Wide Bandgap Oxide Semiconductors: from Materials Physics to Optoelectronic Devices
Wide bandgap oxide semiconductors constitute a unique class of materials that combine properties of electrical conductivity and optical transparency. They are being widely used as key materials in optoelectronic device applications, including flat‐panel displays, solar cells, OLED, and emerging flex...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 33; no. 50; pp. e2006230 - n/a |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.12.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Wide bandgap oxide semiconductors constitute a unique class of materials that combine properties of electrical conductivity and optical transparency. They are being widely used as key materials in optoelectronic device applications, including flat‐panel displays, solar cells, OLED, and emerging flexible and transparent electronics. In this article, an up‐to‐date review on both the fundamental understanding of materials physics of oxide semiconductors, and recent research progress on design of new materials and high‐performing thin film transistor (TFT) devices in the context of fundamental understanding is presented. In particular, an in depth overview is first provided on current understanding of the electronic structures, defect and doping chemistry, optical and transport properties of oxide semiconductors, which provide essential guiding principles for new material design and device optimization. With these principles, recent advances in design of p‐type oxide semiconductors, new approaches for achieving cost‐effective transparent (flexible) electrodes, and the creation of high mobility 2D electron gas (2DEG) at oxide surfaces and interfaces with a wealth of fascinating physical properties of great potential for novel device design are then reviewed. Finally, recent progress and perspective of oxide TFT based on new oxide semiconductors, 2DEG, and low‐temperature solution processed oxide semiconductor for flexible electronics will be reviewed.
Wide‐bandgap oxide semiconductors uniquely combine electrical conductivity and optical transparency and are widely used in optoelectronic devices. The materials physics of wide‐bandgap oxide semiconductors, the recent progress in the design of new materials and novel thin‐film transistor (TFT) devices, and current challenges and perspectives are reviewed. |
---|---|
AbstractList | Wide bandgap oxide semiconductors constitute a unique class of materials that combine properties of electrical conductivity and optical transparency. They are being widely used as key materials in optoelectronic device applications, including flat‐panel displays, solar cells, OLED, and emerging flexible and transparent electronics. In this article, an up‐to‐date review on both the fundamental understanding of materials physics of oxide semiconductors, and recent research progress on design of new materials and high‐performing thin film transistor (TFT) devices in the context of fundamental understanding is presented. In particular, an in depth overview is first provided on current understanding of the electronic structures, defect and doping chemistry, optical and transport properties of oxide semiconductors, which provide essential guiding principles for new material design and device optimization. With these principles, recent advances in design of p‐type oxide semiconductors, new approaches for achieving cost‐effective transparent (flexible) electrodes, and the creation of high mobility 2D electron gas (2DEG) at oxide surfaces and interfaces with a wealth of fascinating physical properties of great potential for novel device design are then reviewed. Finally, recent progress and perspective of oxide TFT based on new oxide semiconductors, 2DEG, and low‐temperature solution processed oxide semiconductor for flexible electronics will be reviewed. Wide bandgap oxide semiconductors constitute a unique class of materials that combine properties of electrical conductivity and optical transparency. They are being widely used as key materials in optoelectronic device applications, including flat‐panel displays, solar cells, OLED, and emerging flexible and transparent electronics. In this article, an up‐to‐date review on both the fundamental understanding of materials physics of oxide semiconductors, and recent research progress on design of new materials and high‐performing thin film transistor (TFT) devices in the context of fundamental understanding is presented. In particular, an in depth overview is first provided on current understanding of the electronic structures, defect and doping chemistry, optical and transport properties of oxide semiconductors, which provide essential guiding principles for new material design and device optimization. With these principles, recent advances in design of p‐type oxide semiconductors, new approaches for achieving cost‐effective transparent (flexible) electrodes, and the creation of high mobility 2D electron gas (2DEG) at oxide surfaces and interfaces with a wealth of fascinating physical properties of great potential for novel device design are then reviewed. Finally, recent progress and perspective of oxide TFT based on new oxide semiconductors, 2DEG, and low‐temperature solution processed oxide semiconductor for flexible electronics will be reviewed. Wide‐bandgap oxide semiconductors uniquely combine electrical conductivity and optical transparency and are widely used in optoelectronic devices. The materials physics of wide‐bandgap oxide semiconductors, the recent progress in the design of new materials and novel thin‐film transistor (TFT) devices, and current challenges and perspectives are reviewed. Wide bandgap oxide semiconductors constitute a unique class of materials that combine properties of electrical conductivity and optical transparency. They are being widely used as key materials in optoelectronic device applications, including flat-panel displays, solar cells, OLED, and emerging flexible and transparent electronics. In this article, an up-to-date review on both the fundamental understanding of materials physics of oxide semiconductors, and recent research progress on design of new materials and high-performing thin film transistor (TFT) devices in the context of fundamental understanding is presented. In particular, an in depth overview is first provided on current understanding of the electronic structures, defect and doping chemistry, optical and transport properties of oxide semiconductors, which provide essential guiding principles for new material design and device optimization. With these principles, recent advances in design of p-type oxide semiconductors, new approaches for achieving cost-effective transparent (flexible) electrodes, and the creation of high mobility 2D electron gas (2DEG) at oxide surfaces and interfaces with a wealth of fascinating physical properties of great potential for novel device design are then reviewed. Finally, recent progress and perspective of oxide TFT based on new oxide semiconductors, 2DEG, and low-temperature solution processed oxide semiconductor for flexible electronics will be reviewed.Wide bandgap oxide semiconductors constitute a unique class of materials that combine properties of electrical conductivity and optical transparency. They are being widely used as key materials in optoelectronic device applications, including flat-panel displays, solar cells, OLED, and emerging flexible and transparent electronics. In this article, an up-to-date review on both the fundamental understanding of materials physics of oxide semiconductors, and recent research progress on design of new materials and high-performing thin film transistor (TFT) devices in the context of fundamental understanding is presented. In particular, an in depth overview is first provided on current understanding of the electronic structures, defect and doping chemistry, optical and transport properties of oxide semiconductors, which provide essential guiding principles for new material design and device optimization. With these principles, recent advances in design of p-type oxide semiconductors, new approaches for achieving cost-effective transparent (flexible) electrodes, and the creation of high mobility 2D electron gas (2DEG) at oxide surfaces and interfaces with a wealth of fascinating physical properties of great potential for novel device design are then reviewed. Finally, recent progress and perspective of oxide TFT based on new oxide semiconductors, 2DEG, and low-temperature solution processed oxide semiconductor for flexible electronics will be reviewed. |
Author | Shi, Jueli Qu, Mei Yang, Lu Zhang, Jiaye Zhang, Kelvin H. L. Qi, Dong‐Chen |
Author_xml | – sequence: 1 givenname: Jueli surname: Shi fullname: Shi, Jueli organization: Xiamen University – sequence: 2 givenname: Jiaye surname: Zhang fullname: Zhang, Jiaye organization: Xiamen University – sequence: 3 givenname: Lu surname: Yang fullname: Yang, Lu organization: Xiamen University – sequence: 4 givenname: Mei surname: Qu fullname: Qu, Mei organization: Xiamen University – sequence: 5 givenname: Dong‐Chen surname: Qi fullname: Qi, Dong‐Chen organization: Queensland University of Technology – sequence: 6 givenname: Kelvin H. L. orcidid: 0000-0001-9352-6236 surname: Zhang fullname: Zhang, Kelvin H. L. email: kelvinzhang@xmu.edu.cn organization: Xiamen University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33797084$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtrFEEURguJmMno1qU0uHHTk9v16i53Y-IjkDBCFJdFPbVCd9dYVa3Ov7eHSRQCIavLhXM-Lvc7QUdjHB1CLxtYNQD4VNlBrTBgAI4JPEGLhuGmpiDYEVqAIKwWnHbH6CTnGwAQHPgzdExIK1ro6AJdfwvWVe_UaL-rbbX5s9-u3RBMHO1kSkz5beVTHKorVVwKqs_V5x-7HEyuSqw22xJd70xJcQymOne_gnH5OXrqZ9C9uJ1L9PXD-y9nn-rLzceLs_VlbWgroMaWMUU5MMs85VqYxhNCrdKGmQYToz3tOG-sUp3V2ivtfdsxzTQXnaGOkyV6c8jdpvhzcrnIIWTj-l6NLk5ZYgYda0k7hy3R63voTZzSOF8nMZ-fRXjbdjP16paa9OCs3KYwqLSTd--aAXoATIo5J-elCUWVEMeSVOhlA3Lfity3Iv-1Mmure9pd8oOCOAi_Q-92j9ByfX61_u_-BaBxnwg |
CitedBy_id | crossref_primary_10_1002_aelm_202300032 crossref_primary_10_3390_electronics11182822 crossref_primary_10_15251_DJNB_2024_193_1309 crossref_primary_10_1016_j_jallcom_2022_163876 crossref_primary_10_1002_adma_202416952 crossref_primary_10_1016_j_xcrp_2022_100812 crossref_primary_10_1021_acsami_4c19835 crossref_primary_10_1002_ange_202502536 crossref_primary_10_1016_j_tsf_2024_140467 crossref_primary_10_1002_adma_202307393 crossref_primary_10_1007_s10904_024_03103_6 crossref_primary_10_1109_JSEN_2024_3388471 crossref_primary_10_1557_s43578_021_00377_1 crossref_primary_10_1016_j_solmat_2024_113211 crossref_primary_10_3390_app14072816 crossref_primary_10_1021_acsami_2c13312 crossref_primary_10_1016_j_mtcomm_2024_108054 crossref_primary_10_1039_D4TC01392A crossref_primary_10_1021_acsaelm_2c01670 crossref_primary_10_1088_2053_1591_ad4baa crossref_primary_10_1016_j_optlastec_2022_108675 crossref_primary_10_1109_TED_2022_3145328 crossref_primary_10_1007_s12633_022_02079_7 crossref_primary_10_1063_5_0188101 crossref_primary_10_1016_j_surfin_2023_103751 crossref_primary_10_1109_TED_2023_3299896 crossref_primary_10_1039_D1TC02547C crossref_primary_10_1039_D3TC01874A crossref_primary_10_3390_nano13142054 crossref_primary_10_1016_j_cap_2024_08_016 crossref_primary_10_1016_j_materresbull_2024_113222 crossref_primary_10_1109_TNANO_2024_3413794 crossref_primary_10_1016_j_egyai_2022_100210 crossref_primary_10_1063_5_0213093 crossref_primary_10_1002_smll_202300730 crossref_primary_10_1021_acsaelm_2c00326 crossref_primary_10_1007_s11082_023_05499_w crossref_primary_10_1016_j_jallcom_2021_163456 crossref_primary_10_20517_ss_2024_28 crossref_primary_10_2320_matertrans_MT_M2024131 crossref_primary_10_1002_adma_202410952 crossref_primary_10_1038_s43246_024_00729_4 crossref_primary_10_1063_5_0135162 crossref_primary_10_1149_2754_2726_ada6d4 crossref_primary_10_1177_02670836241236922 crossref_primary_10_1063_5_0246425 crossref_primary_10_1002_advs_202207526 crossref_primary_10_1109_JEDS_2025_3547646 crossref_primary_10_1364_OE_484846 crossref_primary_10_1016_j_jphotochem_2023_114916 crossref_primary_10_1016_j_mtnano_2024_100480 crossref_primary_10_1002_aelm_202200528 crossref_primary_10_1007_s11837_023_06365_6 crossref_primary_10_1016_j_renene_2025_122365 crossref_primary_10_1038_s41467_024_52150_7 crossref_primary_10_1002_aelm_202201184 crossref_primary_10_1016_j_jallcom_2024_173587 crossref_primary_10_3390_nano14181501 crossref_primary_10_1039_D4CP01336K crossref_primary_10_1103_PhysRevB_104_115121 crossref_primary_10_1088_1674_4926_44_9_091602 crossref_primary_10_1088_1361_6463_ad626e crossref_primary_10_1016_j_vacuum_2024_113926 crossref_primary_10_3389_felec_2022_813535 crossref_primary_10_1002_advs_202303895 crossref_primary_10_1063_5_0200217 crossref_primary_10_1016_j_mssp_2025_109418 crossref_primary_10_1088_1361_648X_ad3da5 crossref_primary_10_1109_LED_2022_3224920 crossref_primary_10_1021_acsnano_2c12163 crossref_primary_10_1016_j_xcrp_2022_100801 crossref_primary_10_1109_TED_2023_3276334 crossref_primary_10_1007_s11082_023_05793_7 crossref_primary_10_3390_mi15020193 crossref_primary_10_26565_2312_4334_2023_1_25 crossref_primary_10_1016_j_mtcomm_2024_110717 crossref_primary_10_1021_acs_jpclett_3c00080 crossref_primary_10_1002_inf2_12365 crossref_primary_10_1016_j_jallcom_2024_176961 crossref_primary_10_1088_2631_7990_acb46d crossref_primary_10_1039_D4CP03782K crossref_primary_10_1002_pssa_202300958 crossref_primary_10_35848_1882_0786_acc82b crossref_primary_10_20517_microstructures_2024_77 crossref_primary_10_3389_fmats_2024_1380180 crossref_primary_10_1016_j_optlastec_2025_112602 crossref_primary_10_1039_D4NA00967C crossref_primary_10_1002_advs_202104141 crossref_primary_10_1002_sdtp_15700 crossref_primary_10_1016_j_matt_2022_06_015 crossref_primary_10_1016_j_mtadv_2024_100520 crossref_primary_10_1039_D4TC01780C crossref_primary_10_1002_aelm_202300906 crossref_primary_10_1039_D4MA00426D crossref_primary_10_1016_j_cej_2024_155313 crossref_primary_10_3390_nano12071167 crossref_primary_10_3740_MRSK_2025_35_2_90 crossref_primary_10_1021_acsaelm_3c00649 crossref_primary_10_1016_j_apmt_2024_102297 crossref_primary_10_1016_j_apsusc_2022_155257 crossref_primary_10_1002_advs_202403765 crossref_primary_10_1007_s12274_021_3969_8 crossref_primary_10_1021_acsami_3c04178 crossref_primary_10_1007_s40843_024_3245_6 crossref_primary_10_1016_j_surfcoat_2023_129388 crossref_primary_10_1016_j_pmatsci_2023_101112 crossref_primary_10_1007_s11082_023_04940_4 crossref_primary_10_1021_acsami_4c14876 crossref_primary_10_1088_1361_6641_acba3e crossref_primary_10_1088_0256_307X_41_3_037305 crossref_primary_10_1111_jace_19940 crossref_primary_10_1088_1674_1056_accb8a crossref_primary_10_1002_admt_202200539 crossref_primary_10_1002_pssr_202300457 crossref_primary_10_1002_adma_202206939 crossref_primary_10_1002_advs_202303589 crossref_primary_10_1364_OE_539070 crossref_primary_10_1002_adma_202106923 crossref_primary_10_1109_TED_2024_3469162 crossref_primary_10_1142_S0217979223502107 crossref_primary_10_1088_2515_7639_acc099 crossref_primary_10_1039_D4TA08867K crossref_primary_10_1016_j_apsusc_2025_162656 crossref_primary_10_1016_j_jcrysgro_2023_127319 crossref_primary_10_1016_j_mtphys_2024_101555 crossref_primary_10_1039_D3EE00695F crossref_primary_10_1021_acsaelm_4c01481 crossref_primary_10_1002_adma_202203401 crossref_primary_10_1016_j_mtphys_2021_100583 crossref_primary_10_1109_TED_2023_3274501 crossref_primary_10_1002_smsc_202400241 crossref_primary_10_1063_5_0208590 crossref_primary_10_1109_LPT_2024_3483815 crossref_primary_10_15251_CL_2024_217_529 crossref_primary_10_1016_j_mser_2025_100971 crossref_primary_10_1088_1361_6528_acc039 crossref_primary_10_1063_5_0239899 crossref_primary_10_1038_s41467_023_41868_5 crossref_primary_10_1039_D4TC01455C crossref_primary_10_3390_ma15103416 crossref_primary_10_1039_D4RA04252B crossref_primary_10_1021_acs_jpcc_4c06718 crossref_primary_10_1016_j_jpcs_2022_111203 crossref_primary_10_1016_j_matdes_2024_113012 crossref_primary_10_26565_2312_4334_2024_1_32 crossref_primary_10_1016_j_apsusc_2024_161819 crossref_primary_10_1111_jace_19800 crossref_primary_10_1002_adpr_202300063 crossref_primary_10_1002_smtd_202101348 crossref_primary_10_1002_adom_202300367 crossref_primary_10_1016_j_jallcom_2022_164070 crossref_primary_10_1021_acsaem_3c00248 crossref_primary_10_1002_anie_202217565 crossref_primary_10_1016_j_apsusc_2022_153047 crossref_primary_10_1016_j_ijhydene_2025_01_456 crossref_primary_10_1109_TED_2023_3287821 crossref_primary_10_1088_2631_7990_ada7a9 crossref_primary_10_1002_sdtp_16037 crossref_primary_10_1016_j_chempr_2025_102445 crossref_primary_10_1016_j_snb_2024_136779 crossref_primary_10_1021_acs_jpclett_2c02354 crossref_primary_10_1103_PhysRevB_109_214106 crossref_primary_10_1021_acs_jpclett_3c00821 crossref_primary_10_1109_LED_2023_3312360 crossref_primary_10_1016_j_surfin_2023_103367 crossref_primary_10_1063_5_0173815 crossref_primary_10_1109_TED_2024_3403083 crossref_primary_10_1016_j_apsusc_2024_160255 crossref_primary_10_1063_5_0232559 crossref_primary_10_1016_j_mssp_2025_109369 crossref_primary_10_1002_aelm_202201117 crossref_primary_10_1007_s40843_022_2122_9 crossref_primary_10_1002_pssr_202300490 crossref_primary_10_1021_acsaelm_1c00090 crossref_primary_10_1002_ange_202217565 crossref_primary_10_1007_s10854_024_13089_z crossref_primary_10_1016_j_nanoen_2022_107504 crossref_primary_10_1021_acsami_4c01353 crossref_primary_10_1063_5_0092968 crossref_primary_10_1016_j_mssp_2023_107858 crossref_primary_10_1016_j_optmat_2024_114868 crossref_primary_10_3390_electronics13081478 crossref_primary_10_1109_LED_2023_3238350 crossref_primary_10_1002_pssa_202300904 crossref_primary_10_1002_adma_202107650 crossref_primary_10_1016_j_synthmet_2024_117650 crossref_primary_10_1002_adma_202109399 crossref_primary_10_1002_smll_202203677 crossref_primary_10_1039_D3TC00584D crossref_primary_10_1016_j_mtcomm_2024_108908 crossref_primary_10_1039_D4TC02210F crossref_primary_10_1007_s10854_024_13269_x crossref_primary_10_1016_j_apsusc_2024_160821 crossref_primary_10_1002_admt_202301281 crossref_primary_10_1021_acsami_4c08673 crossref_primary_10_1007_s13391_024_00531_x crossref_primary_10_1016_j_apsusc_2024_160271 crossref_primary_10_1039_D4TC01779J crossref_primary_10_1116_6_0003435 crossref_primary_10_1021_acsami_4c07225 crossref_primary_10_1021_acsaelm_2c00054 crossref_primary_10_1016_j_jallcom_2025_179558 crossref_primary_10_1016_j_inoche_2024_113832 crossref_primary_10_1016_j_mseb_2024_117768 crossref_primary_10_5796_electrochemistry_24_00089 crossref_primary_10_1016_j_jallcom_2024_174150 crossref_primary_10_1021_acs_chemmater_3c00894 crossref_primary_10_1364_OME_504024 crossref_primary_10_1016_j_fuel_2025_134416 crossref_primary_10_1063_5_0142734 crossref_primary_10_3390_mi14101839 crossref_primary_10_1021_prechem_5c00005 crossref_primary_10_1016_j_jallcom_2021_163174 crossref_primary_10_1109_TED_2023_3276725 crossref_primary_10_1002_aelm_202400145 crossref_primary_10_1016_j_cap_2024_07_018 crossref_primary_10_1016_j_materresbull_2025_113334 crossref_primary_10_1021_acsnano_3c03455 crossref_primary_10_1038_s41598_024_60288_z crossref_primary_10_1002_adom_202200512 crossref_primary_10_1021_acsaom_4c00310 crossref_primary_10_1021_acsaelm_2c01013 crossref_primary_10_1039_D4TC02859G crossref_primary_10_3390_ma15238362 crossref_primary_10_1016_j_jallcom_2024_175247 crossref_primary_10_1021_acsaom_3c00207 crossref_primary_10_1016_j_physb_2024_416802 crossref_primary_10_1002_adfm_202316375 crossref_primary_10_1002_pssb_202300585 crossref_primary_10_1109_LED_2023_3272909 crossref_primary_10_1109_TED_2022_3220491 crossref_primary_10_1002_pssa_202400536 crossref_primary_10_1088_1361_648X_ac8464 crossref_primary_10_1038_s41563_025_02141_w crossref_primary_10_1002_adom_202300042 crossref_primary_10_1021_acs_cgd_2c00948 crossref_primary_10_1039_D3TC00417A crossref_primary_10_1038_s41598_024_52840_8 crossref_primary_10_1063_5_0181644 crossref_primary_10_1109_TED_2023_3267755 crossref_primary_10_1002_smtd_202301739 crossref_primary_10_1016_j_inoche_2024_112370 crossref_primary_10_1016_j_jallcom_2024_178099 crossref_primary_10_1002_pssa_202300544 crossref_primary_10_1002_admt_202101457 crossref_primary_10_1103_PhysRevB_110_115120 crossref_primary_10_1016_j_mssp_2024_109047 crossref_primary_10_1039_D2TC01460B crossref_primary_10_1021_acs_inorgchem_3c00591 crossref_primary_10_1109_TED_2023_3237666 crossref_primary_10_1016_j_mssp_2024_108872 crossref_primary_10_1002_smll_202403133 crossref_primary_10_1016_j_physb_2025_417074 crossref_primary_10_1007_s13391_025_00548_w crossref_primary_10_1002_adfm_202105086 crossref_primary_10_1007_s10854_024_13266_0 crossref_primary_10_3390_electronicmat6010002 crossref_primary_10_1002_admi_202101250 crossref_primary_10_3390_electronicmat6010003 crossref_primary_10_1016_j_apsusc_2023_156904 crossref_primary_10_1149_2162_8777_adb5bc crossref_primary_10_1007_s11664_024_11408_y crossref_primary_10_1039_D3CE01297B crossref_primary_10_1002_anie_202502536 crossref_primary_10_1021_acsami_4c01837 crossref_primary_10_1021_acsnano_4c18849 crossref_primary_10_3390_nano12213902 crossref_primary_10_1002_adfm_202306173 crossref_primary_10_1016_j_foodchem_2023_136252 crossref_primary_10_1063_5_0255802 crossref_primary_10_1016_j_mseb_2024_117275 crossref_primary_10_1007_s10854_024_13010_8 crossref_primary_10_1021_acsami_4c17868 crossref_primary_10_1109_LED_2022_3227583 crossref_primary_10_1021_acsaelm_4c00100 crossref_primary_10_1016_j_matchemphys_2024_129090 crossref_primary_10_1021_acsomega_4c09462 crossref_primary_10_1002_adhm_202402891 crossref_primary_10_1016_j_susmat_2025_e01332 crossref_primary_10_1088_1361_6463_ad194f crossref_primary_10_1109_TED_2024_3362759 crossref_primary_10_1016_j_colsurfa_2024_135128 crossref_primary_10_1016_j_jallcom_2024_175498 crossref_primary_10_1016_j_mtcomm_2024_109994 crossref_primary_10_1021_acsaelm_2c01222 crossref_primary_10_1016_j_chphi_2023_100350 crossref_primary_10_1021_acsanm_4c03504 crossref_primary_10_1016_j_jmmm_2025_172920 crossref_primary_10_1007_s10854_024_13401_x crossref_primary_10_1016_j_jallcom_2022_164224 crossref_primary_10_1109_LED_2023_3287852 crossref_primary_10_1039_D3TC03122E crossref_primary_10_1002_ange_202500334 crossref_primary_10_1016_j_mssp_2022_106998 crossref_primary_10_1016_j_materresbull_2025_113403 crossref_primary_10_1039_D4TC00705K crossref_primary_10_1002_adma_202204217 crossref_primary_10_1002_advs_202406401 crossref_primary_10_1039_D2MA00815G crossref_primary_10_1142_S0217984923500379 crossref_primary_10_1016_j_apsusc_2022_155081 crossref_primary_10_1016_j_jallcom_2023_172807 crossref_primary_10_1186_s40580_025_00474_5 crossref_primary_10_1007_s11082_023_05072_5 crossref_primary_10_1109_JESTPE_2024_3444776 crossref_primary_10_1063_5_0240919 crossref_primary_10_1088_1361_6463_ad9d52 crossref_primary_10_1021_acsami_4c05059 crossref_primary_10_1007_s11431_023_2567_2 crossref_primary_10_1039_D3CP03968D crossref_primary_10_1109_TED_2024_3365457 crossref_primary_10_1139_cjp_2023_0040 crossref_primary_10_3390_nano14060551 crossref_primary_10_1038_s41528_024_00362_8 crossref_primary_10_1007_s11431_024_2718_y crossref_primary_10_1016_j_comptc_2023_114202 crossref_primary_10_1063_5_0257682 crossref_primary_10_1116_6_0001702 crossref_primary_10_1002_adfm_202400498 crossref_primary_10_1088_1361_6528_adab7d crossref_primary_10_1002_anie_202500334 crossref_primary_10_1016_j_ceramint_2023_03_043 crossref_primary_10_1038_s41467_022_34117_8 crossref_primary_10_1063_5_0205808 crossref_primary_10_1021_acsami_4c22198 crossref_primary_10_3390_membranes11120929 crossref_primary_10_1016_j_mseb_2024_117177 crossref_primary_10_1002_smsc_202400511 crossref_primary_10_1016_j_xcrp_2024_102144 crossref_primary_10_1063_5_0116294 crossref_primary_10_1063_5_0185490 crossref_primary_10_1063_5_0228363 crossref_primary_10_1021_acsaelm_4c01893 crossref_primary_10_3390_nano13111722 crossref_primary_10_1002_adpr_202300215 crossref_primary_10_1021_acsaelm_1c00806 crossref_primary_10_1002_aelm_202400744 crossref_primary_10_1016_j_jallcom_2025_179816 crossref_primary_10_1088_1361_6463_ad932a crossref_primary_10_3390_nano14151252 crossref_primary_10_1039_D3TA01108A crossref_primary_10_1002_smtd_202500235 crossref_primary_10_1116_6_0002248 crossref_primary_10_1002_adom_202202847 crossref_primary_10_1002_aelm_202201093 crossref_primary_10_1016_j_jallcom_2024_175276 |
Cites_doi | 10.1063/1.1553997 10.1039/C9TC03933C 10.1002/admi.201900883 10.1002/pssa.201800372 10.1002/msid.1098 10.1002/aelm.201600105 10.1080/15980316.2016.1160003 10.1039/C9NR02664A 10.1088/0953-8984/23/33/334212 10.1063/1.2964197 10.1007/BF01374559 10.1016/j.tsf.2011.06.091 10.1063/1.3564882 10.1103/PhysRevB.79.245206 10.1002/aelm.201900768 10.1103/PhysRevB.80.081201 10.1109/TED.2009.2021339 10.1063/1.5020134 10.1038/s41928-019-0342-y 10.1063/1.2431548 10.1103/PhysRevB.92.041106 10.1126/science.273.5277.903 10.1063/1.4985627 10.1103/PhysRevMaterials.3.084608 10.1063/1.1312199 10.1039/C5NR04084A 10.1021/acs.chemrev.9b00600 10.1016/S0022-3697(98)00047-X 10.1038/nmat1569 10.1149/06442.0001ecst 10.1038/asiamat.2010.5 10.1002/adma.201706573 10.1143/JJAP.49.020202 10.1103/PhysRevB.77.155115 10.1149/2.0221907jss 10.1063/1.2975219 10.1002/adma.200501957 10.1103/PhysRevB.84.115205 10.1103/PhysRevB.76.045209 10.1103/PhysRevB.89.165305 10.1016/j.tsf.2007.10.063 10.1063/1.3499306 10.1016/j.jcrysgro.2008.09.151 10.1063/1.3159831 10.1063/1.5054091 10.1063/1.3699372 10.1016/j.tsf.2014.07.062 10.1039/D0TC01204A 10.1186/s11671-017-1841-2 10.1063/1.5117771 10.1002/sdtp.12977 10.1103/PhysRevB.91.075208 10.1002/sdtp.13150 10.1038/srep26598 10.1126/sciadv.1602640 10.1063/1.5053762 10.1103/PhysRevApplied.1.051002 10.1021/acsnano.9b05715 10.1103/PhysRevB.89.115320 10.1103/PhysRevB.102.075301 10.1063/1.1337587 10.1109/LED.2018.2809796 10.1038/nmat1931 10.1021/acsami.6b06321 10.1016/j.apsusc.2016.03.133 10.1002/pssa.200983772 10.1103/PhysRevB.88.115111 10.1063/1.4833541 10.1103/PhysRevB.65.075111 10.1149/1.2903209 10.1088/0268-1242/20/4/004 10.1103/PhysRevB.78.132507 10.1038/40087 10.1039/C9MH01014A 10.1103/PhysRevLett.110.056803 10.1063/1.3684543 10.1016/j.enbuild.2015.03.024 10.1021/acs.chemmater.5b03794 10.1038/nature07576 10.1016/j.tsf.2013.01.093 10.1021/acsami.0c04854 10.1103/PhysRevApplied.9.054039 10.1021/acsami.8b22458 10.1039/C7TC05331B 10.1103/PhysRevLett.108.016802 10.1103/PhysRevB.87.115111 10.1080/00018737000101071 10.1038/nature02308 10.1021/cm071588c 10.1002/aelm.201700082 10.1038/nature03090 10.1088/1468-6996/11/4/044305 10.1002/sdtp.11608 10.1126/science.aau8623 10.1109/LED.2017.2786237 10.1109/LED.2011.2181320 10.1016/j.apsusc.2016.11.239 10.1039/C6TC02137A 10.1103/PhysRevB.28.4900 10.1002/aelm.201800843 10.1016/j.tsf.2007.11.079 10.1063/1.4967943 10.1063/1.2723543 10.1016/j.tsf.2015.09.025 10.1038/s41563-017-0002-4 10.1002/sdtp.10359 10.1063/1.4870536 10.1002/adma.201505021 10.1063/1.5109569 10.1103/PhysRevB.65.075207 10.1039/C9TC00195F 10.1109/LED.2019.2936887 10.1016/S0040-6090(01)01303-7 10.1016/0022-3697(78)90183-X 10.1088/0022-3727/41/9/092006 10.1103/PhysRevB.80.193202 10.1002/chem.202000090 10.1021/acsami.0c09243 10.1109/LED.2010.2050576 10.1002/adma.201804690 10.1002/adfm.202002625 10.1038/nnano.2013.84 10.1063/1.91624 10.1002/smll.201903321 10.1126/science.1137430 10.1103/PhysRevMaterials.4.054603 10.1038/nature09720 10.1016/j.jcrysgro.2008.11.038 10.1016/j.matchemphys.2003.08.006 10.1063/1.1372636 10.1002/adfm.200700604 10.1063/1.3364131 10.1103/PhysRevLett.89.076406 10.1002/adfm.201902591 10.1103/PhysRevB.87.085128 10.1063/1.116501 10.1143/JPSJ.61.3385 10.1021/acs.chemrev.6b00179 10.1143/JJAP.51.03CB01 10.1126/science.1083212 10.1002/adma.201003188 10.1039/c3cp50197c 10.1021/la015543g 10.1103/PhysRevB.63.075205 10.1103/PhysRevB.90.155413 10.1557/mrs2000.148 10.1002/adfm.201500628 10.1063/1.1308103 10.1063/1.1843286 10.1103/PhysRevMaterials.1.021601 10.1063/1.1355673 10.1063/5.0005531 10.1016/0040-6090(79)90298-0 10.1109/TED.2019.2897813 10.1103/PhysRevLett.110.247601 10.1002/adfm.201701900 10.1103/PhysRevB.75.035212 10.1039/C7TC00169J 10.1063/1.2838380 10.1039/C5TA09000H 10.1103/PhysRev.154.785 10.1063/1.2927306 10.1063/1.2911723 10.1103/PhysRevLett.88.095501 10.1103/PhysRevLett.103.096405 10.1039/C7TC01953J 10.1063/1.1695596 10.1021/nl0712217 10.1039/c3nr02320f 10.1002/admi.201900277 10.1063/1.3026539 10.1002/adma.201103228 10.1021/acsami.7b12968 10.1002/adma.201405400 10.1021/acsami.6b02137 10.1109/JPROC.2012.2190168 10.1063/1.3510471 10.1103/PhysRevLett.53.2339 10.1109/LED.2012.2190036 10.1109/JDT.2009.2022064 10.1016/j.tsf.2005.08.259 10.1134/1.1575357 10.1021/acsami.7b02838 10.1063/1.4895830 10.1016/j.rser.2018.09.011 10.1063/1.3633100 10.1149/2.015409jss 10.1021/acsami.0c01530 10.1021/cm401343a 10.1109/PROC.1968.6813 10.1063/1.3656973 10.1063/1.1991994 10.1063/1.1542677 10.1002/chem.202000678 10.1109/LED.2019.2893194 10.1103/PhysRevMaterials.2.074601 10.1063/1.4829672 10.1063/1.1660648 10.1021/acs.chemmater.9b04845 10.1109/LED.2018.2791633 10.1063/1.4790619 10.1088/0953-8984/23/33/334211 10.1149/2.011301jss 10.1002/advs.201500058 10.1063/1.3642962 10.1039/b408864f 10.1038/nmat1795 10.1103/PhysRevLett.101.116808 10.1063/1.3054175 10.1063/1.4941429 10.1103/PhysRevLett.88.076801 10.1063/1.3596449 10.1002/adma.201802379 10.1002/jsid.648 10.1116/1.582792 10.1002/adma.201101410 10.1021/acsami.9b03331 10.1126/science.1146006 10.1016/j.tsf.2014.02.042 10.1063/1.2939006 10.1002/adma.201202758 10.1021/nn400852r 10.1063/1.4775691 10.1063/1.5006941 10.1063/1.3059569 10.1109/LED.2019.2931089 10.1002/sdtp.13160 10.1116/1.571055 10.1002/adma.201906003 10.1038/srep33074 10.1002/adfm.201904588 10.1063/1.1805722 10.1073/pnas.1901492116 10.1149/1.3168522 10.1038/nmat4599 10.1038/nmat4303 10.1063/1.3583446 10.1073/pnas.1501548112 10.1002/adma.201907166 10.1063/1.1662011 10.1021/acsami.5b12819 10.1080/15980316.2020.1714762 10.1103/PhysRevB.74.195123 10.1063/1.121761 10.1021/am5072139 10.1109/TED.2018.2887270 10.1021/acsnano.7b01964 10.1038/s41928-019-0353-8 10.1002/aelm.201700476 10.1002/sdtp.12978 10.1002/sdtp.11860 10.1088/1468-6996/14/3/035004 10.1016/j.apsusc.2007.07.146 10.1103/PhysRevB.78.165127 10.1038/nature11434 10.1002/aelm.201600529 10.1063/1.5029921 10.1103/RevModPhys.54.437 10.1002/pssa.201329349 10.1063/1.3480416 10.1016/0022-4596(73)90007-8 10.1116/1.580895 10.1063/1.1862767 10.1063/1.4898069 10.1063/1.4953222 10.1103/PhysRevLett.101.055502 10.1103/PhysRevB.100.085126 10.1039/C8SC02152J 10.1002/inf2.12076 10.1103/PhysRev.93.1204 10.1103/PhysRevB.81.075211 10.1039/C6TC03234F 10.1063/1.110563 10.1038/ncomms4515 10.1103/PhysRevLett.98.045501 10.1016/j.ceramint.2019.09.201 10.1007/s10854-018-0480-4 10.1109/LED.2019.2941548 10.1039/C8TC04594A 10.1039/C7CS00192D 10.1063/1.2179373 10.1088/0022-3719/9/8/014 10.1088/0953-8984/23/33/334214 10.1038/nmat2874 10.1143/APEX.3.121004 10.1021/cm001153o 10.1116/1.568989 10.1063/1.4731271 10.1016/0038-1101(64)90057-7 10.1103/PhysRevB.91.155129 10.1016/S0026-2714(02)00027-6 10.1109/TNANO.2017.2719946 10.1103/PhysRevLett.104.256803 10.1021/acs.jpcc.8b08623 10.1038/nphoton.2012.282 10.1063/1.3478213 10.1103/PhysRev.127.150 10.1021/nl073296g 10.1103/PhysRevB.80.241107 10.1002/sdtp.13167 10.1088/0957-4484/21/13/134009 10.1038/nphys2079 10.1063/1.2458457 10.1063/1.4819068 10.1002/0470068329 10.1149/2.0231507jss 10.1063/1.5142999 10.1063/1.2749177 10.1889/JSID18.10.789 10.1002/adfm.201970323 10.1063/1.1383568 10.1103/PhysRevB.77.245202 10.1088/0953-8984/28/38/383002 10.1063/1.2335372 10.1103/PhysRevMaterials.3.074604 10.1063/1.4895782 10.1021/nn901587x 10.1088/0022-3727/37/20/006 10.1021/cm901127r 10.1063/1.119233 10.1038/s41467-020-18006-6 10.1002/adma.201701599 10.1103/PhysRevB.73.245312 10.1021/nl0489283 10.1063/1.5037306 10.1038/nmat3011 10.1039/C5TC02144H 10.1557/jmr.2012.172 10.1016/j.surfrep.2010.09.001 10.1038/ncomms3292 10.1103/PhysRevB.4.4539 10.1016/j.tsf.2009.09.193 10.1039/C6TC01881E 10.1103/PhysRevB.101.085121 10.1889/1.3499825 10.1002/adma.201503080 10.1002/adfm.201906022 10.1002/adma.201702176 10.1002/aelm.201700412 10.1063/1.4837955 10.1063/1.4832076 10.1103/PhysRevLett.103.245501 10.1002/adma.201501959 10.1103/PhysRevLett.85.1012 10.1002/j.2168-0159.2012.tb05894.x 10.1103/PhysRevMaterials.4.085201 10.1038/nmat4493 10.1002/adma.201804120 10.1038/s41928-018-0106-0 10.1002/aelm.202000195 10.1103/PhysRevB.84.245124 10.1038/s41598-018-31927-z 10.1016/j.sse.2006.03.004 10.1063/1.3309694 10.1073/pnas.1613643113 10.1002/adem.201901497 10.1038/ncomms3351 10.1063/1.3464964 10.1021/am403585n 10.7567/JJAP.55.1202A2 10.1038/s42005-020-0372-9 10.1016/j.cossms.2013.07.002 10.1016/0040-6090(96)08671-3 10.1039/C2CE26413G 10.1103/PhysRevB.77.045316 10.1016/0039-6028(76)90107-2 10.1039/C9NR09383D 10.1103/PhysRevB.77.155107 10.1063/1.3284960 10.1109/TED.2020.2968592 10.1063/1.5108790 10.1063/1.3562141 10.1021/jacs.9b11668 10.1002/adma.201901408 10.1016/j.tsf.2004.11.223 10.1103/PhysRevMaterials.2.051601 10.1063/1.3560769 10.1002/jsid.206 10.1016/j.tsf.2008.09.059 10.1103/PhysRevResearch.2.033358 10.1063/1.5025704 10.1063/1.2833432 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202006230 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 33797084 10_1002_adma_202006230 ADMA202006230 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: Australian Research Council funderid: FT160100207 – fundername: National Natural Science Foundation of China funderid: 21872116; 22075232 – fundername: Australian Research Council grantid: FT160100207 – fundername: National Natural Science Foundation of China grantid: 21872116 – fundername: National Natural Science Foundation of China grantid: 22075232 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 7SR 8BQ 8FD JG9 7X8 |
ID | FETCH-LOGICAL-c4790-2d55a4605d5f46b9c1f334dabc5c123cbf48661daa8dbbfabff785b5b698c4e63 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 13:29:18 EDT 2025 Sat Jul 26 00:00:53 EDT 2025 Mon Jul 21 05:52:41 EDT 2025 Tue Jul 01 02:33:01 EDT 2025 Thu Apr 24 23:08:35 EDT 2025 Wed Jan 22 16:28:25 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 50 |
Keywords | flexible electronics transparent conducting oxide (TCO) thin film transistor oxide semiconductor electronic structure |
Language | English |
License | 2021 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4790-2d55a4605d5f46b9c1f334dabc5c123cbf48661daa8dbbfabff785b5b698c4e63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-9352-6236 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adma.202006230 |
PMID | 33797084 |
PQID | 2609536778 |
PQPubID | 2045203 |
PageCount | 30 |
ParticipantIDs | proquest_miscellaneous_2508573712 proquest_journals_2609536778 pubmed_primary_33797084 crossref_citationtrail_10_1002_adma_202006230 crossref_primary_10_1002_adma_202006230 wiley_primary_10_1002_adma_202006230_ADMA202006230 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2013 2008 2014 2020; 110 92 90 16 2004 2006 2008 2007; 37 88 41 7 2015 2017; 2 3 2004 2008; 427 456 2019 2019 2019 2020; 40 40 50 22 2019; 13 2015 2019 2019 2020; 46 50 5 67 2016; 32 2004; 4 2005 2006 2006 2007 2020; 86 50 18 90 6 2020; 12 2020; 11 2017; 399 2009 2010 2017 2019; 95 11 3 216 1979 2008; 59 77 1984; 53 2018 2019 2017 2012; 4 31 3 100 2016 1997; 55 70 2007 2013 2017 2018; 317 110 11 112 2007 2009; 76 103 2013 2013; 88 110 2009 2014 2017 2019; 56 105 110 7 2015 1996; 64 273 2019; 29 2007 2000 2009 2009 2009 2019; 6 85 80 79 80 115 2017 2020; 29 2 2018 2019; 112 8 1983; 28 2011 2008 2008; 23 104 92 2010; 3 2012; 24 2008 2016 2008; 517 377 516 2004 2005 2011 2002 2006 1967 1971; 20 23 65 74 154 4 2011 2012 2014 2020; 98 27 89 101 2013; 103 2020; 36 2002 2019; 18 7 2020; 32 2016; 15 2011; 7 2010 2013 2015 2016; 21 15 592 108 2013 2015; 114 3 2009 2010 2012 2015; 12 41 33 4 2013 2015; 534 7 2016; 4 2016; 6 2001; 398 1996 2010; 68 2 2015; 112 2012 2014 2016 2017 2019 2020; 489 105 8 5 11 30 2013; 210 2020; 26 2020; 21 2016; 8 2017 2018 2018; 9 28 9 1962 1981; 127 19 2019; 50 2017; 48 2016; 109 2013; 21 2020; 127 2002 2008 2013; 65 77 87 2008; 78 1978; 39 2011; 98 2008; 77 2009 2010 2005; 5 96 486 2007 2010; 315 9 2010 2011; 97 23 2008 2012 2014; 33 105 1954 1973 1973; 139 44 8 2020; 8 2016 2012; 15 6 2020; 7 1954; 93 2014; 5 2020; 4 2014; 4 2020; 3 2020; 2 2010 2019; 4 99 2002; 42 2008 2017; 20 1 2016; 113 2016 2015; 28 92 2003; 82 2013 2014; 102 18 1976 2010 2018; 58 81 2 2008 2018 2013; 8 47 8 2020 2020; 12 30 2016 2014; 4 572 2007 2006 2017; 29 2008; 92 2009 2019; 103 3 2008; 93 2013 2015; 4 28 2004; 95 2007 2008 2008; 90 11 92 2020 2020; 142 120 2020 2019 2010; 96 2014 2013 2010; 115 15 107 2013; 4 2019 2020; 30 26 1997 2014 2016; 15 3 17 2008 2009; 93 311 2010; 18 1982; 54 1997 2011; 389 25 2007; 75 2013; 5 2013 2016 2011; 14 116 23 2008 2020; 254 46 2018; 6 2011; 520 2018; 8 2010 2018; 97 2 2018; 5 2018; 4 2000 2001; 88 13 2008 2009 2011 2013 2014 2010; 78 94 109 102 89 104 2009 2011 2010 2013; 80 84 65 87 2019 2020; 30 32 2007; 6 2018; 30 2015; 91 2011 2013 2013 2017 2018 2019; 23 103 7 16 112 66 2012 2012; 43 51 2004 1971; 96 42 2019; 7 2012; 100 2019; 3 2010; 207 2019; 2 2002 2009; 88 311 2011; 84 2007; 90 2018 2020; 17 32 2003; 37 2012 2016 2019; 100 2 31 2015 2015; 27 91 2010 2012; 518 111 1976; 9 2019; 100 2018; 26 2009 2009 2010; 49 2013 2013 2013; 25 103 103 1996 2005; 281‐282 87 2014; 30 1998; 73 2017; 5 2010 2018 2018 2019 2019; 97 39 39 40 66 2007 2012 2002 2008 2001 2008 2010; 98 108 88 101 63 77 97 2018; 123 2011; 10 2008 2010; 93 31 2013 2019; 25 6 2016 2016 2020; 28 28 8 2001; 89 2017; 9 2012 2017; 2 110 2019; 365 2018 2019 2019; 39 6 11 2014 2011; 2 98 1998; 59 1984 1976; 2 13 2008 2010 2011 2013 2018; 92 97 109 103 9 2011 2014; 469 1 2003 2004 2018; 300 432 1 2018 2019; 65 40 2019; 115 2014 2016 2016; 558 4 8 1964 1968; 7 56 2019; 116 2011; 23 1980 1993 2002; 36 63 89 2008 2011 2016 2018 2009; 103 110 108 112 105 2015; 14 2019 2020; 50 12 2009; 21 2003 1966 1992 1970; 82 144 61 19 2006 2015; 496 96 2015 2018; 25 30 2017 2019 2011; 12 11 2006; 5 2015 2020; 7 12 2013 2016; 5 6 2011 2019; 99 115 2008 2012; 516 111 2015; 27 2008 2020; 101 102 2006 2000; 73 77 2005 2006 2008; 97 89 18 2001; 78 2001; 79 e_1_2_8_49_3 e_1_2_8_49_2 e_1_2_8_49_1 e_1_2_8_9_3 e_1_2_8_9_2 e_1_2_8_9_5 e_1_2_8_9_4 e_1_2_8_132_1 e_1_2_8_155_1 e_1_2_8_178_1 e_1_2_8_9_1 e_1_2_8_155_3 e_1_2_8_155_2 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_120_1 e_1_2_8_143_1 e_1_2_8_166_1 e_1_2_8_189_1 e_1_2_8_91_1 e_1_2_8_120_2 e_1_2_8_166_2 e_1_2_8_25_4 e_1_2_8_48_4 e_1_2_8_25_5 e_1_2_8_48_3 e_1_2_8_25_6 e_1_2_8_25_7 e_1_2_8_25_1 e_1_2_8_25_2 e_1_2_8_48_2 e_1_2_8_25_3 e_1_2_8_48_1 Varley J. B. (e_1_2_8_102_2) 2013; 103 e_1_2_8_133_1 e_1_2_8_110_1 Daus A. (e_1_2_8_191_2) e_1_2_8_156_3 e_1_2_8_156_2 e_1_2_8_156_1 e_1_2_8_14_4 e_1_2_8_14_5 e_1_2_8_37_3 e_1_2_8_14_6 e_1_2_8_14_7 e_1_2_8_14_1 e_1_2_8_14_2 e_1_2_8_37_2 e_1_2_8_37_1 e_1_2_8_144_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_167_2 e_1_2_8_167_1 e_1_2_8_28_1 e_1_2_8_28_2 e_1_2_8_28_3 e_1_2_8_28_4 e_1_2_8_28_5 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_7_1 e_1_2_8_7_3 e_1_2_8_7_2 e_1_2_8_157_2 e_1_2_8_134_1 e_1_2_8_17_1 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_122_3 e_1_2_8_168_3 e_1_2_8_122_2 e_1_2_8_168_2 e_1_2_8_145_1 e_1_2_8_168_1 e_1_2_8_93_1 e_1_2_8_27_2 e_1_2_8_27_1 e_1_2_8_8_4 e_1_2_8_8_3 e_1_2_8_80_1 e_1_2_8_8_2 e_1_2_8_8_1 e_1_2_8_135_4 e_1_2_8_158_4 e_1_2_8_158_3 e_1_2_8_135_2 e_1_2_8_158_2 e_1_2_8_112_1 e_1_2_8_135_3 e_1_2_8_158_1 e_1_2_8_135_1 e_1_2_8_39_2 e_1_2_8_39_1 e_1_2_8_210_1 e_1_2_8_16_1 e_1_2_8_92_1 e_1_2_8_100_1 e_1_2_8_169_4 e_1_2_8_169_3 e_1_2_8_100_2 e_1_2_8_123_2 e_1_2_8_169_2 e_1_2_8_123_1 e_1_2_8_169_1 e_1_2_8_123_3 e_1_2_8_146_1 e_1_2_8_207_1 e_1_2_8_151_4 e_1_2_8_151_3 e_1_2_8_151_2 e_1_2_8_151_1 e_1_2_8_174_1 e_1_2_8_197_1 e_1_2_8_83_2 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_19_2 e_1_2_8_109_1 e_1_2_8_162_4 e_1_2_8_95_1 e_1_2_8_162_3 e_1_2_8_95_2 e_1_2_8_162_2 e_1_2_8_162_1 e_1_2_8_185_1 e_1_2_8_72_2 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_29_2 e_1_2_8_29_3 e_1_2_8_29_4 e_1_2_8_152_1 e_1_2_8_208_1 e_1_2_8_175_2 e_1_2_8_198_2 e_1_2_8_82_1 e_1_2_8_175_3 e_1_2_8_198_1 e_1_2_8_18_1 e_1_2_8_94_1 e_1_2_8_163_1 e_1_2_8_140_1 e_1_2_8_186_1 e_1_2_8_71_1 Sun Il K. (e_1_2_8_175_1) 2008 e_1_2_8_153_2 e_1_2_8_199_2 e_1_2_8_130_1 e_1_2_8_153_1 e_1_2_8_209_1 e_1_2_8_130_2 e_1_2_8_85_3 e_1_2_8_85_2 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_62_2 e_1_2_8_176_1 e_1_2_8_199_1 Bareille C. (e_1_2_8_66_1) 2014; 4 e_1_2_8_187_3 e_1_2_8_187_4 e_1_2_8_141_1 e_1_2_8_164_1 e_1_2_8_141_2 e_1_2_8_97_1 e_1_2_8_97_3 e_1_2_8_97_4 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_187_1 e_1_2_8_187_2 e_1_2_8_154_2 e_1_2_8_154_1 e_1_2_8_131_1 e_1_2_8_84_2 e_1_2_8_84_1 e_1_2_8_154_5 e_1_2_8_154_4 e_1_2_8_61_1 e_1_2_8_154_3 e_1_2_8_177_1 Wager J. F. (e_1_2_8_179_1) 2014; 30 e_1_2_8_142_2 e_1_2_8_165_2 e_1_2_8_142_3 e_1_2_8_165_1 e_1_2_8_96_1 e_1_2_8_142_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_188_1 e_1_2_8_203_1 e_1_2_8_1_2 e_1_2_8_41_3 e_1_2_8_117_1 e_1_2_8_170_1 e_1_2_8_193_1 e_1_2_8_41_2 e_1_2_8_87_2 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_117_3 e_1_2_8_64_2 e_1_2_8_117_2 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_76_4 e_1_2_8_215_1 e_1_2_8_99_1 e_1_2_8_76_3 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_181_1 e_1_2_8_30_2 e_1_2_8_76_2 e_1_2_8_181_2 Wager J. F. (e_1_2_8_12_1) 2016; 32 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_53_2 e_1_2_8_30_1 e_1_2_8_118_3 e_1_2_8_204_1 e_1_2_8_2_1 e_1_2_8_171_1 e_1_2_8_118_2 e_1_2_8_171_2 e_1_2_8_194_2 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_194_1 e_1_2_8_194_4 e_1_2_8_63_1 e_1_2_8_194_3 e_1_2_8_40_1 e_1_2_8_216_1 e_1_2_8_98_1 e_1_2_8_98_2 e_1_2_8_106_1 e_1_2_8_182_1 e_1_2_8_52_2 e_1_2_8_106_2 e_1_2_8_182_2 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_119_2 e_1_2_8_205_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_89_1 e_1_2_8_20_2 e_1_2_8_43_3 e_1_2_8_119_1 e_1_2_8_172_1 e_1_2_8_195_1 e_1_2_8_43_2 e_1_2_8_195_3 e_1_2_8_195_2 Park J. W. (e_1_2_8_6_1) 2019; 30 e_1_2_8_78_2 e_1_2_8_217_1 e_1_2_8_160_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 Kim H.‐A. (e_1_2_8_157_1) 2018; 65 e_1_2_8_55_2 e_1_2_8_107_1 e_1_2_8_183_1 e_1_2_8_107_2 e_1_2_8_183_2 e_1_2_8_183_3 e_1_2_8_183_4 e_1_2_8_183_5 e_1_2_8_183_6 e_1_2_8_206_1 e_1_2_8_150_1 e_1_2_8_65_2 e_1_2_8_88_2 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_65_1 e_1_2_8_173_1 e_1_2_8_196_2 e_1_2_8_196_1 Janotti A. (e_1_2_8_26_1) 2007 e_1_2_8_161_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_184_1 e_1_2_8_184_2 e_1_2_8_184_3 e_1_2_8_184_4 e_1_2_8_184_5 e_1_2_8_68_1 Zhang K. H. L. (e_1_2_8_14_3) 2011; 23 e_1_2_8_5_1 e_1_2_8_5_2 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_22_2 e_1_2_8_113_1 e_1_2_8_136_1 e_1_2_8_159_1 e_1_2_8_11_3 e_1_2_8_11_4 e_1_2_8_34_2 e_1_2_8_57_1 e_1_2_8_57_2 e_1_2_8_211_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_11_2 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_147_1 e_1_2_8_124_3 e_1_2_8_124_2 e_1_2_8_200_3 e_1_2_8_200_4 e_1_2_8_200_1 e_1_2_8_200_2 e_1_2_8_200_5 e_1_2_8_200_6 e_1_2_8_6_2 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_114_3 e_1_2_8_21_2 e_1_2_8_44_1 e_1_2_8_137_1 e_1_2_8_114_2 e_1_2_8_114_1 e_1_2_8_33_4 e_1_2_8_33_3 e_1_2_8_79_3 e_1_2_8_33_6 e_1_2_8_56_2 e_1_2_8_79_2 e_1_2_8_33_5 e_1_2_8_79_1 e_1_2_8_212_1 Bosman A. J. (e_1_2_8_97_2) 1966; 144 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_10_2 e_1_2_8_33_2 e_1_2_8_33_1 e_1_2_8_102_1 e_1_2_8_148_1 e_1_2_8_125_2 e_1_2_8_102_3 e_1_2_8_125_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_24_2 e_1_2_8_24_3 e_1_2_8_47_2 e_1_2_8_201_1 e_1_2_8_3_1 e_1_2_8_3_3 e_1_2_8_3_2 e_1_2_8_115_2 e_1_2_8_138_1 e_1_2_8_138_2 e_1_2_8_115_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_59_2 e_1_2_8_190_1 e_1_2_8_190_2 e_1_2_8_213_2 e_1_2_8_213_1 e_1_2_8_149_1 e_1_2_8_149_2 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_46_6 e_1_2_8_46_5 e_1_2_8_23_2 e_1_2_8_46_2 e_1_2_8_23_3 e_1_2_8_46_1 e_1_2_8_46_4 e_1_2_8_46_3 e_1_2_8_69_1 e_1_2_8_180_1 e_1_2_8_202_1 e_1_2_8_4_2 e_1_2_8_4_1 e_1_2_8_116_2 e_1_2_8_139_2 e_1_2_8_192_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_139_1 e_1_2_8_58_2 e_1_2_8_35_1 e_1_2_8_58_1 e_1_2_8_191_1 e_1_2_8_214_1 e_1_2_8_180_2 e_1_2_8_127_1 e_1_2_8_104_1 |
References_xml | – volume: 389 25 start-page: 939 28 year: 1997 2011 publication-title: Nature MRS Bull. – volume: 5 start-page: 9273 year: 2017 publication-title: J. Mater. Chem. C – volume: 5 year: 2013 publication-title: ACS Appl. Mater. Interfaces – volume: 5 6 start-page: 7750 year: 2013 2016 publication-title: Nanoscale Sci. Rep. – volume: 32 start-page: 16 year: 2016 publication-title: Inf. Disp. – volume: 80 84 65 87 start-page: 317 year: 2009 2011 2010 2013 publication-title: Phys. Rev. B Phys. Rev. B Surf. Sci. Rep. Phys. Rev. B – volume: 28 28 8 start-page: 3831 year: 2016 2016 2020 publication-title: J. Phys.: Condens. Matter Adv. Mater. APL Mater. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 489 105 8 5 11 30 start-page: 128 3673 year: 2012 2014 2016 2017 2019 2020 publication-title: Nature Appl. Phys. Lett. ACS Appl. Mater. Interfaces J. Mater. Chem. C ACS Appl. Mater. Interfaces Adv. Funct. Mater. – volume: 37 88 41 7 start-page: 2810 2463 year: 2004 2006 2008 2007 publication-title: J. Phys. D: Appl. Phys. Appl. Phys. Lett. J. Phys. D: Appl. Phys. Nano Lett. – volume: 4 year: 2020 publication-title: Phys. Rev. Mater. – volume: 40 40 50 22 start-page: 411 1772 541 year: 2019 2019 2019 2020 publication-title: IEEE Electron Device Lett. IEEE Electron Device Lett. SID Symp. Dig. Tech. Pap. Adv. Eng. Mater. – volume: 58 81 2 start-page: 18 year: 1976 2010 2018 publication-title: Surf. Sci. Phys. Rev. B Phys. Rev. Mater. – volume: 3 start-page: 51 year: 2020 publication-title: Nat. Electron. – volume: 93 start-page: 1204 year: 1954 publication-title: Phys. Rev. – volume: 101 102 year: 2008 2020 publication-title: Phys. Rev. Lett. Phys. Rev. B – volume: 97 39 39 40 66 start-page: 208 516 1642 950 year: 2010 2018 2018 2019 2019 publication-title: Appl. Phys. Lett. IEEE Electron Device Lett. IEEE Electron Device Lett. IEEE Electron Device Lett. IEEE Trans. Electron Devices – volume: 27 91 start-page: 5191 year: 2015 2015 publication-title: Adv. Mater. Phys. Rev. B – volume: 55 70 start-page: 3561 year: 2016 1997 publication-title: Jpn. J. Appl. Phys. Appl. Phys. Lett. – volume: 558 4 8 start-page: 294 6980 year: 2014 2016 2016 publication-title: Thin Solid Films J. Mater. Chem. A ACS Appl. Mater. Interfaces – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 95 start-page: 5856 year: 2004 publication-title: J. Appl. Phys. – volume: 88 311 start-page: 1658 year: 2002 2009 publication-title: Phys. Rev. Lett. J. Cryst. Growth – volume: 12 41 33 4 start-page: H348 1033 396 Q61 year: 2009 2010 2012 2015 publication-title: Electrochem. Solid‐State Lett. SID Symp. Dig. Tech. Pap. IEEE Electron Device Lett. ECS J. Solid State Sci. Technol. – volume: 300 432 1 start-page: 1269 488 428 year: 2003 2004 2018 publication-title: Science Nature Nat. Electron. – volume: 77 year: 2008 publication-title: Phys. Rev. B – volume: 78 start-page: 1583 year: 2001 publication-title: Appl. Phys. Lett. – start-page: 76 year: 2007 publication-title: Phys. Rev. B – volume: 98 27 89 101 start-page: 2232 year: 2011 2012 2014 2020 publication-title: Appl. Phys. Lett. J. Mater. Res. Phys. Rev. B Phys. Rev. B – volume: 142 120 start-page: 2726 4007 year: 2020 2020 publication-title: J. Am. Chem. Soc. Chem. Rev. – volume: 399 start-page: 716 year: 2017 publication-title: Appl. Surf. Sci. – volume: 127 year: 2020 publication-title: J. Appl. Phys. – volume: 110 92 90 16 year: 2013 2008 2014 2020 publication-title: Phys. Rev. Lett. Appl. Phys. Lett. Phys. Rev. B Small – volume: 92 year: 2008 publication-title: Appl. Phys. Lett. – volume: 75 year: 2007 publication-title: Phys. Rev. B – volume: 48 start-page: 1262 year: 2017 publication-title: SID Symp. Dig. Tech. Pap. – volume: 23 year: 2011 publication-title: J. Phys.: Condens. Matter – volume: 90 year: 2007 publication-title: Appl. Phys. Lett. – volume: 25 6 start-page: 1504 year: 2013 2019 publication-title: Adv. Mater. Adv. Mater. Interfaces – volume: 78 year: 2008 publication-title: Phys. Rev. B – volume: 15 6 start-page: 383 809 year: 2016 2012 publication-title: Nat. Mater. Nat. Photonics – volume: 6 start-page: 2275 year: 2018 publication-title: J. Mater. Chem. C – volume: 4 28 start-page: 2292 30 year: 2013 2015 publication-title: Nat. Commun. Chem. Mater. – volume: 4 572 start-page: 9438 51 year: 2016 2014 publication-title: J. Mater. Chem. C Thin Solid Films – volume: 517 377 516 start-page: 1474 355 5822 year: 2008 2016 2008 publication-title: Thin Solid Films Appl. Surf. Sci. Thin Solid Films – volume: 46 50 5 67 start-page: 853 1214 1014 year: 2015 2019 2019 2020 publication-title: SID Symp. Dig. Tech. Pap. SID Symp. Dig. Tech. Pap. Adv. Electron. Mater. IEEE Trans. Electron Devices – volume: 12 11 start-page: 77 issue: 99 year: 2017 2019 2011 publication-title: Nanoscale Res. Lett. Nanoscale Appl. Phys. Lett. – volume: 54 start-page: 437 year: 1982 publication-title: Rev. Mod. Phys. – volume: 48 start-page: 291 year: 2017 publication-title: SID Symp. Dig. Tech. Pap. – volume: 11 start-page: 4309 year: 2020 publication-title: Nat. Commun. – volume: 103 3 year: 2009 2019 publication-title: Phys. Rev. Lett. Phys. Rev. Mater. – volume: 26 start-page: 9099 year: 2020 publication-title: Chem. ‐ Eur. J. – volume: 24 start-page: 2945 year: 2012 publication-title: Adv. Mater. – volume: 520 start-page: 1 year: 2011 publication-title: Thin Solid Films – volume: 97 89 18 start-page: 3169 year: 2005 2006 2008 publication-title: J. Appl. Phys. Appl. Phys. Lett. Adv. Funct. Mater. – volume: 29 2 start-page: 769 year: 2017 2020 publication-title: Adv. Mater. InfoMat – volume: 82 start-page: 733 year: 2003 publication-title: Appl. Phys. Lett. – volume: 315 9 start-page: 1388 889 year: 2007 2010 publication-title: Science Nat. Mater. – volume: 65 77 87 year: 2002 2008 2013 publication-title: Phys. Rev. B Phys. Rev. B Phys. Rev. B – volume: 39 start-page: 675 year: 1978 publication-title: J. Phys. Chem. Solids – volume: 10 start-page: 382 year: 2011 publication-title: Nat. Mater. – volume: 4 start-page: 1919 year: 2004 publication-title: Nano Lett. – volume: 96 year: 2010 publication-title: Appl. Phys. Lett. – volume: 42 start-page: 583 year: 2002 publication-title: Microelectron. Reliab. – volume: 37 start-page: 537 year: 2003 publication-title: Semiconductors – volume: 100 year: 2012 publication-title: Appl. Phys. Lett. – volume: 93 year: 2008 publication-title: Appl. Phys. Lett. – volume: 112 8 year: 2018 2019 publication-title: Appl. Phys. Lett. ECS J. Solid State Sci. Technol. – volume: 2 110 start-page: P5 year: 2012 2017 publication-title: Solid State Sci. Technol. Appl. Phys. Lett. – volume: 36 start-page: 9 year: 2020 publication-title: Inf. Disp. – volume: 99 115 year: 2011 2019 publication-title: Appl. Phys. Lett. Appl. Phys. Lett. – volume: 28 92 start-page: 1976 year: 2016 2015 publication-title: Adv. Mater. Phys. Rev. B – volume: 2 98 year: 2014 2011 publication-title: APL Mater. Appl. Phys. Lett. – volume: 88 110 year: 2013 2013 publication-title: Phys. Rev. B Phys. Rev. Lett. – volume: 88 13 start-page: 338 year: 2000 2001 publication-title: J. Appl. Phys. Chem. Mater. – volume: 7 56 start-page: 701 2094 year: 1964 1968 publication-title: Solid‐State Electron. Proc. IEEE – volume: 68 2 start-page: 661 15 year: 1996 2010 publication-title: Appl. Phys. Lett. NPG Asia Mater – volume: 20 1 start-page: 1299 year: 2008 2017 publication-title: Chem. Mater. Phys. Rev. Mater. – volume: 4 year: 2018 publication-title: Adv. Electron. Mater. – year: 2009 2009 – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 9 28 9 start-page: 7968 year: 2017 2018 2018 publication-title: ACS Appl. Mater. Interfaces Adv. Funct. Mater. Chem. Sci. – volume: 398 start-page: 53 year: 2001 publication-title: Thin Solid Films – volume: 5 start-page: 204 year: 2006 publication-title: Nat. Mater. – volume: 25 30 start-page: 3114 2089 year: 2015 2018 publication-title: Adv. Funct. Mater. J. Mater. Sci.: Mater. Electron. – volume: 95 11 3 216 year: 2009 2010 2017 2019 publication-title: Appl. Phys. Lett. Sci. Technol. Adv. Mater. Adv. Electron. Mater. Phys. Status Solidi A – volume: 86 50 18 90 6 start-page: 784 738 year: 2005 2006 2006 2007 2020 publication-title: Appl. Phys. Lett. Solid‐State Electron. Adv. Mater. Appl. Phys. Lett. Adv. Electron. Mater. – volume: 15 start-page: 204 year: 2016 publication-title: Nat. Mater. – volume: 7 year: 2019 publication-title: APL Mater. – volume: 4 start-page: 3586 year: 2014 publication-title: A. F. Santander‐Syro, Sci. Rep. – volume: 210 start-page: 1671 year: 2013 publication-title: Phys. Status Solidi A – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 50 12 start-page: 1279 year: 2019 2020 publication-title: SID Symp. Dig. Tech. Pap. ACS Appl. Mater. Interfaces – volume: 98 year: 2011 publication-title: Appl. Phys. Lett. – year: 2020 – volume: 9 start-page: 2017 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 3 start-page: 102 year: 2020 publication-title: Commun. Phys. – volume: 93 31 start-page: 827 year: 2008 2010 publication-title: Appl. Phys. Lett. IEEE Electron Device Lett. – volume: 6 year: 2016 publication-title: Sci. Rep. – volume: 43 51 start-page: 756 year: 2012 2012 publication-title: SID Symp. Dig. Tech. Pap. Jpn. J. Appl. Phys. – volume: 469 1 start-page: 189 year: 2011 2014 publication-title: Nature Phys. Rev. Appl. – volume: 6 start-page: 493 year: 2007 publication-title: Nat. Mater. – volume: 7 year: 2019 publication-title: J. Mater. Chem. C – volume: 4 year: 2016 publication-title: J. Mater. Chem. C – volume: 6 year: 2018 publication-title: J. Mater. Chem. C – volume: 30 26 start-page: 1 9126 year: 2019 2020 publication-title: Adv. Funct. Mater. Chem. ‐ Eur. J. – volume: 103 110 108 112 105 year: 2008 2011 2016 2018 2009 publication-title: J. Appl. Phys. J. Appl. Phys. Appl. Phys. Lett. Appl. Phys. Lett. J. Appl. Phys. – volume: 281‐282 87 start-page: 445 year: 1996 2005 publication-title: Thin Solid Films Appl. Phys. Lett. – volume: 64 273 start-page: 1 903 year: 2015 1996 publication-title: ECS Trans. Science – volume: 2 year: 2020 publication-title: Phys. Rev. Res. – volume: 254 46 start-page: 1661 2173 year: 2008 2020 publication-title: Appl. Surf. Sci. Ceram. Int. – volume: 50 start-page: 1251 year: 2019 publication-title: SID Symp. Dig. Tech. Pap. – volume: 518 111 start-page: 3012 year: 2010 2012 publication-title: Thin Solid Films J. Appl. Phys. – volume: 23 103 7 16 112 66 start-page: 3431 5160 876 1766 year: 2011 2013 2013 2017 2018 2019 publication-title: Adv. Mater. Appl. Phys. Lett. ACS Nano IEEE Trans. Nanotechnol. Appl. Phys. Lett. IEEE Trans. Electron Devices – volume: 7 12 start-page: 2366 year: 2015 2020 publication-title: Nanoscale Nanoscale – volume: 26 start-page: 169 year: 2018 publication-title: J. Soc. Inf. Disp. – volume: 90 11 92 start-page: H157 year: 2007 2008 2008 publication-title: Appl. Phys. Lett. Electrochem. Solid‐State Lett. Appl. Phys. Lett. – volume: 84 year: 2011 publication-title: Phys. Rev. B – volume: 98 108 88 101 63 77 97 year: 2007 2012 2002 2008 2001 2008 2010 publication-title: Phys. Rev. Lett. Phys. Rev. Lett. Phys. Rev. Lett. Phys. Rev. Lett. Phys. Rev. B Phys. Rev. B Appl. Phys. Lett. – volume: 59 start-page: 1241 year: 1998 publication-title: J. Phys. Chem. Solids – volume: 15 3 17 start-page: 2993 65 year: 1997 2014 2016 publication-title: J. Vac. Sci. Technol., A Solid State Sci. Technol. J. Inf. Disp. – volume: 100 2 31 start-page: 1486 year: 2012 2016 2019 publication-title: Proc. IEEE Adv. Electron. Mater. Adv. Mater. – volume: 534 7 start-page: 446 782 year: 2013 2015 publication-title: Thin Solid Films ACS Appl. Mater. Interfaces – volume: 365 start-page: 1454 year: 2019 publication-title: Science – volume: 89 start-page: 8022 year: 2001 publication-title: J. Appl. Phys. – volume: 207 start-page: 1698 year: 2010 publication-title: Phys. Status Solidi A – volume: 12 30 year: 2020 2020 publication-title: ACS Appl. Mater. Interfaces Adv. Funct. Mater. – volume: 5 start-page: 3515 year: 2014 publication-title: Nat. Commun. – volume: 139 44 8 start-page: 504 4618 142 year: 1954 1973 1973 publication-title: Z. Phys. J. Appl. Phys. J. Solid State Chem. – volume: 14 start-page: 801 year: 2015 publication-title: Nat. Mater. – volume: 6 85 80 79 80 115 start-page: 44 1012 year: 2007 2000 2009 2009 2009 2019 publication-title: Nat. Mater. Phys. Rev. Lett. Phys. Rev. B Phys. Rev. B Phys. Rev. B Appl. Phys. Lett. – volume: 23 104 92 year: 2011 2008 2008 publication-title: J. Phys.: Condens. Matter. J. Appl. Phys. Appl. Phys. Lett. – volume: 59 77 start-page: 255 year: 1979 2008 publication-title: Thin Solid Films Phys. Rev. B – volume: 4 99 start-page: 2865 83 year: 2010 2019 publication-title: ACS Nano M. A. Mat Teridi, K. Sopian, Renewable Sustainable Energy Rev. – volume: 8 start-page: 6176 year: 2020 publication-title: J. Mater. Chem. C – volume: 496 96 start-page: 117 329 year: 2006 2015 publication-title: Thin Solid Films Energy Build. – volume: 32 start-page: 1964 year: 2020 publication-title: Chem. Mater. – volume: 27 start-page: 2390 year: 2015 publication-title: Adv. Mater. – volume: 109 year: 2016 publication-title: Appl. Phys. Lett. – volume: 21 start-page: 467 year: 2013 publication-title: J. Soc. Inf. Disp. – volume: 56 105 110 7 start-page: 1365 year: 2009 2014 2017 2019 publication-title: IEEE Trans. Electron Devices Appl. Phys. Lett. Appl. Phys. Lett. APL Mater. – volume: 103 year: 2013 publication-title: Appl. Phys. Lett. – volume: 4 31 3 100 start-page: 1486 year: 2018 2019 2017 2012 publication-title: Adv. Electron. Mater. Adv. Mater. Adv. Electron. Mater. Proc. IEEE – volume: 25 103 103 start-page: 3114 4 year: 2013 2013 2013 publication-title: Chem. Mater. Appl. Phys. Lett. Appl. Phys. Lett. – volume: 4 start-page: 6946 year: 2016 publication-title: J. Mater. Chem. C – volume: 2 start-page: 587 year: 2019 publication-title: Nat. Electron. – volume: 78 94 109 102 89 104 year: 2008 2009 2011 2013 2014 2010 publication-title: Phys. Rev. B Appl. Phys. Lett. J. Appl. Phys. Appl. Phys. Lett. Phys. Rev. B Phys. Rev. Lett. – volume: 5 year: 2018 publication-title: Appl. Phys. Rev. – volume: 14 116 23 start-page: 1482 year: 2013 2016 2011 publication-title: Sci. Technol. Adv. Mater. Chem. Rev. Adv. Mater. – volume: 79 start-page: 284 year: 2001 publication-title: Appl. Phys. Lett. – volume: 21 start-page: 203 year: 2020 publication-title: J. Inf. Disp. – volume: 516 111 start-page: 5052 year: 2008 2012 publication-title: Thin Solid Films J. Appl. Phys. – volume: 49 year: 2010 publication-title: Jpn. J. Appl. Phys. – volume: 20 23 65 74 154 4 start-page: 2995 S35 8 785 4539 year: 2004 2005 2011 2002 2006 1967 1971 publication-title: Dalton Trans. Semicond. Sci. Technol. J. Phys.: Condens. Matter. Phys. Rev. B Phys. Rev. B Phys. Rev. Phys. Rev. B – volume: 5 96 486 start-page: 462 38 year: 2009 2010 2005 publication-title: J. Disp. Technol. Appl. Phys. Lett. Thin Solid Films – volume: 36 63 89 start-page: 685 2132 year: 1980 1993 2002 publication-title: Appl. Phys. Lett. Appl. Phys. Lett. Phys. Rev. Lett. – volume: 427 456 start-page: 423 624 year: 2004 2008 publication-title: Nature Nature – volume: 96 42 start-page: 6445 2911 year: 2004 1971 publication-title: J. Appl. Phys. J. Appl. Phys. – volume: 9 start-page: 1429 year: 1976 publication-title: J. Phys. C: Solid State Phys. – volume: 53 start-page: 2339 year: 1984 publication-title: Phys. Rev. Lett. – volume: 91 year: 2015 publication-title: Phys. Rev. B – volume: 4 start-page: 2351 year: 2013 publication-title: Nat. Commun. – volume: 7 start-page: 236 year: 2020 publication-title: Mater. Horiz. – volume: 17 32 start-page: 231 year: 2018 2020 publication-title: Nat. Mater. Adv. Mater. – volume: 50 start-page: 545 year: 2019 publication-title: SID Symp. Dig. Tech. Pap. – volume: 127 19 start-page: 150 313 year: 1962 1981 publication-title: Phys. Rev. J. Vac. Sci. Technol. – volume: 92 97 109 103 9 year: 2008 2010 2011 2013 2018 publication-title: Appl. Phys. Lett. Appl. Phys. Lett. J. Appl. Phys. Appl. Phys. Lett. Phys. Rev. Appl. – volume: 123 start-page: 1700 year: 2018 publication-title: J. Phys. Chem. C – volume: 65 40 start-page: 4854 1443 year: 2018 2019 publication-title: IEEE Trans. Electron Devices IEEE Electron Device Lett. – volume: 89 start-page: 1790 year: 2001 publication-title: J. Appl. Phys. – volume: 18 7 start-page: 194 3958 year: 2002 2019 publication-title: Langmuir J. Mater. Chem. C – volume: 30 start-page: 26 year: 2014 publication-title: Inf. Disp. – volume: 30 32 year: 2019 2020 publication-title: Adv. Funct. Mater. Adv. Mater. – volume: 116 start-page: 9230 year: 2019 publication-title: Proc. Natl. Acad. Sci. USA – volume: 97 23 year: 2010 2011 publication-title: Appl. Phys. Lett. J. Phys.: Condens. Matter. – volume: 100 year: 2019 publication-title: Phys. Rev. B – volume: 7 start-page: 767 year: 2011 publication-title: Nat. Phys. – volume: 33 105 start-page: 1 818 year: 2008 2012 2014 end-page: 4 publication-title: IEEE Electron Device Lett. Appl. Phys. Lett. – volume: 73 start-page: 220 year: 1998 publication-title: Appl. Phys. Lett. – volume: 3 year: 2010 publication-title: Appl. Phys. Express – volume: 3 year: 2019 publication-title: Phys. Rev. Mater. – volume: 97 2 year: 2010 2018 publication-title: Appl. Phys. Lett. Phys. Rev. Mater. – volume: 18 start-page: 789 year: 2010 publication-title: J. Soc. Inf. Disp. – volume: 8 year: 2018 publication-title: Sci. Rep. – volume: 39 6 11 start-page: 371 year: 2018 2019 2019 publication-title: IEEE Electron Device Lett. Adv. Mater. Interfaces ACS Appl. Mater. Interfaces – volume: 112 start-page: 3217 year: 2015 publication-title: Proc. Natl. Acad. Sci. USA – volume: 21 start-page: 4353 year: 2009 publication-title: Chem. Mater. – volume: 102 18 start-page: 53 year: 2013 2014 publication-title: Appl. Phys. Lett. Curr. Opin. Solid State Mater. Sci. – volume: 28 start-page: 4900 year: 1983 publication-title: Phys. Rev. B – volume: 317 110 11 112 start-page: 1196 6040 year: 2007 2013 2017 2018 publication-title: Science Phys. Rev. Lett. ACS Nano Appl. Phys. Lett. – volume: 82 144 61 19 start-page: 937 763 3385 1 year: 2003 1966 1992 1970 publication-title: Mater. Chem. Phys. C. Crevecoe, Phys. Rev. J. Phys. Soc. Jpn. Adv. Phys. – volume: 114 3 start-page: 9359 year: 2013 2015 publication-title: J. Appl. Phys. J. Mater. Chem. C – volume: 21 15 592 108 start-page: 6875 195 year: 2010 2013 2015 2016 publication-title: Nanotechnology Phys. Chem. Chem. Phys. Thin Solid Films Appl. Phys. Lett. – volume: 73 77 start-page: 2009 year: 2006 2000 publication-title: Phys. Rev. B Appl. Phys. Lett. – volume: 13 year: 2019 publication-title: ACS Nano – volume: 76 103 year: 2007 2009 publication-title: Phys. Rev. B Phys. Rev. Lett. – volume: 115 year: 2019 publication-title: Appl. Phys. Lett. – volume: 2 13 start-page: 235 780 year: 1984 1976 publication-title: J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. J. Vac. Sci. Technol. – issue: 5 year: 2019 publication-title: Adv. Electron. Mater. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 2 3 year: 2015 2017 publication-title: Adv. Sci. Sci. Adv. – volume: 93 311 start-page: 1102 year: 2008 2009 publication-title: Appl. Phys. Lett. J. Cryst. Growth – year: 2006 – volume: 82 start-page: 1117 year: 2003 publication-title: Appl. Phys. Lett. – volume: 8 47 8 start-page: 689 4611 421 year: 2008 2018 2013 publication-title: Nano Lett. Chem. Soc. Rev. Nat. Nanotechnol. – volume: 113 year: 2016 publication-title: Proc. Natl. Acad. Sci. USA – volume: 115 15 107 start-page: 2220 year: 2014 2013 2010 publication-title: J. Appl. Phys. CrystEngComm J. Appl. Phys. – ident: e_1_2_8_150_1 doi: 10.1063/1.1553997 – ident: e_1_2_8_161_1 doi: 10.1039/C9TC03933C – ident: e_1_2_8_190_2 doi: 10.1002/admi.201900883 – ident: e_1_2_8_8_4 doi: 10.1002/pssa.201800372 – ident: e_1_2_8_160_1 doi: 10.1002/msid.1098 – ident: e_1_2_8_195_2 doi: 10.1002/aelm.201600105 – ident: e_1_2_8_43_3 doi: 10.1080/15980316.2016.1160003 – ident: e_1_2_8_142_2 doi: 10.1039/C9NR02664A – ident: e_1_2_8_37_1 doi: 10.1088/0953-8984/23/33/334212 – ident: e_1_2_8_103_1 doi: 10.1063/1.2964197 – ident: e_1_2_8_24_1 doi: 10.1007/BF01374559 – ident: e_1_2_8_137_1 doi: 10.1016/j.tsf.2011.06.091 – ident: e_1_2_8_164_1 doi: 10.1063/1.3564882 – ident: e_1_2_8_33_4 doi: 10.1103/PhysRevB.79.245206 – ident: e_1_2_8_158_3 doi: 10.1002/aelm.201900768 – ident: e_1_2_8_33_5 doi: 10.1103/PhysRevB.80.081201 – ident: e_1_2_8_162_1 doi: 10.1109/TED.2009.2021339 – ident: e_1_2_8_28_4 doi: 10.1063/1.5020134 – ident: e_1_2_8_178_1 doi: 10.1038/s41928-019-0342-y – ident: e_1_2_8_94_1 doi: 10.1063/1.2431548 – ident: e_1_2_8_64_2 doi: 10.1103/PhysRevB.92.041106 – ident: e_1_2_8_199_2 doi: 10.1126/science.273.5277.903 – ident: e_1_2_8_34_2 doi: 10.1063/1.4985627 – ident: e_1_2_8_128_1 doi: 10.1103/PhysRevMaterials.3.084608 – ident: e_1_2_8_58_2 doi: 10.1063/1.1312199 – ident: e_1_2_8_138_1 doi: 10.1039/C5NR04084A – ident: e_1_2_8_213_2 doi: 10.1021/acs.chemrev.9b00600 – ident: e_1_2_8_45_1 doi: 10.1016/S0022-3697(98)00047-X – ident: e_1_2_8_73_1 doi: 10.1038/nmat1569 – volume: 103 start-page: 4 year: 2013 ident: e_1_2_8_102_2 publication-title: Appl. Phys. Lett. – ident: e_1_2_8_199_1 doi: 10.1149/06442.0001ecst – ident: e_1_2_8_153_2 doi: 10.1038/asiamat.2010.5 – ident: e_1_2_8_111_1 doi: 10.1002/adma.201706573 – ident: e_1_2_8_82_1 doi: 10.1143/JJAP.49.020202 – ident: e_1_2_8_85_2 doi: 10.1103/PhysRevB.77.155115 – ident: e_1_2_8_39_2 doi: 10.1149/2.0221907jss – ident: e_1_2_8_37_2 doi: 10.1063/1.2975219 – ident: e_1_2_8_154_3 doi: 10.1002/adma.200501957 – ident: e_1_2_8_32_1 doi: 10.1103/PhysRevB.84.115205 – ident: e_1_2_8_87_1 doi: 10.1103/PhysRevB.76.045209 – ident: e_1_2_8_46_5 doi: 10.1103/PhysRevB.89.165305 – ident: e_1_2_8_118_3 doi: 10.1016/j.tsf.2007.10.063 – ident: e_1_2_8_25_7 doi: 10.1063/1.3499306 – ident: e_1_2_8_72_2 doi: 10.1016/j.jcrysgro.2008.09.151 – ident: e_1_2_8_8_1 doi: 10.1063/1.3159831 – ident: e_1_2_8_50_1 doi: 10.1063/1.5054091 – ident: e_1_2_8_166_2 doi: 10.1063/1.3699372 – ident: e_1_2_8_98_2 doi: 10.1016/j.tsf.2014.07.062 – ident: e_1_2_8_212_1 doi: 10.1039/D0TC01204A – ident: e_1_2_8_142_1 doi: 10.1186/s11671-017-1841-2 – ident: e_1_2_8_165_2 doi: 10.1063/1.5117771 – ident: e_1_2_8_194_3 doi: 10.1002/sdtp.12977 – ident: e_1_2_8_35_1 doi: 10.1103/PhysRevB.91.075208 – ident: e_1_2_8_158_2 doi: 10.1002/sdtp.13150 – ident: e_1_2_8_51_1 doi: 10.1038/srep26598 – ident: e_1_2_8_53_2 doi: 10.1126/sciadv.1602640 – ident: e_1_2_8_162_4 doi: 10.1063/1.5053762 – ident: e_1_2_8_65_2 doi: 10.1103/PhysRevApplied.1.051002 – ident: e_1_2_8_208_1 doi: 10.1021/acsnano.9b05715 – ident: e_1_2_8_48_3 doi: 10.1103/PhysRevB.89.115320 – ident: e_1_2_8_47_2 doi: 10.1103/PhysRevB.102.075301 – ident: e_1_2_8_90_1 doi: 10.1063/1.1337587 – ident: e_1_2_8_184_3 doi: 10.1109/LED.2018.2809796 – ident: e_1_2_8_214_1 doi: 10.1038/nmat1931 – ident: e_1_2_8_210_1 doi: 10.1021/acsami.6b06321 – ident: e_1_2_8_118_2 doi: 10.1016/j.apsusc.2016.03.133 – ident: e_1_2_8_16_1 doi: 10.1002/pssa.200983772 – ident: e_1_2_8_78_1 doi: 10.1103/PhysRevB.88.115111 – ident: e_1_2_8_105_1 doi: 10.1063/1.4833541 – ident: e_1_2_8_85_1 doi: 10.1103/PhysRevB.65.075111 – ident: e_1_2_8_168_2 doi: 10.1149/1.2903209 – ident: e_1_2_8_14_2 doi: 10.1088/0268-1242/20/4/004 – ident: e_1_2_8_108_1 doi: 10.1103/PhysRevB.78.132507 – ident: e_1_2_8_83_1 doi: 10.1038/40087 – ident: e_1_2_8_217_1 doi: 10.1039/C9MH01014A – ident: e_1_2_8_29_1 doi: 10.1103/PhysRevLett.110.056803 – ident: e_1_2_8_115_2 doi: 10.1063/1.3684543 – ident: e_1_2_8_120_2 doi: 10.1016/j.enbuild.2015.03.024 – ident: e_1_2_8_107_2 doi: 10.1021/acs.chemmater.5b03794 – ident: e_1_2_8_52_2 doi: 10.1038/nature07576 – ident: e_1_2_8_198_1 doi: 10.1016/j.tsf.2013.01.093 – ident: e_1_2_8_159_1 – ident: e_1_2_8_134_1 doi: 10.1021/acsami.0c04854 – ident: e_1_2_8_9_5 doi: 10.1103/PhysRevApplied.9.054039 – ident: e_1_2_8_200_5 doi: 10.1021/acsami.8b22458 – ident: e_1_2_8_99_1 doi: 10.1039/C7TC05331B – ident: e_1_2_8_25_2 doi: 10.1103/PhysRevLett.108.016802 – ident: e_1_2_8_85_3 doi: 10.1103/PhysRevB.87.115111 – ident: e_1_2_8_97_4 doi: 10.1080/00018737000101071 – ident: e_1_2_8_52_1 doi: 10.1038/nature02308 – ident: e_1_2_8_106_1 doi: 10.1021/cm071588c – ident: e_1_2_8_8_3 doi: 10.1002/aelm.201700082 – ident: e_1_2_8_3_2 doi: 10.1038/nature03090 – ident: e_1_2_8_8_2 doi: 10.1088/1468-6996/11/4/044305 – ident: e_1_2_8_172_1 doi: 10.1002/sdtp.11608 – ident: e_1_2_8_81_1 doi: 10.1126/science.aau8623 – ident: e_1_2_8_184_2 doi: 10.1109/LED.2017.2786237 – ident: e_1_2_8_169_3 doi: 10.1109/LED.2011.2181320 – ident: e_1_2_8_129_1 doi: 10.1016/j.apsusc.2016.11.239 – ident: e_1_2_8_98_1 doi: 10.1039/C6TC02137A – ident: e_1_2_8_18_1 doi: 10.1103/PhysRevB.28.4900 – ident: e_1_2_8_201_1 doi: 10.1002/aelm.201800843 – ident: e_1_2_8_115_1 doi: 10.1016/j.tsf.2007.11.079 – ident: e_1_2_8_42_1 doi: 10.1063/1.4967943 – ident: e_1_2_8_168_1 doi: 10.1063/1.2723543 – ident: e_1_2_8_187_3 doi: 10.1016/j.tsf.2015.09.025 – ident: e_1_2_8_55_1 doi: 10.1038/s41563-017-0002-4 – ident: e_1_2_8_158_1 doi: 10.1002/sdtp.10359 – ident: e_1_2_8_59_1 doi: 10.1063/1.4870536 – ident: e_1_2_8_64_1 doi: 10.1002/adma.201505021 – ident: e_1_2_8_13_1 doi: 10.1063/1.5109569 – ident: e_1_2_8_144_1 – ident: e_1_2_8_14_4 doi: 10.1103/PhysRevB.65.075207 – ident: e_1_2_8_119_2 doi: 10.1039/C9TC00195F – ident: e_1_2_8_184_4 doi: 10.1109/LED.2019.2936887 – ident: e_1_2_8_121_1 doi: 10.1016/S0040-6090(01)01303-7 – ident: e_1_2_8_44_1 doi: 10.1016/0022-3697(78)90183-X – ident: e_1_2_8_151_3 doi: 10.1088/0022-3727/41/9/092006 – ident: e_1_2_8_33_3 doi: 10.1103/PhysRevB.80.193202 – ident: e_1_2_8_6_2 doi: 10.1002/chem.202000090 – volume: 65 start-page: 4854 year: 2018 ident: e_1_2_8_157_1 publication-title: IEEE Trans. Electron Devices – ident: e_1_2_8_182_1 doi: 10.1021/acsami.0c09243 – ident: e_1_2_8_180_2 doi: 10.1109/LED.2010.2050576 – ident: e_1_2_8_135_2 doi: 10.1002/adma.201804690 – ident: e_1_2_8_182_2 doi: 10.1002/adfm.202002625 – ident: e_1_2_8_123_3 doi: 10.1038/nnano.2013.84 – ident: e_1_2_8_79_1 doi: 10.1063/1.91624 – ident: e_1_2_8_29_4 doi: 10.1002/smll.201903321 – ident: e_1_2_8_10_1 doi: 10.1126/science.1137430 – ident: e_1_2_8_110_1 doi: 10.1103/PhysRevMaterials.4.054603 – ident: e_1_2_8_65_1 doi: 10.1038/nature09720 – ident: e_1_2_8_84_2 doi: 10.1016/j.jcrysgro.2008.11.038 – ident: e_1_2_8_126_1 doi: 10.1039/C9MH01014A – ident: e_1_2_8_97_1 doi: 10.1016/j.matchemphys.2003.08.006 – ident: e_1_2_8_91_1 doi: 10.1063/1.1372636 – ident: e_1_2_8_155_3 doi: 10.1002/adfm.200700604 – ident: e_1_2_8_23_2 doi: 10.1063/1.3364131 – ident: e_1_2_8_79_3 doi: 10.1103/PhysRevLett.89.076406 – ident: e_1_2_8_177_1 doi: 10.1002/adfm.201902591 – ident: e_1_2_8_76_4 doi: 10.1103/PhysRevB.87.085128 – ident: e_1_2_8_153_1 doi: 10.1063/1.116501 – ident: e_1_2_8_97_3 doi: 10.1143/JPSJ.61.3385 – ident: e_1_2_8_124_2 doi: 10.1021/acs.chemrev.6b00179 – ident: e_1_2_8_171_2 doi: 10.1143/JJAP.51.03CB01 – ident: e_1_2_8_3_1 doi: 10.1126/science.1083212 – ident: e_1_2_8_124_3 doi: 10.1002/adma.201003188 – ident: e_1_2_8_187_2 doi: 10.1039/c3cp50197c – ident: e_1_2_8_119_1 doi: 10.1021/la015543g – ident: e_1_2_8_25_5 doi: 10.1103/PhysRevB.63.075205 – ident: e_1_2_8_29_3 doi: 10.1103/PhysRevB.90.155413 – ident: e_1_2_8_83_2 doi: 10.1557/mrs2000.148 – ident: e_1_2_8_141_1 doi: 10.1002/adfm.201500628 – ident: e_1_2_8_88_1 doi: 10.1063/1.1308103 – ident: e_1_2_8_154_1 doi: 10.1063/1.1843286 – ident: e_1_2_8_106_2 doi: 10.1103/PhysRevMaterials.1.021601 – ident: e_1_2_8_89_1 doi: 10.1063/1.1355673 – ident: e_1_2_8_54_1 doi: 10.1063/5.0005531 – ident: e_1_2_8_62_1 doi: 10.1016/0040-6090(79)90298-0 – ident: e_1_2_8_183_6 doi: 10.1109/TED.2019.2897813 – ident: e_1_2_8_78_2 doi: 10.1103/PhysRevLett.110.247601 – ident: e_1_2_8_117_2 doi: 10.1002/adfm.201701900 – volume: 30 start-page: 26 year: 2014 ident: e_1_2_8_179_1 publication-title: Inf. Disp. – ident: e_1_2_8_15_1 doi: 10.1103/PhysRevB.75.035212 – ident: e_1_2_8_200_4 doi: 10.1039/C7TC00169J – ident: e_1_2_8_168_3 doi: 10.1063/1.2838380 – ident: e_1_2_8_122_2 doi: 10.1039/C5TA09000H – ident: e_1_2_8_14_6 doi: 10.1103/PhysRev.154.785 – ident: e_1_2_8_9_1 doi: 10.1063/1.2927306 – ident: e_1_2_8_37_3 doi: 10.1063/1.2911723 – ident: e_1_2_8_25_3 doi: 10.1103/PhysRevLett.88.095501 – ident: e_1_2_8_87_2 doi: 10.1103/PhysRevLett.103.096405 – ident: e_1_2_8_202_1 doi: 10.1039/C7TC01953J – ident: e_1_2_8_67_1 doi: 10.1063/1.1695596 – ident: e_1_2_8_151_4 doi: 10.1021/nl0712217 – ident: e_1_2_8_139_1 doi: 10.1039/c3nr02320f – volume: 32 start-page: 16 year: 2016 ident: e_1_2_8_12_1 publication-title: Inf. Disp. – ident: e_1_2_8_156_2 doi: 10.1002/admi.201900277 – ident: e_1_2_8_84_1 doi: 10.1063/1.3026539 – ident: e_1_2_8_162_3 doi: 10.1063/1.4985627 – ident: e_1_2_8_145_1 doi: 10.1002/adma.201103228 – ident: e_1_2_8_117_1 doi: 10.1021/acsami.7b12968 – ident: e_1_2_8_209_1 doi: 10.1002/adma.201405400 – ident: e_1_2_8_122_3 doi: 10.1021/acsami.6b02137 – ident: e_1_2_8_135_4 doi: 10.1109/JPROC.2012.2190168 – ident: e_1_2_8_30_1 doi: 10.1063/1.3510471 – ident: e_1_2_8_96_1 doi: 10.1103/PhysRevLett.53.2339 – ident: e_1_2_8_175_2 doi: 10.1109/LED.2012.2190036 – ident: e_1_2_8_23_1 doi: 10.1109/JDT.2009.2022064 – ident: e_1_2_8_120_1 doi: 10.1016/j.tsf.2005.08.259 – ident: e_1_2_8_69_1 doi: 10.1134/1.1575357 – ident: e_1_2_8_191_1 doi: 10.1021/acsami.7b02838 – ident: e_1_2_8_200_2 doi: 10.1063/1.4895830 – ident: e_1_2_8_125_2 doi: 10.1016/j.rser.2018.09.011 – ident: e_1_2_8_165_1 doi: 10.1063/1.3633100 – ident: e_1_2_8_43_2 doi: 10.1149/2.015409jss – ident: e_1_2_8_181_2 doi: 10.1021/acsami.0c01530 – ident: e_1_2_8_102_1 doi: 10.1021/cm401343a – ident: e_1_2_8_149_2 doi: 10.1109/PROC.1968.6813 – ident: e_1_2_8_142_3 doi: 10.1063/1.3656973 – ident: e_1_2_8_21_2 doi: 10.1063/1.1991994 – ident: e_1_2_8_147_1 doi: 10.1063/1.1542677 – ident: e_1_2_8_203_1 doi: 10.1002/chem.202000678 – ident: e_1_2_8_194_1 doi: 10.1109/LED.2019.2893194 – ident: e_1_2_8_30_2 doi: 10.1103/PhysRevMaterials.2.074601 – start-page: 2017 volume-title: 2017 IEEE Int. Electron Devices Meeting (IEDM) ident: e_1_2_8_191_2 – ident: e_1_2_8_116_1 doi: 10.1063/1.4829672 – ident: e_1_2_8_20_2 doi: 10.1063/1.1660648 – ident: e_1_2_8_127_1 doi: 10.1021/acs.chemmater.9b04845 – ident: e_1_2_8_156_1 doi: 10.1109/LED.2018.2791633 – ident: e_1_2_8_167_1 doi: 10.1063/1.4790619 – ident: e_1_2_8_19_2 doi: 10.1088/0953-8984/23/33/334211 – start-page: 76 year: 2007 ident: e_1_2_8_26_1 publication-title: Phys. Rev. B – ident: e_1_2_8_34_1 doi: 10.1149/2.011301jss – ident: e_1_2_8_53_1 doi: 10.1002/advs.201500058 – ident: e_1_2_8_28_2 doi: 10.1063/1.3642962 – ident: e_1_2_8_14_1 doi: 10.1039/b408864f – ident: e_1_2_8_33_1 doi: 10.1038/nmat1795 – ident: e_1_2_8_47_1 doi: 10.1103/PhysRevLett.101.116808 – ident: e_1_2_8_28_5 doi: 10.1063/1.3054175 – ident: e_1_2_8_28_3 doi: 10.1063/1.4941429 – ident: e_1_2_8_72_1 doi: 10.1103/PhysRevLett.88.076801 – ident: e_1_2_8_48_1 doi: 10.1063/1.3596449 – ident: e_1_2_8_189_1 doi: 10.1002/adma.201802379 – ident: e_1_2_8_5_1 doi: 10.1002/jsid.648 – ident: e_1_2_8_57_1 doi: 10.1116/1.582792 – ident: e_1_2_8_183_1 doi: 10.1002/adma.201101410 – ident: e_1_2_8_156_3 doi: 10.1021/acsami.9b03331 – ident: e_1_2_8_11_1 doi: 10.1126/science.1146006 – ident: e_1_2_8_122_1 doi: 10.1016/j.tsf.2014.02.042 – start-page: 1 volume-title: 2008 IEEE Int. Electron Devices Meeting year: 2008 ident: e_1_2_8_175_1 – ident: e_1_2_8_186_1 doi: 10.1063/1.2939006 – ident: e_1_2_8_190_1 doi: 10.1002/adma.201202758 – ident: e_1_2_8_183_3 doi: 10.1021/nn400852r – ident: e_1_2_8_46_4 doi: 10.1063/1.4775691 – ident: e_1_2_8_71_1 doi: 10.1063/1.5006941 – ident: e_1_2_8_46_2 doi: 10.1063/1.3059569 – ident: e_1_2_8_157_2 doi: 10.1109/LED.2019.2931089 – ident: e_1_2_8_185_1 doi: 10.1002/sdtp.13160 – ident: e_1_2_8_56_2 doi: 10.1116/1.571055 – ident: e_1_2_8_55_2 doi: 10.1002/adma.201906003 – ident: e_1_2_8_139_2 doi: 10.1038/srep33074 – ident: e_1_2_8_196_1 doi: 10.1002/adfm.201904588 – ident: e_1_2_8_5_2 – ident: e_1_2_8_20_1 doi: 10.1063/1.1805722 – ident: e_1_2_8_207_1 doi: 10.1073/pnas.1901492116 – ident: e_1_2_8_169_1 doi: 10.1149/1.3168522 – ident: e_1_2_8_1_1 doi: 10.1038/nmat4599 – ident: e_1_2_8_74_1 doi: 10.1038/nmat4303 – ident: e_1_2_8_59_2 doi: 10.1063/1.3583446 – ident: e_1_2_8_206_1 doi: 10.1073/pnas.1501548112 – ident: e_1_2_8_196_2 doi: 10.1002/adma.201907166 – ident: e_1_2_8_24_2 doi: 10.1063/1.1662011 – ident: e_1_2_8_200_3 doi: 10.1021/acsami.5b12819 – ident: e_1_2_8_197_1 doi: 10.1080/15980316.2020.1714762 – ident: e_1_2_8_14_5 doi: 10.1103/PhysRevB.74.195123 – ident: e_1_2_8_92_1 doi: 10.1063/1.121761 – ident: e_1_2_8_198_2 doi: 10.1021/am5072139 – ident: e_1_2_8_184_5 doi: 10.1109/TED.2018.2887270 – ident: e_1_2_8_11_3 doi: 10.1021/acsnano.7b01964 – ident: e_1_2_8_143_1 doi: 10.1038/s41928-019-0353-8 – ident: e_1_2_8_132_1 doi: 10.1002/aelm.201700476 – ident: e_1_2_8_193_1 doi: 10.1002/sdtp.12978 – ident: e_1_2_8_174_1 doi: 10.1002/sdtp.11860 – ident: e_1_2_8_124_1 doi: 10.1088/1468-6996/14/3/035004 – ident: e_1_2_8_130_1 doi: 10.1016/j.apsusc.2007.07.146 – ident: e_1_2_8_180_1 doi: 10.1063/1.3026539 – ident: e_1_2_8_114_3 – ident: e_1_2_8_46_1 doi: 10.1103/PhysRevB.78.165127 – ident: e_1_2_8_200_1 doi: 10.1038/nature11434 – ident: e_1_2_8_135_3 doi: 10.1002/aelm.201600529 – ident: e_1_2_8_39_1 doi: 10.1063/1.5029921 – ident: e_1_2_8_60_1 doi: 10.1103/RevModPhys.54.437 – ident: e_1_2_8_109_1 doi: 10.1002/pssa.201329349 – ident: e_1_2_8_4_1 – ident: e_1_2_8_19_1 doi: 10.1063/1.3480416 – ident: e_1_2_8_24_3 doi: 10.1016/0022-4596(73)90007-8 – ident: e_1_2_8_43_1 doi: 10.1116/1.580895 – ident: e_1_2_8_155_1 doi: 10.1063/1.1862767 – ident: e_1_2_8_162_2 doi: 10.1063/1.4898069 – ident: e_1_2_8_187_4 doi: 10.1063/1.4953222 – ident: e_1_2_8_25_4 doi: 10.1103/PhysRevLett.101.055502 – ident: e_1_2_8_93_1 doi: 10.1103/PhysRevB.100.085126 – ident: e_1_2_8_117_3 doi: 10.1039/C8SC02152J – ident: e_1_2_8_100_2 doi: 10.1002/inf2.12076 – ident: e_1_2_8_17_1 doi: 10.1103/PhysRev.93.1204 – ident: e_1_2_8_49_2 doi: 10.1103/PhysRevB.81.075211 – ident: e_1_2_8_192_1 doi: 10.1039/C6TC03234F – ident: e_1_2_8_79_2 doi: 10.1063/1.110563 – ident: e_1_2_8_36_1 doi: 10.1038/ncomms4515 – ident: e_1_2_8_25_1 doi: 10.1103/PhysRevLett.98.045501 – ident: e_1_2_8_130_2 doi: 10.1016/j.ceramint.2019.09.201 – ident: e_1_2_8_141_2 doi: 10.1007/s10854-018-0480-4 – ident: e_1_2_8_194_2 doi: 10.1109/LED.2019.2941548 – ident: e_1_2_8_211_1 doi: 10.1039/C8TC04594A – ident: e_1_2_8_123_2 doi: 10.1039/C7CS00192D – ident: e_1_2_8_151_2 doi: 10.1063/1.2179373 – ident: e_1_2_8_86_1 doi: 10.1088/0022-3719/9/8/014 – ident: e_1_2_8_68_1 doi: 10.1088/0953-8984/23/33/334214 – ident: e_1_2_8_10_2 doi: 10.1038/nmat2874 – ident: e_1_2_8_114_2 – ident: e_1_2_8_80_1 doi: 10.1143/APEX.3.121004 – ident: e_1_2_8_88_2 doi: 10.1021/cm001153o – ident: e_1_2_8_57_2 doi: 10.1116/1.568989 – ident: e_1_2_8_104_1 doi: 10.1063/1.4731271 – ident: e_1_2_8_149_1 doi: 10.1016/0038-1101(64)90057-7 – ident: e_1_2_8_4_2 – ident: e_1_2_8_95_2 doi: 10.1103/PhysRevB.91.155129 – ident: e_1_2_8_148_1 doi: 10.1016/S0026-2714(02)00027-6 – ident: e_1_2_8_183_4 doi: 10.1109/TNANO.2017.2719946 – ident: e_1_2_8_46_6 doi: 10.1103/PhysRevLett.104.256803 – ident: e_1_2_8_63_1 doi: 10.1021/acs.jpcc.8b08623 – ident: e_1_2_8_1_2 doi: 10.1038/nphoton.2012.282 – ident: e_1_2_8_184_1 doi: 10.1063/1.3478213 – ident: e_1_2_8_56_1 doi: 10.1103/PhysRev.127.150 – ident: e_1_2_8_183_2 doi: 10.1063/1.4833541 – ident: e_1_2_8_123_1 doi: 10.1021/nl073296g – ident: e_1_2_8_76_1 doi: 10.1103/PhysRevB.80.241107 – ident: e_1_2_8_181_1 doi: 10.1002/sdtp.13167 – ident: e_1_2_8_187_1 doi: 10.1088/0957-4484/21/13/134009 – ident: e_1_2_8_75_1 doi: 10.1038/nphys2079 – ident: e_1_2_8_154_4 doi: 10.1063/1.2458457 – volume: 30 start-page: 1 year: 2019 ident: e_1_2_8_6_1 publication-title: Adv. Funct. Mater. – ident: e_1_2_8_102_3 doi: 10.1063/1.4819068 – ident: e_1_2_8_146_1 doi: 10.1002/0470068329 – ident: e_1_2_8_169_4 doi: 10.1149/2.0231507jss – ident: e_1_2_8_7_3 doi: 10.1063/1.5142999 – ident: e_1_2_8_152_1 doi: 10.1063/1.2749177 – ident: e_1_2_8_163_1 doi: 10.1889/JSID18.10.789 – ident: e_1_2_8_215_1 doi: 10.1002/adfm.201970323 – ident: e_1_2_8_136_1 doi: 10.1063/1.1383568 – ident: e_1_2_8_25_6 doi: 10.1103/PhysRevB.77.245202 – ident: e_1_2_8_7_1 doi: 10.1088/0953-8984/28/38/383002 – ident: e_1_2_8_155_2 doi: 10.1063/1.2335372 – ident: e_1_2_8_27_2 doi: 10.1103/PhysRevMaterials.3.074604 – ident: e_1_2_8_175_3 doi: 10.1063/1.4895782 – ident: e_1_2_8_125_1 doi: 10.1021/nn901587x – ident: e_1_2_8_151_1 doi: 10.1088/0022-3727/37/20/006 – volume: 144 start-page: 763 year: 1966 ident: e_1_2_8_97_2 publication-title: C. Crevecoe, Phys. Rev. – ident: e_1_2_8_216_1 doi: 10.1021/cm901127r – ident: e_1_2_8_22_2 doi: 10.1063/1.119233 – ident: e_1_2_8_112_1 doi: 10.1038/s41467-020-18006-6 – ident: e_1_2_8_114_1 – ident: e_1_2_8_188_1 doi: 10.1002/adma.201701599 – ident: e_1_2_8_58_1 doi: 10.1103/PhysRevB.73.245312 – ident: e_1_2_8_61_1 doi: 10.1021/nl0489283 – ident: e_1_2_8_183_5 doi: 10.1063/1.5037306 – ident: e_1_2_8_204_1 doi: 10.1038/nmat3011 – ident: e_1_2_8_116_2 doi: 10.1039/C5TC02144H – ident: e_1_2_8_48_2 doi: 10.1557/jmr.2012.172 – ident: e_1_2_8_76_3 doi: 10.1016/j.surfrep.2010.09.001 – ident: e_1_2_8_107_1 doi: 10.1038/ncomms3292 – ident: e_1_2_8_14_7 doi: 10.1103/PhysRevB.4.4539 – ident: e_1_2_8_166_1 doi: 10.1016/j.tsf.2009.09.193 – ident: e_1_2_8_2_1 doi: 10.1039/C6TC01881E – ident: e_1_2_8_48_4 doi: 10.1103/PhysRevB.101.085121 – ident: e_1_2_8_169_2 doi: 10.1889/1.3499825 – ident: e_1_2_8_7_2 doi: 10.1002/adma.201503080 – ident: e_1_2_8_200_6 doi: 10.1002/adfm.201906022 – ident: e_1_2_8_100_1 doi: 10.1002/adma.201702176 – ident: e_1_2_8_135_1 doi: 10.1002/aelm.201700412 – ident: e_1_2_8_41_1 doi: 10.1063/1.4837955 – ident: e_1_2_8_101_1 doi: 10.1002/adma.201701599 – volume: 23 start-page: 8 year: 2011 ident: e_1_2_8_14_3 publication-title: J. Phys.: Condens. Matter. – ident: e_1_2_8_9_4 doi: 10.1063/1.4832076 – ident: e_1_2_8_27_1 doi: 10.1103/PhysRevLett.103.245501 – ident: e_1_2_8_95_1 doi: 10.1002/adma.201501959 – ident: e_1_2_8_33_2 doi: 10.1103/PhysRevLett.85.1012 – ident: e_1_2_8_171_1 doi: 10.1002/j.2168-0159.2012.tb05894.x – ident: e_1_2_8_40_1 doi: 10.1103/PhysRevMaterials.4.085201 – ident: e_1_2_8_131_1 doi: 10.1038/nmat4493 – ident: e_1_2_8_176_1 doi: 10.1002/adma.201804120 – ident: e_1_2_8_3_3 doi: 10.1038/s41928-018-0106-0 – ident: e_1_2_8_154_5 doi: 10.1002/aelm.202000195 – ident: e_1_2_8_76_2 doi: 10.1103/PhysRevB.84.245124 – ident: e_1_2_8_140_1 doi: 10.1038/s41598-018-31927-z – ident: e_1_2_8_154_2 doi: 10.1016/j.sse.2006.03.004 – ident: e_1_2_8_38_1 doi: 10.1063/1.3309694 – ident: e_1_2_8_113_1 doi: 10.1073/pnas.1613643113 – ident: e_1_2_8_194_4 doi: 10.1002/adem.201901497 – ident: e_1_2_8_29_2 doi: 10.1063/1.2927306 – ident: e_1_2_8_77_1 doi: 10.1038/ncomms3351 – ident: e_1_2_8_9_2 doi: 10.1063/1.3464964 – ident: e_1_2_8_205_1 doi: 10.1021/am403585n – ident: e_1_2_8_22_1 doi: 10.7567/JJAP.55.1202A2 – volume: 4 start-page: 3586 year: 2014 ident: e_1_2_8_66_1 publication-title: A. F. Santander‐Syro, Sci. Rep. – ident: e_1_2_8_133_1 doi: 10.1038/s42005-020-0372-9 – ident: e_1_2_8_167_2 doi: 10.1016/j.cossms.2013.07.002 – ident: e_1_2_8_21_1 doi: 10.1016/0040-6090(96)08671-3 – ident: e_1_2_8_41_2 doi: 10.1039/C2CE26413G – ident: e_1_2_8_70_1 doi: 10.1103/PhysRevB.77.045316 – ident: e_1_2_8_170_1 – ident: e_1_2_8_49_1 doi: 10.1016/0039-6028(76)90107-2 – ident: e_1_2_8_138_2 doi: 10.1039/C9NR09383D – ident: e_1_2_8_62_2 doi: 10.1103/PhysRevB.77.155107 – ident: e_1_2_8_195_1 doi: 10.1109/JPROC.2012.2190168 – ident: e_1_2_8_41_3 doi: 10.1063/1.3284960 – ident: e_1_2_8_158_4 doi: 10.1109/TED.2020.2968592 – ident: e_1_2_8_33_6 doi: 10.1063/1.5108790 – ident: e_1_2_8_46_3 doi: 10.1063/1.3562141 – ident: e_1_2_8_213_1 doi: 10.1021/jacs.9b11668 – ident: e_1_2_8_195_3 doi: 10.1002/adma.201901408 – ident: e_1_2_8_23_3 doi: 10.1016/j.tsf.2004.11.223 – ident: e_1_2_8_49_3 doi: 10.1103/PhysRevMaterials.2.051601 – ident: e_1_2_8_9_3 doi: 10.1063/1.3560769 – ident: e_1_2_8_173_1 doi: 10.1002/jsid.206 – ident: e_1_2_8_118_1 doi: 10.1016/j.tsf.2008.09.059 – ident: e_1_2_8_31_1 doi: 10.1103/PhysRevResearch.2.033358 – ident: e_1_2_8_11_4 doi: 10.1063/1.5025704 – ident: e_1_2_8_11_2 doi: 10.1103/PhysRevLett.110.056803 – ident: e_1_2_8_28_1 doi: 10.1063/1.2833432 |
SSID | ssj0009606 |
Score | 2.7225127 |
SecondaryResourceType | review_article |
Snippet | Wide bandgap oxide semiconductors constitute a unique class of materials that combine properties of electrical conductivity and optical transparency. They are... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2006230 |
SubjectTerms | Design optimization Electrical resistivity Electron gas electronic structure Electronics Energy gap Flexible components flexible electronics Materials science Optical properties Optoelectronic devices oxide semiconductor P-type semiconductors Photovoltaic cells Physical properties Principles Semiconductor devices Semiconductors Solar cells thin film transistor Thin film transistors transparent conducting oxide (TCO) Transport properties |
Title | Wide Bandgap Oxide Semiconductors: from Materials Physics to Optoelectronic Devices |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202006230 https://www.ncbi.nlm.nih.gov/pubmed/33797084 https://www.proquest.com/docview/2609536778 https://www.proquest.com/docview/2508573712 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3fS90wFMcPwyd9mFM37fxBBoM9VdvmRxPfrjqRgRPmZL6V_BxDaS_eXpD99etJ7-31boyBeyxNaJrk5HzbnHwOwHuZySBUHlJlDG4ziiw1jMvUF1oGm3t0YRht8Vlc3LBPt_z2ySn-ng8x_HBDy4jrNRq4NpOjBTRUu8gNwk_iTkZ3izAGbKEq-rLgR6E8j7A9ylMlmJxTG7PiaLn6slf6Q2ouK9foes7XQc8b3Uec3B1OW3Nof_7Gc_yft3oFL2e6lIz6ibQBL3y9CWtPaIVbcP3th_PkRNfuux6Tq0e8usbY-qZGaGzzMDkmeFqFXOq2n9ckxpfaCWkbcjVum0XOHXLm4xL1Gm7OP349vUhnORlSy0qVpYXjXONequOBCaNsHihlThvLbecErQlMdi7faS2dMUGbEErJDTdCScu8oG9gpW5qvwMkC1wH4YRQJWdWMm0U9aa0NssDY4omkM7HpLIzYDnmzbivetRyUWFnVUNnJfBhKD_uUR1_Lbk3H-JqZrKTqojoPeTpJfBuuN0ZG-6g6No3064Mx4QAtMyLBLb7qTE8itJSlZlkCRRxgP_Rhmp0djkart4-p9IurBYYYRODa_ZgpX2Y-v1OIrXmIJrBL_H2Bsw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEIBHUA7AgfcjUMBISJzSJvEjNreFUi3QbSXaCm6Rn6gqSlbdrIT49WScTZYFISQ4WrFlx_Z4xvb4G4AXMpNBqDykyhi8ZhRZahiXqS-0DDb3qMLQ2-JQTE_Z-8988CbEtzA9H2I8cEPJiOs1CjgeSO-uqaHaRXAQ7ok7O_oyXMGw3nFX9XFNkEIDPeL2KE-VYHLgNmbF7mb5Tb30m7G5abtG5bN_E8zQ7N7n5Hxn2Zod-_0XouN__dctuLEyTcmkn0u34ZKv78D1n4CFd-H405nz5LWu3Rc9J0ffMHWM7vVNjdzY5mLxiuCDFTLTbT-1SXQxtQvSNuRo3jbrsDtkz8dV6h6c7r89eTNNV2EZUstKlaWF41zjdarjgQmjbB4oZU4by22nB60JTHZa32ktnTFBmxBKyQ03QknLvKD3Yatuav8QSBa4DsIJoUrOrGTaKOpNaW2WB8YUTSAdBqWyK2Y5hs74WvW05aLCzqrGzkrg5Zh_3tM6_phzexjjaiW1i6qI9D1E6iXwfPzcyRteoujaN8suD8eYALTMiwQe9HNjrIrSUpWZZAkUcYT_0oZqsjebjKlH_1LoGVydnswOqoN3hx8ew7UCHW6ir802bLUXS_-ks5ha8zTKxA9hlQrn |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEIBHUCQEB96F0BaMhMQpbRI_Yve2dFmVR1tEqegt8hMhULLqZiXEryfj7Ga7IIQERyu24tgznok9_gbgucxkECoPqTIGjxlFlhrGZeoLLYPNPZowjLY4Fodn7M05P790i7_nQwwbbqgZcb1GBZ-6sLeChmoXuUH4S9y50VfhGhOZRLkef1gBpNA_j7Q9ylMlmFxiG7Nib739uln6zddcd12j7ZncBr3sdR9y8nV33ppd--MXoOP_fNYduLVwTMmol6S7cMXX9-DmJVzhfTj99MV58lLX7rOekpPvWDrF4PqmRmpsczHbJ3hdhRzpthdsEgNM7Yy0DTmZts0q6Q4Z-7hGPYCzyauPB4fpIilDalmpsrRwnGs8THU8MGGUzQOlzGljue2soDWByc7mO62lMyZoE0IpueFGKGmZF3QTNuqm9o-AZIHrIJwQquTMSqaNot6U1mZ5YEzRBNLlnFR2QSzHxBnfqp61XFQ4WNUwWAm8GOpPe1bHH2tuL6e4WujsrCoiew-Begk8Gx532oZHKLr2zbyrwzEjAC3zIoGHvWgMr6K0VGUmWQJFnOC_9KEajY9GQ-nxvzR6CtffjyfVu9fHb7fgRoHRNjHQZhs22ou53-ncpdY8iRrxE0vbCZ8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wide+Bandgap+Oxide+Semiconductors%3A+from+Materials+Physics+to+Optoelectronic+Devices&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Shi%2C+Jueli&rft.au=Zhang%2C+Jiaye&rft.au=Yang%2C+Lu&rft.au=Qu%2C+Mei&rft.date=2021-12-01&rft.eissn=1521-4095&rft.spage=e2006230&rft_id=info:doi/10.1002%2Fadma.202006230&rft_id=info%3Apmid%2F33797084&rft.externalDocID=33797084 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |