Wide Bandgap Oxide Semiconductors: from Materials Physics to Optoelectronic Devices

Wide bandgap oxide semiconductors constitute a unique class of materials that combine properties of electrical conductivity and optical transparency. They are being widely used as key materials in optoelectronic device applications, including flat‐panel displays, solar cells, OLED, and emerging flex...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 33; no. 50; pp. e2006230 - n/a
Main Authors Shi, Jueli, Zhang, Jiaye, Yang, Lu, Qu, Mei, Qi, Dong‐Chen, Zhang, Kelvin H. L.
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.12.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Wide bandgap oxide semiconductors constitute a unique class of materials that combine properties of electrical conductivity and optical transparency. They are being widely used as key materials in optoelectronic device applications, including flat‐panel displays, solar cells, OLED, and emerging flexible and transparent electronics. In this article, an up‐to‐date review on both the fundamental understanding of materials physics of oxide semiconductors, and recent research progress on design of new materials and high‐performing thin film transistor (TFT) devices in the context of fundamental understanding is presented. In particular, an in depth overview is first provided on current understanding of the electronic structures, defect and doping chemistry, optical and transport properties of oxide semiconductors, which provide essential guiding principles for new material design and device optimization. With these principles, recent advances in design of p‐type oxide semiconductors, new approaches for achieving cost‐effective transparent (flexible) electrodes, and the creation of high mobility 2D electron gas (2DEG) at oxide surfaces and interfaces with a wealth of fascinating physical properties of great potential for novel device design are then reviewed. Finally, recent progress and perspective of oxide TFT based on new oxide semiconductors, 2DEG, and low‐temperature solution processed oxide semiconductor for flexible electronics will be reviewed. Wide‐bandgap oxide semiconductors uniquely combine electrical conductivity and optical transparency and are widely used in optoelectronic devices. The materials physics of wide‐bandgap oxide semiconductors, the recent progress in the design of new materials and novel thin‐film transistor (TFT) devices, and current challenges and perspectives are reviewed.
AbstractList Wide bandgap oxide semiconductors constitute a unique class of materials that combine properties of electrical conductivity and optical transparency. They are being widely used as key materials in optoelectronic device applications, including flat‐panel displays, solar cells, OLED, and emerging flexible and transparent electronics. In this article, an up‐to‐date review on both the fundamental understanding of materials physics of oxide semiconductors, and recent research progress on design of new materials and high‐performing thin film transistor (TFT) devices in the context of fundamental understanding is presented. In particular, an in depth overview is first provided on current understanding of the electronic structures, defect and doping chemistry, optical and transport properties of oxide semiconductors, which provide essential guiding principles for new material design and device optimization. With these principles, recent advances in design of p‐type oxide semiconductors, new approaches for achieving cost‐effective transparent (flexible) electrodes, and the creation of high mobility 2D electron gas (2DEG) at oxide surfaces and interfaces with a wealth of fascinating physical properties of great potential for novel device design are then reviewed. Finally, recent progress and perspective of oxide TFT based on new oxide semiconductors, 2DEG, and low‐temperature solution processed oxide semiconductor for flexible electronics will be reviewed.
Wide bandgap oxide semiconductors constitute a unique class of materials that combine properties of electrical conductivity and optical transparency. They are being widely used as key materials in optoelectronic device applications, including flat‐panel displays, solar cells, OLED, and emerging flexible and transparent electronics. In this article, an up‐to‐date review on both the fundamental understanding of materials physics of oxide semiconductors, and recent research progress on design of new materials and high‐performing thin film transistor (TFT) devices in the context of fundamental understanding is presented. In particular, an in depth overview is first provided on current understanding of the electronic structures, defect and doping chemistry, optical and transport properties of oxide semiconductors, which provide essential guiding principles for new material design and device optimization. With these principles, recent advances in design of p‐type oxide semiconductors, new approaches for achieving cost‐effective transparent (flexible) electrodes, and the creation of high mobility 2D electron gas (2DEG) at oxide surfaces and interfaces with a wealth of fascinating physical properties of great potential for novel device design are then reviewed. Finally, recent progress and perspective of oxide TFT based on new oxide semiconductors, 2DEG, and low‐temperature solution processed oxide semiconductor for flexible electronics will be reviewed. Wide‐bandgap oxide semiconductors uniquely combine electrical conductivity and optical transparency and are widely used in optoelectronic devices. The materials physics of wide‐bandgap oxide semiconductors, the recent progress in the design of new materials and novel thin‐film transistor (TFT) devices, and current challenges and perspectives are reviewed.
Wide bandgap oxide semiconductors constitute a unique class of materials that combine properties of electrical conductivity and optical transparency. They are being widely used as key materials in optoelectronic device applications, including flat-panel displays, solar cells, OLED, and emerging flexible and transparent electronics. In this article, an up-to-date review on both the fundamental understanding of materials physics of oxide semiconductors, and recent research progress on design of new materials and high-performing thin film transistor (TFT) devices in the context of fundamental understanding is presented. In particular, an in depth overview is first provided on current understanding of the electronic structures, defect and doping chemistry, optical and transport properties of oxide semiconductors, which provide essential guiding principles for new material design and device optimization. With these principles, recent advances in design of p-type oxide semiconductors, new approaches for achieving cost-effective transparent (flexible) electrodes, and the creation of high mobility 2D electron gas (2DEG) at oxide surfaces and interfaces with a wealth of fascinating physical properties of great potential for novel device design are then reviewed. Finally, recent progress and perspective of oxide TFT based on new oxide semiconductors, 2DEG, and low-temperature solution processed oxide semiconductor for flexible electronics will be reviewed.Wide bandgap oxide semiconductors constitute a unique class of materials that combine properties of electrical conductivity and optical transparency. They are being widely used as key materials in optoelectronic device applications, including flat-panel displays, solar cells, OLED, and emerging flexible and transparent electronics. In this article, an up-to-date review on both the fundamental understanding of materials physics of oxide semiconductors, and recent research progress on design of new materials and high-performing thin film transistor (TFT) devices in the context of fundamental understanding is presented. In particular, an in depth overview is first provided on current understanding of the electronic structures, defect and doping chemistry, optical and transport properties of oxide semiconductors, which provide essential guiding principles for new material design and device optimization. With these principles, recent advances in design of p-type oxide semiconductors, new approaches for achieving cost-effective transparent (flexible) electrodes, and the creation of high mobility 2D electron gas (2DEG) at oxide surfaces and interfaces with a wealth of fascinating physical properties of great potential for novel device design are then reviewed. Finally, recent progress and perspective of oxide TFT based on new oxide semiconductors, 2DEG, and low-temperature solution processed oxide semiconductor for flexible electronics will be reviewed.
Author Shi, Jueli
Qu, Mei
Yang, Lu
Zhang, Jiaye
Zhang, Kelvin H. L.
Qi, Dong‐Chen
Author_xml – sequence: 1
  givenname: Jueli
  surname: Shi
  fullname: Shi, Jueli
  organization: Xiamen University
– sequence: 2
  givenname: Jiaye
  surname: Zhang
  fullname: Zhang, Jiaye
  organization: Xiamen University
– sequence: 3
  givenname: Lu
  surname: Yang
  fullname: Yang, Lu
  organization: Xiamen University
– sequence: 4
  givenname: Mei
  surname: Qu
  fullname: Qu, Mei
  organization: Xiamen University
– sequence: 5
  givenname: Dong‐Chen
  surname: Qi
  fullname: Qi, Dong‐Chen
  organization: Queensland University of Technology
– sequence: 6
  givenname: Kelvin H. L.
  orcidid: 0000-0001-9352-6236
  surname: Zhang
  fullname: Zhang, Kelvin H. L.
  email: kelvinzhang@xmu.edu.cn
  organization: Xiamen University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33797084$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtrFEEURguJmMno1qU0uHHTk9v16i53Y-IjkDBCFJdFPbVCd9dYVa3Ov7eHSRQCIavLhXM-Lvc7QUdjHB1CLxtYNQD4VNlBrTBgAI4JPEGLhuGmpiDYEVqAIKwWnHbH6CTnGwAQHPgzdExIK1ro6AJdfwvWVe_UaL-rbbX5s9-u3RBMHO1kSkz5beVTHKorVVwKqs_V5x-7HEyuSqw22xJd70xJcQymOne_gnH5OXrqZ9C9uJ1L9PXD-y9nn-rLzceLs_VlbWgroMaWMUU5MMs85VqYxhNCrdKGmQYToz3tOG-sUp3V2ivtfdsxzTQXnaGOkyV6c8jdpvhzcrnIIWTj-l6NLk5ZYgYda0k7hy3R63voTZzSOF8nMZ-fRXjbdjP16paa9OCs3KYwqLSTd--aAXoATIo5J-elCUWVEMeSVOhlA3Lfity3Iv-1Mmure9pd8oOCOAi_Q-92j9ByfX61_u_-BaBxnwg
CitedBy_id crossref_primary_10_1002_aelm_202300032
crossref_primary_10_3390_electronics11182822
crossref_primary_10_15251_DJNB_2024_193_1309
crossref_primary_10_1016_j_jallcom_2022_163876
crossref_primary_10_1002_adma_202416952
crossref_primary_10_1016_j_xcrp_2022_100812
crossref_primary_10_1021_acsami_4c19835
crossref_primary_10_1002_ange_202502536
crossref_primary_10_1016_j_tsf_2024_140467
crossref_primary_10_1002_adma_202307393
crossref_primary_10_1007_s10904_024_03103_6
crossref_primary_10_1109_JSEN_2024_3388471
crossref_primary_10_1557_s43578_021_00377_1
crossref_primary_10_1016_j_solmat_2024_113211
crossref_primary_10_3390_app14072816
crossref_primary_10_1021_acsami_2c13312
crossref_primary_10_1016_j_mtcomm_2024_108054
crossref_primary_10_1039_D4TC01392A
crossref_primary_10_1021_acsaelm_2c01670
crossref_primary_10_1088_2053_1591_ad4baa
crossref_primary_10_1016_j_optlastec_2022_108675
crossref_primary_10_1109_TED_2022_3145328
crossref_primary_10_1007_s12633_022_02079_7
crossref_primary_10_1063_5_0188101
crossref_primary_10_1016_j_surfin_2023_103751
crossref_primary_10_1109_TED_2023_3299896
crossref_primary_10_1039_D1TC02547C
crossref_primary_10_1039_D3TC01874A
crossref_primary_10_3390_nano13142054
crossref_primary_10_1016_j_cap_2024_08_016
crossref_primary_10_1016_j_materresbull_2024_113222
crossref_primary_10_1109_TNANO_2024_3413794
crossref_primary_10_1016_j_egyai_2022_100210
crossref_primary_10_1063_5_0213093
crossref_primary_10_1002_smll_202300730
crossref_primary_10_1021_acsaelm_2c00326
crossref_primary_10_1007_s11082_023_05499_w
crossref_primary_10_1016_j_jallcom_2021_163456
crossref_primary_10_20517_ss_2024_28
crossref_primary_10_2320_matertrans_MT_M2024131
crossref_primary_10_1002_adma_202410952
crossref_primary_10_1038_s43246_024_00729_4
crossref_primary_10_1063_5_0135162
crossref_primary_10_1149_2754_2726_ada6d4
crossref_primary_10_1177_02670836241236922
crossref_primary_10_1063_5_0246425
crossref_primary_10_1002_advs_202207526
crossref_primary_10_1109_JEDS_2025_3547646
crossref_primary_10_1364_OE_484846
crossref_primary_10_1016_j_jphotochem_2023_114916
crossref_primary_10_1016_j_mtnano_2024_100480
crossref_primary_10_1002_aelm_202200528
crossref_primary_10_1007_s11837_023_06365_6
crossref_primary_10_1016_j_renene_2025_122365
crossref_primary_10_1038_s41467_024_52150_7
crossref_primary_10_1002_aelm_202201184
crossref_primary_10_1016_j_jallcom_2024_173587
crossref_primary_10_3390_nano14181501
crossref_primary_10_1039_D4CP01336K
crossref_primary_10_1103_PhysRevB_104_115121
crossref_primary_10_1088_1674_4926_44_9_091602
crossref_primary_10_1088_1361_6463_ad626e
crossref_primary_10_1016_j_vacuum_2024_113926
crossref_primary_10_3389_felec_2022_813535
crossref_primary_10_1002_advs_202303895
crossref_primary_10_1063_5_0200217
crossref_primary_10_1016_j_mssp_2025_109418
crossref_primary_10_1088_1361_648X_ad3da5
crossref_primary_10_1109_LED_2022_3224920
crossref_primary_10_1021_acsnano_2c12163
crossref_primary_10_1016_j_xcrp_2022_100801
crossref_primary_10_1109_TED_2023_3276334
crossref_primary_10_1007_s11082_023_05793_7
crossref_primary_10_3390_mi15020193
crossref_primary_10_26565_2312_4334_2023_1_25
crossref_primary_10_1016_j_mtcomm_2024_110717
crossref_primary_10_1021_acs_jpclett_3c00080
crossref_primary_10_1002_inf2_12365
crossref_primary_10_1016_j_jallcom_2024_176961
crossref_primary_10_1088_2631_7990_acb46d
crossref_primary_10_1039_D4CP03782K
crossref_primary_10_1002_pssa_202300958
crossref_primary_10_35848_1882_0786_acc82b
crossref_primary_10_20517_microstructures_2024_77
crossref_primary_10_3389_fmats_2024_1380180
crossref_primary_10_1016_j_optlastec_2025_112602
crossref_primary_10_1039_D4NA00967C
crossref_primary_10_1002_advs_202104141
crossref_primary_10_1002_sdtp_15700
crossref_primary_10_1016_j_matt_2022_06_015
crossref_primary_10_1016_j_mtadv_2024_100520
crossref_primary_10_1039_D4TC01780C
crossref_primary_10_1002_aelm_202300906
crossref_primary_10_1039_D4MA00426D
crossref_primary_10_1016_j_cej_2024_155313
crossref_primary_10_3390_nano12071167
crossref_primary_10_3740_MRSK_2025_35_2_90
crossref_primary_10_1021_acsaelm_3c00649
crossref_primary_10_1016_j_apmt_2024_102297
crossref_primary_10_1016_j_apsusc_2022_155257
crossref_primary_10_1002_advs_202403765
crossref_primary_10_1007_s12274_021_3969_8
crossref_primary_10_1021_acsami_3c04178
crossref_primary_10_1007_s40843_024_3245_6
crossref_primary_10_1016_j_surfcoat_2023_129388
crossref_primary_10_1016_j_pmatsci_2023_101112
crossref_primary_10_1007_s11082_023_04940_4
crossref_primary_10_1021_acsami_4c14876
crossref_primary_10_1088_1361_6641_acba3e
crossref_primary_10_1088_0256_307X_41_3_037305
crossref_primary_10_1111_jace_19940
crossref_primary_10_1088_1674_1056_accb8a
crossref_primary_10_1002_admt_202200539
crossref_primary_10_1002_pssr_202300457
crossref_primary_10_1002_adma_202206939
crossref_primary_10_1002_advs_202303589
crossref_primary_10_1364_OE_539070
crossref_primary_10_1002_adma_202106923
crossref_primary_10_1109_TED_2024_3469162
crossref_primary_10_1142_S0217979223502107
crossref_primary_10_1088_2515_7639_acc099
crossref_primary_10_1039_D4TA08867K
crossref_primary_10_1016_j_apsusc_2025_162656
crossref_primary_10_1016_j_jcrysgro_2023_127319
crossref_primary_10_1016_j_mtphys_2024_101555
crossref_primary_10_1039_D3EE00695F
crossref_primary_10_1021_acsaelm_4c01481
crossref_primary_10_1002_adma_202203401
crossref_primary_10_1016_j_mtphys_2021_100583
crossref_primary_10_1109_TED_2023_3274501
crossref_primary_10_1002_smsc_202400241
crossref_primary_10_1063_5_0208590
crossref_primary_10_1109_LPT_2024_3483815
crossref_primary_10_15251_CL_2024_217_529
crossref_primary_10_1016_j_mser_2025_100971
crossref_primary_10_1088_1361_6528_acc039
crossref_primary_10_1063_5_0239899
crossref_primary_10_1038_s41467_023_41868_5
crossref_primary_10_1039_D4TC01455C
crossref_primary_10_3390_ma15103416
crossref_primary_10_1039_D4RA04252B
crossref_primary_10_1021_acs_jpcc_4c06718
crossref_primary_10_1016_j_jpcs_2022_111203
crossref_primary_10_1016_j_matdes_2024_113012
crossref_primary_10_26565_2312_4334_2024_1_32
crossref_primary_10_1016_j_apsusc_2024_161819
crossref_primary_10_1111_jace_19800
crossref_primary_10_1002_adpr_202300063
crossref_primary_10_1002_smtd_202101348
crossref_primary_10_1002_adom_202300367
crossref_primary_10_1016_j_jallcom_2022_164070
crossref_primary_10_1021_acsaem_3c00248
crossref_primary_10_1002_anie_202217565
crossref_primary_10_1016_j_apsusc_2022_153047
crossref_primary_10_1016_j_ijhydene_2025_01_456
crossref_primary_10_1109_TED_2023_3287821
crossref_primary_10_1088_2631_7990_ada7a9
crossref_primary_10_1002_sdtp_16037
crossref_primary_10_1016_j_chempr_2025_102445
crossref_primary_10_1016_j_snb_2024_136779
crossref_primary_10_1021_acs_jpclett_2c02354
crossref_primary_10_1103_PhysRevB_109_214106
crossref_primary_10_1021_acs_jpclett_3c00821
crossref_primary_10_1109_LED_2023_3312360
crossref_primary_10_1016_j_surfin_2023_103367
crossref_primary_10_1063_5_0173815
crossref_primary_10_1109_TED_2024_3403083
crossref_primary_10_1016_j_apsusc_2024_160255
crossref_primary_10_1063_5_0232559
crossref_primary_10_1016_j_mssp_2025_109369
crossref_primary_10_1002_aelm_202201117
crossref_primary_10_1007_s40843_022_2122_9
crossref_primary_10_1002_pssr_202300490
crossref_primary_10_1021_acsaelm_1c00090
crossref_primary_10_1002_ange_202217565
crossref_primary_10_1007_s10854_024_13089_z
crossref_primary_10_1016_j_nanoen_2022_107504
crossref_primary_10_1021_acsami_4c01353
crossref_primary_10_1063_5_0092968
crossref_primary_10_1016_j_mssp_2023_107858
crossref_primary_10_1016_j_optmat_2024_114868
crossref_primary_10_3390_electronics13081478
crossref_primary_10_1109_LED_2023_3238350
crossref_primary_10_1002_pssa_202300904
crossref_primary_10_1002_adma_202107650
crossref_primary_10_1016_j_synthmet_2024_117650
crossref_primary_10_1002_adma_202109399
crossref_primary_10_1002_smll_202203677
crossref_primary_10_1039_D3TC00584D
crossref_primary_10_1016_j_mtcomm_2024_108908
crossref_primary_10_1039_D4TC02210F
crossref_primary_10_1007_s10854_024_13269_x
crossref_primary_10_1016_j_apsusc_2024_160821
crossref_primary_10_1002_admt_202301281
crossref_primary_10_1021_acsami_4c08673
crossref_primary_10_1007_s13391_024_00531_x
crossref_primary_10_1016_j_apsusc_2024_160271
crossref_primary_10_1039_D4TC01779J
crossref_primary_10_1116_6_0003435
crossref_primary_10_1021_acsami_4c07225
crossref_primary_10_1021_acsaelm_2c00054
crossref_primary_10_1016_j_jallcom_2025_179558
crossref_primary_10_1016_j_inoche_2024_113832
crossref_primary_10_1016_j_mseb_2024_117768
crossref_primary_10_5796_electrochemistry_24_00089
crossref_primary_10_1016_j_jallcom_2024_174150
crossref_primary_10_1021_acs_chemmater_3c00894
crossref_primary_10_1364_OME_504024
crossref_primary_10_1016_j_fuel_2025_134416
crossref_primary_10_1063_5_0142734
crossref_primary_10_3390_mi14101839
crossref_primary_10_1021_prechem_5c00005
crossref_primary_10_1016_j_jallcom_2021_163174
crossref_primary_10_1109_TED_2023_3276725
crossref_primary_10_1002_aelm_202400145
crossref_primary_10_1016_j_cap_2024_07_018
crossref_primary_10_1016_j_materresbull_2025_113334
crossref_primary_10_1021_acsnano_3c03455
crossref_primary_10_1038_s41598_024_60288_z
crossref_primary_10_1002_adom_202200512
crossref_primary_10_1021_acsaom_4c00310
crossref_primary_10_1021_acsaelm_2c01013
crossref_primary_10_1039_D4TC02859G
crossref_primary_10_3390_ma15238362
crossref_primary_10_1016_j_jallcom_2024_175247
crossref_primary_10_1021_acsaom_3c00207
crossref_primary_10_1016_j_physb_2024_416802
crossref_primary_10_1002_adfm_202316375
crossref_primary_10_1002_pssb_202300585
crossref_primary_10_1109_LED_2023_3272909
crossref_primary_10_1109_TED_2022_3220491
crossref_primary_10_1002_pssa_202400536
crossref_primary_10_1088_1361_648X_ac8464
crossref_primary_10_1038_s41563_025_02141_w
crossref_primary_10_1002_adom_202300042
crossref_primary_10_1021_acs_cgd_2c00948
crossref_primary_10_1039_D3TC00417A
crossref_primary_10_1038_s41598_024_52840_8
crossref_primary_10_1063_5_0181644
crossref_primary_10_1109_TED_2023_3267755
crossref_primary_10_1002_smtd_202301739
crossref_primary_10_1016_j_inoche_2024_112370
crossref_primary_10_1016_j_jallcom_2024_178099
crossref_primary_10_1002_pssa_202300544
crossref_primary_10_1002_admt_202101457
crossref_primary_10_1103_PhysRevB_110_115120
crossref_primary_10_1016_j_mssp_2024_109047
crossref_primary_10_1039_D2TC01460B
crossref_primary_10_1021_acs_inorgchem_3c00591
crossref_primary_10_1109_TED_2023_3237666
crossref_primary_10_1016_j_mssp_2024_108872
crossref_primary_10_1002_smll_202403133
crossref_primary_10_1016_j_physb_2025_417074
crossref_primary_10_1007_s13391_025_00548_w
crossref_primary_10_1002_adfm_202105086
crossref_primary_10_1007_s10854_024_13266_0
crossref_primary_10_3390_electronicmat6010002
crossref_primary_10_1002_admi_202101250
crossref_primary_10_3390_electronicmat6010003
crossref_primary_10_1016_j_apsusc_2023_156904
crossref_primary_10_1149_2162_8777_adb5bc
crossref_primary_10_1007_s11664_024_11408_y
crossref_primary_10_1039_D3CE01297B
crossref_primary_10_1002_anie_202502536
crossref_primary_10_1021_acsami_4c01837
crossref_primary_10_1021_acsnano_4c18849
crossref_primary_10_3390_nano12213902
crossref_primary_10_1002_adfm_202306173
crossref_primary_10_1016_j_foodchem_2023_136252
crossref_primary_10_1063_5_0255802
crossref_primary_10_1016_j_mseb_2024_117275
crossref_primary_10_1007_s10854_024_13010_8
crossref_primary_10_1021_acsami_4c17868
crossref_primary_10_1109_LED_2022_3227583
crossref_primary_10_1021_acsaelm_4c00100
crossref_primary_10_1016_j_matchemphys_2024_129090
crossref_primary_10_1021_acsomega_4c09462
crossref_primary_10_1002_adhm_202402891
crossref_primary_10_1016_j_susmat_2025_e01332
crossref_primary_10_1088_1361_6463_ad194f
crossref_primary_10_1109_TED_2024_3362759
crossref_primary_10_1016_j_colsurfa_2024_135128
crossref_primary_10_1016_j_jallcom_2024_175498
crossref_primary_10_1016_j_mtcomm_2024_109994
crossref_primary_10_1021_acsaelm_2c01222
crossref_primary_10_1016_j_chphi_2023_100350
crossref_primary_10_1021_acsanm_4c03504
crossref_primary_10_1016_j_jmmm_2025_172920
crossref_primary_10_1007_s10854_024_13401_x
crossref_primary_10_1016_j_jallcom_2022_164224
crossref_primary_10_1109_LED_2023_3287852
crossref_primary_10_1039_D3TC03122E
crossref_primary_10_1002_ange_202500334
crossref_primary_10_1016_j_mssp_2022_106998
crossref_primary_10_1016_j_materresbull_2025_113403
crossref_primary_10_1039_D4TC00705K
crossref_primary_10_1002_adma_202204217
crossref_primary_10_1002_advs_202406401
crossref_primary_10_1039_D2MA00815G
crossref_primary_10_1142_S0217984923500379
crossref_primary_10_1016_j_apsusc_2022_155081
crossref_primary_10_1016_j_jallcom_2023_172807
crossref_primary_10_1186_s40580_025_00474_5
crossref_primary_10_1007_s11082_023_05072_5
crossref_primary_10_1109_JESTPE_2024_3444776
crossref_primary_10_1063_5_0240919
crossref_primary_10_1088_1361_6463_ad9d52
crossref_primary_10_1021_acsami_4c05059
crossref_primary_10_1007_s11431_023_2567_2
crossref_primary_10_1039_D3CP03968D
crossref_primary_10_1109_TED_2024_3365457
crossref_primary_10_1139_cjp_2023_0040
crossref_primary_10_3390_nano14060551
crossref_primary_10_1038_s41528_024_00362_8
crossref_primary_10_1007_s11431_024_2718_y
crossref_primary_10_1016_j_comptc_2023_114202
crossref_primary_10_1063_5_0257682
crossref_primary_10_1116_6_0001702
crossref_primary_10_1002_adfm_202400498
crossref_primary_10_1088_1361_6528_adab7d
crossref_primary_10_1002_anie_202500334
crossref_primary_10_1016_j_ceramint_2023_03_043
crossref_primary_10_1038_s41467_022_34117_8
crossref_primary_10_1063_5_0205808
crossref_primary_10_1021_acsami_4c22198
crossref_primary_10_3390_membranes11120929
crossref_primary_10_1016_j_mseb_2024_117177
crossref_primary_10_1002_smsc_202400511
crossref_primary_10_1016_j_xcrp_2024_102144
crossref_primary_10_1063_5_0116294
crossref_primary_10_1063_5_0185490
crossref_primary_10_1063_5_0228363
crossref_primary_10_1021_acsaelm_4c01893
crossref_primary_10_3390_nano13111722
crossref_primary_10_1002_adpr_202300215
crossref_primary_10_1021_acsaelm_1c00806
crossref_primary_10_1002_aelm_202400744
crossref_primary_10_1016_j_jallcom_2025_179816
crossref_primary_10_1088_1361_6463_ad932a
crossref_primary_10_3390_nano14151252
crossref_primary_10_1039_D3TA01108A
crossref_primary_10_1002_smtd_202500235
crossref_primary_10_1116_6_0002248
crossref_primary_10_1002_adom_202202847
crossref_primary_10_1002_aelm_202201093
crossref_primary_10_1016_j_jallcom_2024_175276
Cites_doi 10.1063/1.1553997
10.1039/C9TC03933C
10.1002/admi.201900883
10.1002/pssa.201800372
10.1002/msid.1098
10.1002/aelm.201600105
10.1080/15980316.2016.1160003
10.1039/C9NR02664A
10.1088/0953-8984/23/33/334212
10.1063/1.2964197
10.1007/BF01374559
10.1016/j.tsf.2011.06.091
10.1063/1.3564882
10.1103/PhysRevB.79.245206
10.1002/aelm.201900768
10.1103/PhysRevB.80.081201
10.1109/TED.2009.2021339
10.1063/1.5020134
10.1038/s41928-019-0342-y
10.1063/1.2431548
10.1103/PhysRevB.92.041106
10.1126/science.273.5277.903
10.1063/1.4985627
10.1103/PhysRevMaterials.3.084608
10.1063/1.1312199
10.1039/C5NR04084A
10.1021/acs.chemrev.9b00600
10.1016/S0022-3697(98)00047-X
10.1038/nmat1569
10.1149/06442.0001ecst
10.1038/asiamat.2010.5
10.1002/adma.201706573
10.1143/JJAP.49.020202
10.1103/PhysRevB.77.155115
10.1149/2.0221907jss
10.1063/1.2975219
10.1002/adma.200501957
10.1103/PhysRevB.84.115205
10.1103/PhysRevB.76.045209
10.1103/PhysRevB.89.165305
10.1016/j.tsf.2007.10.063
10.1063/1.3499306
10.1016/j.jcrysgro.2008.09.151
10.1063/1.3159831
10.1063/1.5054091
10.1063/1.3699372
10.1016/j.tsf.2014.07.062
10.1039/D0TC01204A
10.1186/s11671-017-1841-2
10.1063/1.5117771
10.1002/sdtp.12977
10.1103/PhysRevB.91.075208
10.1002/sdtp.13150
10.1038/srep26598
10.1126/sciadv.1602640
10.1063/1.5053762
10.1103/PhysRevApplied.1.051002
10.1021/acsnano.9b05715
10.1103/PhysRevB.89.115320
10.1103/PhysRevB.102.075301
10.1063/1.1337587
10.1109/LED.2018.2809796
10.1038/nmat1931
10.1021/acsami.6b06321
10.1016/j.apsusc.2016.03.133
10.1002/pssa.200983772
10.1103/PhysRevB.88.115111
10.1063/1.4833541
10.1103/PhysRevB.65.075111
10.1149/1.2903209
10.1088/0268-1242/20/4/004
10.1103/PhysRevB.78.132507
10.1038/40087
10.1039/C9MH01014A
10.1103/PhysRevLett.110.056803
10.1063/1.3684543
10.1016/j.enbuild.2015.03.024
10.1021/acs.chemmater.5b03794
10.1038/nature07576
10.1016/j.tsf.2013.01.093
10.1021/acsami.0c04854
10.1103/PhysRevApplied.9.054039
10.1021/acsami.8b22458
10.1039/C7TC05331B
10.1103/PhysRevLett.108.016802
10.1103/PhysRevB.87.115111
10.1080/00018737000101071
10.1038/nature02308
10.1021/cm071588c
10.1002/aelm.201700082
10.1038/nature03090
10.1088/1468-6996/11/4/044305
10.1002/sdtp.11608
10.1126/science.aau8623
10.1109/LED.2017.2786237
10.1109/LED.2011.2181320
10.1016/j.apsusc.2016.11.239
10.1039/C6TC02137A
10.1103/PhysRevB.28.4900
10.1002/aelm.201800843
10.1016/j.tsf.2007.11.079
10.1063/1.4967943
10.1063/1.2723543
10.1016/j.tsf.2015.09.025
10.1038/s41563-017-0002-4
10.1002/sdtp.10359
10.1063/1.4870536
10.1002/adma.201505021
10.1063/1.5109569
10.1103/PhysRevB.65.075207
10.1039/C9TC00195F
10.1109/LED.2019.2936887
10.1016/S0040-6090(01)01303-7
10.1016/0022-3697(78)90183-X
10.1088/0022-3727/41/9/092006
10.1103/PhysRevB.80.193202
10.1002/chem.202000090
10.1021/acsami.0c09243
10.1109/LED.2010.2050576
10.1002/adma.201804690
10.1002/adfm.202002625
10.1038/nnano.2013.84
10.1063/1.91624
10.1002/smll.201903321
10.1126/science.1137430
10.1103/PhysRevMaterials.4.054603
10.1038/nature09720
10.1016/j.jcrysgro.2008.11.038
10.1016/j.matchemphys.2003.08.006
10.1063/1.1372636
10.1002/adfm.200700604
10.1063/1.3364131
10.1103/PhysRevLett.89.076406
10.1002/adfm.201902591
10.1103/PhysRevB.87.085128
10.1063/1.116501
10.1143/JPSJ.61.3385
10.1021/acs.chemrev.6b00179
10.1143/JJAP.51.03CB01
10.1126/science.1083212
10.1002/adma.201003188
10.1039/c3cp50197c
10.1021/la015543g
10.1103/PhysRevB.63.075205
10.1103/PhysRevB.90.155413
10.1557/mrs2000.148
10.1002/adfm.201500628
10.1063/1.1308103
10.1063/1.1843286
10.1103/PhysRevMaterials.1.021601
10.1063/1.1355673
10.1063/5.0005531
10.1016/0040-6090(79)90298-0
10.1109/TED.2019.2897813
10.1103/PhysRevLett.110.247601
10.1002/adfm.201701900
10.1103/PhysRevB.75.035212
10.1039/C7TC00169J
10.1063/1.2838380
10.1039/C5TA09000H
10.1103/PhysRev.154.785
10.1063/1.2927306
10.1063/1.2911723
10.1103/PhysRevLett.88.095501
10.1103/PhysRevLett.103.096405
10.1039/C7TC01953J
10.1063/1.1695596
10.1021/nl0712217
10.1039/c3nr02320f
10.1002/admi.201900277
10.1063/1.3026539
10.1002/adma.201103228
10.1021/acsami.7b12968
10.1002/adma.201405400
10.1021/acsami.6b02137
10.1109/JPROC.2012.2190168
10.1063/1.3510471
10.1103/PhysRevLett.53.2339
10.1109/LED.2012.2190036
10.1109/JDT.2009.2022064
10.1016/j.tsf.2005.08.259
10.1134/1.1575357
10.1021/acsami.7b02838
10.1063/1.4895830
10.1016/j.rser.2018.09.011
10.1063/1.3633100
10.1149/2.015409jss
10.1021/acsami.0c01530
10.1021/cm401343a
10.1109/PROC.1968.6813
10.1063/1.3656973
10.1063/1.1991994
10.1063/1.1542677
10.1002/chem.202000678
10.1109/LED.2019.2893194
10.1103/PhysRevMaterials.2.074601
10.1063/1.4829672
10.1063/1.1660648
10.1021/acs.chemmater.9b04845
10.1109/LED.2018.2791633
10.1063/1.4790619
10.1088/0953-8984/23/33/334211
10.1149/2.011301jss
10.1002/advs.201500058
10.1063/1.3642962
10.1039/b408864f
10.1038/nmat1795
10.1103/PhysRevLett.101.116808
10.1063/1.3054175
10.1063/1.4941429
10.1103/PhysRevLett.88.076801
10.1063/1.3596449
10.1002/adma.201802379
10.1002/jsid.648
10.1116/1.582792
10.1002/adma.201101410
10.1021/acsami.9b03331
10.1126/science.1146006
10.1016/j.tsf.2014.02.042
10.1063/1.2939006
10.1002/adma.201202758
10.1021/nn400852r
10.1063/1.4775691
10.1063/1.5006941
10.1063/1.3059569
10.1109/LED.2019.2931089
10.1002/sdtp.13160
10.1116/1.571055
10.1002/adma.201906003
10.1038/srep33074
10.1002/adfm.201904588
10.1063/1.1805722
10.1073/pnas.1901492116
10.1149/1.3168522
10.1038/nmat4599
10.1038/nmat4303
10.1063/1.3583446
10.1073/pnas.1501548112
10.1002/adma.201907166
10.1063/1.1662011
10.1021/acsami.5b12819
10.1080/15980316.2020.1714762
10.1103/PhysRevB.74.195123
10.1063/1.121761
10.1021/am5072139
10.1109/TED.2018.2887270
10.1021/acsnano.7b01964
10.1038/s41928-019-0353-8
10.1002/aelm.201700476
10.1002/sdtp.12978
10.1002/sdtp.11860
10.1088/1468-6996/14/3/035004
10.1016/j.apsusc.2007.07.146
10.1103/PhysRevB.78.165127
10.1038/nature11434
10.1002/aelm.201600529
10.1063/1.5029921
10.1103/RevModPhys.54.437
10.1002/pssa.201329349
10.1063/1.3480416
10.1016/0022-4596(73)90007-8
10.1116/1.580895
10.1063/1.1862767
10.1063/1.4898069
10.1063/1.4953222
10.1103/PhysRevLett.101.055502
10.1103/PhysRevB.100.085126
10.1039/C8SC02152J
10.1002/inf2.12076
10.1103/PhysRev.93.1204
10.1103/PhysRevB.81.075211
10.1039/C6TC03234F
10.1063/1.110563
10.1038/ncomms4515
10.1103/PhysRevLett.98.045501
10.1016/j.ceramint.2019.09.201
10.1007/s10854-018-0480-4
10.1109/LED.2019.2941548
10.1039/C8TC04594A
10.1039/C7CS00192D
10.1063/1.2179373
10.1088/0022-3719/9/8/014
10.1088/0953-8984/23/33/334214
10.1038/nmat2874
10.1143/APEX.3.121004
10.1021/cm001153o
10.1116/1.568989
10.1063/1.4731271
10.1016/0038-1101(64)90057-7
10.1103/PhysRevB.91.155129
10.1016/S0026-2714(02)00027-6
10.1109/TNANO.2017.2719946
10.1103/PhysRevLett.104.256803
10.1021/acs.jpcc.8b08623
10.1038/nphoton.2012.282
10.1063/1.3478213
10.1103/PhysRev.127.150
10.1021/nl073296g
10.1103/PhysRevB.80.241107
10.1002/sdtp.13167
10.1088/0957-4484/21/13/134009
10.1038/nphys2079
10.1063/1.2458457
10.1063/1.4819068
10.1002/0470068329
10.1149/2.0231507jss
10.1063/1.5142999
10.1063/1.2749177
10.1889/JSID18.10.789
10.1002/adfm.201970323
10.1063/1.1383568
10.1103/PhysRevB.77.245202
10.1088/0953-8984/28/38/383002
10.1063/1.2335372
10.1103/PhysRevMaterials.3.074604
10.1063/1.4895782
10.1021/nn901587x
10.1088/0022-3727/37/20/006
10.1021/cm901127r
10.1063/1.119233
10.1038/s41467-020-18006-6
10.1002/adma.201701599
10.1103/PhysRevB.73.245312
10.1021/nl0489283
10.1063/1.5037306
10.1038/nmat3011
10.1039/C5TC02144H
10.1557/jmr.2012.172
10.1016/j.surfrep.2010.09.001
10.1038/ncomms3292
10.1103/PhysRevB.4.4539
10.1016/j.tsf.2009.09.193
10.1039/C6TC01881E
10.1103/PhysRevB.101.085121
10.1889/1.3499825
10.1002/adma.201503080
10.1002/adfm.201906022
10.1002/adma.201702176
10.1002/aelm.201700412
10.1063/1.4837955
10.1063/1.4832076
10.1103/PhysRevLett.103.245501
10.1002/adma.201501959
10.1103/PhysRevLett.85.1012
10.1002/j.2168-0159.2012.tb05894.x
10.1103/PhysRevMaterials.4.085201
10.1038/nmat4493
10.1002/adma.201804120
10.1038/s41928-018-0106-0
10.1002/aelm.202000195
10.1103/PhysRevB.84.245124
10.1038/s41598-018-31927-z
10.1016/j.sse.2006.03.004
10.1063/1.3309694
10.1073/pnas.1613643113
10.1002/adem.201901497
10.1038/ncomms3351
10.1063/1.3464964
10.1021/am403585n
10.7567/JJAP.55.1202A2
10.1038/s42005-020-0372-9
10.1016/j.cossms.2013.07.002
10.1016/0040-6090(96)08671-3
10.1039/C2CE26413G
10.1103/PhysRevB.77.045316
10.1016/0039-6028(76)90107-2
10.1039/C9NR09383D
10.1103/PhysRevB.77.155107
10.1063/1.3284960
10.1109/TED.2020.2968592
10.1063/1.5108790
10.1063/1.3562141
10.1021/jacs.9b11668
10.1002/adma.201901408
10.1016/j.tsf.2004.11.223
10.1103/PhysRevMaterials.2.051601
10.1063/1.3560769
10.1002/jsid.206
10.1016/j.tsf.2008.09.059
10.1103/PhysRevResearch.2.033358
10.1063/1.5025704
10.1063/1.2833432
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202006230
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed

MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 33797084
10_1002_adma_202006230
ADMA202006230
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Australian Research Council
  funderid: FT160100207
– fundername: National Natural Science Foundation of China
  funderid: 21872116; 22075232
– fundername: Australian Research Council
  grantid: FT160100207
– fundername: National Natural Science Foundation of China
  grantid: 21872116
– fundername: National Natural Science Foundation of China
  grantid: 22075232
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c4790-2d55a4605d5f46b9c1f334dabc5c123cbf48661daa8dbbfabff785b5b698c4e63
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 13:29:18 EDT 2025
Sat Jul 26 00:00:53 EDT 2025
Mon Jul 21 05:52:41 EDT 2025
Tue Jul 01 02:33:01 EDT 2025
Thu Apr 24 23:08:35 EDT 2025
Wed Jan 22 16:28:25 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 50
Keywords flexible electronics
transparent conducting oxide (TCO)
thin film transistor
oxide semiconductor
electronic structure
Language English
License 2021 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4790-2d55a4605d5f46b9c1f334dabc5c123cbf48661daa8dbbfabff785b5b698c4e63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-9352-6236
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adma.202006230
PMID 33797084
PQID 2609536778
PQPubID 2045203
PageCount 30
ParticipantIDs proquest_miscellaneous_2508573712
proquest_journals_2609536778
pubmed_primary_33797084
crossref_citationtrail_10_1002_adma_202006230
crossref_primary_10_1002_adma_202006230
wiley_primary_10_1002_adma_202006230_ADMA202006230
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2013 2008 2014 2020; 110 92 90 16
2004 2006 2008 2007; 37 88 41 7
2015 2017; 2 3
2004 2008; 427 456
2019 2019 2019 2020; 40 40 50 22
2019; 13
2015 2019 2019 2020; 46 50 5 67
2016; 32
2004; 4
2005 2006 2006 2007 2020; 86 50 18 90 6
2020; 12
2020; 11
2017; 399
2009 2010 2017 2019; 95 11 3 216
1979 2008; 59 77
1984; 53
2018 2019 2017 2012; 4 31 3 100
2016 1997; 55 70
2007 2013 2017 2018; 317 110 11 112
2007 2009; 76 103
2013 2013; 88 110
2009 2014 2017 2019; 56 105 110 7
2015 1996; 64 273
2019; 29
2007 2000 2009 2009 2009 2019; 6 85 80 79 80 115
2017 2020; 29 2
2018 2019; 112 8
1983; 28
2011 2008 2008; 23 104 92
2010; 3
2012; 24
2008 2016 2008; 517 377 516
2004 2005 2011 2002 2006 1967 1971; 20 23 65 74 154 4
2011 2012 2014 2020; 98 27 89 101
2013; 103
2020; 36
2002 2019; 18 7
2020; 32
2016; 15
2011; 7
2010 2013 2015 2016; 21 15 592 108
2013 2015; 114 3
2009 2010 2012 2015; 12 41 33 4
2013 2015; 534 7
2016; 4
2016; 6
2001; 398
1996 2010; 68 2
2015; 112
2012 2014 2016 2017 2019 2020; 489 105 8 5 11 30
2013; 210
2020; 26
2020; 21
2016; 8
2017 2018 2018; 9 28 9
1962 1981; 127 19
2019; 50
2017; 48
2016; 109
2013; 21
2020; 127
2002 2008 2013; 65 77 87
2008; 78
1978; 39
2011; 98
2008; 77
2009 2010 2005; 5 96 486
2007 2010; 315 9
2010 2011; 97 23
2008 2012 2014; 33 105
1954 1973 1973; 139 44 8
2020; 8
2016 2012; 15 6
2020; 7
1954; 93
2014; 5
2020; 4
2014; 4
2020; 3
2020; 2
2010 2019; 4 99
2002; 42
2008 2017; 20 1
2016; 113
2016 2015; 28 92
2003; 82
2013 2014; 102 18
1976 2010 2018; 58 81 2
2008 2018 2013; 8 47 8
2020 2020; 12 30
2016 2014; 4 572
2007
2006
2017; 29
2008; 92
2009 2019; 103 3
2008; 93
2013 2015; 4 28
2004; 95
2007 2008 2008; 90 11 92
2020 2020; 142 120
2020
2019
2010; 96
2014 2013 2010; 115 15 107
2013; 4
2019 2020; 30 26
1997 2014 2016; 15 3 17
2008 2009; 93 311
2010; 18
1982; 54
1997 2011; 389 25
2007; 75
2013; 5
2013 2016 2011; 14 116 23
2008 2020; 254 46
2018; 6
2011; 520
2018; 8
2010 2018; 97 2
2018; 5
2018; 4
2000 2001; 88 13
2008 2009 2011 2013 2014 2010; 78 94 109 102 89 104
2009 2011 2010 2013; 80 84 65 87
2019 2020; 30 32
2007; 6
2018; 30
2015; 91
2011 2013 2013 2017 2018 2019; 23 103 7 16 112 66
2012 2012; 43 51
2004 1971; 96 42
2019; 7
2012; 100
2019; 3
2010; 207
2019; 2
2002 2009; 88 311
2011; 84
2007; 90
2018 2020; 17 32
2003; 37
2012 2016 2019; 100 2 31
2015 2015; 27 91
2010 2012; 518 111
1976; 9
2019; 100
2018; 26
2009 2009
2010; 49
2013 2013 2013; 25 103 103
1996 2005; 281‐282 87
2014; 30
1998; 73
2017; 5
2010 2018 2018 2019 2019; 97 39 39 40 66
2007 2012 2002 2008 2001 2008 2010; 98 108 88 101 63 77 97
2018; 123
2011; 10
2008 2010; 93 31
2013 2019; 25 6
2016 2016 2020; 28 28 8
2001; 89
2017; 9
2012 2017; 2 110
2019; 365
2018 2019 2019; 39 6 11
2014 2011; 2 98
1998; 59
1984 1976; 2 13
2008 2010 2011 2013 2018; 92 97 109 103 9
2011 2014; 469 1
2003 2004 2018; 300 432 1
2018 2019; 65 40
2019; 115
2014 2016 2016; 558 4 8
1964 1968; 7 56
2019; 116
2011; 23
1980 1993 2002; 36 63 89
2008 2011 2016 2018 2009; 103 110 108 112 105
2015; 14
2019 2020; 50 12
2009; 21
2003 1966 1992 1970; 82 144 61 19
2006 2015; 496 96
2015 2018; 25 30
2017 2019 2011; 12 11
2006; 5
2015 2020; 7 12
2013 2016; 5 6
2011 2019; 99 115
2008 2012; 516 111
2015; 27
2008 2020; 101 102
2006 2000; 73 77
2005 2006 2008; 97 89 18
2001; 78
2001; 79
e_1_2_8_49_3
e_1_2_8_49_2
e_1_2_8_49_1
e_1_2_8_9_3
e_1_2_8_9_2
e_1_2_8_9_5
e_1_2_8_9_4
e_1_2_8_132_1
e_1_2_8_155_1
e_1_2_8_178_1
e_1_2_8_9_1
e_1_2_8_155_3
e_1_2_8_155_2
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_120_1
e_1_2_8_143_1
e_1_2_8_166_1
e_1_2_8_189_1
e_1_2_8_91_1
e_1_2_8_120_2
e_1_2_8_166_2
e_1_2_8_25_4
e_1_2_8_48_4
e_1_2_8_25_5
e_1_2_8_48_3
e_1_2_8_25_6
e_1_2_8_25_7
e_1_2_8_25_1
e_1_2_8_25_2
e_1_2_8_48_2
e_1_2_8_25_3
e_1_2_8_48_1
Varley J. B. (e_1_2_8_102_2) 2013; 103
e_1_2_8_133_1
e_1_2_8_110_1
Daus A. (e_1_2_8_191_2)
e_1_2_8_156_3
e_1_2_8_156_2
e_1_2_8_156_1
e_1_2_8_14_4
e_1_2_8_14_5
e_1_2_8_37_3
e_1_2_8_14_6
e_1_2_8_14_7
e_1_2_8_14_1
e_1_2_8_14_2
e_1_2_8_37_2
e_1_2_8_37_1
e_1_2_8_144_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_167_2
e_1_2_8_167_1
e_1_2_8_28_1
e_1_2_8_28_2
e_1_2_8_28_3
e_1_2_8_28_4
e_1_2_8_28_5
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_7_1
e_1_2_8_7_3
e_1_2_8_7_2
e_1_2_8_157_2
e_1_2_8_134_1
e_1_2_8_17_1
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_122_3
e_1_2_8_168_3
e_1_2_8_122_2
e_1_2_8_168_2
e_1_2_8_145_1
e_1_2_8_168_1
e_1_2_8_93_1
e_1_2_8_27_2
e_1_2_8_27_1
e_1_2_8_8_4
e_1_2_8_8_3
e_1_2_8_80_1
e_1_2_8_8_2
e_1_2_8_8_1
e_1_2_8_135_4
e_1_2_8_158_4
e_1_2_8_158_3
e_1_2_8_135_2
e_1_2_8_158_2
e_1_2_8_112_1
e_1_2_8_135_3
e_1_2_8_158_1
e_1_2_8_135_1
e_1_2_8_39_2
e_1_2_8_39_1
e_1_2_8_210_1
e_1_2_8_16_1
e_1_2_8_92_1
e_1_2_8_100_1
e_1_2_8_169_4
e_1_2_8_169_3
e_1_2_8_100_2
e_1_2_8_123_2
e_1_2_8_169_2
e_1_2_8_123_1
e_1_2_8_169_1
e_1_2_8_123_3
e_1_2_8_146_1
e_1_2_8_207_1
e_1_2_8_151_4
e_1_2_8_151_3
e_1_2_8_151_2
e_1_2_8_151_1
e_1_2_8_174_1
e_1_2_8_197_1
e_1_2_8_83_2
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_19_2
e_1_2_8_109_1
e_1_2_8_162_4
e_1_2_8_95_1
e_1_2_8_162_3
e_1_2_8_95_2
e_1_2_8_162_2
e_1_2_8_162_1
e_1_2_8_185_1
e_1_2_8_72_2
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_29_2
e_1_2_8_29_3
e_1_2_8_29_4
e_1_2_8_152_1
e_1_2_8_208_1
e_1_2_8_175_2
e_1_2_8_198_2
e_1_2_8_82_1
e_1_2_8_175_3
e_1_2_8_198_1
e_1_2_8_18_1
e_1_2_8_94_1
e_1_2_8_163_1
e_1_2_8_140_1
e_1_2_8_186_1
e_1_2_8_71_1
Sun Il K. (e_1_2_8_175_1) 2008
e_1_2_8_153_2
e_1_2_8_199_2
e_1_2_8_130_1
e_1_2_8_153_1
e_1_2_8_209_1
e_1_2_8_130_2
e_1_2_8_85_3
e_1_2_8_85_2
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_62_2
e_1_2_8_176_1
e_1_2_8_199_1
Bareille C. (e_1_2_8_66_1) 2014; 4
e_1_2_8_187_3
e_1_2_8_187_4
e_1_2_8_141_1
e_1_2_8_164_1
e_1_2_8_141_2
e_1_2_8_97_1
e_1_2_8_97_3
e_1_2_8_97_4
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_187_1
e_1_2_8_187_2
e_1_2_8_154_2
e_1_2_8_154_1
e_1_2_8_131_1
e_1_2_8_84_2
e_1_2_8_84_1
e_1_2_8_154_5
e_1_2_8_154_4
e_1_2_8_61_1
e_1_2_8_154_3
e_1_2_8_177_1
Wager J. F. (e_1_2_8_179_1) 2014; 30
e_1_2_8_142_2
e_1_2_8_165_2
e_1_2_8_142_3
e_1_2_8_165_1
e_1_2_8_96_1
e_1_2_8_142_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_188_1
e_1_2_8_203_1
e_1_2_8_1_2
e_1_2_8_41_3
e_1_2_8_117_1
e_1_2_8_170_1
e_1_2_8_193_1
e_1_2_8_41_2
e_1_2_8_87_2
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_117_3
e_1_2_8_64_2
e_1_2_8_117_2
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_76_4
e_1_2_8_215_1
e_1_2_8_99_1
e_1_2_8_76_3
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_181_1
e_1_2_8_30_2
e_1_2_8_76_2
e_1_2_8_181_2
Wager J. F. (e_1_2_8_12_1) 2016; 32
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_53_2
e_1_2_8_30_1
e_1_2_8_118_3
e_1_2_8_204_1
e_1_2_8_2_1
e_1_2_8_171_1
e_1_2_8_118_2
e_1_2_8_171_2
e_1_2_8_194_2
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_194_1
e_1_2_8_194_4
e_1_2_8_63_1
e_1_2_8_194_3
e_1_2_8_40_1
e_1_2_8_216_1
e_1_2_8_98_1
e_1_2_8_98_2
e_1_2_8_106_1
e_1_2_8_182_1
e_1_2_8_52_2
e_1_2_8_106_2
e_1_2_8_182_2
e_1_2_8_75_1
e_1_2_8_129_1
e_1_2_8_52_1
e_1_2_8_119_2
e_1_2_8_205_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_89_1
e_1_2_8_20_2
e_1_2_8_43_3
e_1_2_8_119_1
e_1_2_8_172_1
e_1_2_8_195_1
e_1_2_8_43_2
e_1_2_8_195_3
e_1_2_8_195_2
Park J. W. (e_1_2_8_6_1) 2019; 30
e_1_2_8_78_2
e_1_2_8_217_1
e_1_2_8_160_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
Kim H.‐A. (e_1_2_8_157_1) 2018; 65
e_1_2_8_55_2
e_1_2_8_107_1
e_1_2_8_183_1
e_1_2_8_107_2
e_1_2_8_183_2
e_1_2_8_183_3
e_1_2_8_183_4
e_1_2_8_183_5
e_1_2_8_183_6
e_1_2_8_206_1
e_1_2_8_150_1
e_1_2_8_65_2
e_1_2_8_88_2
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_65_1
e_1_2_8_173_1
e_1_2_8_196_2
e_1_2_8_196_1
Janotti A. (e_1_2_8_26_1) 2007
e_1_2_8_161_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_184_1
e_1_2_8_184_2
e_1_2_8_184_3
e_1_2_8_184_4
e_1_2_8_184_5
e_1_2_8_68_1
Zhang K. H. L. (e_1_2_8_14_3) 2011; 23
e_1_2_8_5_1
e_1_2_8_5_2
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_22_2
e_1_2_8_113_1
e_1_2_8_136_1
e_1_2_8_159_1
e_1_2_8_11_3
e_1_2_8_11_4
e_1_2_8_34_2
e_1_2_8_57_1
e_1_2_8_57_2
e_1_2_8_211_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_11_2
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_147_1
e_1_2_8_124_3
e_1_2_8_124_2
e_1_2_8_200_3
e_1_2_8_200_4
e_1_2_8_200_1
e_1_2_8_200_2
e_1_2_8_200_5
e_1_2_8_200_6
e_1_2_8_6_2
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_114_3
e_1_2_8_21_2
e_1_2_8_44_1
e_1_2_8_137_1
e_1_2_8_114_2
e_1_2_8_114_1
e_1_2_8_33_4
e_1_2_8_33_3
e_1_2_8_79_3
e_1_2_8_33_6
e_1_2_8_56_2
e_1_2_8_79_2
e_1_2_8_33_5
e_1_2_8_79_1
e_1_2_8_212_1
Bosman A. J. (e_1_2_8_97_2) 1966; 144
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_10_2
e_1_2_8_33_2
e_1_2_8_33_1
e_1_2_8_102_1
e_1_2_8_148_1
e_1_2_8_125_2
e_1_2_8_102_3
e_1_2_8_125_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_24_2
e_1_2_8_24_3
e_1_2_8_47_2
e_1_2_8_201_1
e_1_2_8_3_1
e_1_2_8_3_3
e_1_2_8_3_2
e_1_2_8_115_2
e_1_2_8_138_1
e_1_2_8_138_2
e_1_2_8_115_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_59_2
e_1_2_8_190_1
e_1_2_8_190_2
e_1_2_8_213_2
e_1_2_8_213_1
e_1_2_8_149_1
e_1_2_8_149_2
e_1_2_8_103_1
e_1_2_8_126_1
e_1_2_8_46_6
e_1_2_8_46_5
e_1_2_8_23_2
e_1_2_8_46_2
e_1_2_8_23_3
e_1_2_8_46_1
e_1_2_8_46_4
e_1_2_8_46_3
e_1_2_8_69_1
e_1_2_8_180_1
e_1_2_8_202_1
e_1_2_8_4_2
e_1_2_8_4_1
e_1_2_8_116_2
e_1_2_8_139_2
e_1_2_8_192_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_139_1
e_1_2_8_58_2
e_1_2_8_35_1
e_1_2_8_58_1
e_1_2_8_191_1
e_1_2_8_214_1
e_1_2_8_180_2
e_1_2_8_127_1
e_1_2_8_104_1
References_xml – volume: 389 25
  start-page: 939 28
  year: 1997 2011
  publication-title: Nature MRS Bull.
– volume: 5
  start-page: 9273
  year: 2017
  publication-title: J. Mater. Chem. C
– volume: 5
  year: 2013
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5 6
  start-page: 7750
  year: 2013 2016
  publication-title: Nanoscale Sci. Rep.
– volume: 32
  start-page: 16
  year: 2016
  publication-title: Inf. Disp.
– volume: 80 84 65 87
  start-page: 317
  year: 2009 2011 2010 2013
  publication-title: Phys. Rev. B Phys. Rev. B Surf. Sci. Rep. Phys. Rev. B
– volume: 28 28 8
  start-page: 3831
  year: 2016 2016 2020
  publication-title: J. Phys.: Condens. Matter Adv. Mater. APL Mater.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 489 105 8 5 11 30
  start-page: 128 3673
  year: 2012 2014 2016 2017 2019 2020
  publication-title: Nature Appl. Phys. Lett. ACS Appl. Mater. Interfaces J. Mater. Chem. C ACS Appl. Mater. Interfaces Adv. Funct. Mater.
– volume: 37 88 41 7
  start-page: 2810 2463
  year: 2004 2006 2008 2007
  publication-title: J. Phys. D: Appl. Phys. Appl. Phys. Lett. J. Phys. D: Appl. Phys. Nano Lett.
– volume: 4
  year: 2020
  publication-title: Phys. Rev. Mater.
– volume: 40 40 50 22
  start-page: 411 1772 541
  year: 2019 2019 2019 2020
  publication-title: IEEE Electron Device Lett. IEEE Electron Device Lett. SID Symp. Dig. Tech. Pap. Adv. Eng. Mater.
– volume: 58 81 2
  start-page: 18
  year: 1976 2010 2018
  publication-title: Surf. Sci. Phys. Rev. B Phys. Rev. Mater.
– volume: 3
  start-page: 51
  year: 2020
  publication-title: Nat. Electron.
– volume: 93
  start-page: 1204
  year: 1954
  publication-title: Phys. Rev.
– volume: 101 102
  year: 2008 2020
  publication-title: Phys. Rev. Lett. Phys. Rev. B
– volume: 97 39 39 40 66
  start-page: 208 516 1642 950
  year: 2010 2018 2018 2019 2019
  publication-title: Appl. Phys. Lett. IEEE Electron Device Lett. IEEE Electron Device Lett. IEEE Electron Device Lett. IEEE Trans. Electron Devices
– volume: 27 91
  start-page: 5191
  year: 2015 2015
  publication-title: Adv. Mater. Phys. Rev. B
– volume: 55 70
  start-page: 3561
  year: 2016 1997
  publication-title: Jpn. J. Appl. Phys. Appl. Phys. Lett.
– volume: 558 4 8
  start-page: 294 6980
  year: 2014 2016 2016
  publication-title: Thin Solid Films J. Mater. Chem. A ACS Appl. Mater. Interfaces
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 95
  start-page: 5856
  year: 2004
  publication-title: J. Appl. Phys.
– volume: 88 311
  start-page: 1658
  year: 2002 2009
  publication-title: Phys. Rev. Lett. J. Cryst. Growth
– volume: 12 41 33 4
  start-page: H348 1033 396 Q61
  year: 2009 2010 2012 2015
  publication-title: Electrochem. Solid‐State Lett. SID Symp. Dig. Tech. Pap. IEEE Electron Device Lett. ECS J. Solid State Sci. Technol.
– volume: 300 432 1
  start-page: 1269 488 428
  year: 2003 2004 2018
  publication-title: Science Nature Nat. Electron.
– volume: 77
  year: 2008
  publication-title: Phys. Rev. B
– volume: 78
  start-page: 1583
  year: 2001
  publication-title: Appl. Phys. Lett.
– start-page: 76
  year: 2007
  publication-title: Phys. Rev. B
– volume: 98 27 89 101
  start-page: 2232
  year: 2011 2012 2014 2020
  publication-title: Appl. Phys. Lett. J. Mater. Res. Phys. Rev. B Phys. Rev. B
– volume: 142 120
  start-page: 2726 4007
  year: 2020 2020
  publication-title: J. Am. Chem. Soc. Chem. Rev.
– volume: 399
  start-page: 716
  year: 2017
  publication-title: Appl. Surf. Sci.
– volume: 127
  year: 2020
  publication-title: J. Appl. Phys.
– volume: 110 92 90 16
  year: 2013 2008 2014 2020
  publication-title: Phys. Rev. Lett. Appl. Phys. Lett. Phys. Rev. B Small
– volume: 92
  year: 2008
  publication-title: Appl. Phys. Lett.
– volume: 75
  year: 2007
  publication-title: Phys. Rev. B
– volume: 48
  start-page: 1262
  year: 2017
  publication-title: SID Symp. Dig. Tech. Pap.
– volume: 23
  year: 2011
  publication-title: J. Phys.: Condens. Matter
– volume: 90
  year: 2007
  publication-title: Appl. Phys. Lett.
– volume: 25 6
  start-page: 1504
  year: 2013 2019
  publication-title: Adv. Mater. Adv. Mater. Interfaces
– volume: 78
  year: 2008
  publication-title: Phys. Rev. B
– volume: 15 6
  start-page: 383 809
  year: 2016 2012
  publication-title: Nat. Mater. Nat. Photonics
– volume: 6
  start-page: 2275
  year: 2018
  publication-title: J. Mater. Chem. C
– volume: 4 28
  start-page: 2292 30
  year: 2013 2015
  publication-title: Nat. Commun. Chem. Mater.
– volume: 4 572
  start-page: 9438 51
  year: 2016 2014
  publication-title: J. Mater. Chem. C Thin Solid Films
– volume: 517 377 516
  start-page: 1474 355 5822
  year: 2008 2016 2008
  publication-title: Thin Solid Films Appl. Surf. Sci. Thin Solid Films
– volume: 46 50 5 67
  start-page: 853 1214 1014
  year: 2015 2019 2019 2020
  publication-title: SID Symp. Dig. Tech. Pap. SID Symp. Dig. Tech. Pap. Adv. Electron. Mater. IEEE Trans. Electron Devices
– volume: 12 11
  start-page: 77
  issue: 99
  year: 2017 2019 2011
  publication-title: Nanoscale Res. Lett. Nanoscale Appl. Phys. Lett.
– volume: 54
  start-page: 437
  year: 1982
  publication-title: Rev. Mod. Phys.
– volume: 48
  start-page: 291
  year: 2017
  publication-title: SID Symp. Dig. Tech. Pap.
– volume: 11
  start-page: 4309
  year: 2020
  publication-title: Nat. Commun.
– volume: 103 3
  year: 2009 2019
  publication-title: Phys. Rev. Lett. Phys. Rev. Mater.
– volume: 26
  start-page: 9099
  year: 2020
  publication-title: Chem. ‐ Eur. J.
– volume: 24
  start-page: 2945
  year: 2012
  publication-title: Adv. Mater.
– volume: 520
  start-page: 1
  year: 2011
  publication-title: Thin Solid Films
– volume: 97 89 18
  start-page: 3169
  year: 2005 2006 2008
  publication-title: J. Appl. Phys. Appl. Phys. Lett. Adv. Funct. Mater.
– volume: 29 2
  start-page: 769
  year: 2017 2020
  publication-title: Adv. Mater. InfoMat
– volume: 82
  start-page: 733
  year: 2003
  publication-title: Appl. Phys. Lett.
– volume: 315 9
  start-page: 1388 889
  year: 2007 2010
  publication-title: Science Nat. Mater.
– volume: 65 77 87
  year: 2002 2008 2013
  publication-title: Phys. Rev. B Phys. Rev. B Phys. Rev. B
– volume: 39
  start-page: 675
  year: 1978
  publication-title: J. Phys. Chem. Solids
– volume: 10
  start-page: 382
  year: 2011
  publication-title: Nat. Mater.
– volume: 4
  start-page: 1919
  year: 2004
  publication-title: Nano Lett.
– volume: 96
  year: 2010
  publication-title: Appl. Phys. Lett.
– volume: 42
  start-page: 583
  year: 2002
  publication-title: Microelectron. Reliab.
– volume: 37
  start-page: 537
  year: 2003
  publication-title: Semiconductors
– volume: 100
  year: 2012
  publication-title: Appl. Phys. Lett.
– volume: 93
  year: 2008
  publication-title: Appl. Phys. Lett.
– volume: 112 8
  year: 2018 2019
  publication-title: Appl. Phys. Lett. ECS J. Solid State Sci. Technol.
– volume: 2 110
  start-page: P5
  year: 2012 2017
  publication-title: Solid State Sci. Technol. Appl. Phys. Lett.
– volume: 36
  start-page: 9
  year: 2020
  publication-title: Inf. Disp.
– volume: 99 115
  year: 2011 2019
  publication-title: Appl. Phys. Lett. Appl. Phys. Lett.
– volume: 28 92
  start-page: 1976
  year: 2016 2015
  publication-title: Adv. Mater. Phys. Rev. B
– volume: 2 98
  year: 2014 2011
  publication-title: APL Mater. Appl. Phys. Lett.
– volume: 88 110
  year: 2013 2013
  publication-title: Phys. Rev. B Phys. Rev. Lett.
– volume: 88 13
  start-page: 338
  year: 2000 2001
  publication-title: J. Appl. Phys. Chem. Mater.
– volume: 7 56
  start-page: 701 2094
  year: 1964 1968
  publication-title: Solid‐State Electron. Proc. IEEE
– volume: 68 2
  start-page: 661 15
  year: 1996 2010
  publication-title: Appl. Phys. Lett. NPG Asia Mater
– volume: 20 1
  start-page: 1299
  year: 2008 2017
  publication-title: Chem. Mater. Phys. Rev. Mater.
– volume: 4
  year: 2018
  publication-title: Adv. Electron. Mater.
– year: 2009 2009
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 9 28 9
  start-page: 7968
  year: 2017 2018 2018
  publication-title: ACS Appl. Mater. Interfaces Adv. Funct. Mater. Chem. Sci.
– volume: 398
  start-page: 53
  year: 2001
  publication-title: Thin Solid Films
– volume: 5
  start-page: 204
  year: 2006
  publication-title: Nat. Mater.
– volume: 25 30
  start-page: 3114 2089
  year: 2015 2018
  publication-title: Adv. Funct. Mater. J. Mater. Sci.: Mater. Electron.
– volume: 95 11 3 216
  year: 2009 2010 2017 2019
  publication-title: Appl. Phys. Lett. Sci. Technol. Adv. Mater. Adv. Electron. Mater. Phys. Status Solidi A
– volume: 86 50 18 90 6
  start-page: 784 738
  year: 2005 2006 2006 2007 2020
  publication-title: Appl. Phys. Lett. Solid‐State Electron. Adv. Mater. Appl. Phys. Lett. Adv. Electron. Mater.
– volume: 15
  start-page: 204
  year: 2016
  publication-title: Nat. Mater.
– volume: 7
  year: 2019
  publication-title: APL Mater.
– volume: 4
  start-page: 3586
  year: 2014
  publication-title: A. F. Santander‐Syro, Sci. Rep.
– volume: 210
  start-page: 1671
  year: 2013
  publication-title: Phys. Status Solidi A
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 50 12
  start-page: 1279
  year: 2019 2020
  publication-title: SID Symp. Dig. Tech. Pap. ACS Appl. Mater. Interfaces
– volume: 98
  year: 2011
  publication-title: Appl. Phys. Lett.
– year: 2020
– volume: 9
  start-page: 2017
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  start-page: 102
  year: 2020
  publication-title: Commun. Phys.
– volume: 93 31
  start-page: 827
  year: 2008 2010
  publication-title: Appl. Phys. Lett. IEEE Electron Device Lett.
– volume: 6
  year: 2016
  publication-title: Sci. Rep.
– volume: 43 51
  start-page: 756
  year: 2012 2012
  publication-title: SID Symp. Dig. Tech. Pap. Jpn. J. Appl. Phys.
– volume: 469 1
  start-page: 189
  year: 2011 2014
  publication-title: Nature Phys. Rev. Appl.
– volume: 6
  start-page: 493
  year: 2007
  publication-title: Nat. Mater.
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. C
– volume: 4
  year: 2016
  publication-title: J. Mater. Chem. C
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. C
– volume: 30 26
  start-page: 1 9126
  year: 2019 2020
  publication-title: Adv. Funct. Mater. Chem. ‐ Eur. J.
– volume: 103 110 108 112 105
  year: 2008 2011 2016 2018 2009
  publication-title: J. Appl. Phys. J. Appl. Phys. Appl. Phys. Lett. Appl. Phys. Lett. J. Appl. Phys.
– volume: 281‐282 87
  start-page: 445
  year: 1996 2005
  publication-title: Thin Solid Films Appl. Phys. Lett.
– volume: 64 273
  start-page: 1 903
  year: 2015 1996
  publication-title: ECS Trans. Science
– volume: 2
  year: 2020
  publication-title: Phys. Rev. Res.
– volume: 254 46
  start-page: 1661 2173
  year: 2008 2020
  publication-title: Appl. Surf. Sci. Ceram. Int.
– volume: 50
  start-page: 1251
  year: 2019
  publication-title: SID Symp. Dig. Tech. Pap.
– volume: 518 111
  start-page: 3012
  year: 2010 2012
  publication-title: Thin Solid Films J. Appl. Phys.
– volume: 23 103 7 16 112 66
  start-page: 3431 5160 876 1766
  year: 2011 2013 2013 2017 2018 2019
  publication-title: Adv. Mater. Appl. Phys. Lett. ACS Nano IEEE Trans. Nanotechnol. Appl. Phys. Lett. IEEE Trans. Electron Devices
– volume: 7 12
  start-page: 2366
  year: 2015 2020
  publication-title: Nanoscale Nanoscale
– volume: 26
  start-page: 169
  year: 2018
  publication-title: J. Soc. Inf. Disp.
– volume: 90 11 92
  start-page: H157
  year: 2007 2008 2008
  publication-title: Appl. Phys. Lett. Electrochem. Solid‐State Lett. Appl. Phys. Lett.
– volume: 84
  year: 2011
  publication-title: Phys. Rev. B
– volume: 98 108 88 101 63 77 97
  year: 2007 2012 2002 2008 2001 2008 2010
  publication-title: Phys. Rev. Lett. Phys. Rev. Lett. Phys. Rev. Lett. Phys. Rev. Lett. Phys. Rev. B Phys. Rev. B Appl. Phys. Lett.
– volume: 59
  start-page: 1241
  year: 1998
  publication-title: J. Phys. Chem. Solids
– volume: 15 3 17
  start-page: 2993 65
  year: 1997 2014 2016
  publication-title: J. Vac. Sci. Technol., A Solid State Sci. Technol. J. Inf. Disp.
– volume: 100 2 31
  start-page: 1486
  year: 2012 2016 2019
  publication-title: Proc. IEEE Adv. Electron. Mater. Adv. Mater.
– volume: 534 7
  start-page: 446 782
  year: 2013 2015
  publication-title: Thin Solid Films ACS Appl. Mater. Interfaces
– volume: 365
  start-page: 1454
  year: 2019
  publication-title: Science
– volume: 89
  start-page: 8022
  year: 2001
  publication-title: J. Appl. Phys.
– volume: 207
  start-page: 1698
  year: 2010
  publication-title: Phys. Status Solidi A
– volume: 12 30
  year: 2020 2020
  publication-title: ACS Appl. Mater. Interfaces Adv. Funct. Mater.
– volume: 5
  start-page: 3515
  year: 2014
  publication-title: Nat. Commun.
– volume: 139 44 8
  start-page: 504 4618 142
  year: 1954 1973 1973
  publication-title: Z. Phys. J. Appl. Phys. J. Solid State Chem.
– volume: 14
  start-page: 801
  year: 2015
  publication-title: Nat. Mater.
– volume: 6 85 80 79 80 115
  start-page: 44 1012
  year: 2007 2000 2009 2009 2009 2019
  publication-title: Nat. Mater. Phys. Rev. Lett. Phys. Rev. B Phys. Rev. B Phys. Rev. B Appl. Phys. Lett.
– volume: 23 104 92
  year: 2011 2008 2008
  publication-title: J. Phys.: Condens. Matter. J. Appl. Phys. Appl. Phys. Lett.
– volume: 59 77
  start-page: 255
  year: 1979 2008
  publication-title: Thin Solid Films Phys. Rev. B
– volume: 4 99
  start-page: 2865 83
  year: 2010 2019
  publication-title: ACS Nano M. A. Mat Teridi, K. Sopian, Renewable Sustainable Energy Rev.
– volume: 8
  start-page: 6176
  year: 2020
  publication-title: J. Mater. Chem. C
– volume: 496 96
  start-page: 117 329
  year: 2006 2015
  publication-title: Thin Solid Films Energy Build.
– volume: 32
  start-page: 1964
  year: 2020
  publication-title: Chem. Mater.
– volume: 27
  start-page: 2390
  year: 2015
  publication-title: Adv. Mater.
– volume: 109
  year: 2016
  publication-title: Appl. Phys. Lett.
– volume: 21
  start-page: 467
  year: 2013
  publication-title: J. Soc. Inf. Disp.
– volume: 56 105 110 7
  start-page: 1365
  year: 2009 2014 2017 2019
  publication-title: IEEE Trans. Electron Devices Appl. Phys. Lett. Appl. Phys. Lett. APL Mater.
– volume: 103
  year: 2013
  publication-title: Appl. Phys. Lett.
– volume: 4 31 3 100
  start-page: 1486
  year: 2018 2019 2017 2012
  publication-title: Adv. Electron. Mater. Adv. Mater. Adv. Electron. Mater. Proc. IEEE
– volume: 25 103 103
  start-page: 3114 4
  year: 2013 2013 2013
  publication-title: Chem. Mater. Appl. Phys. Lett. Appl. Phys. Lett.
– volume: 4
  start-page: 6946
  year: 2016
  publication-title: J. Mater. Chem. C
– volume: 2
  start-page: 587
  year: 2019
  publication-title: Nat. Electron.
– volume: 78 94 109 102 89 104
  year: 2008 2009 2011 2013 2014 2010
  publication-title: Phys. Rev. B Appl. Phys. Lett. J. Appl. Phys. Appl. Phys. Lett. Phys. Rev. B Phys. Rev. Lett.
– volume: 5
  year: 2018
  publication-title: Appl. Phys. Rev.
– volume: 14 116 23
  start-page: 1482
  year: 2013 2016 2011
  publication-title: Sci. Technol. Adv. Mater. Chem. Rev. Adv. Mater.
– volume: 79
  start-page: 284
  year: 2001
  publication-title: Appl. Phys. Lett.
– volume: 21
  start-page: 203
  year: 2020
  publication-title: J. Inf. Disp.
– volume: 516 111
  start-page: 5052
  year: 2008 2012
  publication-title: Thin Solid Films J. Appl. Phys.
– volume: 49
  year: 2010
  publication-title: Jpn. J. Appl. Phys.
– volume: 20 23 65 74 154 4
  start-page: 2995 S35 8 785 4539
  year: 2004 2005 2011 2002 2006 1967 1971
  publication-title: Dalton Trans. Semicond. Sci. Technol. J. Phys.: Condens. Matter. Phys. Rev. B Phys. Rev. B Phys. Rev. Phys. Rev. B
– volume: 5 96 486
  start-page: 462 38
  year: 2009 2010 2005
  publication-title: J. Disp. Technol. Appl. Phys. Lett. Thin Solid Films
– volume: 36 63 89
  start-page: 685 2132
  year: 1980 1993 2002
  publication-title: Appl. Phys. Lett. Appl. Phys. Lett. Phys. Rev. Lett.
– volume: 427 456
  start-page: 423 624
  year: 2004 2008
  publication-title: Nature Nature
– volume: 96 42
  start-page: 6445 2911
  year: 2004 1971
  publication-title: J. Appl. Phys. J. Appl. Phys.
– volume: 9
  start-page: 1429
  year: 1976
  publication-title: J. Phys. C: Solid State Phys.
– volume: 53
  start-page: 2339
  year: 1984
  publication-title: Phys. Rev. Lett.
– volume: 91
  year: 2015
  publication-title: Phys. Rev. B
– volume: 4
  start-page: 2351
  year: 2013
  publication-title: Nat. Commun.
– volume: 7
  start-page: 236
  year: 2020
  publication-title: Mater. Horiz.
– volume: 17 32
  start-page: 231
  year: 2018 2020
  publication-title: Nat. Mater. Adv. Mater.
– volume: 50
  start-page: 545
  year: 2019
  publication-title: SID Symp. Dig. Tech. Pap.
– volume: 127 19
  start-page: 150 313
  year: 1962 1981
  publication-title: Phys. Rev. J. Vac. Sci. Technol.
– volume: 92 97 109 103 9
  year: 2008 2010 2011 2013 2018
  publication-title: Appl. Phys. Lett. Appl. Phys. Lett. J. Appl. Phys. Appl. Phys. Lett. Phys. Rev. Appl.
– volume: 123
  start-page: 1700
  year: 2018
  publication-title: J. Phys. Chem. C
– volume: 65 40
  start-page: 4854 1443
  year: 2018 2019
  publication-title: IEEE Trans. Electron Devices IEEE Electron Device Lett.
– volume: 89
  start-page: 1790
  year: 2001
  publication-title: J. Appl. Phys.
– volume: 18 7
  start-page: 194 3958
  year: 2002 2019
  publication-title: Langmuir J. Mater. Chem. C
– volume: 30
  start-page: 26
  year: 2014
  publication-title: Inf. Disp.
– volume: 30 32
  year: 2019 2020
  publication-title: Adv. Funct. Mater. Adv. Mater.
– volume: 116
  start-page: 9230
  year: 2019
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 97 23
  year: 2010 2011
  publication-title: Appl. Phys. Lett. J. Phys.: Condens. Matter.
– volume: 100
  year: 2019
  publication-title: Phys. Rev. B
– volume: 7
  start-page: 767
  year: 2011
  publication-title: Nat. Phys.
– volume: 33 105
  start-page: 1 818
  year: 2008 2012 2014
  end-page: 4
  publication-title: IEEE Electron Device Lett. Appl. Phys. Lett.
– volume: 73
  start-page: 220
  year: 1998
  publication-title: Appl. Phys. Lett.
– volume: 3
  year: 2010
  publication-title: Appl. Phys. Express
– volume: 3
  year: 2019
  publication-title: Phys. Rev. Mater.
– volume: 97 2
  year: 2010 2018
  publication-title: Appl. Phys. Lett. Phys. Rev. Mater.
– volume: 18
  start-page: 789
  year: 2010
  publication-title: J. Soc. Inf. Disp.
– volume: 8
  year: 2018
  publication-title: Sci. Rep.
– volume: 39 6 11
  start-page: 371
  year: 2018 2019 2019
  publication-title: IEEE Electron Device Lett. Adv. Mater. Interfaces ACS Appl. Mater. Interfaces
– volume: 112
  start-page: 3217
  year: 2015
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 21
  start-page: 4353
  year: 2009
  publication-title: Chem. Mater.
– volume: 102 18
  start-page: 53
  year: 2013 2014
  publication-title: Appl. Phys. Lett. Curr. Opin. Solid State Mater. Sci.
– volume: 28
  start-page: 4900
  year: 1983
  publication-title: Phys. Rev. B
– volume: 317 110 11 112
  start-page: 1196 6040
  year: 2007 2013 2017 2018
  publication-title: Science Phys. Rev. Lett. ACS Nano Appl. Phys. Lett.
– volume: 82 144 61 19
  start-page: 937 763 3385 1
  year: 2003 1966 1992 1970
  publication-title: Mater. Chem. Phys. C. Crevecoe, Phys. Rev. J. Phys. Soc. Jpn. Adv. Phys.
– volume: 114 3
  start-page: 9359
  year: 2013 2015
  publication-title: J. Appl. Phys. J. Mater. Chem. C
– volume: 21 15 592 108
  start-page: 6875 195
  year: 2010 2013 2015 2016
  publication-title: Nanotechnology Phys. Chem. Chem. Phys. Thin Solid Films Appl. Phys. Lett.
– volume: 73 77
  start-page: 2009
  year: 2006 2000
  publication-title: Phys. Rev. B Appl. Phys. Lett.
– volume: 13
  year: 2019
  publication-title: ACS Nano
– volume: 76 103
  year: 2007 2009
  publication-title: Phys. Rev. B Phys. Rev. Lett.
– volume: 115
  year: 2019
  publication-title: Appl. Phys. Lett.
– volume: 2 13
  start-page: 235 780
  year: 1984 1976
  publication-title: J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. J. Vac. Sci. Technol.
– issue: 5
  year: 2019
  publication-title: Adv. Electron. Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 2 3
  year: 2015 2017
  publication-title: Adv. Sci. Sci. Adv.
– volume: 93 311
  start-page: 1102
  year: 2008 2009
  publication-title: Appl. Phys. Lett. J. Cryst. Growth
– year: 2006
– volume: 82
  start-page: 1117
  year: 2003
  publication-title: Appl. Phys. Lett.
– volume: 8 47 8
  start-page: 689 4611 421
  year: 2008 2018 2013
  publication-title: Nano Lett. Chem. Soc. Rev. Nat. Nanotechnol.
– volume: 113
  year: 2016
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 115 15 107
  start-page: 2220
  year: 2014 2013 2010
  publication-title: J. Appl. Phys. CrystEngComm J. Appl. Phys.
– ident: e_1_2_8_150_1
  doi: 10.1063/1.1553997
– ident: e_1_2_8_161_1
  doi: 10.1039/C9TC03933C
– ident: e_1_2_8_190_2
  doi: 10.1002/admi.201900883
– ident: e_1_2_8_8_4
  doi: 10.1002/pssa.201800372
– ident: e_1_2_8_160_1
  doi: 10.1002/msid.1098
– ident: e_1_2_8_195_2
  doi: 10.1002/aelm.201600105
– ident: e_1_2_8_43_3
  doi: 10.1080/15980316.2016.1160003
– ident: e_1_2_8_142_2
  doi: 10.1039/C9NR02664A
– ident: e_1_2_8_37_1
  doi: 10.1088/0953-8984/23/33/334212
– ident: e_1_2_8_103_1
  doi: 10.1063/1.2964197
– ident: e_1_2_8_24_1
  doi: 10.1007/BF01374559
– ident: e_1_2_8_137_1
  doi: 10.1016/j.tsf.2011.06.091
– ident: e_1_2_8_164_1
  doi: 10.1063/1.3564882
– ident: e_1_2_8_33_4
  doi: 10.1103/PhysRevB.79.245206
– ident: e_1_2_8_158_3
  doi: 10.1002/aelm.201900768
– ident: e_1_2_8_33_5
  doi: 10.1103/PhysRevB.80.081201
– ident: e_1_2_8_162_1
  doi: 10.1109/TED.2009.2021339
– ident: e_1_2_8_28_4
  doi: 10.1063/1.5020134
– ident: e_1_2_8_178_1
  doi: 10.1038/s41928-019-0342-y
– ident: e_1_2_8_94_1
  doi: 10.1063/1.2431548
– ident: e_1_2_8_64_2
  doi: 10.1103/PhysRevB.92.041106
– ident: e_1_2_8_199_2
  doi: 10.1126/science.273.5277.903
– ident: e_1_2_8_34_2
  doi: 10.1063/1.4985627
– ident: e_1_2_8_128_1
  doi: 10.1103/PhysRevMaterials.3.084608
– ident: e_1_2_8_58_2
  doi: 10.1063/1.1312199
– ident: e_1_2_8_138_1
  doi: 10.1039/C5NR04084A
– ident: e_1_2_8_213_2
  doi: 10.1021/acs.chemrev.9b00600
– ident: e_1_2_8_45_1
  doi: 10.1016/S0022-3697(98)00047-X
– ident: e_1_2_8_73_1
  doi: 10.1038/nmat1569
– volume: 103
  start-page: 4
  year: 2013
  ident: e_1_2_8_102_2
  publication-title: Appl. Phys. Lett.
– ident: e_1_2_8_199_1
  doi: 10.1149/06442.0001ecst
– ident: e_1_2_8_153_2
  doi: 10.1038/asiamat.2010.5
– ident: e_1_2_8_111_1
  doi: 10.1002/adma.201706573
– ident: e_1_2_8_82_1
  doi: 10.1143/JJAP.49.020202
– ident: e_1_2_8_85_2
  doi: 10.1103/PhysRevB.77.155115
– ident: e_1_2_8_39_2
  doi: 10.1149/2.0221907jss
– ident: e_1_2_8_37_2
  doi: 10.1063/1.2975219
– ident: e_1_2_8_154_3
  doi: 10.1002/adma.200501957
– ident: e_1_2_8_32_1
  doi: 10.1103/PhysRevB.84.115205
– ident: e_1_2_8_87_1
  doi: 10.1103/PhysRevB.76.045209
– ident: e_1_2_8_46_5
  doi: 10.1103/PhysRevB.89.165305
– ident: e_1_2_8_118_3
  doi: 10.1016/j.tsf.2007.10.063
– ident: e_1_2_8_25_7
  doi: 10.1063/1.3499306
– ident: e_1_2_8_72_2
  doi: 10.1016/j.jcrysgro.2008.09.151
– ident: e_1_2_8_8_1
  doi: 10.1063/1.3159831
– ident: e_1_2_8_50_1
  doi: 10.1063/1.5054091
– ident: e_1_2_8_166_2
  doi: 10.1063/1.3699372
– ident: e_1_2_8_98_2
  doi: 10.1016/j.tsf.2014.07.062
– ident: e_1_2_8_212_1
  doi: 10.1039/D0TC01204A
– ident: e_1_2_8_142_1
  doi: 10.1186/s11671-017-1841-2
– ident: e_1_2_8_165_2
  doi: 10.1063/1.5117771
– ident: e_1_2_8_194_3
  doi: 10.1002/sdtp.12977
– ident: e_1_2_8_35_1
  doi: 10.1103/PhysRevB.91.075208
– ident: e_1_2_8_158_2
  doi: 10.1002/sdtp.13150
– ident: e_1_2_8_51_1
  doi: 10.1038/srep26598
– ident: e_1_2_8_53_2
  doi: 10.1126/sciadv.1602640
– ident: e_1_2_8_162_4
  doi: 10.1063/1.5053762
– ident: e_1_2_8_65_2
  doi: 10.1103/PhysRevApplied.1.051002
– ident: e_1_2_8_208_1
  doi: 10.1021/acsnano.9b05715
– ident: e_1_2_8_48_3
  doi: 10.1103/PhysRevB.89.115320
– ident: e_1_2_8_47_2
  doi: 10.1103/PhysRevB.102.075301
– ident: e_1_2_8_90_1
  doi: 10.1063/1.1337587
– ident: e_1_2_8_184_3
  doi: 10.1109/LED.2018.2809796
– ident: e_1_2_8_214_1
  doi: 10.1038/nmat1931
– ident: e_1_2_8_210_1
  doi: 10.1021/acsami.6b06321
– ident: e_1_2_8_118_2
  doi: 10.1016/j.apsusc.2016.03.133
– ident: e_1_2_8_16_1
  doi: 10.1002/pssa.200983772
– ident: e_1_2_8_78_1
  doi: 10.1103/PhysRevB.88.115111
– ident: e_1_2_8_105_1
  doi: 10.1063/1.4833541
– ident: e_1_2_8_85_1
  doi: 10.1103/PhysRevB.65.075111
– ident: e_1_2_8_168_2
  doi: 10.1149/1.2903209
– ident: e_1_2_8_14_2
  doi: 10.1088/0268-1242/20/4/004
– ident: e_1_2_8_108_1
  doi: 10.1103/PhysRevB.78.132507
– ident: e_1_2_8_83_1
  doi: 10.1038/40087
– ident: e_1_2_8_217_1
  doi: 10.1039/C9MH01014A
– ident: e_1_2_8_29_1
  doi: 10.1103/PhysRevLett.110.056803
– ident: e_1_2_8_115_2
  doi: 10.1063/1.3684543
– ident: e_1_2_8_120_2
  doi: 10.1016/j.enbuild.2015.03.024
– ident: e_1_2_8_107_2
  doi: 10.1021/acs.chemmater.5b03794
– ident: e_1_2_8_52_2
  doi: 10.1038/nature07576
– ident: e_1_2_8_198_1
  doi: 10.1016/j.tsf.2013.01.093
– ident: e_1_2_8_159_1
– ident: e_1_2_8_134_1
  doi: 10.1021/acsami.0c04854
– ident: e_1_2_8_9_5
  doi: 10.1103/PhysRevApplied.9.054039
– ident: e_1_2_8_200_5
  doi: 10.1021/acsami.8b22458
– ident: e_1_2_8_99_1
  doi: 10.1039/C7TC05331B
– ident: e_1_2_8_25_2
  doi: 10.1103/PhysRevLett.108.016802
– ident: e_1_2_8_85_3
  doi: 10.1103/PhysRevB.87.115111
– ident: e_1_2_8_97_4
  doi: 10.1080/00018737000101071
– ident: e_1_2_8_52_1
  doi: 10.1038/nature02308
– ident: e_1_2_8_106_1
  doi: 10.1021/cm071588c
– ident: e_1_2_8_8_3
  doi: 10.1002/aelm.201700082
– ident: e_1_2_8_3_2
  doi: 10.1038/nature03090
– ident: e_1_2_8_8_2
  doi: 10.1088/1468-6996/11/4/044305
– ident: e_1_2_8_172_1
  doi: 10.1002/sdtp.11608
– ident: e_1_2_8_81_1
  doi: 10.1126/science.aau8623
– ident: e_1_2_8_184_2
  doi: 10.1109/LED.2017.2786237
– ident: e_1_2_8_169_3
  doi: 10.1109/LED.2011.2181320
– ident: e_1_2_8_129_1
  doi: 10.1016/j.apsusc.2016.11.239
– ident: e_1_2_8_98_1
  doi: 10.1039/C6TC02137A
– ident: e_1_2_8_18_1
  doi: 10.1103/PhysRevB.28.4900
– ident: e_1_2_8_201_1
  doi: 10.1002/aelm.201800843
– ident: e_1_2_8_115_1
  doi: 10.1016/j.tsf.2007.11.079
– ident: e_1_2_8_42_1
  doi: 10.1063/1.4967943
– ident: e_1_2_8_168_1
  doi: 10.1063/1.2723543
– ident: e_1_2_8_187_3
  doi: 10.1016/j.tsf.2015.09.025
– ident: e_1_2_8_55_1
  doi: 10.1038/s41563-017-0002-4
– ident: e_1_2_8_158_1
  doi: 10.1002/sdtp.10359
– ident: e_1_2_8_59_1
  doi: 10.1063/1.4870536
– ident: e_1_2_8_64_1
  doi: 10.1002/adma.201505021
– ident: e_1_2_8_13_1
  doi: 10.1063/1.5109569
– ident: e_1_2_8_144_1
– ident: e_1_2_8_14_4
  doi: 10.1103/PhysRevB.65.075207
– ident: e_1_2_8_119_2
  doi: 10.1039/C9TC00195F
– ident: e_1_2_8_184_4
  doi: 10.1109/LED.2019.2936887
– ident: e_1_2_8_121_1
  doi: 10.1016/S0040-6090(01)01303-7
– ident: e_1_2_8_44_1
  doi: 10.1016/0022-3697(78)90183-X
– ident: e_1_2_8_151_3
  doi: 10.1088/0022-3727/41/9/092006
– ident: e_1_2_8_33_3
  doi: 10.1103/PhysRevB.80.193202
– ident: e_1_2_8_6_2
  doi: 10.1002/chem.202000090
– volume: 65
  start-page: 4854
  year: 2018
  ident: e_1_2_8_157_1
  publication-title: IEEE Trans. Electron Devices
– ident: e_1_2_8_182_1
  doi: 10.1021/acsami.0c09243
– ident: e_1_2_8_180_2
  doi: 10.1109/LED.2010.2050576
– ident: e_1_2_8_135_2
  doi: 10.1002/adma.201804690
– ident: e_1_2_8_182_2
  doi: 10.1002/adfm.202002625
– ident: e_1_2_8_123_3
  doi: 10.1038/nnano.2013.84
– ident: e_1_2_8_79_1
  doi: 10.1063/1.91624
– ident: e_1_2_8_29_4
  doi: 10.1002/smll.201903321
– ident: e_1_2_8_10_1
  doi: 10.1126/science.1137430
– ident: e_1_2_8_110_1
  doi: 10.1103/PhysRevMaterials.4.054603
– ident: e_1_2_8_65_1
  doi: 10.1038/nature09720
– ident: e_1_2_8_84_2
  doi: 10.1016/j.jcrysgro.2008.11.038
– ident: e_1_2_8_126_1
  doi: 10.1039/C9MH01014A
– ident: e_1_2_8_97_1
  doi: 10.1016/j.matchemphys.2003.08.006
– ident: e_1_2_8_91_1
  doi: 10.1063/1.1372636
– ident: e_1_2_8_155_3
  doi: 10.1002/adfm.200700604
– ident: e_1_2_8_23_2
  doi: 10.1063/1.3364131
– ident: e_1_2_8_79_3
  doi: 10.1103/PhysRevLett.89.076406
– ident: e_1_2_8_177_1
  doi: 10.1002/adfm.201902591
– ident: e_1_2_8_76_4
  doi: 10.1103/PhysRevB.87.085128
– ident: e_1_2_8_153_1
  doi: 10.1063/1.116501
– ident: e_1_2_8_97_3
  doi: 10.1143/JPSJ.61.3385
– ident: e_1_2_8_124_2
  doi: 10.1021/acs.chemrev.6b00179
– ident: e_1_2_8_171_2
  doi: 10.1143/JJAP.51.03CB01
– ident: e_1_2_8_3_1
  doi: 10.1126/science.1083212
– ident: e_1_2_8_124_3
  doi: 10.1002/adma.201003188
– ident: e_1_2_8_187_2
  doi: 10.1039/c3cp50197c
– ident: e_1_2_8_119_1
  doi: 10.1021/la015543g
– ident: e_1_2_8_25_5
  doi: 10.1103/PhysRevB.63.075205
– ident: e_1_2_8_29_3
  doi: 10.1103/PhysRevB.90.155413
– ident: e_1_2_8_83_2
  doi: 10.1557/mrs2000.148
– ident: e_1_2_8_141_1
  doi: 10.1002/adfm.201500628
– ident: e_1_2_8_88_1
  doi: 10.1063/1.1308103
– ident: e_1_2_8_154_1
  doi: 10.1063/1.1843286
– ident: e_1_2_8_106_2
  doi: 10.1103/PhysRevMaterials.1.021601
– ident: e_1_2_8_89_1
  doi: 10.1063/1.1355673
– ident: e_1_2_8_54_1
  doi: 10.1063/5.0005531
– ident: e_1_2_8_62_1
  doi: 10.1016/0040-6090(79)90298-0
– ident: e_1_2_8_183_6
  doi: 10.1109/TED.2019.2897813
– ident: e_1_2_8_78_2
  doi: 10.1103/PhysRevLett.110.247601
– ident: e_1_2_8_117_2
  doi: 10.1002/adfm.201701900
– volume: 30
  start-page: 26
  year: 2014
  ident: e_1_2_8_179_1
  publication-title: Inf. Disp.
– ident: e_1_2_8_15_1
  doi: 10.1103/PhysRevB.75.035212
– ident: e_1_2_8_200_4
  doi: 10.1039/C7TC00169J
– ident: e_1_2_8_168_3
  doi: 10.1063/1.2838380
– ident: e_1_2_8_122_2
  doi: 10.1039/C5TA09000H
– ident: e_1_2_8_14_6
  doi: 10.1103/PhysRev.154.785
– ident: e_1_2_8_9_1
  doi: 10.1063/1.2927306
– ident: e_1_2_8_37_3
  doi: 10.1063/1.2911723
– ident: e_1_2_8_25_3
  doi: 10.1103/PhysRevLett.88.095501
– ident: e_1_2_8_87_2
  doi: 10.1103/PhysRevLett.103.096405
– ident: e_1_2_8_202_1
  doi: 10.1039/C7TC01953J
– ident: e_1_2_8_67_1
  doi: 10.1063/1.1695596
– ident: e_1_2_8_151_4
  doi: 10.1021/nl0712217
– ident: e_1_2_8_139_1
  doi: 10.1039/c3nr02320f
– volume: 32
  start-page: 16
  year: 2016
  ident: e_1_2_8_12_1
  publication-title: Inf. Disp.
– ident: e_1_2_8_156_2
  doi: 10.1002/admi.201900277
– ident: e_1_2_8_84_1
  doi: 10.1063/1.3026539
– ident: e_1_2_8_162_3
  doi: 10.1063/1.4985627
– ident: e_1_2_8_145_1
  doi: 10.1002/adma.201103228
– ident: e_1_2_8_117_1
  doi: 10.1021/acsami.7b12968
– ident: e_1_2_8_209_1
  doi: 10.1002/adma.201405400
– ident: e_1_2_8_122_3
  doi: 10.1021/acsami.6b02137
– ident: e_1_2_8_135_4
  doi: 10.1109/JPROC.2012.2190168
– ident: e_1_2_8_30_1
  doi: 10.1063/1.3510471
– ident: e_1_2_8_96_1
  doi: 10.1103/PhysRevLett.53.2339
– ident: e_1_2_8_175_2
  doi: 10.1109/LED.2012.2190036
– ident: e_1_2_8_23_1
  doi: 10.1109/JDT.2009.2022064
– ident: e_1_2_8_120_1
  doi: 10.1016/j.tsf.2005.08.259
– ident: e_1_2_8_69_1
  doi: 10.1134/1.1575357
– ident: e_1_2_8_191_1
  doi: 10.1021/acsami.7b02838
– ident: e_1_2_8_200_2
  doi: 10.1063/1.4895830
– ident: e_1_2_8_125_2
  doi: 10.1016/j.rser.2018.09.011
– ident: e_1_2_8_165_1
  doi: 10.1063/1.3633100
– ident: e_1_2_8_43_2
  doi: 10.1149/2.015409jss
– ident: e_1_2_8_181_2
  doi: 10.1021/acsami.0c01530
– ident: e_1_2_8_102_1
  doi: 10.1021/cm401343a
– ident: e_1_2_8_149_2
  doi: 10.1109/PROC.1968.6813
– ident: e_1_2_8_142_3
  doi: 10.1063/1.3656973
– ident: e_1_2_8_21_2
  doi: 10.1063/1.1991994
– ident: e_1_2_8_147_1
  doi: 10.1063/1.1542677
– ident: e_1_2_8_203_1
  doi: 10.1002/chem.202000678
– ident: e_1_2_8_194_1
  doi: 10.1109/LED.2019.2893194
– ident: e_1_2_8_30_2
  doi: 10.1103/PhysRevMaterials.2.074601
– start-page: 2017
  volume-title: 2017 IEEE Int. Electron Devices Meeting (IEDM)
  ident: e_1_2_8_191_2
– ident: e_1_2_8_116_1
  doi: 10.1063/1.4829672
– ident: e_1_2_8_20_2
  doi: 10.1063/1.1660648
– ident: e_1_2_8_127_1
  doi: 10.1021/acs.chemmater.9b04845
– ident: e_1_2_8_156_1
  doi: 10.1109/LED.2018.2791633
– ident: e_1_2_8_167_1
  doi: 10.1063/1.4790619
– ident: e_1_2_8_19_2
  doi: 10.1088/0953-8984/23/33/334211
– start-page: 76
  year: 2007
  ident: e_1_2_8_26_1
  publication-title: Phys. Rev. B
– ident: e_1_2_8_34_1
  doi: 10.1149/2.011301jss
– ident: e_1_2_8_53_1
  doi: 10.1002/advs.201500058
– ident: e_1_2_8_28_2
  doi: 10.1063/1.3642962
– ident: e_1_2_8_14_1
  doi: 10.1039/b408864f
– ident: e_1_2_8_33_1
  doi: 10.1038/nmat1795
– ident: e_1_2_8_47_1
  doi: 10.1103/PhysRevLett.101.116808
– ident: e_1_2_8_28_5
  doi: 10.1063/1.3054175
– ident: e_1_2_8_28_3
  doi: 10.1063/1.4941429
– ident: e_1_2_8_72_1
  doi: 10.1103/PhysRevLett.88.076801
– ident: e_1_2_8_48_1
  doi: 10.1063/1.3596449
– ident: e_1_2_8_189_1
  doi: 10.1002/adma.201802379
– ident: e_1_2_8_5_1
  doi: 10.1002/jsid.648
– ident: e_1_2_8_57_1
  doi: 10.1116/1.582792
– ident: e_1_2_8_183_1
  doi: 10.1002/adma.201101410
– ident: e_1_2_8_156_3
  doi: 10.1021/acsami.9b03331
– ident: e_1_2_8_11_1
  doi: 10.1126/science.1146006
– ident: e_1_2_8_122_1
  doi: 10.1016/j.tsf.2014.02.042
– start-page: 1
  volume-title: 2008 IEEE Int. Electron Devices Meeting
  year: 2008
  ident: e_1_2_8_175_1
– ident: e_1_2_8_186_1
  doi: 10.1063/1.2939006
– ident: e_1_2_8_190_1
  doi: 10.1002/adma.201202758
– ident: e_1_2_8_183_3
  doi: 10.1021/nn400852r
– ident: e_1_2_8_46_4
  doi: 10.1063/1.4775691
– ident: e_1_2_8_71_1
  doi: 10.1063/1.5006941
– ident: e_1_2_8_46_2
  doi: 10.1063/1.3059569
– ident: e_1_2_8_157_2
  doi: 10.1109/LED.2019.2931089
– ident: e_1_2_8_185_1
  doi: 10.1002/sdtp.13160
– ident: e_1_2_8_56_2
  doi: 10.1116/1.571055
– ident: e_1_2_8_55_2
  doi: 10.1002/adma.201906003
– ident: e_1_2_8_139_2
  doi: 10.1038/srep33074
– ident: e_1_2_8_196_1
  doi: 10.1002/adfm.201904588
– ident: e_1_2_8_5_2
– ident: e_1_2_8_20_1
  doi: 10.1063/1.1805722
– ident: e_1_2_8_207_1
  doi: 10.1073/pnas.1901492116
– ident: e_1_2_8_169_1
  doi: 10.1149/1.3168522
– ident: e_1_2_8_1_1
  doi: 10.1038/nmat4599
– ident: e_1_2_8_74_1
  doi: 10.1038/nmat4303
– ident: e_1_2_8_59_2
  doi: 10.1063/1.3583446
– ident: e_1_2_8_206_1
  doi: 10.1073/pnas.1501548112
– ident: e_1_2_8_196_2
  doi: 10.1002/adma.201907166
– ident: e_1_2_8_24_2
  doi: 10.1063/1.1662011
– ident: e_1_2_8_200_3
  doi: 10.1021/acsami.5b12819
– ident: e_1_2_8_197_1
  doi: 10.1080/15980316.2020.1714762
– ident: e_1_2_8_14_5
  doi: 10.1103/PhysRevB.74.195123
– ident: e_1_2_8_92_1
  doi: 10.1063/1.121761
– ident: e_1_2_8_198_2
  doi: 10.1021/am5072139
– ident: e_1_2_8_184_5
  doi: 10.1109/TED.2018.2887270
– ident: e_1_2_8_11_3
  doi: 10.1021/acsnano.7b01964
– ident: e_1_2_8_143_1
  doi: 10.1038/s41928-019-0353-8
– ident: e_1_2_8_132_1
  doi: 10.1002/aelm.201700476
– ident: e_1_2_8_193_1
  doi: 10.1002/sdtp.12978
– ident: e_1_2_8_174_1
  doi: 10.1002/sdtp.11860
– ident: e_1_2_8_124_1
  doi: 10.1088/1468-6996/14/3/035004
– ident: e_1_2_8_130_1
  doi: 10.1016/j.apsusc.2007.07.146
– ident: e_1_2_8_180_1
  doi: 10.1063/1.3026539
– ident: e_1_2_8_114_3
– ident: e_1_2_8_46_1
  doi: 10.1103/PhysRevB.78.165127
– ident: e_1_2_8_200_1
  doi: 10.1038/nature11434
– ident: e_1_2_8_135_3
  doi: 10.1002/aelm.201600529
– ident: e_1_2_8_39_1
  doi: 10.1063/1.5029921
– ident: e_1_2_8_60_1
  doi: 10.1103/RevModPhys.54.437
– ident: e_1_2_8_109_1
  doi: 10.1002/pssa.201329349
– ident: e_1_2_8_4_1
– ident: e_1_2_8_19_1
  doi: 10.1063/1.3480416
– ident: e_1_2_8_24_3
  doi: 10.1016/0022-4596(73)90007-8
– ident: e_1_2_8_43_1
  doi: 10.1116/1.580895
– ident: e_1_2_8_155_1
  doi: 10.1063/1.1862767
– ident: e_1_2_8_162_2
  doi: 10.1063/1.4898069
– ident: e_1_2_8_187_4
  doi: 10.1063/1.4953222
– ident: e_1_2_8_25_4
  doi: 10.1103/PhysRevLett.101.055502
– ident: e_1_2_8_93_1
  doi: 10.1103/PhysRevB.100.085126
– ident: e_1_2_8_117_3
  doi: 10.1039/C8SC02152J
– ident: e_1_2_8_100_2
  doi: 10.1002/inf2.12076
– ident: e_1_2_8_17_1
  doi: 10.1103/PhysRev.93.1204
– ident: e_1_2_8_49_2
  doi: 10.1103/PhysRevB.81.075211
– ident: e_1_2_8_192_1
  doi: 10.1039/C6TC03234F
– ident: e_1_2_8_79_2
  doi: 10.1063/1.110563
– ident: e_1_2_8_36_1
  doi: 10.1038/ncomms4515
– ident: e_1_2_8_25_1
  doi: 10.1103/PhysRevLett.98.045501
– ident: e_1_2_8_130_2
  doi: 10.1016/j.ceramint.2019.09.201
– ident: e_1_2_8_141_2
  doi: 10.1007/s10854-018-0480-4
– ident: e_1_2_8_194_2
  doi: 10.1109/LED.2019.2941548
– ident: e_1_2_8_211_1
  doi: 10.1039/C8TC04594A
– ident: e_1_2_8_123_2
  doi: 10.1039/C7CS00192D
– ident: e_1_2_8_151_2
  doi: 10.1063/1.2179373
– ident: e_1_2_8_86_1
  doi: 10.1088/0022-3719/9/8/014
– ident: e_1_2_8_68_1
  doi: 10.1088/0953-8984/23/33/334214
– ident: e_1_2_8_10_2
  doi: 10.1038/nmat2874
– ident: e_1_2_8_114_2
– ident: e_1_2_8_80_1
  doi: 10.1143/APEX.3.121004
– ident: e_1_2_8_88_2
  doi: 10.1021/cm001153o
– ident: e_1_2_8_57_2
  doi: 10.1116/1.568989
– ident: e_1_2_8_104_1
  doi: 10.1063/1.4731271
– ident: e_1_2_8_149_1
  doi: 10.1016/0038-1101(64)90057-7
– ident: e_1_2_8_4_2
– ident: e_1_2_8_95_2
  doi: 10.1103/PhysRevB.91.155129
– ident: e_1_2_8_148_1
  doi: 10.1016/S0026-2714(02)00027-6
– ident: e_1_2_8_183_4
  doi: 10.1109/TNANO.2017.2719946
– ident: e_1_2_8_46_6
  doi: 10.1103/PhysRevLett.104.256803
– ident: e_1_2_8_63_1
  doi: 10.1021/acs.jpcc.8b08623
– ident: e_1_2_8_1_2
  doi: 10.1038/nphoton.2012.282
– ident: e_1_2_8_184_1
  doi: 10.1063/1.3478213
– ident: e_1_2_8_56_1
  doi: 10.1103/PhysRev.127.150
– ident: e_1_2_8_183_2
  doi: 10.1063/1.4833541
– ident: e_1_2_8_123_1
  doi: 10.1021/nl073296g
– ident: e_1_2_8_76_1
  doi: 10.1103/PhysRevB.80.241107
– ident: e_1_2_8_181_1
  doi: 10.1002/sdtp.13167
– ident: e_1_2_8_187_1
  doi: 10.1088/0957-4484/21/13/134009
– ident: e_1_2_8_75_1
  doi: 10.1038/nphys2079
– ident: e_1_2_8_154_4
  doi: 10.1063/1.2458457
– volume: 30
  start-page: 1
  year: 2019
  ident: e_1_2_8_6_1
  publication-title: Adv. Funct. Mater.
– ident: e_1_2_8_102_3
  doi: 10.1063/1.4819068
– ident: e_1_2_8_146_1
  doi: 10.1002/0470068329
– ident: e_1_2_8_169_4
  doi: 10.1149/2.0231507jss
– ident: e_1_2_8_7_3
  doi: 10.1063/1.5142999
– ident: e_1_2_8_152_1
  doi: 10.1063/1.2749177
– ident: e_1_2_8_163_1
  doi: 10.1889/JSID18.10.789
– ident: e_1_2_8_215_1
  doi: 10.1002/adfm.201970323
– ident: e_1_2_8_136_1
  doi: 10.1063/1.1383568
– ident: e_1_2_8_25_6
  doi: 10.1103/PhysRevB.77.245202
– ident: e_1_2_8_7_1
  doi: 10.1088/0953-8984/28/38/383002
– ident: e_1_2_8_155_2
  doi: 10.1063/1.2335372
– ident: e_1_2_8_27_2
  doi: 10.1103/PhysRevMaterials.3.074604
– ident: e_1_2_8_175_3
  doi: 10.1063/1.4895782
– ident: e_1_2_8_125_1
  doi: 10.1021/nn901587x
– ident: e_1_2_8_151_1
  doi: 10.1088/0022-3727/37/20/006
– volume: 144
  start-page: 763
  year: 1966
  ident: e_1_2_8_97_2
  publication-title: C. Crevecoe, Phys. Rev.
– ident: e_1_2_8_216_1
  doi: 10.1021/cm901127r
– ident: e_1_2_8_22_2
  doi: 10.1063/1.119233
– ident: e_1_2_8_112_1
  doi: 10.1038/s41467-020-18006-6
– ident: e_1_2_8_114_1
– ident: e_1_2_8_188_1
  doi: 10.1002/adma.201701599
– ident: e_1_2_8_58_1
  doi: 10.1103/PhysRevB.73.245312
– ident: e_1_2_8_61_1
  doi: 10.1021/nl0489283
– ident: e_1_2_8_183_5
  doi: 10.1063/1.5037306
– ident: e_1_2_8_204_1
  doi: 10.1038/nmat3011
– ident: e_1_2_8_116_2
  doi: 10.1039/C5TC02144H
– ident: e_1_2_8_48_2
  doi: 10.1557/jmr.2012.172
– ident: e_1_2_8_76_3
  doi: 10.1016/j.surfrep.2010.09.001
– ident: e_1_2_8_107_1
  doi: 10.1038/ncomms3292
– ident: e_1_2_8_14_7
  doi: 10.1103/PhysRevB.4.4539
– ident: e_1_2_8_166_1
  doi: 10.1016/j.tsf.2009.09.193
– ident: e_1_2_8_2_1
  doi: 10.1039/C6TC01881E
– ident: e_1_2_8_48_4
  doi: 10.1103/PhysRevB.101.085121
– ident: e_1_2_8_169_2
  doi: 10.1889/1.3499825
– ident: e_1_2_8_7_2
  doi: 10.1002/adma.201503080
– ident: e_1_2_8_200_6
  doi: 10.1002/adfm.201906022
– ident: e_1_2_8_100_1
  doi: 10.1002/adma.201702176
– ident: e_1_2_8_135_1
  doi: 10.1002/aelm.201700412
– ident: e_1_2_8_41_1
  doi: 10.1063/1.4837955
– ident: e_1_2_8_101_1
  doi: 10.1002/adma.201701599
– volume: 23
  start-page: 8
  year: 2011
  ident: e_1_2_8_14_3
  publication-title: J. Phys.: Condens. Matter.
– ident: e_1_2_8_9_4
  doi: 10.1063/1.4832076
– ident: e_1_2_8_27_1
  doi: 10.1103/PhysRevLett.103.245501
– ident: e_1_2_8_95_1
  doi: 10.1002/adma.201501959
– ident: e_1_2_8_33_2
  doi: 10.1103/PhysRevLett.85.1012
– ident: e_1_2_8_171_1
  doi: 10.1002/j.2168-0159.2012.tb05894.x
– ident: e_1_2_8_40_1
  doi: 10.1103/PhysRevMaterials.4.085201
– ident: e_1_2_8_131_1
  doi: 10.1038/nmat4493
– ident: e_1_2_8_176_1
  doi: 10.1002/adma.201804120
– ident: e_1_2_8_3_3
  doi: 10.1038/s41928-018-0106-0
– ident: e_1_2_8_154_5
  doi: 10.1002/aelm.202000195
– ident: e_1_2_8_76_2
  doi: 10.1103/PhysRevB.84.245124
– ident: e_1_2_8_140_1
  doi: 10.1038/s41598-018-31927-z
– ident: e_1_2_8_154_2
  doi: 10.1016/j.sse.2006.03.004
– ident: e_1_2_8_38_1
  doi: 10.1063/1.3309694
– ident: e_1_2_8_113_1
  doi: 10.1073/pnas.1613643113
– ident: e_1_2_8_194_4
  doi: 10.1002/adem.201901497
– ident: e_1_2_8_29_2
  doi: 10.1063/1.2927306
– ident: e_1_2_8_77_1
  doi: 10.1038/ncomms3351
– ident: e_1_2_8_9_2
  doi: 10.1063/1.3464964
– ident: e_1_2_8_205_1
  doi: 10.1021/am403585n
– ident: e_1_2_8_22_1
  doi: 10.7567/JJAP.55.1202A2
– volume: 4
  start-page: 3586
  year: 2014
  ident: e_1_2_8_66_1
  publication-title: A. F. Santander‐Syro, Sci. Rep.
– ident: e_1_2_8_133_1
  doi: 10.1038/s42005-020-0372-9
– ident: e_1_2_8_167_2
  doi: 10.1016/j.cossms.2013.07.002
– ident: e_1_2_8_21_1
  doi: 10.1016/0040-6090(96)08671-3
– ident: e_1_2_8_41_2
  doi: 10.1039/C2CE26413G
– ident: e_1_2_8_70_1
  doi: 10.1103/PhysRevB.77.045316
– ident: e_1_2_8_170_1
– ident: e_1_2_8_49_1
  doi: 10.1016/0039-6028(76)90107-2
– ident: e_1_2_8_138_2
  doi: 10.1039/C9NR09383D
– ident: e_1_2_8_62_2
  doi: 10.1103/PhysRevB.77.155107
– ident: e_1_2_8_195_1
  doi: 10.1109/JPROC.2012.2190168
– ident: e_1_2_8_41_3
  doi: 10.1063/1.3284960
– ident: e_1_2_8_158_4
  doi: 10.1109/TED.2020.2968592
– ident: e_1_2_8_33_6
  doi: 10.1063/1.5108790
– ident: e_1_2_8_46_3
  doi: 10.1063/1.3562141
– ident: e_1_2_8_213_1
  doi: 10.1021/jacs.9b11668
– ident: e_1_2_8_195_3
  doi: 10.1002/adma.201901408
– ident: e_1_2_8_23_3
  doi: 10.1016/j.tsf.2004.11.223
– ident: e_1_2_8_49_3
  doi: 10.1103/PhysRevMaterials.2.051601
– ident: e_1_2_8_9_3
  doi: 10.1063/1.3560769
– ident: e_1_2_8_173_1
  doi: 10.1002/jsid.206
– ident: e_1_2_8_118_1
  doi: 10.1016/j.tsf.2008.09.059
– ident: e_1_2_8_31_1
  doi: 10.1103/PhysRevResearch.2.033358
– ident: e_1_2_8_11_4
  doi: 10.1063/1.5025704
– ident: e_1_2_8_11_2
  doi: 10.1103/PhysRevLett.110.056803
– ident: e_1_2_8_28_1
  doi: 10.1063/1.2833432
SSID ssj0009606
Score 2.7225127
SecondaryResourceType review_article
Snippet Wide bandgap oxide semiconductors constitute a unique class of materials that combine properties of electrical conductivity and optical transparency. They are...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2006230
SubjectTerms Design optimization
Electrical resistivity
Electron gas
electronic structure
Electronics
Energy gap
Flexible components
flexible electronics
Materials science
Optical properties
Optoelectronic devices
oxide semiconductor
P-type semiconductors
Photovoltaic cells
Physical properties
Principles
Semiconductor devices
Semiconductors
Solar cells
thin film transistor
Thin film transistors
transparent conducting oxide (TCO)
Transport properties
Title Wide Bandgap Oxide Semiconductors: from Materials Physics to Optoelectronic Devices
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202006230
https://www.ncbi.nlm.nih.gov/pubmed/33797084
https://www.proquest.com/docview/2609536778
https://www.proquest.com/docview/2508573712
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3fS90wFMcPwyd9mFM37fxBBoM9VdvmRxPfrjqRgRPmZL6V_BxDaS_eXpD99etJ7-31boyBeyxNaJrk5HzbnHwOwHuZySBUHlJlDG4ziiw1jMvUF1oGm3t0YRht8Vlc3LBPt_z2ySn-ng8x_HBDy4jrNRq4NpOjBTRUu8gNwk_iTkZ3izAGbKEq-rLgR6E8j7A9ylMlmJxTG7PiaLn6slf6Q2ouK9foes7XQc8b3Uec3B1OW3Nof_7Gc_yft3oFL2e6lIz6ibQBL3y9CWtPaIVbcP3th_PkRNfuux6Tq0e8usbY-qZGaGzzMDkmeFqFXOq2n9ckxpfaCWkbcjVum0XOHXLm4xL1Gm7OP349vUhnORlSy0qVpYXjXONequOBCaNsHihlThvLbecErQlMdi7faS2dMUGbEErJDTdCScu8oG9gpW5qvwMkC1wH4YRQJWdWMm0U9aa0NssDY4omkM7HpLIzYDnmzbivetRyUWFnVUNnJfBhKD_uUR1_Lbk3H-JqZrKTqojoPeTpJfBuuN0ZG-6g6No3064Mx4QAtMyLBLb7qTE8itJSlZlkCRRxgP_Rhmp0djkart4-p9IurBYYYRODa_ZgpX2Y-v1OIrXmIJrBL_H2Bsw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEIBHUA7AgfcjUMBISJzSJvEjNreFUi3QbSXaCm6Rn6gqSlbdrIT49WScTZYFISQ4WrFlx_Z4xvb4G4AXMpNBqDykyhi8ZhRZahiXqS-0DDb3qMLQ2-JQTE_Z-8988CbEtzA9H2I8cEPJiOs1CjgeSO-uqaHaRXAQ7ok7O_oyXMGw3nFX9XFNkEIDPeL2KE-VYHLgNmbF7mb5Tb30m7G5abtG5bN_E8zQ7N7n5Hxn2Zod-_0XouN__dctuLEyTcmkn0u34ZKv78D1n4CFd-H405nz5LWu3Rc9J0ffMHWM7vVNjdzY5mLxiuCDFTLTbT-1SXQxtQvSNuRo3jbrsDtkz8dV6h6c7r89eTNNV2EZUstKlaWF41zjdarjgQmjbB4oZU4by22nB60JTHZa32ktnTFBmxBKyQ03QknLvKD3Yatuav8QSBa4DsIJoUrOrGTaKOpNaW2WB8YUTSAdBqWyK2Y5hs74WvW05aLCzqrGzkrg5Zh_3tM6_phzexjjaiW1i6qI9D1E6iXwfPzcyRteoujaN8suD8eYALTMiwQe9HNjrIrSUpWZZAkUcYT_0oZqsjebjKlH_1LoGVydnswOqoN3hx8ew7UCHW6ir802bLUXS_-ks5ha8zTKxA9hlQrn
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEIBHUCQEB96F0BaMhMQpbRI_Yve2dFmVR1tEqegt8hMhULLqZiXEryfj7Ga7IIQERyu24tgznok9_gbgucxkECoPqTIGjxlFlhrGZeoLLYPNPZowjLY4Fodn7M05P790i7_nQwwbbqgZcb1GBZ-6sLeChmoXuUH4S9y50VfhGhOZRLkef1gBpNA_j7Q9ylMlmFxiG7Nib739uln6zddcd12j7ZncBr3sdR9y8nV33ppd--MXoOP_fNYduLVwTMmol6S7cMXX9-DmJVzhfTj99MV58lLX7rOekpPvWDrF4PqmRmpsczHbJ3hdhRzpthdsEgNM7Yy0DTmZts0q6Q4Z-7hGPYCzyauPB4fpIilDalmpsrRwnGs8THU8MGGUzQOlzGljue2soDWByc7mO62lMyZoE0IpueFGKGmZF3QTNuqm9o-AZIHrIJwQquTMSqaNot6U1mZ5YEzRBNLlnFR2QSzHxBnfqp61XFQ4WNUwWAm8GOpPe1bHH2tuL6e4WujsrCoiew-Begk8Gx532oZHKLr2zbyrwzEjAC3zIoGHvWgMr6K0VGUmWQJFnOC_9KEajY9GQ-nxvzR6CtffjyfVu9fHb7fgRoHRNjHQZhs22ou53-ncpdY8iRrxE0vbCZ8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wide+Bandgap+Oxide+Semiconductors%3A+from+Materials+Physics+to+Optoelectronic+Devices&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Shi%2C+Jueli&rft.au=Zhang%2C+Jiaye&rft.au=Yang%2C+Lu&rft.au=Qu%2C+Mei&rft.date=2021-12-01&rft.eissn=1521-4095&rft.spage=e2006230&rft_id=info:doi/10.1002%2Fadma.202006230&rft_id=info%3Apmid%2F33797084&rft.externalDocID=33797084
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon