Surface Modification of 2D Photocatalysts for Solar Energy Conversion
2D materials show many particular properties, such as high surface‐to‐volume ratio, high anisotropic degree, and adjustable chemical functionality. These unique properties in 2D materials have sparked immense interest due to their applications in photocatalytic systems, resulting in significantly en...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 34; no. 23; pp. e2200180 - n/a |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.06.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | 2D materials show many particular properties, such as high surface‐to‐volume ratio, high anisotropic degree, and adjustable chemical functionality. These unique properties in 2D materials have sparked immense interest due to their applications in photocatalytic systems, resulting in significantly enhanced light capture, charge‐transfer kinetics, and surface reaction. Herein, the research progress in 2D photocatalysts based on varied compositions and functions, followed by specific surface modification strategies, is introduced. Fundamental principles focusing on light harvesting, charge separation, and molecular adsorption/activation in the 2D‐material‐based photocatalytic system are systemically explored. The examples described here detail the use of 2D materials in various photocatalytic energy‐conversion systems, including water splitting, carbon dioxide reduction, nitrogen fixation, hydrogen peroxide production, and organic synthesis. Finally, by elaborating the challenges and possible solutions for developing these 2D materials, the review is expected to provide some inspiration for the future research of 2D materials used on efficient photocatalytic energy conversions.
Although the research of 2D photocatalysts has made great progress in the past decades, there are still many challenges in understanding the deep relationship between the surface state and the reaction mechanism. The surface modification strategies and reaction mechanisms of 2D photocatalysts are reviewed, and some useful views are put forward for future research in this field. |
---|---|
AbstractList | 2D materials show many particular properties, such as high surface-to-volume ratio, high anisotropic degree, and adjustable chemical functionality. These unique properties in 2D materials have sparked immense interest due to their applications in photocatalytic systems, resulting in significantly enhanced light capture, charge-transfer kinetics, and surface reaction. Herein, the research progress in 2D photocatalysts based on varied compositions and functions, followed by specific surface modification strategies, is introduced. Fundamental principles focusing on light harvesting, charge separation, and molecular adsorption/activation in the 2D-material-based photocatalytic system are systemically explored. The examples described here detail the use of 2D materials in various photocatalytic energy-conversion systems, including water splitting, carbon dioxide reduction, nitrogen fixation, hydrogen peroxide production, and organic synthesis. Finally, by elaborating the challenges and possible solutions for developing these 2D materials, the review is expected to provide some inspiration for the future research of 2D materials used on efficient photocatalytic energy conversions.2D materials show many particular properties, such as high surface-to-volume ratio, high anisotropic degree, and adjustable chemical functionality. These unique properties in 2D materials have sparked immense interest due to their applications in photocatalytic systems, resulting in significantly enhanced light capture, charge-transfer kinetics, and surface reaction. Herein, the research progress in 2D photocatalysts based on varied compositions and functions, followed by specific surface modification strategies, is introduced. Fundamental principles focusing on light harvesting, charge separation, and molecular adsorption/activation in the 2D-material-based photocatalytic system are systemically explored. The examples described here detail the use of 2D materials in various photocatalytic energy-conversion systems, including water splitting, carbon dioxide reduction, nitrogen fixation, hydrogen peroxide production, and organic synthesis. Finally, by elaborating the challenges and possible solutions for developing these 2D materials, the review is expected to provide some inspiration for the future research of 2D materials used on efficient photocatalytic energy conversions. 2D materials show many particular properties, such as high surface‐to‐volume ratio, high anisotropic degree, and adjustable chemical functionality. These unique properties in 2D materials have sparked immense interest due to their applications in photocatalytic systems, resulting in significantly enhanced light capture, charge‐transfer kinetics, and surface reaction. Herein, the research progress in 2D photocatalysts based on varied compositions and functions, followed by specific surface modification strategies, is introduced. Fundamental principles focusing on light harvesting, charge separation, and molecular adsorption/activation in the 2D‐material‐based photocatalytic system are systemically explored. The examples described here detail the use of 2D materials in various photocatalytic energy‐conversion systems, including water splitting, carbon dioxide reduction, nitrogen fixation, hydrogen peroxide production, and organic synthesis. Finally, by elaborating the challenges and possible solutions for developing these 2D materials, the review is expected to provide some inspiration for the future research of 2D materials used on efficient photocatalytic energy conversions. Although the research of 2D photocatalysts has made great progress in the past decades, there are still many challenges in understanding the deep relationship between the surface state and the reaction mechanism. The surface modification strategies and reaction mechanisms of 2D photocatalysts are reviewed, and some useful views are put forward for future research in this field. 2D materials show many particular properties, such as high surface‐to‐volume ratio, high anisotropic degree, and adjustable chemical functionality. These unique properties in 2D materials have sparked immense interest due to their applications in photocatalytic systems, resulting in significantly enhanced light capture, charge‐transfer kinetics, and surface reaction. Herein, the research progress in 2D photocatalysts based on varied compositions and functions, followed by specific surface modification strategies, is introduced. Fundamental principles focusing on light harvesting, charge separation, and molecular adsorption/activation in the 2D‐material‐based photocatalytic system are systemically explored. The examples described here detail the use of 2D materials in various photocatalytic energy‐conversion systems, including water splitting, carbon dioxide reduction, nitrogen fixation, hydrogen peroxide production, and organic synthesis. Finally, by elaborating the challenges and possible solutions for developing these 2D materials, the review is expected to provide some inspiration for the future research of 2D materials used on efficient photocatalytic energy conversions. 2D materials show many particular properties, such as high surface-to-volume ratio, high anisotropic degree, and adjustable chemical functionality. These unique properties in 2D materials have sparked immense interest due to their applications in photocatalytic systems, resulting in significantly enhanced light capture, charge-transfer kinetics, and surface reaction. Herein, the research progress in 2D photocatalysts based on varied compositions and functions, followed by specific surface modification strategies, is introduced. Fundamental principles focusing on light harvesting, charge separation, and molecular adsorption/activation in the 2D-material-based photocatalytic system are systemically explored. The examples described here detail the use of 2D materials in various photocatalytic energy-conversion systems, including water splitting, carbon dioxide reduction, nitrogen fixation, hydrogen peroxide production, and organic synthesis. Finally, by elaborating the challenges and possible solutions for developing these 2D materials, the review is expected to provide some inspiration for the future research of 2D materials used on efficient photocatalytic energy conversions. |
Author | Ye, Jinhua Huang, Kuo‐Wei Feng, Chengyang Zhang, Huabin Wu, Zhi‐Peng |
Author_xml | – sequence: 1 givenname: Chengyang orcidid: 0000-0002-7437-1088 surname: Feng fullname: Feng, Chengyang organization: King Abdullah University of Science and Technology (KAUST) – sequence: 2 givenname: Zhi‐Peng orcidid: 0000-0002-5422-1349 surname: Wu fullname: Wu, Zhi‐Peng organization: King Abdullah University of Science and Technology (KAUST) – sequence: 3 givenname: Kuo‐Wei surname: Huang fullname: Huang, Kuo‐Wei organization: King Abdullah University of Science and Technology (KAUST) – sequence: 4 givenname: Jinhua orcidid: 0000-0002-8105-8903 surname: Ye fullname: Ye, Jinhua email: jinhua.ye@nims.go.jp organization: National Institute for Materials Science (NIMS) – sequence: 5 givenname: Huabin orcidid: 0000-0003-1601-2471 surname: Zhang fullname: Zhang, Huabin email: huabin.zhang@kaust.edu.sa organization: King Abdullah University of Science and Technology (KAUST) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35262973$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1LxDAQhoMoun5cPUrBi5eukzRpk-Oyrh-woqCeS9pOtNJt1qRV-u9tXV1hQTwFhueZycy7T7ZrWyMhxxTGFICd62KhxwwYA6AStsiICkZDDkpskxGoSIQq5nKP7Hv_CgAqhniX7EWCxUwl0YjMHlpndI7BrS1KU-a6KW0dWBOwi-D-xTa2r-iq840PjHXBg620C2Y1uucumNr6HZ3vhUOyY3Tl8ej7PSBPl7PH6XU4v7u6mU7mYc4TBSHlWIjYJEwqCQUTXOeZlhRQcKGNkapfREsRxVShjChjico4RcywkJwnIjogZ6u-S2ffWvRNuih9jlWla7StT1kcJUIOe_bo6Qb6altX97_rqYRTFVM-UCffVJstsEiXrlxo16U_B-qB8QrInfXeoVkjFNIhgXRIIF0n0At8Q8jL5uuqjdNl9bemVtpHWWH3z5B0cnE7-XU_Aclyl7w |
CitedBy_id | crossref_primary_10_1021_acsmaterialslett_2c00854 crossref_primary_10_1016_j_jece_2024_113784 crossref_primary_10_1016_j_jallcom_2024_175063 crossref_primary_10_1021_acs_inorgchem_3c00952 crossref_primary_10_1002_adma_202300643 crossref_primary_10_1039_D4EE01543F crossref_primary_10_1016_j_colsurfa_2023_131231 crossref_primary_10_3390_ma15228026 crossref_primary_10_1002_adsu_202400503 crossref_primary_10_1016_j_chemosphere_2022_135939 crossref_primary_10_1002_adfm_202403836 crossref_primary_10_1016_j_rineng_2024_102748 crossref_primary_10_3390_nano13111798 crossref_primary_10_1016_j_jcat_2024_115875 crossref_primary_10_1016_j_apsusc_2022_154886 crossref_primary_10_1016_j_apsusc_2022_154642 crossref_primary_10_1016_j_apcatb_2022_122304 crossref_primary_10_1016_j_cej_2024_152406 crossref_primary_10_59717_j_xinn_mater_2024_100060 crossref_primary_10_1016_j_nanoen_2024_110068 crossref_primary_10_1021_acs_jpclett_4c00404 crossref_primary_10_1016_j_ijhydene_2024_07_310 crossref_primary_10_1002_smll_202408064 crossref_primary_10_1016_j_jcis_2024_02_083 crossref_primary_10_1039_D2CY01315K crossref_primary_10_3390_catal13081148 crossref_primary_10_1021_acs_nanolett_3c00804 crossref_primary_10_1002_adfm_202309761 crossref_primary_10_1002_adma_202410989 crossref_primary_10_1016_j_jece_2024_113415 crossref_primary_10_1039_D4SE00565A crossref_primary_10_1002_adma_202417254 crossref_primary_10_1021_acssuschemeng_3c03183 crossref_primary_10_1039_D4GC03958K crossref_primary_10_1002_adma_202311535 crossref_primary_10_1002_adfm_202302325 crossref_primary_10_1016_j_mtchem_2024_101924 crossref_primary_10_1016_j_apsusc_2022_154755 crossref_primary_10_1016_j_cis_2025_103485 crossref_primary_10_3390_catal13071102 crossref_primary_10_1002_ange_202308089 crossref_primary_10_1021_acsaem_4c00650 crossref_primary_10_1002_cctc_202402051 crossref_primary_10_1016_j_jhazmat_2022_129845 crossref_primary_10_1002_cptc_202300271 crossref_primary_10_1016_j_jcis_2024_05_146 crossref_primary_10_1039_D3IM00116D crossref_primary_10_1016_j_cej_2023_144835 crossref_primary_10_1016_j_jes_2025_02_019 crossref_primary_10_1016_j_apenergy_2024_125195 crossref_primary_10_1016_j_cej_2024_155450 crossref_primary_10_1002_solr_202300669 crossref_primary_10_1002_cey2_491 crossref_primary_10_1039_D3TA05125K crossref_primary_10_1007_s42864_023_00229_x crossref_primary_10_1039_D2QI01911F crossref_primary_10_1039_D4TA07568D crossref_primary_10_1002_aesr_202300090 crossref_primary_10_1016_j_apsusc_2023_156524 crossref_primary_10_1021_acs_cgd_2c01404 crossref_primary_10_1021_acs_energyfuels_4c01648 crossref_primary_10_1103_PhysRevMaterials_8_114001 crossref_primary_10_1021_acsanm_4c02880 crossref_primary_10_1007_s42823_024_00748_8 crossref_primary_10_1002_adfm_202309060 crossref_primary_10_1016_j_cej_2024_148922 crossref_primary_10_1515_revic_2024_0107 crossref_primary_10_1016_j_ccr_2024_216121 crossref_primary_10_1016_j_mtcata_2023_100001 crossref_primary_10_1002_adma_202411813 crossref_primary_10_1002_anie_202317852 crossref_primary_10_1016_j_apcatb_2024_124614 crossref_primary_10_1016_j_ijhydene_2024_09_036 crossref_primary_10_1039_D4SE01034E crossref_primary_10_1021_acs_jpclett_2c01509 crossref_primary_10_1016_j_jcat_2024_115604 crossref_primary_10_1088_1361_6463_ad61f8 crossref_primary_10_1016_j_jpowsour_2022_232008 crossref_primary_10_1002_aelm_202300610 crossref_primary_10_1021_acsaem_3c03152 crossref_primary_10_1016_j_cej_2023_145103 crossref_primary_10_1016_j_enconman_2025_119544 crossref_primary_10_1016_j_matre_2025_100325 crossref_primary_10_1016_j_cogsc_2023_100808 crossref_primary_10_1016_j_matre_2024_100285 crossref_primary_10_1002_pssb_202300033 crossref_primary_10_1016_j_matlet_2024_136821 crossref_primary_10_1007_s12598_023_02555_y crossref_primary_10_1021_acsanm_3c00422 crossref_primary_10_1016_j_mtphys_2024_101458 crossref_primary_10_1039_D4TA06849A crossref_primary_10_1039_D3NA00148B crossref_primary_10_26599_NR_2025_94907024 crossref_primary_10_1016_j_jes_2023_09_019 crossref_primary_10_1021_acs_accounts_4c00280 crossref_primary_10_26599_NRE_2023_9120091 crossref_primary_10_1007_s11708_023_0894_4 crossref_primary_10_1039_D3EE03032F crossref_primary_10_1016_j_inoche_2025_114266 crossref_primary_10_1016_j_jechem_2023_02_047 crossref_primary_10_1016_j_jphotochem_2023_114626 crossref_primary_10_1021_acsanm_3c00092 crossref_primary_10_1016_j_chemosphere_2023_140488 crossref_primary_10_1016_j_cej_2023_141537 crossref_primary_10_1021_acs_jpcc_3c05747 crossref_primary_10_1016_j_apcata_2023_119550 crossref_primary_10_1002_cctc_202301082 crossref_primary_10_1007_s41810_024_00263_3 crossref_primary_10_1021_acs_jpcc_4c01262 crossref_primary_10_1515_ntrev_2024_0025 crossref_primary_10_1016_j_apsusc_2022_155248 crossref_primary_10_1016_j_surfin_2024_105071 crossref_primary_10_1080_00397911_2023_2269585 crossref_primary_10_1016_j_jcis_2024_11_105 crossref_primary_10_1002_adma_202304130 crossref_primary_10_1016_j_ceramint_2024_01_380 crossref_primary_10_1002_adma_202306689 crossref_primary_10_1016_j_checat_2023_100707 crossref_primary_10_1021_acsanm_2c04232 crossref_primary_10_1016_j_cej_2024_151600 crossref_primary_10_1016_j_chemosphere_2024_142612 crossref_primary_10_1016_j_cej_2022_138399 crossref_primary_10_1021_acs_jpcc_4c02483 crossref_primary_10_1016_j_ssc_2023_115273 crossref_primary_10_1002_smll_202300402 crossref_primary_10_1021_acs_inorgchem_4c03300 crossref_primary_10_3390_catal12121527 crossref_primary_10_3390_molecules28020822 crossref_primary_10_1016_j_jcis_2025_02_218 crossref_primary_10_1002_adma_202403153 crossref_primary_10_1016_j_ecoenv_2024_116221 crossref_primary_10_3390_mi15060789 crossref_primary_10_1039_D2CY01224C crossref_primary_10_1021_acs_chemrev_3c00937 crossref_primary_10_1002_adfm_202422787 crossref_primary_10_1007_s42114_023_00793_3 crossref_primary_10_1039_D4SC07309F crossref_primary_10_1002_smll_202206648 crossref_primary_10_3390_catal14090607 crossref_primary_10_1016_j_apcatb_2024_123721 crossref_primary_10_1038_s41598_025_87777_z crossref_primary_10_1021_acsami_2c10152 crossref_primary_10_1007_s12274_024_6904_2 crossref_primary_10_1021_acsami_2c15965 crossref_primary_10_1002_adfm_202304925 crossref_primary_10_3390_molecules28062775 crossref_primary_10_1039_D2TA03977J crossref_primary_10_1021_jacs_3c08770 crossref_primary_10_1016_j_chemosphere_2022_136386 crossref_primary_10_1038_s41467_024_53483_z crossref_primary_10_1016_j_cej_2023_144574 crossref_primary_10_1016_j_chemosphere_2023_139185 crossref_primary_10_1016_j_cej_2023_146516 crossref_primary_10_1021_acs_energyfuels_2c02162 crossref_primary_10_1002_ange_202317852 crossref_primary_10_1016_j_jallcom_2023_170605 crossref_primary_10_1021_accountsmr_3c00116 crossref_primary_10_1088_1361_6463_acf506 crossref_primary_10_1016_j_jcat_2025_116053 crossref_primary_10_1016_j_ijhydene_2024_11_388 crossref_primary_10_1039_D3EE00964E crossref_primary_10_1039_D4TA02394C crossref_primary_10_1007_s10934_024_01711_8 crossref_primary_10_1007_s40843_023_2770_8 crossref_primary_10_1016_j_catcom_2022_106565 crossref_primary_10_1016_j_fuel_2023_130754 crossref_primary_10_1016_j_ijhydene_2022_10_229 crossref_primary_10_1002_adfm_202210759 crossref_primary_10_1002_smll_202301430 crossref_primary_10_1016_j_diamond_2023_110616 crossref_primary_10_1016_j_scib_2024_12_014 crossref_primary_10_1002_adfm_202209994 crossref_primary_10_1016_j_surfin_2024_104861 crossref_primary_10_1016_j_fuel_2025_134549 crossref_primary_10_1039_D2EN00865C crossref_primary_10_1016_j_cej_2022_139035 crossref_primary_10_1021_acsami_3c04891 crossref_primary_10_1016_j_mser_2024_100867 crossref_primary_10_1002_ange_202401443 crossref_primary_10_1002_elt2_43 crossref_primary_10_1002_adfm_202419570 crossref_primary_10_1016_j_cej_2024_151395 crossref_primary_10_1016_j_jcis_2023_12_126 crossref_primary_10_1016_j_chemosphere_2022_137733 crossref_primary_10_1021_acsaem_2c03548 crossref_primary_10_1002_smll_202309707 crossref_primary_10_1002_sus2_76 crossref_primary_10_1002_adfm_202305318 crossref_primary_10_1016_j_catcom_2023_106618 crossref_primary_10_1002_aenm_202301594 crossref_primary_10_1016_j_cej_2023_147150 crossref_primary_10_1016_j_jcis_2023_09_075 crossref_primary_10_1039_D4NJ00161C crossref_primary_10_1002_wene_530 crossref_primary_10_1016_j_jallcom_2025_178464 crossref_primary_10_1002_smll_202205767 crossref_primary_10_1016_j_mtphys_2023_101315 crossref_primary_10_1016_j_apcatb_2025_125033 crossref_primary_10_1002_adma_202412299 crossref_primary_10_3390_catal14030175 crossref_primary_10_1016_j_powtec_2023_118889 crossref_primary_10_1021_acsmaterialslett_3c01416 crossref_primary_10_1016_j_ijhydene_2022_11_125 crossref_primary_10_1016_j_jece_2024_114812 crossref_primary_10_1016_j_physb_2024_415952 crossref_primary_10_1016_j_chemosphere_2023_139529 crossref_primary_10_1021_acscatal_4c03031 crossref_primary_10_1016_j_flatc_2022_100398 crossref_primary_10_1016_j_seppur_2025_131429 crossref_primary_10_1039_D2NJ01609E crossref_primary_10_1021_acs_langmuir_4c00605 crossref_primary_10_1016_j_catcom_2023_106627 crossref_primary_10_1016_j_apcatb_2024_124223 crossref_primary_10_1016_j_nimb_2024_165349 crossref_primary_10_1142_S2810922822300069 crossref_primary_10_1016_j_jece_2024_113278 crossref_primary_10_1016_j_mssp_2023_107834 crossref_primary_10_1016_j_rser_2023_113348 crossref_primary_10_1007_s40820_023_01098_2 crossref_primary_10_1016_j_enconman_2023_117851 crossref_primary_10_1007_s12274_024_6706_2 crossref_primary_10_1002_cctc_202401355 crossref_primary_10_1016_j_matchemphys_2024_129902 crossref_primary_10_1016_j_apsusc_2024_161338 crossref_primary_10_1016_j_chemosphere_2024_143990 crossref_primary_10_1016_j_enchem_2024_100130 crossref_primary_10_1007_s40820_024_01503_4 crossref_primary_10_1021_acs_jpclett_4c03062 crossref_primary_10_1016_j_apsusc_2024_161461 crossref_primary_10_1007_s11708_024_0961_5 crossref_primary_10_1002_aenm_202303792 crossref_primary_10_1002_smll_202408806 crossref_primary_10_1016_j_chemosphere_2024_143505 crossref_primary_10_1016_j_mtcomm_2025_112238 crossref_primary_10_1039_D2NR03794G crossref_primary_10_1002_adma_202406748 crossref_primary_10_1016_j_cej_2023_148217 crossref_primary_10_1039_D3CY01499A crossref_primary_10_1002_anie_202208904 crossref_primary_10_1016_j_matt_2022_08_021 crossref_primary_10_1016_j_apsusc_2024_159346 crossref_primary_10_1016_j_apcatb_2023_123271 crossref_primary_10_1016_j_cej_2023_147129 crossref_primary_10_1021_acs_energyfuels_3c00717 crossref_primary_10_1039_D4NJ01105H crossref_primary_10_1016_j_cej_2024_151584 crossref_primary_10_3390_nano13222944 crossref_primary_10_1002_smll_202301116 crossref_primary_10_1021_acscatal_3c05181 crossref_primary_10_1021_acscatal_4c07453 crossref_primary_10_1002_anie_202401443 crossref_primary_10_1002_smtd_202201258 crossref_primary_10_1021_acsaem_2c00767 crossref_primary_10_1039_D2DT01899C crossref_primary_10_1021_acsami_2c12146 crossref_primary_10_1002_anie_202308089 crossref_primary_10_1016_j_apcatb_2023_123398 crossref_primary_10_1002_adfm_202312056 crossref_primary_10_1002_smll_202411444 crossref_primary_10_1016_j_cej_2023_147365 crossref_primary_10_1016_j_cej_2022_141261 crossref_primary_10_1016_j_jcis_2024_08_224 crossref_primary_10_1016_j_ccr_2022_214889 crossref_primary_10_1021_acs_iecr_4c04377 crossref_primary_10_1021_jacs_4c05873 crossref_primary_10_1007_s40242_025_4249_z crossref_primary_10_1039_D3CP01425H crossref_primary_10_1016_j_bios_2022_114817 crossref_primary_10_1021_acscatal_3c05053 crossref_primary_10_1016_j_ijhydene_2024_03_006 crossref_primary_10_1016_j_cej_2023_145053 crossref_primary_10_1002_advs_202205020 crossref_primary_10_1016_j_surfin_2024_105245 crossref_primary_10_1021_acsanm_4c00133 crossref_primary_10_1021_acs_jpclett_4c03643 crossref_primary_10_1080_10643389_2024_2309845 crossref_primary_10_1039_D2NJ04564H crossref_primary_10_1016_j_envres_2024_118690 crossref_primary_10_1002_adfm_202421847 crossref_primary_10_1007_s11356_025_36054_7 crossref_primary_10_1002_bkcs_12790 crossref_primary_10_1039_D3NR01760E crossref_primary_10_1093_nsr_nwae189 crossref_primary_10_1039_D4TA02453B crossref_primary_10_1016_j_jcis_2023_07_039 crossref_primary_10_1039_D2TA03481F crossref_primary_10_1039_D3CC02843G crossref_primary_10_1021_acsami_3c15681 crossref_primary_10_1039_D3RA03120A crossref_primary_10_1002_ange_202304634 crossref_primary_10_1016_j_surfin_2024_104395 crossref_primary_10_1021_acscatal_4c07797 crossref_primary_10_1016_j_seppur_2024_127638 crossref_primary_10_1002_ange_202208904 crossref_primary_10_1021_acsanm_3c02571 crossref_primary_10_1007_s11705_024_2398_0 crossref_primary_10_1021_acscatal_3c01003 crossref_primary_10_1016_j_chemosphere_2023_140663 crossref_primary_10_1021_acsnano_4c04562 crossref_primary_10_1002_marc_202400529 crossref_primary_10_1039_D2CC02708A crossref_primary_10_1039_D4QI02449D crossref_primary_10_1016_j_cej_2024_152096 crossref_primary_10_1016_j_materresbull_2024_112824 crossref_primary_10_1016_j_jwpe_2024_106883 crossref_primary_10_1039_D3CC01512B crossref_primary_10_1002_anie_202304634 crossref_primary_10_1016_j_jcis_2022_11_129 crossref_primary_10_1016_j_chemosphere_2023_138340 crossref_primary_10_1002_adfm_202312265 crossref_primary_10_1039_D3NJ05636H crossref_primary_10_1016_j_seppur_2024_128955 crossref_primary_10_1021_accountsmr_2c00172 |
Cites_doi | 10.1021/acscatal.5b02922 10.1016/j.matt.2020.04.002 10.1126/science.1241488 10.1002/adma.201301207 10.1039/c2jm00097k 10.1016/j.apcatb.2020.119167 10.1016/j.joule.2021.12.011 10.1021/jacs.8b13051 10.1002/adma.201702944 10.1038/srep04237 10.1002/ange.201503410 10.1021/acs.jpclett.9b01020 10.1021/jacs.0c08409 10.1016/j.nantod.2016.05.008 10.1021/ja02184a002 10.1039/B608532F 10.1002/advs.201600371 10.1016/j.jcat.2017.08.030 10.1039/C7TA01082F 10.1039/C8EE01316K 10.1002/anie.201512038 10.1002/adfm.201300125 10.1016/j.apcatb.2020.119539 10.1143/JJAP.21.L482 10.1002/adma.202105482 10.1021/acsenergylett.7b00267 10.1016/j.cej.2020.124718 10.1039/c2gc16681j 10.1002/anie.202109851 10.1002/adfm.200700797 10.1002/adma.201605148 10.1002/adfm.201901024 10.1002/advs.201900289 10.1103/PhysRev.92.580 10.1021/nn5015215 10.1038/nmat4299 10.1021/am300661s 10.1021/ar4002312 10.1002/adma.202008180 10.1021/ja993867 10.1126/science.abc1226 10.1016/0378-4363(81)90223-0 10.1021/nn200025p 10.1038/s41586-021-03957-7 10.1021/acs.chemrev.6b00558 10.1021/cm0630800 10.1002/adma.201806314 10.1021/ja207103j 10.1038/nmat3696 10.1038/nchem.1095 10.1007/s40820-021-00668-6 10.1002/smll.202102155 10.1002/adma.201806482 10.1016/j.cej.2020.124474 10.1039/C9MH01668F 10.1021/ic062192q 10.1021/acscatal.7b01781 10.1002/adfm.202001922 10.1126/science.aac8343 10.1021/acs.chemrev.7b00091 10.1021/jacs.7b02648 10.1021/jacs.1c03940 10.1002/anie.201506966 10.1002/adma.201605646 10.1002/adma.201800295 10.1021/acscentsci.1c00289 10.1021/la900923z 10.1021/nl5032293 10.1002/adfm.201904932 10.1039/C3CS60401B 10.1016/j.chempr.2017.05.014 10.1002/anie.201904058 10.1038/natrevmats.2017.45 10.1021/acs.chemrev.0c01328 10.1021/acsnano.7b06131 10.1016/j.apcatb.2021.120929 10.1002/adfm.201800548 10.1002/smll.201600382 10.1016/j.pmatsci.2017.09.002 10.1002/adfm.201706462 10.1002/advs.201700087 10.1351/PAC-CON-08-07-03 10.1002/anie.202017041 10.1002/adma.201401877 10.1016/j.nanoen.2016.06.042 10.1002/adma.201204453 10.1016/j.nanoen.2016.06.029 10.1002/adma.202100143 10.1021/acs.chemrev.9b00550 10.1021/ja501866r 10.1021/acsnano.6b05240 10.1016/j.memsci.2020.117864 10.1002/adfm.201800136 10.1002/adma.201804883 10.1126/science.1194975 10.1021/acscatal.8b01645 10.1103/PhysRevB.34.7467 10.1126/science.1102896 10.1021/acscatal.9b03411 10.1039/D0CS00332H 10.1126/science.1078962 10.1039/C4TA02781G 10.1038/ncomms11480 10.1002/adma.201704548 10.1016/j.jhazmat.2020.122957 10.1038/nnano.2008.210 10.1002/adma.201601960 10.1016/j.checat.2021.09.010 10.1002/adma.201601413 10.1021/acsami.6b08413 10.1002/adfm.201703923 10.1016/j.joule.2022.01.001 10.1021/acsami.0c12905 10.1039/C8CS00773J 10.1002/adma.201903545 10.1016/j.apcatb.2020.118760 10.1038/nmat2317 10.1021/ja00744a055 10.1021/jacs.1c12212 10.1038/s41560-021-00795-9 10.1016/j.apcatb.2019.117770 10.1016/j.apcatb.2019.118581 10.1021/acscatal.6b02613 10.1039/C9TA11167K 10.1021/nn102472s 10.1021/jacs.9b02578 10.1039/C9TA11318E 10.1021/acs.chemrev.9b00348 10.1002/ange.202101894 10.1038/s41929-021-00605-1 10.1002/aenm.202003159 10.1002/anie.201602543 10.1039/C8NH00027A 10.1021/acsami.9b08109 10.1039/C4CC08996K 10.1016/j.nanoen.2012.11.003 10.1126/science.aba0690 10.1038/351304a0 10.1002/aenm.201901973 10.1021/ja809307s 10.1002/adma.201503648 10.1002/adma.202100812 10.1038/s41560-021-00927-1 10.1002/adma.202101741 10.1038/s41586-021-03907-3 10.1021/acscatal.7b02013 10.1021/acscatal.9b04925 10.1016/0009-2614(92)85069-M 10.1039/D0CS00175A 10.1038/ncomms4813 10.1016/j.apcatb.2018.08.049 10.1038/ncomms2066 10.1002/adma.201906437 10.1126/science.1226419 10.1021/jacs.6b04669 10.1021/nl801827v 10.1039/C7NR05997C 10.1039/C7NR06721F 10.1002/adma.201901997 10.1021/cm500641a 10.1039/b200393g 10.1002/anie.201916510 10.1126/sciadv.abb9823 10.1002/adma.201804211 10.1039/c3ta13188b 10.1002/anie.202111426 10.1002/cssc.201801980 10.1016/j.apmt.2016.09.012 10.1021/ja308249k 10.1002/anie.201807643 10.1021/acsnano.8b00110 10.1038/s41467-019-10392-w 10.1021/ja411321s 10.1038/nnano.2015.54 10.1021/acsnano.7b07755 10.1021/acs.chemrev.8b00315 10.1186/s11671-017-2016-x 10.1002/adma.201902868 10.1002/adfm.201200922 10.1002/ange.201803514 10.1007/s40242-020-0182-3 10.1021/jacs.7b02290 10.1002/adfm.201503221 10.1021/ja3014049 10.1002/anie.202002136 10.1016/j.nanoen.2021.105783 10.1126/science.1171245 10.1016/j.jallcom.2021.159400 10.1038/s41467-021-26219-6 10.1021/acscatal.1c05357 10.1016/j.apcatb.2016.09.051 10.1021/jacs.6b04629 10.1021/nn305288z 10.1039/C4EE03803G |
ContentType | Journal Article |
Copyright | 2022 The Authors. Advanced Materials published by Wiley‐VCH GmbH 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH. 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. Advanced Materials published by Wiley‐VCH GmbH – notice: 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH. – notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202200180 |
DatabaseName | Wiley Online Library Open Access (WRLC) CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database PubMed CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 35262973 10_1002_adma_202200180 ADMA202200180 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: King Abdullah University of Science and Technology |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGYGG AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADNMO AETEA AFFNX AGQPQ ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH AEUQT AFPWT NPM RWI RWM WRC 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4790-14ed56f728980d254acba810e545aff89202a853619e8312279b41eebed844753 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 01:45:44 EDT 2025 Fri Jul 25 02:25:29 EDT 2025 Wed Feb 19 02:25:53 EST 2025 Thu Apr 24 22:59:27 EDT 2025 Tue Jul 01 02:33:15 EDT 2025 Wed Jun 11 08:29:52 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Keywords | molecular activation electron transfer photocatalysis surface modification 2D materials |
Language | English |
License | Attribution 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4790-14ed56f728980d254acba810e545aff89202a853619e8312279b41eebed844753 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-8105-8903 0000-0002-5422-1349 0000-0003-1601-2471 0000-0002-7437-1088 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202200180 |
PMID | 35262973 |
PQID | 2674196149 |
PQPubID | 2045203 |
PageCount | 33 |
ParticipantIDs | proquest_miscellaneous_2637580009 proquest_journals_2674196149 pubmed_primary_35262973 crossref_primary_10_1002_adma_202200180 crossref_citationtrail_10_1002_adma_202200180 wiley_primary_10_1002_adma_202200180_ADMA202200180 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-01 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1991; 351 2013; 1 2013; 2 2009; 81 2019; 11 2019; 10 2021; 281 2014; 26 2020; 601 2020; 12 2020; 10 2013; 7 2012; 14 2014; 136 2018; 8 2018; 3 1971; 93 2012; 134 1992; 198 2014; 14 2019; 29 2018; 30 2000; 122 2021; 83 2012; 22 2017; 202 2007; 19 2018; 28 2019; 6 2019; 31 2015; 127 2015; 51 2015; 54 2016; 10 2020; 269 2014; 47 2020; 36 1953; 92 2020; 265 2020; 389 2013; 341 2013; 340 2021; 143 2020; 32 2004; 306 2011; 3 2011; 5 2003; 299 2011; 133 2003; 32 2017; 139 2016; 12 2014; 43 2016; 11 2016; 5 2016; 6 2016; 7 2020; 393 2020; 30 2018; 239 2022; 6 2019; 48 2018; 92 2022; 12 2020; 398 2020; 276 2021; 133 2018; 12 2016; 28 2021; 60 2018; 11 2016; 27 2016; 26 2016; 8 2017; 5 2017; 7 2013; 25 2017; 2 2017; 4 2020; 120 2013; 23 1986; 34 2019; 58 2020; 369 2020; 368 2020; 59 1981; 105 2008; 3 2015; 349 2021; 121 2017; 355 2017; 9 2017; 117 2020; 8 2018; 130 2020; 7 2020; 6 2014; 5 2014; 4 2020; 2 2014; 2 2021; 33 2021; 598 2013; 12 1982; 21 2020; 49 2019; 119 2021; 870 2014; 8 2009; 324 1914; 36 1834 2014; 10 26 2009; 25 2021; 7 2021; 6 2015; 14 2021; 4 2017; 27 2008; 18 2015; 10 2006 2017; 29 2009; 131 2021; 1 2019; 141 2015; 8 2011; 331 2016; 55 2022; 144 2021; 13 2015; 25 2012; 3 2015; 27 2021; 12 2021; 11 2017; 11 2021; 17 2017; 12 2009; 9 2009; 8 2013; 135 2016; 138 2012; 4 2007; 46 2022; 303 2019; 255 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_71_1 e_1_2_9_107_1 e_1_2_9_122_1 e_1_2_9_145_1 e_1_2_9_168_1 e_1_2_9_18_1 e_1_2_9_183_1 e_1_2_9_160_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_6_1 e_1_2_9_119_1 e_1_2_9_60_1 e_1_2_9_111_1 e_1_2_9_134_1 e_1_2_9_157_1 e_1_2_9_195_1 e_1_2_9_172_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_129_1 e_1_2_9_144_1 e_1_2_9_167_1 e_1_2_9_106_1 e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_182_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_5_1 e_1_2_9_118_1 e_1_2_9_133_1 e_1_2_9_156_1 e_1_2_9_179_1 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_171_1 e_1_2_9_194_1 e_1_2_9_31_1 e_1_2_9_77_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_109_1 e_1_2_9_101_1 e_1_2_9_124_1 e_1_2_9_147_1 e_1_2_9_39_1 e_1_2_9_162_1 e_1_2_9_16_1 e_1_2_9_185_1 e_1_2_9_20_1 e_1_2_9_89_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_113_1 e_1_2_9_159_1 e_1_2_9_136_1 e_1_2_9_151_1 e_1_2_9_28_1 e_1_2_9_174_1 e_1_2_9_78_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_70_1 e_1_2_9_100_1 e_1_2_9_123_1 e_1_2_9_169_1 e_1_2_9_146_1 e_1_2_9_17_1 e_1_2_9_184_1 e_1_2_9_161_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_112_1 Liebig J. V. (e_1_2_9_36_1) 1834; 10 e_1_2_9_135_1 e_1_2_9_158_1 e_1_2_9_173_1 e_1_2_9_29_1 e_1_2_9_150_1 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_190_1 e_1_2_9_52_1 e_1_2_9_90_1 e_1_2_9_103_1 e_1_2_9_126_1 e_1_2_9_149_1 e_1_2_9_14_1 e_1_2_9_141_1 e_1_2_9_187_1 e_1_2_9_37_1 e_1_2_9_164_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_2_1 e_1_2_9_138_1 e_1_2_9_115_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_130_1 e_1_2_9_176_1 e_1_2_9_191_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_102_1 e_1_2_9_148_1 e_1_2_9_125_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_140_1 e_1_2_9_163_1 e_1_2_9_186_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_1_1 e_1_2_9_114_1 e_1_2_9_137_1 e_1_2_9_9_1 e_1_2_9_152_1 e_1_2_9_175_1 e_1_2_9_27_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_128_1 e_1_2_9_166_1 e_1_2_9_105_1 e_1_2_9_189_1 e_1_2_9_120_1 e_1_2_9_58_1 e_1_2_9_143_1 e_1_2_9_181_1 Zhang H. (e_1_2_9_153_1) 2016; 55 e_1_2_9_62_1 e_1_2_9_24_1 e_1_2_9_85_1 e_1_2_9_4_1 e_1_2_9_117_1 e_1_2_9_155_1 e_1_2_9_178_1 e_1_2_9_47_1 e_1_2_9_132_1 e_1_2_9_193_1 e_1_2_9_170_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_13_1 e_1_2_9_97_1 e_1_2_9_127_1 e_1_2_9_188_1 e_1_2_9_104_1 e_1_2_9_59_1 e_1_2_9_142_1 e_1_2_9_165_1 e_1_2_9_36_2 e_1_2_9_180_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_86_1 e_1_2_9_3_1 e_1_2_9_139_1 e_1_2_9_116_1 e_1_2_9_177_1 e_1_2_9_25_1 e_1_2_9_131_1 e_1_2_9_154_1 e_1_2_9_48_1 e_1_2_9_192_1 |
References_xml | – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 12 start-page: 1919 year: 2022 publication-title: ACS Catal. – volume: 4 start-page: 374 year: 2021 publication-title: Nat. Catal. – volume: 130 start-page: 8855 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 28 start-page: 6940 year: 2016 publication-title: Adv. Mater. – volume: 81 start-page: 195 year: 2009 publication-title: Pure Appl. Chem. – volume: 6 start-page: 9823 year: 2020 publication-title: Sci. Adv. – volume: 139 start-page: 7586 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 25 start-page: 6885 year: 2015 publication-title: Adv. Funct. Mater. – volume: 11 start-page: 351 year: 2016 publication-title: Nano Today – volume: 134 start-page: 8328 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 60 start-page: 8705 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 601 year: 2020 publication-title: J. Membr. Sci. – volume: 276 year: 2020 publication-title: Appl. Catal., B – volume: 7 start-page: 5209 year: 2017 publication-title: ACS Catal. – volume: 119 year: 2019 publication-title: Chem. Rev. – volume: 389 year: 2020 publication-title: Chem. Eng. J. – volume: 92 start-page: 580 year: 1953 publication-title: Phys. Rev. – start-page: 4530 year: 2006 publication-title: Chem. Commun. – volume: 48 start-page: 908 year: 2019 publication-title: Chem. Soc. Rev. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 26 start-page: 692 year: 2016 publication-title: Nano Energy – volume: 10 26 start-page: 10 5160 year: 1834 2014 publication-title: Ann. Pharm. Adv. Mater. – volume: 9 start-page: 30 year: 2009 publication-title: Nano Lett. – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 351 start-page: 304 year: 1991 publication-title: Nature – volume: 14 start-page: 6964 year: 2014 publication-title: Nano Lett. – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 3 start-page: 538 year: 2008 publication-title: Nat. Nanotechnol. – volume: 22 start-page: 4763 year: 2012 publication-title: Adv. Funct. Mater. – volume: 47 start-page: 1067 year: 2014 publication-title: Acc. Chem. Res. – volume: 6 start-page: 2462 year: 2016 publication-title: ACS Catal. – volume: 14 start-page: 826 year: 2015 publication-title: Nat. Mater. – volume: 12 start-page: 282 year: 2017 publication-title: Nanoscale Res. Lett. – volume: 26 start-page: 2374 year: 2014 publication-title: Chem. Mater. – volume: 5 start-page: 3813 year: 2014 publication-title: Nat. Commun. – volume: 6 start-page: 1124 year: 2021 publication-title: Nat. Energy – volume: 51 start-page: 858 year: 2015 publication-title: Chem. Commun. – volume: 136 start-page: 1730 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 398 year: 2020 publication-title: J. Hazard. Mater. – volume: 6 start-page: 294 year: 2022 publication-title: Joule – volume: 117 start-page: 6225 year: 2017 publication-title: Chem. Rev. – volume: 299 start-page: 377 year: 2003 publication-title: Science – volume: 25 start-page: 3820 year: 2013 publication-title: Adv. Mater. – volume: 25 year: 2009 publication-title: Langmuir – volume: 870 year: 2021 publication-title: J. Alloys Compd. – volume: 14 start-page: 930 year: 2012 publication-title: Green Chem. – volume: 324 start-page: 1312 year: 2009 publication-title: Science – volume: 133 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 25 start-page: 2452 year: 2013 publication-title: Adv. Mater. – volume: 17 year: 2021 publication-title: Small – volume: 141 start-page: 9610 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 43 start-page: 2841 year: 2014 publication-title: Chem. Soc. Rev. – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 2 year: 2017 publication-title: Nat. Rev. Mater. – volume: 138 start-page: 8928 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 198 start-page: 383 year: 1992 publication-title: Chem. Phys. Lett. – volume: 5 start-page: 2332 year: 2011 publication-title: ACS Nano – volume: 340 start-page: 1420 year: 2013 publication-title: Science – volume: 28 start-page: 6959 year: 2016 publication-title: Adv. Mater. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 331 start-page: 568 year: 2011 publication-title: Science – volume: 143 year: 2021 publication-title: J. Am. Chem. Soc. – volume: 46 start-page: 4028 year: 2007 publication-title: Inorg. Chem. – volume: 7 start-page: 1504 year: 2013 publication-title: ACS Nano – volume: 105 start-page: 99 year: 1981 publication-title: Physica B+C – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 55 start-page: 6716 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 7 start-page: 6225 year: 2017 publication-title: ACS Catal. – volume: 7 start-page: 1014 year: 2020 publication-title: Mater. Horiz. – volume: 144 start-page: 2079 year: 2022 publication-title: J. Am. Chem. Soc. – volume: 131 start-page: 1680 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 269 year: 2020 publication-title: Appl. Catal., B – volume: 3 start-page: 317 year: 2018 publication-title: Nanoscale Horiz. – volume: 12 start-page: 5923 year: 2021 publication-title: Nat. Commun. – volume: 281 year: 2021 publication-title: Appl. Catal., B – volume: 133 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 55 start-page: 5003 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 135 start-page: 18 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 349 start-page: 1208 year: 2015 publication-title: Science – volume: 10 start-page: 9193 year: 2016 publication-title: ACS Nano – volume: 3 start-page: 1057 year: 2012 publication-title: Nat. Commun. – volume: 265 year: 2020 publication-title: Appl. Catal., B – volume: 22 start-page: 8083 year: 2012 publication-title: J. Mater. Chem. – volume: 10 start-page: 2904 year: 2019 publication-title: J. Phys. Chem. Lett. – volume: 10 start-page: 437 year: 2015 publication-title: Nat. Nanotechnol. – volume: 355 start-page: 101 year: 2017 publication-title: J. Catal. – volume: 11 start-page: 2581 year: 2018 publication-title: Energy Environ. Sci. – volume: 6 start-page: 8276 year: 2016 publication-title: ACS Catal. – volume: 139 start-page: 4258 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 73 year: 2016 publication-title: Appl. Mater. Today – volume: 10 start-page: 2840 year: 2019 publication-title: Nat. Commun. – volume: 130 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 13 start-page: 136 year: 2021 publication-title: Nano‐Micro Lett. – volume: 12 start-page: 5333 year: 2018 publication-title: ACS Nano – volume: 93 start-page: 3795 year: 1971 publication-title: J. Am. Chem. Soc. – volume: 23 start-page: 3952 year: 2013 publication-title: Adv. Funct. Mater. – volume: 8 start-page: 5304 year: 2014 publication-title: ACS Nano – volume: 8 start-page: 76 year: 2009 publication-title: Nat. Mater. – volume: 49 start-page: 6592 year: 2020 publication-title: Chem. Soc. Rev. – volume: 393 year: 2020 publication-title: Chem. Eng. J. – volume: 117 start-page: 8129 year: 2017 publication-title: Chem. Rev. – volume: 8 start-page: 207 year: 2020 publication-title: J. Mater. Chem. A – volume: 369 start-page: 1621 year: 2020 publication-title: Science – volume: 18 start-page: 1518 year: 2008 publication-title: Adv. Funct. Mater. – volume: 119 start-page: 4777 year: 2019 publication-title: Chem. Rev. – volume: 32 start-page: 276 year: 2003 publication-title: Chem. Soc. Rev. – volume: 341 start-page: 1502 year: 2013 publication-title: Science – volume: 368 start-page: 587 year: 2020 publication-title: Science – volume: 255 year: 2019 publication-title: Appl. Catal., B – volume: 12 start-page: 836 year: 2013 publication-title: Nat. Mater. – volume: 27 start-page: 138 year: 2016 publication-title: Nano Energy – volume: 11 year: 2017 publication-title: ACS Nano – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 2 start-page: 1308 year: 2017 publication-title: ACS Energy Lett. – volume: 8 start-page: 8649 year: 2018 publication-title: ACS Catal. – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 121 year: 2021 publication-title: Chem. Rev. – volume: 10 start-page: 1024 year: 2020 publication-title: ACS Catal. – volume: 11 start-page: 3591 year: 2018 publication-title: ChemSusChem – volume: 36 start-page: 611 year: 2020 publication-title: Chem. Res. Chin. Univ. – volume: 239 start-page: 525 year: 2018 publication-title: Appl. Catal., B – volume: 49 start-page: 6666 year: 2020 publication-title: Chem. Soc. Rev. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 34 start-page: 7467 year: 1986 publication-title: Phys. Rev. B – volume: 9 year: 2017 publication-title: Nanoscale – volume: 303 year: 2022 publication-title: Appl. Catal., B – volume: 12 start-page: 6640 year: 2016 publication-title: Small – volume: 127 start-page: 9398 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 36 start-page: 1344 year: 1914 publication-title: J. Am. Chem. Soc. – volume: 2 year: 2014 publication-title: J. Mater. Chem. A – volume: 1 year: 2013 publication-title: J. Mater. Chem. A – volume: 19 start-page: 4396 year: 2007 publication-title: Chem. Mater. – volume: 5 year: 2017 publication-title: J. Mater. Chem. A – volume: 4 start-page: 3372 year: 2012 publication-title: ACS Appl. Mater. Interfaces – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 21 start-page: L482 year: 1982 publication-title: J. Appl. Phys. – volume: 306 start-page: 666 year: 2004 publication-title: Science – volume: 2 start-page: 751 year: 2017 publication-title: Chem – volume: 4 start-page: 4237 year: 2014 publication-title: Sci. Rep. – volume: 8 start-page: 1231 year: 2015 publication-title: Energy Environ. Sci. – volume: 8 start-page: 323 year: 2020 publication-title: J. Mater. Chem. A – volume: 143 start-page: 2173 year: 2021 publication-title: J. Am. Chem. Soc. – volume: 54 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 6 start-page: 388 year: 2021 publication-title: Nat. Energy – volume: 141 start-page: 3797 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 1377 year: 2020 publication-title: Matter – volume: 83 year: 2021 publication-title: Nano Energy – volume: 1 start-page: 1367 year: 2021 publication-title: Chem Catal. – volume: 10 start-page: 2431 year: 2020 publication-title: ACS Catal. – volume: 136 start-page: 6826 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 1176 year: 2021 publication-title: ACS Cent. Sci. – volume: 122 start-page: 1834 year: 2000 publication-title: J. Am. Chem. Soc. – volume: 55 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 2 start-page: 377 year: 2013 publication-title: Nano Energy – volume: 598 start-page: 304 year: 2021 publication-title: Nature – volume: 598 start-page: 604 year: 2021 publication-title: Nature – volume: 120 start-page: 8814 year: 2020 publication-title: Chem. Rev. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 59 start-page: 6590 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 202 start-page: 430 year: 2017 publication-title: Appl. Catal., B – volume: 92 start-page: 33 year: 2018 publication-title: Prog. Mater. Sci. – volume: 6 start-page: 92 year: 2022 publication-title: Joule – volume: 4 year: 2017 publication-title: Sci. Adv. – volume: 138 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 27 start-page: 7372 year: 2015 publication-title: Adv. Mater. – volume: 4 year: 2017 publication-title: Adv. Sci. – volume: 3 start-page: 634 year: 2011 publication-title: Nat. Chem. – volume: 5 start-page: 2593 year: 2011 publication-title: ACS Nano – ident: e_1_2_9_145_1 doi: 10.1021/acscatal.5b02922 – ident: e_1_2_9_11_1 doi: 10.1016/j.matt.2020.04.002 – ident: e_1_2_9_129_1 doi: 10.1126/science.1241488 – ident: e_1_2_9_79_1 doi: 10.1002/adma.201301207 – ident: e_1_2_9_42_1 doi: 10.1039/c2jm00097k – ident: e_1_2_9_10_1 doi: 10.1016/j.apcatb.2020.119167 – ident: e_1_2_9_179_1 doi: 10.1016/j.joule.2021.12.011 – ident: e_1_2_9_139_1 doi: 10.1021/jacs.8b13051 – ident: e_1_2_9_74_1 doi: 10.1002/adma.201702944 – ident: e_1_2_9_88_1 doi: 10.1038/srep04237 – ident: e_1_2_9_142_1 doi: 10.1002/ange.201503410 – ident: e_1_2_9_146_1 doi: 10.1021/acs.jpclett.9b01020 – ident: e_1_2_9_182_1 doi: 10.1021/jacs.0c08409 – ident: e_1_2_9_89_1 doi: 10.1016/j.nantod.2016.05.008 – ident: e_1_2_9_58_1 doi: 10.1021/ja02184a002 – ident: e_1_2_9_37_1 doi: 10.1039/B608532F – ident: e_1_2_9_113_1 doi: 10.1002/advs.201600371 – ident: e_1_2_9_187_1 doi: 10.1016/j.jcat.2017.08.030 – ident: e_1_2_9_131_1 doi: 10.1039/C7TA01082F – ident: e_1_2_9_158_1 doi: 10.1039/C8EE01316K – ident: e_1_2_9_72_1 doi: 10.1002/anie.201512038 – ident: e_1_2_9_104_1 doi: 10.1002/adfm.201300125 – ident: e_1_2_9_185_1 doi: 10.1016/j.apcatb.2020.119539 – ident: e_1_2_9_59_1 doi: 10.1143/JJAP.21.L482 – ident: e_1_2_9_166_1 doi: 10.1002/adma.202105482 – ident: e_1_2_9_117_1 doi: 10.1021/acsenergylett.7b00267 – volume: 10 start-page: 10 year: 1834 ident: e_1_2_9_36_1 publication-title: Ann. Pharm. – ident: e_1_2_9_106_1 doi: 10.1016/j.cej.2020.124718 – ident: e_1_2_9_195_1 doi: 10.1039/c2gc16681j – ident: e_1_2_9_163_1 doi: 10.1002/anie.202109851 – ident: e_1_2_9_83_1 doi: 10.1002/adfm.200700797 – ident: e_1_2_9_154_1 doi: 10.1002/adma.201605148 – ident: e_1_2_9_46_1 doi: 10.1002/adfm.201901024 – ident: e_1_2_9_165_1 doi: 10.1002/advs.201900289 – ident: e_1_2_9_63_1 doi: 10.1103/PhysRev.92.580 – ident: e_1_2_9_99_1 doi: 10.1021/nn5015215 – ident: e_1_2_9_67_1 doi: 10.1038/nmat4299 – ident: e_1_2_9_15_1 doi: 10.1021/am300661s – ident: e_1_2_9_98_1 doi: 10.1021/ar4002312 – ident: e_1_2_9_171_1 doi: 10.1002/adma.202008180 – ident: e_1_2_9_190_1 doi: 10.1021/ja993867 – ident: e_1_2_9_7_1 doi: 10.1126/science.abc1226 – ident: e_1_2_9_64_1 doi: 10.1016/0378-4363(81)90223-0 – ident: e_1_2_9_82_1 doi: 10.1021/nn200025p – ident: e_1_2_9_4_1 doi: 10.1038/s41586-021-03957-7 – ident: e_1_2_9_13_1 doi: 10.1021/acs.chemrev.6b00558 – ident: e_1_2_9_84_1 doi: 10.1021/cm0630800 – ident: e_1_2_9_173_1 doi: 10.1002/adma.201806314 – ident: e_1_2_9_14_1 doi: 10.1021/ja207103j – ident: e_1_2_9_184_1 doi: 10.1038/nmat3696 – ident: e_1_2_9_151_1 doi: 10.1038/nchem.1095 – ident: e_1_2_9_152_1 doi: 10.1007/s40820-021-00668-6 – ident: e_1_2_9_62_1 doi: 10.1002/smll.202102155 – ident: e_1_2_9_27_1 doi: 10.1002/adma.201806482 – ident: e_1_2_9_35_1 doi: 10.1016/j.cej.2020.124474 – ident: e_1_2_9_121_1 doi: 10.1039/C9MH01668F – ident: e_1_2_9_60_1 doi: 10.1021/ic062192q – ident: e_1_2_9_94_1 doi: 10.1021/acscatal.7b01781 – ident: e_1_2_9_160_1 doi: 10.1002/adfm.202001922 – ident: e_1_2_9_119_1 doi: 10.1126/science.aac8343 – ident: e_1_2_9_114_1 doi: 10.1021/acs.chemrev.7b00091 – ident: e_1_2_9_53_1 doi: 10.1021/jacs.7b02648 – ident: e_1_2_9_109_1 doi: 10.1021/jacs.1c03940 – ident: e_1_2_9_20_1 doi: 10.1002/anie.201506966 – ident: e_1_2_9_24_1 doi: 10.1002/adma.201605646 – ident: e_1_2_9_61_1 doi: 10.1002/adma.201800295 – ident: e_1_2_9_107_1 doi: 10.1021/acscentsci.1c00289 – ident: e_1_2_9_38_1 doi: 10.1021/la900923z – ident: e_1_2_9_68_1 doi: 10.1021/nl5032293 – ident: e_1_2_9_102_1 doi: 10.1002/adfm.201904932 – ident: e_1_2_9_90_1 doi: 10.1039/C3CS60401B – ident: e_1_2_9_115_1 doi: 10.1016/j.chempr.2017.05.014 – ident: e_1_2_9_28_1 doi: 10.1002/anie.201904058 – ident: e_1_2_9_111_1 doi: 10.1038/natrevmats.2017.45 – ident: e_1_2_9_1_1 doi: 10.1021/acs.chemrev.0c01328 – ident: e_1_2_9_161_1 doi: 10.1021/acsnano.7b06131 – ident: e_1_2_9_43_1 doi: 10.1016/j.apcatb.2021.120929 – ident: e_1_2_9_162_1 doi: 10.1002/adfm.201800548 – ident: e_1_2_9_81_1 doi: 10.1002/smll.201600382 – ident: e_1_2_9_143_1 doi: 10.1016/j.pmatsci.2017.09.002 – ident: e_1_2_9_147_1 doi: 10.1002/adfm.201706462 – ident: e_1_2_9_78_1 doi: 10.1002/advs.201700087 – ident: e_1_2_9_194_1 doi: 10.1351/PAC-CON-08-07-03 – ident: e_1_2_9_141_1 doi: 10.1002/anie.202017041 – ident: e_1_2_9_36_2 doi: 10.1002/adma.201401877 – ident: e_1_2_9_54_1 doi: 10.1016/j.nanoen.2016.06.042 – ident: e_1_2_9_18_1 doi: 10.1002/adma.201204453 – ident: e_1_2_9_169_1 doi: 10.1016/j.nanoen.2016.06.029 – ident: e_1_2_9_168_1 doi: 10.1002/adma.202100143 – ident: e_1_2_9_116_1 doi: 10.1021/acs.chemrev.9b00550 – ident: e_1_2_9_19_1 doi: 10.1021/ja501866r – ident: e_1_2_9_128_1 doi: 10.1021/acsnano.6b05240 – ident: e_1_2_9_120_1 doi: 10.1016/j.memsci.2020.117864 – ident: e_1_2_9_167_1 doi: 10.1002/adfm.201800136 – ident: e_1_2_9_175_1 doi: 10.1002/adma.201804883 – ident: e_1_2_9_48_1 doi: 10.1126/science.1194975 – ident: e_1_2_9_25_1 doi: 10.1021/acscatal.8b01645 – ident: e_1_2_9_70_1 doi: 10.1103/PhysRevB.34.7467 – ident: e_1_2_9_76_1 doi: 10.1126/science.1102896 – ident: e_1_2_9_123_1 doi: 10.1021/acscatal.9b03411 – ident: e_1_2_9_12_1 doi: 10.1039/D0CS00332H – ident: e_1_2_9_136_1 doi: 10.1126/science.1078962 – ident: e_1_2_9_40_1 doi: 10.1039/C4TA02781G – ident: e_1_2_9_23_1 doi: 10.1038/ncomms11480 – ident: e_1_2_9_101_1 doi: 10.1002/adma.201704548 – ident: e_1_2_9_49_1 doi: 10.1016/j.jhazmat.2020.122957 – ident: e_1_2_9_85_1 doi: 10.1038/nnano.2008.210 – ident: e_1_2_9_21_1 doi: 10.1002/adma.201601960 – ident: e_1_2_9_6_1 doi: 10.1016/j.checat.2021.09.010 – ident: e_1_2_9_193_1 doi: 10.1002/adma.201601413 – ident: e_1_2_9_51_1 doi: 10.1021/acsami.6b08413 – ident: e_1_2_9_122_1 doi: 10.1002/adfm.201703923 – ident: e_1_2_9_178_1 doi: 10.1016/j.joule.2022.01.001 – ident: e_1_2_9_125_1 doi: 10.1021/acsami.0c12905 – ident: e_1_2_9_92_1 doi: 10.1039/C8CS00773J – ident: e_1_2_9_159_1 doi: 10.1002/adma.201903545 – ident: e_1_2_9_65_1 doi: 10.1016/j.apcatb.2020.118760 – ident: e_1_2_9_44_1 doi: 10.1038/nmat2317 – ident: e_1_2_9_191_1 doi: 10.1021/ja00744a055 – ident: e_1_2_9_181_1 doi: 10.1021/jacs.1c12212 – ident: e_1_2_9_32_1 doi: 10.1038/s41560-021-00795-9 – ident: e_1_2_9_96_1 doi: 10.1016/j.apcatb.2019.117770 – ident: e_1_2_9_186_1 doi: 10.1016/j.apcatb.2019.118581 – ident: e_1_2_9_138_1 doi: 10.1021/acscatal.6b02613 – ident: e_1_2_9_66_1 doi: 10.1039/C9TA11167K – ident: e_1_2_9_91_1 doi: 10.1021/nn102472s – ident: e_1_2_9_133_1 doi: 10.1021/jacs.9b02578 – ident: e_1_2_9_144_1 doi: 10.1039/C9TA11318E – ident: e_1_2_9_127_1 doi: 10.1021/acs.chemrev.9b00348 – ident: e_1_2_9_31_1 doi: 10.1002/ange.202101894 – ident: e_1_2_9_148_1 doi: 10.1038/s41929-021-00605-1 – ident: e_1_2_9_177_1 doi: 10.1002/aenm.202003159 – ident: e_1_2_9_22_1 doi: 10.1002/anie.201602543 – ident: e_1_2_9_97_1 doi: 10.1039/C8NH00027A – ident: e_1_2_9_140_1 doi: 10.1021/acsami.9b08109 – ident: e_1_2_9_41_1 doi: 10.1039/C4CC08996K – ident: e_1_2_9_87_1 doi: 10.1016/j.nanoen.2012.11.003 – ident: e_1_2_9_2_1 doi: 10.1126/science.aba0690 – ident: e_1_2_9_3_1 doi: 10.1038/351304a0 – ident: e_1_2_9_170_1 doi: 10.1002/aenm.201901973 – ident: e_1_2_9_39_1 doi: 10.1021/ja809307s – ident: e_1_2_9_52_1 doi: 10.1002/adma.201503648 – ident: e_1_2_9_183_1 doi: 10.1002/adma.202100812 – ident: e_1_2_9_9_1 doi: 10.1038/s41560-021-00927-1 – ident: e_1_2_9_110_1 doi: 10.1002/adma.202101741 – ident: e_1_2_9_8_1 doi: 10.1038/s41586-021-03907-3 – ident: e_1_2_9_156_1 doi: 10.1021/acscatal.7b02013 – ident: e_1_2_9_172_1 doi: 10.1021/acscatal.9b04925 – ident: e_1_2_9_69_1 doi: 10.1016/0009-2614(92)85069-M – ident: e_1_2_9_126_1 doi: 10.1039/D0CS00175A – ident: e_1_2_9_50_1 doi: 10.1038/ncomms4813 – ident: e_1_2_9_56_1 doi: 10.1016/j.apcatb.2018.08.049 – ident: e_1_2_9_17_1 doi: 10.1038/ncomms2066 – ident: e_1_2_9_192_1 doi: 10.1002/adma.201906437 – ident: e_1_2_9_103_1 doi: 10.1126/science.1226419 – ident: e_1_2_9_118_1 doi: 10.1021/jacs.6b04669 – ident: e_1_2_9_86_1 doi: 10.1021/nl801827v – ident: e_1_2_9_132_1 doi: 10.1039/C7NR05997C – ident: e_1_2_9_134_1 doi: 10.1039/C7NR06721F – ident: e_1_2_9_108_1 doi: 10.1002/adma.201901997 – volume: 55 start-page: 14308 year: 2016 ident: e_1_2_9_153_1 publication-title: Angew. Chem., Int. Ed. – ident: e_1_2_9_130_1 doi: 10.1021/cm500641a – ident: e_1_2_9_112_1 doi: 10.1039/b200393g – ident: e_1_2_9_30_1 doi: 10.1002/anie.201916510 – ident: e_1_2_9_174_1 doi: 10.1126/sciadv.abb9823 – ident: e_1_2_9_95_1 doi: 10.1002/adma.201804211 – ident: e_1_2_9_55_1 doi: 10.1039/c3ta13188b – ident: e_1_2_9_75_1 doi: 10.1002/anie.202111426 – ident: e_1_2_9_188_1 doi: 10.1002/cssc.201801980 – ident: e_1_2_9_105_1 doi: 10.1016/j.apmt.2016.09.012 – ident: e_1_2_9_57_1 doi: 10.1021/ja308249k – ident: e_1_2_9_124_1 doi: 10.1002/anie.201807643 – ident: e_1_2_9_180_1 doi: 10.1021/acsnano.8b00110 – ident: e_1_2_9_29_1 doi: 10.1038/s41467-019-10392-w – ident: e_1_2_9_47_1 doi: 10.1021/ja411321s – ident: e_1_2_9_73_1 doi: 10.1038/nnano.2015.54 – ident: e_1_2_9_100_1 doi: 10.1021/acsnano.7b07755 – ident: e_1_2_9_5_1 doi: 10.1021/acs.chemrev.8b00315 – ident: e_1_2_9_71_1 doi: 10.1186/s11671-017-2016-x – ident: e_1_2_9_80_1 doi: 10.1002/adma.201902868 – ident: e_1_2_9_45_1 doi: 10.1002/adfm.201200922 – ident: e_1_2_9_26_1 doi: 10.1002/ange.201803514 – ident: e_1_2_9_34_1 doi: 10.1007/s40242-020-0182-3 – ident: e_1_2_9_157_1 doi: 10.1021/jacs.7b02290 – ident: e_1_2_9_176_1 doi: 10.1002/adfm.201503221 – ident: e_1_2_9_16_1 doi: 10.1021/ja3014049 – ident: e_1_2_9_135_1 doi: 10.1002/anie.202002136 – ident: e_1_2_9_155_1 doi: 10.1016/j.nanoen.2021.105783 – ident: e_1_2_9_77_1 doi: 10.1126/science.1171245 – ident: e_1_2_9_137_1 doi: 10.1016/j.jallcom.2021.159400 – ident: e_1_2_9_33_1 doi: 10.1038/s41467-021-26219-6 – ident: e_1_2_9_164_1 doi: 10.1021/acscatal.1c05357 – ident: e_1_2_9_149_1 doi: 10.1016/j.apcatb.2016.09.051 – ident: e_1_2_9_189_1 doi: 10.1021/jacs.6b04629 – ident: e_1_2_9_93_1 doi: 10.1021/nn305288z – ident: e_1_2_9_150_1 doi: 10.1039/C4EE03803G |
SSID | ssj0009606 |
Score | 2.7180939 |
SecondaryResourceType | review_article |
Snippet | 2D materials show many particular properties, such as high surface‐to‐volume ratio, high anisotropic degree, and adjustable chemical functionality. These... 2D materials show many particular properties, such as high surface-to-volume ratio, high anisotropic degree, and adjustable chemical functionality. These... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2200180 |
SubjectTerms | 2D materials Carbon dioxide Charge transfer electron transfer Hydrogen peroxide Materials science molecular activation Nitrogenation Photocatalysis Photocatalysts Solar energy conversion surface modification Surface reactions Two dimensional materials Water splitting |
Title | Surface Modification of 2D Photocatalysts for Solar Energy Conversion |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202200180 https://www.ncbi.nlm.nih.gov/pubmed/35262973 https://www.proquest.com/docview/2674196149 https://www.proquest.com/docview/2637580009 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Li9swEB66ObWH7bvNvtBCoScntizL0jHkwVJICZsGcjOyJVPoEpeNc-j--p2REydpWQrtzQ8JjzUz1jfy6BuAT1JarSKjgzi3LhA4ZwY61TKQogxdEafCJrRRePpV3izEl2WyPNjF3_BDtAtu5Bn-e00ObvJ1f08aaqznDeKUFKQoaKeELUJFt3v-KILnnmwvRhGkUDvWxpD3j7sfz0p_QM1j5OqnnslLMDuhm4yTH71NnfeKh9_4HP_nrV7B6RaXskFjSK_hmVu9gRcHbIVvYTzf3JemcGxaWUow8jplVcn4iM2-V3Xll4J-res1QyTM5hQ0s7HfW8iGlNzuV-bewWIy_ja8CbZVGIJCpDoMIuFsIssUIzMVWownTZEbFYUOsZcpS6VRWoOTPkZiTsURMRLmInJoHFYRm2D8HjqrauU-ApM8tHghSUVeIEzTmqcyscoUoRK5tboLwU4LWbGlKKdKGXdZQ67MMxqerB2eLnxu2_9syDmebHmxU2q2ddJ1xiXCKY34BB983d5G96J_Jmblqg21iTGiIlPqwofGGNpHUWkBKv3VBe5V-hcZssFoOmjPzv6l0zk8p-MmVe0COvX9xl0iKKrzKzjhYnblzf8R4YT_0g |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VcgAO5Q1LCxgJxClt4jiOfeCw6m61pd0K0VbqLXViR0igDepmVZV_xV_hF3XGeZQFISSkHjjGcfwc299Mxt8AvJbSahUZHcS5dYHAMzPQqZaBFGXoijgVNqGLwtMDOTkW70-SkxX43t2FafgheoMbrQy_X9MCJ4P01hVrqLGeOIiTV5AKW7_KPXdxjlrb_N3uCKf4Dec746PtSdAGFggKkeowiISziSxTVDZUaFFFMkVuVBQ6hBOmLJXGUg2eY6hcOBVHRLKXi8hhf60igrwYy70BNymMONH1jz5eMVaRQuDp_WLstBSq44kM-dZye5fPwd_A7TJW9ofdzl340Q1T4-PyeXNR55vFt18YJP-rcbwHay30ZsNmrdyHFTd7AHd-ImR8COPDxVlpCsemlSUfKi-2rCoZH7EPn6q68taui3k9Zwj22SHZBdjYX59k2-S_742Pj-D4WvrxGFZn1cw9BSZ5aDEhSUVeIBLVmqcyscoUoRK5tXoAQTftWdGysFMwkC9Zwx_NM5qOrJ-OAbzt839t-Ef-mHOjk6Ks3YfmGZeIGDVCMKz4Vf8adxD6LWRmrlpQnhiVRpLdATxppK-viqInUHSzAXAvQ39pQzYcTYf907N_-egl3JocTfez_d2DvXW4TemNZ94GrNZnC_ccMWCdv_CrjsHpdYvnJYWdWj0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1RT9swED4xkKbtYdrGNrrBMBLTniwSx3Hshz1UtBUMiioxJN4yJ3a0B9Qg2mriX-0n7s5Jwyo0ISHxGMdxnDtf_J19_g5gXylndGwNTwrnucQ5k5vMKK5kFfkyyaRL6aDw-EwdXcjvl-nlGvxZnoVp-CG6BTeyjPC_JgO_dtXBHWmodYE3SFBQkI7asMoTf_sbnbbZt-MBaviLEKPhj8Mj3uYV4KXMTMRj6V2qqgx9DR059JBsWVgdRx7RhK0qbbBVi9MY-hZeJzFx7BUy9vi5ThM_XoLtPoMN2mGkIDIhJ3c0vypk86TdRW6U1EuayEgcrPZ3dRq8h21XoXKY60av4VULUlm_GVVvYM1P38LLf6gLN2F4vripbOnZuHYUbRQUzOqKiQGb_KrndVgXup3NZwxhMTsnD5oNw0FDdkiR7mGZ7h1cPIno3sP6tJ76LWBKRA4L0kwWJWI2Y0SmUqdtGWlZOGd6wJcSysuWr5zSZlzlDdOyyEmieSfRHnzt6l83TB3_rbm9FHjeWuwsFwqxlUGwgi_e626jrdEGip36ekF1EnSvSM09-NAoqnsV5RmgPGA9EEFzD_Qh7w_G_e7q42Me2oXnk8EoPz0-O_kEL6i4CWHbhvX5zcLvIFiaF5_D-GTw86kN4i9NURiJ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface+Modification+of+2D+Photocatalysts+for+Solar+Energy+Conversion&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Feng%2C+Chengyang&rft.au=Wu%2C+Zhi-Peng&rft.au=Huang%2C+Kuo-Wei&rft.au=Ye%2C+Jinhua&rft.date=2022-06-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=34&rft.issue=23&rft.spage=e2200180&rft_id=info:doi/10.1002%2Fadma.202200180&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |