagnad C, Monsan P, Remaud-Simeon M. 2003. Lipase-catalyzed enantioselective transesterification toward esters of 2-bromo-tolylacetic acids. Tetrahedron: Asymmetry 14(3): 317-323.
– reference: Steenkamp L, Brady D. 2003. Screening of commercial enzymes for the enantioselective hydrolysis of R,S-naproxen ester. Enzyme Microb Technol 32(3-4): 472.
– volume: 47
  start-page: 1508
  year: 2008
  end-page: 1511
  article-title: Complete inversion of enantioselectivity towards acetylated tertiary alcohols by a double mutant of a esterase
  publication-title: Angew Chem Int Ed Engl
– volume: 37
  start-page: 228
  issue: 2
  year: 1999
  end-page: 241
  article-title: Evaluation of the FLEXX incremental construction algorithm for protein‐ligand docking
  publication-title: Proteins
– volume: 261
  start-page: 470
  issue: 3
  year: 1996
  end-page: 489
  article-title: A fast flexible docking method using an incremental construction algorithm
  publication-title: J Mol Biol
– volume: 9
  start-page: 209
  issue: 1
  year: 1994
  end-page: 225
  article-title: Enantioselectivity of lipase toward carboxylic acids: A predictive rule from substrate mapping and X‐ray crystallography
  publication-title: Biocatal Biotransform
– volume: 19
  start-page: 1608
  issue: 13
  year: 2008
  end-page: 1612
  article-title: A variant of lipase with improved activity and enantioselectivity for resolution of 2‐bromo‐arylacetic acid esters
  publication-title: Tetrahedron: Asymmetry
– volume: 15
  start-page: 3539
  issue: 22
  year: 2004
  article-title: New efficient lipase from for the resolution of 2‐bromo‐arylacetic acid esters
  publication-title: Tetrahedron: Asymmetry
– volume: 331
  start-page: 585
  issue: 3
  year: 2003
  end-page: 592
  article-title: Inverting enantioselectivity of KWI‐56 lipase by combinatorial mutation and high‐throughput screening using single‐molecule PCR and in vitro expression
  publication-title: J Mol Biol
– volume: 129
  start-page: 109
  issue: 1
  year: 2007
  end-page: 122
  article-title: Inverting enantioselectivity of esterase EstB by directed and designed evolution
  publication-title: J Biotechnol
– volume: 45
  start-page: 1236
  issue: 8
  year: 2006
  end-page: 1241
  article-title: Directed evolution of enantioselective enzymes: Iterative cycles of CASTing for probing protein‐sequence space
  publication-title: Angew Chem Int Ed Engl
– volume: 1998
  start-page: 2519
  issue: 22
  year: 1998
  end-page: 2520
  article-title: Dynamic kinetic resolution in the hydrolysis of an a‐bromo ester
  publication-title: Chem Commun
– volume: 70
  start-page: 493
  issue: 3
  year: 2007
  end-page: 502
  article-title: A new recombinant protein expression system for high‐throughput screening in the yeast
  publication-title: J Microbiol Methods
– year: 2002
– volume: 6
  start-page: 943
  year: 2001
  end-page: 946
  article-title: Enzymatic hydrolysis and selective racemisation reactions of alpha‐chloro esters
  publication-title: Synthesis‐Stuttgart
– volume: 34
  start-page: 283
  issue: 3–4
  year: 2004
  end-page: 291
  article-title: Optimisation of the enantioselective biocatalytic hydrolysis of naproxen ethyl ester using ChiroCLEC‐CR
  publication-title: Enzyme Microb Technol
– volume: 182
  start-page: 2802
  issue: 10
  year: 2000
  end-page: 2810
  article-title: Characterization of an extracellular lipase encoded by LIP2 in
  publication-title: J Bacteriol
– volume: 32
  start-page: 472
  issue: 3–4
  year: 2003
  article-title: Screening of commercial enzymes for the enantioselective hydrolysis of R,S‐naproxen ester
  publication-title: Enzyme Microb Technol
– volume: 10
  start-page: 1705
  issue: 10
  year: 2009
  end-page: 1713
  article-title: Improvement of lipase enantioselectivity by using mutagenesis targeted to the substrate binding site
  publication-title: ChemBioChem
– volume: 2001
  start-page: 2664
  issue: 24
  year: 2001
  end-page: 2665
  article-title: Complete reversal of enantioselectivity of an enzyme‐catalyzed reaction by directed evolution
  publication-title: Chem Commun
– volume: 23
  start-page: 43
  issue: 1
  year: 2003
  article-title: High enantioselective resolution of racemic 2‐arylpropionic acids in an enzyme membrane reactor
  publication-title: J Mol Catal B: Enzyme
– volume: 29
  start-page: 85
  issue: 1
  year: 2003
  article-title: Construction and characterization of a recombinant esterase with high activity and enantioselectivity to (S)‐ketoprofen ethyl ester
  publication-title: Protein Expr Purif
– volume: 21
  start-page: 89
  issue: 1–2
  year: 2003
  article-title: Enantioselectivity of lipase in the hydrolysis of 2‐chloropropionic acid methyl ester
  publication-title: J Mol Catal B: Enzyme
– volume: 14
  start-page: 317
  issue: 3
  year: 2003
  end-page: 323
  article-title: Lipase‐catalyzed enantioselective transesterification toward esters of 2‐bromo‐tolylacetic acids
  publication-title: Tetrahedron: Asymmetry
– volume: 10
  start-page: 2760
  issue: 17
  year: 2009
  end-page: 2771
  article-title: Control of lipase enantioselectivity by engineering the substrate binding site and access channel
  publication-title: ChemBioChem
– year: 2010
  article-title: A new expression system: an efficient tool for rapid and reliable kinetic analysis of improved enzymes
  publication-title: Enzyme Microb Technol Submitted
– ident: e_1_2_6_23_1
  doi: 10.1002/anie.200502746
– ident: e_1_2_6_16_1
  doi: 10.1039/a807232i
– ident: e_1_2_6_2_1
  doi: 10.3109/10242429408992121
– ident: e_1_2_6_8_1
  doi: 10.1016/j.tetasy.2008.06.009
– ident: e_1_2_6_12_1
  doi: 10.1016/S0957-4166(02)00784-X
– ident: e_1_2_6_24_1
  doi: 10.1016/S0141-0229(02)00335-6
– ident: e_1_2_6_19_1
  doi: 10.1002/cbic.200900439
– ident: e_1_2_6_21_1
  doi: 10.1128/JB.182.10.2802-2810.2000
– volume-title: The PyMOL Molecular Graphics System (2002) on World Wide Web
  year: 2002
  ident: e_1_2_6_11_1
– ident: e_1_2_6_14_1
  doi: 10.1055/s-2001-13395
– ident: e_1_2_6_3_1
  doi: 10.1002/anie.200704606
– ident: e_1_2_6_4_1
  doi: 10.1016/j.mimet.2007.06.008
– ident: e_1_2_6_22_1
  doi: 10.1006/jmbi.1996.0477
– ident: e_1_2_6_20_1
  doi: 10.1016/S1381-1177(02)00143-1
– ident: e_1_2_6_15_1
  doi: 10.1016/j.jbiotec.2006.10.007
– ident: e_1_2_6_17_1
  doi: 10.1016/S0022-2836(03)00782-4
– ident: e_1_2_6_5_1
  doi: 10.1002/cbic.200900215
– ident: e_1_2_6_13_1
  doi: 10.1016/j.tetasy.2004.09.008
– ident: e_1_2_6_6_1
  doi: 10.1016/j.enzmictec.2003.11.002
– ident: e_1_2_6_9_1
  doi: 10.1016/S1381-1177(03)00066-3
– ident: e_1_2_6_10_1
  doi: 10.1016/S1046-5928(03)00009-3
– ident: e_1_2_6_25_1
  doi: 10.1039/b109913m
– ident: e_1_2_6_7_1
  doi: 10.1016/j.enzmictec.2010.06.001
– ident: e_1_2_6_18_1
  doi: 10.1002/(SICI)1097-0134(19991101)37:2<228::AID-PROT8>3.0.CO;2-8
SSID ssj0007866
Score 2.1341975
Snippet Inverting enzyme enantioselectivity by protein engineering is still a great challenge. Lip2p lipase from Yarrowia lipolytica, which demonstrates a low...
Inverting enzyme enantioselectivity by protein engineering is still a great challenge. Lip2p lipase from Yarrowia lipolytica , which demonstrates a low S...
SourceID hal
proquest
pubmed
crossref
wiley
istex
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 852
SubjectTerms Acetates - metabolism
Acetic acid
Amino Acid Substitution
Amino acids
Bioengineering
Biotechnology
enantioselectivity
Enzymatic activity
enzyme evolution
Enzyme kinetics
Esters
Fungal Proteins - genetics
Fungal Proteins - metabolism
Hydrocarbons, Brominated - metabolism
Life Sciences
lipase
Lipase - genetics
Lipase - metabolism
Molecular Dynamics Simulation
Mutagenesis
Mutagenesis, Site-Directed
Mutation
Pharmaceutical industry
Phenylacetates - metabolism
Protein folding
rational engineering
Stereoisomerism
Substrate Specificity
Yarrowia - enzymology
Yarrowia lipolytica
Title Rationally engineered double substituted variants of Yarrowia lipolytica lipase with enhanced activity coupled with highly inverted enantioselectivity towards 2-bromo phenyl acetic acid esters
URI https://api.istex.fr/ark:/67375/WNG-2S0KW0QV-H/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbit.22770
https://www.ncbi.nlm.nih.gov/pubmed/20506522
https://www.proquest.com/docview/744257393
https://www.proquest.com/docview/733630552
https://www.proquest.com/docview/888096531
https://hal.inrae.fr/hal-02956412
Volume 106
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwELVKEQIeuGyBhgKyEKp4ydZx7uJpW1GWWyV6oa2EZCWOTaOGZNXsVixPfALfxKfwJcw4l1LUSoiX3cgeZ732eDxjHx8T8gz6OI086dos8zLbk0EKYy52bOVFypUh49qQVb_fCsZ73psD_2CBvOjOwjT8EP2CG44MY69xgCdpvXZGGprm0yHnYYjxOmK10CHaPqOOCqNmnxIjZtePeccqxPhaX_LcXHRFJxV8HiEe8io28deLnM7zPqyZhDZvk09d9RvsyfFwNk2H8ttfzI7_-f_ukFutc0pHjTbdJQuqHJClUQmB-Zc5XaUGLmrW4Qfk2nr3dH2juzRuQG7-wW-4RH5ut0uNxZyqNkNlNKtmaaFoDTarASpk9BRCdkTk0ErTQ8MLmSe0yCdVMcfFdnyE6ZbiqjG86cjAFiieycCrL6isZpMCEkw2EjDD7-Ul3jQNiQqhPnlVmwt_GvmpwQrXlP_6_iNFPCJFpNu8gDfimU74yqEcUkjU98je5svdjbHdXhphSy-MmZ3KMHM5i7UfqlRqrQMICWNHKc1cF_3RAELeKJDIA-ezRHmKac2hpGQy1lq698liWZVqmVDlyCh1mNQJxJSullGkE81U4CiIo7mWFnneqY-QLaM6XuxRiIYLmgvoQ2H60CJPe9FJQyNykdAy6KBIPoN5F3s7HDeVoargk3pQHhSzL4qc4OPRO4FpjEOI6zn81LHIqtHbXiw5OUbcXuiL_a1Xgu-wt_vsw0cxtshKp9iiNVm1CD00327sWoT2uaA9uIGUlKqagYjrBsgQxy8XiWA-iAMw7BZ50IyYvjacQeODuw_NZvT-8oYQ6693zcPDfxddITcaYEdkO_4jsjg9manH4C9O0yfGMPwGEiZoTw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELb6ECoceLRAl_KwEFS9pHWcbB4HDtuWsqUPiT5oOZnEa9NVQ7JqsoXlxE_gh_AruPMn-CXMOI9S1EpceuCya9ljx7I9nhl7_A0hz2CO48CVjsV6bs9ypRcDz4W2pdxAOdJnXBuw6q1tr7vvvj5sH46R7_VbmBIfojlwQ84w-zUyOB5IL52hhsb9YpFz32eVS-WGGn0Cgy1_sb4Ks_uc87WXeytdq4opYEnXD5kVS7_ncBbqtq9iqbX2wGIIbaU0czCIOvPAIgo8iTBhbRYpVzGtOdSUTIZaSwfaHSeTGEEckfpXd87AqvygvBlFG91ph7zGMWJ8qenqOek3rqMMfo_QA3MSJ_XzRWruea3ZiL21W-RnPWClt8vx4rCIF-WXv7Ak_5cRvU1uVvo37ZQMc4eMqXSazHTSqMg-jug8NR6x5qphmlxbrlNTK3VcvGly4w8IxxnyY6c6TU1GVFUFqkd72TBOFM1hWy59MXr0NAJeT4ucZpq-M9CX_Ygm_UGWjPA-AZOgUVA8GIeWjoxnBsVnJxjdg8psOEggwxQjxjR8r59iMG3IVOjN1M9yE9OopC-MO3RO-a-v32J0uaTozDdKoEV8tgp_faiHKBn5XbJ_JSN-j0ykWapmCVW2DGKbSR2B2exoGQQ60kx5trKhFS1bZKFer0JWoPEYuyQRJdw1F7BmhFkzLfK0IR2USCkXEc3CohfRB5BgYn-X4705dBXUbhfqAyc0VRH2vNvZFJjHOFjxrs1P7RaZN4zSkEUnx-ia6LfFwfYrwXfZxgF781Z0W2Su5iRR7cq58F2UUE7otAhtSmH14B1ZlKpsCCSO4yEIHr-cJACRF3ogu1rkfsmiTW84g8EHiwaGzTDa5QMhltf3TOLBv5M-IVPdva1Nsbm-vTFHrpd-LIFltx-SieJkqB6BelzEj82uRMn7q2ba3-tUxZg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JctQwEFWFpNgOLAmQISwqClJcnMiyx8uBQxbChIQUZCHhJGxZIlMx9lTsCQwnPoH_4C848xV8Cd3yEkIlVVxy4DKjklqySlKru6XWa0IewxzHgSsdiyVuYrnSi4HnQttSbqAc6TOuDVj1qw2vt-O-3OvujZHvzVuYCh-iPXBDzjD7NTL4INHzx6Chcb-c49z3We1RuaZGn8BeK56tLsPkPuF85fn2Us-qQwpY0vVDZsXSTxzOQt31VSy11h4YDKGtlGYOxlBnHhhEgScRJazLIuUqpjWHmpLJUGvpQLsXyITrsRDjRCxvHmNV-UF1MYomutMNeQNjxPh829UTwu-CjnL43UcHzAmc08-nabknlWYj9Vauk5_NeFXOLgdzwzKek1_-gpL8Twb0BrlWa990oWKXm2RMZZNkaiGLyvzjiM5S4w9rLhomycXFJnV5qYmKN0mu_gHgOEV-bNZnqemIqrpAJTTJh3GqaAGbcuWJkdCjCDg9Kwuaa_rOAF_2I5r2B3k6wtsETII-QfFYHFraN34ZFB-dYGwPKvPhIIUMU4wI0_C9foahtCFToS9TPy9MRKOKvjTO0AXlv75-i9HhkqIr3yiFFvHRKvz1oR5iZBS3yM65jPhtMp7lmZomVNkyiG0mdQRGs6NlEOhIM-XZyoZWtOyQp81yFbKGjMfIJamowK65gDUjzJrpkEct6aDCSTmNaBrWvIg-gPwSO1scb82hq6B0u1AfGKGtiqDnvYV1gXmMgw3v2vzI7pBZwyctWXR4gI6JflfsbrwQfIut7bI3b0WvQ2YaRhL1nlwI30X55IROh9C2FFYP3pBFmcqHQOI4HkLg8bNJAhB4oQeSq0PuVBza9oYzGHywZ2DYDJ-dPRBicXXbJO7-O-lDcun18opYX91YmyFXKieWwLK798h4eThU90E3LuMHZk-i5P158-xv1bHERw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rationally+engineered+double+substituted+variants+of+Yarrowia+lipolytica+lipase+with+enhanced+activity+coupled+with+highly+inverted+enantioselectivity+towards+2-bromo-phenyl+acetic+acid+esters&rft.jtitle=Biotechnology+and+bioengineering&rft.au=Cambon%2C+E.&rft.au=Piamtongkam%2C+R.&rft.au=Bordes%2C+F.&rft.au=Duquesne%2C+S.&rft.date=2010-08-15&rft.pub=Wiley&rft.issn=0006-3592&rft.eissn=1097-0290&rft_id=info:doi/10.1002%2Fbit.22770&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_02956412v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3592&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3592&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3592&client=summon