Surface Modification of 2D Photocatalysts for Solar Energy Conversion

2D materials show many particular properties, such as high surface‐to‐volume ratio, high anisotropic degree, and adjustable chemical functionality. These unique properties in 2D materials have sparked immense interest due to their applications in photocatalytic systems, resulting in significantly en...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 34; no. 23; pp. e2200180 - n/a
Main Authors Feng, Chengyang, Wu, Zhi‐Peng, Huang, Kuo‐Wei, Ye, Jinhua, Zhang, Huabin
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.06.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract 2D materials show many particular properties, such as high surface‐to‐volume ratio, high anisotropic degree, and adjustable chemical functionality. These unique properties in 2D materials have sparked immense interest due to their applications in photocatalytic systems, resulting in significantly enhanced light capture, charge‐transfer kinetics, and surface reaction. Herein, the research progress in 2D photocatalysts based on varied compositions and functions, followed by specific surface modification strategies, is introduced. Fundamental principles focusing on light harvesting, charge separation, and molecular adsorption/activation in the 2D‐material‐based photocatalytic system are systemically explored. The examples described here detail the use of 2D materials in various photocatalytic energy‐conversion systems, including water splitting, carbon dioxide reduction, nitrogen fixation, hydrogen peroxide production, and organic synthesis. Finally, by elaborating the challenges and possible solutions for developing these 2D materials, the review is expected to provide some inspiration for the future research of 2D materials used on efficient photocatalytic energy conversions. Although the research of 2D photocatalysts has made great progress in the past decades, there are still many challenges in understanding the deep relationship between the surface state and the reaction mechanism. The surface modification strategies and reaction mechanisms of 2D photocatalysts are reviewed, and some useful views are put forward for future research in this field.
AbstractList 2D materials show many particular properties, such as high surface-to-volume ratio, high anisotropic degree, and adjustable chemical functionality. These unique properties in 2D materials have sparked immense interest due to their applications in photocatalytic systems, resulting in significantly enhanced light capture, charge-transfer kinetics, and surface reaction. Herein, the research progress in 2D photocatalysts based on varied compositions and functions, followed by specific surface modification strategies, is introduced. Fundamental principles focusing on light harvesting, charge separation, and molecular adsorption/activation in the 2D-material-based photocatalytic system are systemically explored. The examples described here detail the use of 2D materials in various photocatalytic energy-conversion systems, including water splitting, carbon dioxide reduction, nitrogen fixation, hydrogen peroxide production, and organic synthesis. Finally, by elaborating the challenges and possible solutions for developing these 2D materials, the review is expected to provide some inspiration for the future research of 2D materials used on efficient photocatalytic energy conversions.2D materials show many particular properties, such as high surface-to-volume ratio, high anisotropic degree, and adjustable chemical functionality. These unique properties in 2D materials have sparked immense interest due to their applications in photocatalytic systems, resulting in significantly enhanced light capture, charge-transfer kinetics, and surface reaction. Herein, the research progress in 2D photocatalysts based on varied compositions and functions, followed by specific surface modification strategies, is introduced. Fundamental principles focusing on light harvesting, charge separation, and molecular adsorption/activation in the 2D-material-based photocatalytic system are systemically explored. The examples described here detail the use of 2D materials in various photocatalytic energy-conversion systems, including water splitting, carbon dioxide reduction, nitrogen fixation, hydrogen peroxide production, and organic synthesis. Finally, by elaborating the challenges and possible solutions for developing these 2D materials, the review is expected to provide some inspiration for the future research of 2D materials used on efficient photocatalytic energy conversions.
2D materials show many particular properties, such as high surface‐to‐volume ratio, high anisotropic degree, and adjustable chemical functionality. These unique properties in 2D materials have sparked immense interest due to their applications in photocatalytic systems, resulting in significantly enhanced light capture, charge‐transfer kinetics, and surface reaction. Herein, the research progress in 2D photocatalysts based on varied compositions and functions, followed by specific surface modification strategies, is introduced. Fundamental principles focusing on light harvesting, charge separation, and molecular adsorption/activation in the 2D‐material‐based photocatalytic system are systemically explored. The examples described here detail the use of 2D materials in various photocatalytic energy‐conversion systems, including water splitting, carbon dioxide reduction, nitrogen fixation, hydrogen peroxide production, and organic synthesis. Finally, by elaborating the challenges and possible solutions for developing these 2D materials, the review is expected to provide some inspiration for the future research of 2D materials used on efficient photocatalytic energy conversions. Although the research of 2D photocatalysts has made great progress in the past decades, there are still many challenges in understanding the deep relationship between the surface state and the reaction mechanism. The surface modification strategies and reaction mechanisms of 2D photocatalysts are reviewed, and some useful views are put forward for future research in this field.
2D materials show many particular properties, such as high surface‐to‐volume ratio, high anisotropic degree, and adjustable chemical functionality. These unique properties in 2D materials have sparked immense interest due to their applications in photocatalytic systems, resulting in significantly enhanced light capture, charge‐transfer kinetics, and surface reaction. Herein, the research progress in 2D photocatalysts based on varied compositions and functions, followed by specific surface modification strategies, is introduced. Fundamental principles focusing on light harvesting, charge separation, and molecular adsorption/activation in the 2D‐material‐based photocatalytic system are systemically explored. The examples described here detail the use of 2D materials in various photocatalytic energy‐conversion systems, including water splitting, carbon dioxide reduction, nitrogen fixation, hydrogen peroxide production, and organic synthesis. Finally, by elaborating the challenges and possible solutions for developing these 2D materials, the review is expected to provide some inspiration for the future research of 2D materials used on efficient photocatalytic energy conversions.
2D materials show many particular properties, such as high surface-to-volume ratio, high anisotropic degree, and adjustable chemical functionality. These unique properties in 2D materials have sparked immense interest due to their applications in photocatalytic systems, resulting in significantly enhanced light capture, charge-transfer kinetics, and surface reaction. Herein, the research progress in 2D photocatalysts based on varied compositions and functions, followed by specific surface modification strategies, is introduced. Fundamental principles focusing on light harvesting, charge separation, and molecular adsorption/activation in the 2D-material-based photocatalytic system are systemically explored. The examples described here detail the use of 2D materials in various photocatalytic energy-conversion systems, including water splitting, carbon dioxide reduction, nitrogen fixation, hydrogen peroxide production, and organic synthesis. Finally, by elaborating the challenges and possible solutions for developing these 2D materials, the review is expected to provide some inspiration for the future research of 2D materials used on efficient photocatalytic energy conversions.
Author Ye, Jinhua
Huang, Kuo‐Wei
Feng, Chengyang
Zhang, Huabin
Wu, Zhi‐Peng
Author_xml – sequence: 1
  givenname: Chengyang
  orcidid: 0000-0002-7437-1088
  surname: Feng
  fullname: Feng, Chengyang
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 2
  givenname: Zhi‐Peng
  orcidid: 0000-0002-5422-1349
  surname: Wu
  fullname: Wu, Zhi‐Peng
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 3
  givenname: Kuo‐Wei
  surname: Huang
  fullname: Huang, Kuo‐Wei
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 4
  givenname: Jinhua
  orcidid: 0000-0002-8105-8903
  surname: Ye
  fullname: Ye, Jinhua
  email: jinhua.ye@nims.go.jp
  organization: National Institute for Materials Science (NIMS)
– sequence: 5
  givenname: Huabin
  orcidid: 0000-0003-1601-2471
  surname: Zhang
  fullname: Zhang, Huabin
  email: huabin.zhang@kaust.edu.sa
  organization: King Abdullah University of Science and Technology (KAUST)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35262973$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1LxDAQhoMoun5cPUrBi5eukzRpk-Oyrh-woqCeS9pOtNJt1qRV-u9tXV1hQTwFhueZycy7T7ZrWyMhxxTGFICd62KhxwwYA6AStsiICkZDDkpskxGoSIQq5nKP7Hv_CgAqhniX7EWCxUwl0YjMHlpndI7BrS1KU-a6KW0dWBOwi-D-xTa2r-iq840PjHXBg620C2Y1uucumNr6HZ3vhUOyY3Tl8ej7PSBPl7PH6XU4v7u6mU7mYc4TBSHlWIjYJEwqCQUTXOeZlhRQcKGNkapfREsRxVShjChjico4RcywkJwnIjogZ6u-S2ffWvRNuih9jlWla7StT1kcJUIOe_bo6Qb6altX97_rqYRTFVM-UCffVJstsEiXrlxo16U_B-qB8QrInfXeoVkjFNIhgXRIIF0n0At8Q8jL5uuqjdNl9bemVtpHWWH3z5B0cnE7-XU_Aclyl7w
CitedBy_id crossref_primary_10_1021_acsmaterialslett_2c00854
crossref_primary_10_1016_j_jece_2024_113784
crossref_primary_10_1016_j_jallcom_2024_175063
crossref_primary_10_1021_acs_inorgchem_3c00952
crossref_primary_10_1002_adma_202300643
crossref_primary_10_1039_D4EE01543F
crossref_primary_10_1016_j_colsurfa_2023_131231
crossref_primary_10_3390_ma15228026
crossref_primary_10_1002_adsu_202400503
crossref_primary_10_1016_j_chemosphere_2022_135939
crossref_primary_10_1002_adfm_202403836
crossref_primary_10_1016_j_rineng_2024_102748
crossref_primary_10_3390_nano13111798
crossref_primary_10_1016_j_jcat_2024_115875
crossref_primary_10_1016_j_apsusc_2022_154886
crossref_primary_10_1016_j_apsusc_2022_154642
crossref_primary_10_1016_j_apcatb_2022_122304
crossref_primary_10_1016_j_cej_2024_152406
crossref_primary_10_59717_j_xinn_mater_2024_100060
crossref_primary_10_1016_j_nanoen_2024_110068
crossref_primary_10_1021_acs_jpclett_4c00404
crossref_primary_10_1016_j_ijhydene_2024_07_310
crossref_primary_10_1002_smll_202408064
crossref_primary_10_1016_j_jcis_2024_02_083
crossref_primary_10_1039_D2CY01315K
crossref_primary_10_3390_catal13081148
crossref_primary_10_1021_acs_nanolett_3c00804
crossref_primary_10_1002_adfm_202309761
crossref_primary_10_1002_adma_202410989
crossref_primary_10_1016_j_jece_2024_113415
crossref_primary_10_1039_D4SE00565A
crossref_primary_10_1002_adma_202417254
crossref_primary_10_1021_acssuschemeng_3c03183
crossref_primary_10_1039_D4GC03958K
crossref_primary_10_1002_adma_202311535
crossref_primary_10_1002_adfm_202302325
crossref_primary_10_1016_j_mtchem_2024_101924
crossref_primary_10_1016_j_apsusc_2022_154755
crossref_primary_10_1016_j_cis_2025_103485
crossref_primary_10_3390_catal13071102
crossref_primary_10_1002_ange_202308089
crossref_primary_10_1021_acsaem_4c00650
crossref_primary_10_1002_cctc_202402051
crossref_primary_10_1016_j_jhazmat_2022_129845
crossref_primary_10_1002_cptc_202300271
crossref_primary_10_1016_j_jcis_2024_05_146
crossref_primary_10_1039_D3IM00116D
crossref_primary_10_1016_j_cej_2023_144835
crossref_primary_10_1016_j_jes_2025_02_019
crossref_primary_10_1016_j_apenergy_2024_125195
crossref_primary_10_1016_j_cej_2024_155450
crossref_primary_10_1002_solr_202300669
crossref_primary_10_1002_cey2_491
crossref_primary_10_1039_D3TA05125K
crossref_primary_10_1007_s42864_023_00229_x
crossref_primary_10_1039_D2QI01911F
crossref_primary_10_1039_D4TA07568D
crossref_primary_10_1002_aesr_202300090
crossref_primary_10_1016_j_apsusc_2023_156524
crossref_primary_10_1021_acs_cgd_2c01404
crossref_primary_10_1021_acs_energyfuels_4c01648
crossref_primary_10_1103_PhysRevMaterials_8_114001
crossref_primary_10_1021_acsanm_4c02880
crossref_primary_10_1007_s42823_024_00748_8
crossref_primary_10_1002_adfm_202309060
crossref_primary_10_1016_j_cej_2024_148922
crossref_primary_10_1515_revic_2024_0107
crossref_primary_10_1016_j_ccr_2024_216121
crossref_primary_10_1016_j_mtcata_2023_100001
crossref_primary_10_1002_adma_202411813
crossref_primary_10_1002_anie_202317852
crossref_primary_10_1016_j_apcatb_2024_124614
crossref_primary_10_1016_j_ijhydene_2024_09_036
crossref_primary_10_1039_D4SE01034E
crossref_primary_10_1021_acs_jpclett_2c01509
crossref_primary_10_1016_j_jcat_2024_115604
crossref_primary_10_1088_1361_6463_ad61f8
crossref_primary_10_1016_j_jpowsour_2022_232008
crossref_primary_10_1002_aelm_202300610
crossref_primary_10_1021_acsaem_3c03152
crossref_primary_10_1016_j_cej_2023_145103
crossref_primary_10_1016_j_enconman_2025_119544
crossref_primary_10_1016_j_matre_2025_100325
crossref_primary_10_1016_j_cogsc_2023_100808
crossref_primary_10_1016_j_matre_2024_100285
crossref_primary_10_1002_pssb_202300033
crossref_primary_10_1016_j_matlet_2024_136821
crossref_primary_10_1007_s12598_023_02555_y
crossref_primary_10_1021_acsanm_3c00422
crossref_primary_10_1016_j_mtphys_2024_101458
crossref_primary_10_1039_D4TA06849A
crossref_primary_10_1039_D3NA00148B
crossref_primary_10_26599_NR_2025_94907024
crossref_primary_10_1016_j_jes_2023_09_019
crossref_primary_10_1021_acs_accounts_4c00280
crossref_primary_10_26599_NRE_2023_9120091
crossref_primary_10_1007_s11708_023_0894_4
crossref_primary_10_1039_D3EE03032F
crossref_primary_10_1016_j_inoche_2025_114266
crossref_primary_10_1016_j_jechem_2023_02_047
crossref_primary_10_1016_j_jphotochem_2023_114626
crossref_primary_10_1021_acsanm_3c00092
crossref_primary_10_1016_j_chemosphere_2023_140488
crossref_primary_10_1016_j_cej_2023_141537
crossref_primary_10_1021_acs_jpcc_3c05747
crossref_primary_10_1016_j_apcata_2023_119550
crossref_primary_10_1002_cctc_202301082
crossref_primary_10_1007_s41810_024_00263_3
crossref_primary_10_1021_acs_jpcc_4c01262
crossref_primary_10_1515_ntrev_2024_0025
crossref_primary_10_1016_j_apsusc_2022_155248
crossref_primary_10_1016_j_surfin_2024_105071
crossref_primary_10_1080_00397911_2023_2269585
crossref_primary_10_1016_j_jcis_2024_11_105
crossref_primary_10_1002_adma_202304130
crossref_primary_10_1016_j_ceramint_2024_01_380
crossref_primary_10_1002_adma_202306689
crossref_primary_10_1016_j_checat_2023_100707
crossref_primary_10_1021_acsanm_2c04232
crossref_primary_10_1016_j_cej_2024_151600
crossref_primary_10_1016_j_chemosphere_2024_142612
crossref_primary_10_1016_j_cej_2022_138399
crossref_primary_10_1021_acs_jpcc_4c02483
crossref_primary_10_1016_j_ssc_2023_115273
crossref_primary_10_1002_smll_202300402
crossref_primary_10_1021_acs_inorgchem_4c03300
crossref_primary_10_3390_catal12121527
crossref_primary_10_3390_molecules28020822
crossref_primary_10_1016_j_jcis_2025_02_218
crossref_primary_10_1002_adma_202403153
crossref_primary_10_1016_j_ecoenv_2024_116221
crossref_primary_10_3390_mi15060789
crossref_primary_10_1039_D2CY01224C
crossref_primary_10_1021_acs_chemrev_3c00937
crossref_primary_10_1002_adfm_202422787
crossref_primary_10_1007_s42114_023_00793_3
crossref_primary_10_1039_D4SC07309F
crossref_primary_10_1002_smll_202206648
crossref_primary_10_3390_catal14090607
crossref_primary_10_1016_j_apcatb_2024_123721
crossref_primary_10_1038_s41598_025_87777_z
crossref_primary_10_1021_acsami_2c10152
crossref_primary_10_1007_s12274_024_6904_2
crossref_primary_10_1021_acsami_2c15965
crossref_primary_10_1002_adfm_202304925
crossref_primary_10_3390_molecules28062775
crossref_primary_10_1039_D2TA03977J
crossref_primary_10_1021_jacs_3c08770
crossref_primary_10_1016_j_chemosphere_2022_136386
crossref_primary_10_1038_s41467_024_53483_z
crossref_primary_10_1016_j_cej_2023_144574
crossref_primary_10_1016_j_chemosphere_2023_139185
crossref_primary_10_1016_j_cej_2023_146516
crossref_primary_10_1021_acs_energyfuels_2c02162
crossref_primary_10_1002_ange_202317852
crossref_primary_10_1016_j_jallcom_2023_170605
crossref_primary_10_1021_accountsmr_3c00116
crossref_primary_10_1088_1361_6463_acf506
crossref_primary_10_1016_j_jcat_2025_116053
crossref_primary_10_1016_j_ijhydene_2024_11_388
crossref_primary_10_1039_D3EE00964E
crossref_primary_10_1039_D4TA02394C
crossref_primary_10_1007_s10934_024_01711_8
crossref_primary_10_1007_s40843_023_2770_8
crossref_primary_10_1016_j_catcom_2022_106565
crossref_primary_10_1016_j_fuel_2023_130754
crossref_primary_10_1016_j_ijhydene_2022_10_229
crossref_primary_10_1002_adfm_202210759
crossref_primary_10_1002_smll_202301430
crossref_primary_10_1016_j_diamond_2023_110616
crossref_primary_10_1016_j_scib_2024_12_014
crossref_primary_10_1002_adfm_202209994
crossref_primary_10_1016_j_surfin_2024_104861
crossref_primary_10_1016_j_fuel_2025_134549
crossref_primary_10_1039_D2EN00865C
crossref_primary_10_1016_j_cej_2022_139035
crossref_primary_10_1021_acsami_3c04891
crossref_primary_10_1016_j_mser_2024_100867
crossref_primary_10_1002_ange_202401443
crossref_primary_10_1002_elt2_43
crossref_primary_10_1002_adfm_202419570
crossref_primary_10_1016_j_cej_2024_151395
crossref_primary_10_1016_j_jcis_2023_12_126
crossref_primary_10_1016_j_chemosphere_2022_137733
crossref_primary_10_1021_acsaem_2c03548
crossref_primary_10_1002_smll_202309707
crossref_primary_10_1002_sus2_76
crossref_primary_10_1002_adfm_202305318
crossref_primary_10_1016_j_catcom_2023_106618
crossref_primary_10_1002_aenm_202301594
crossref_primary_10_1016_j_cej_2023_147150
crossref_primary_10_1016_j_jcis_2023_09_075
crossref_primary_10_1039_D4NJ00161C
crossref_primary_10_1002_wene_530
crossref_primary_10_1016_j_jallcom_2025_178464
crossref_primary_10_1002_smll_202205767
crossref_primary_10_1016_j_mtphys_2023_101315
crossref_primary_10_1016_j_apcatb_2025_125033
crossref_primary_10_1002_adma_202412299
crossref_primary_10_3390_catal14030175
crossref_primary_10_1016_j_powtec_2023_118889
crossref_primary_10_1021_acsmaterialslett_3c01416
crossref_primary_10_1016_j_ijhydene_2022_11_125
crossref_primary_10_1016_j_jece_2024_114812
crossref_primary_10_1016_j_physb_2024_415952
crossref_primary_10_1016_j_chemosphere_2023_139529
crossref_primary_10_1021_acscatal_4c03031
crossref_primary_10_1016_j_flatc_2022_100398
crossref_primary_10_1016_j_seppur_2025_131429
crossref_primary_10_1039_D2NJ01609E
crossref_primary_10_1021_acs_langmuir_4c00605
crossref_primary_10_1016_j_catcom_2023_106627
crossref_primary_10_1016_j_apcatb_2024_124223
crossref_primary_10_1016_j_nimb_2024_165349
crossref_primary_10_1142_S2810922822300069
crossref_primary_10_1016_j_jece_2024_113278
crossref_primary_10_1016_j_mssp_2023_107834
crossref_primary_10_1016_j_rser_2023_113348
crossref_primary_10_1007_s40820_023_01098_2
crossref_primary_10_1016_j_enconman_2023_117851
crossref_primary_10_1007_s12274_024_6706_2
crossref_primary_10_1002_cctc_202401355
crossref_primary_10_1016_j_matchemphys_2024_129902
crossref_primary_10_1016_j_apsusc_2024_161338
crossref_primary_10_1016_j_chemosphere_2024_143990
crossref_primary_10_1016_j_enchem_2024_100130
crossref_primary_10_1007_s40820_024_01503_4
crossref_primary_10_1021_acs_jpclett_4c03062
crossref_primary_10_1016_j_apsusc_2024_161461
crossref_primary_10_1007_s11708_024_0961_5
crossref_primary_10_1002_aenm_202303792
crossref_primary_10_1002_smll_202408806
crossref_primary_10_1016_j_chemosphere_2024_143505
crossref_primary_10_1016_j_mtcomm_2025_112238
crossref_primary_10_1039_D2NR03794G
crossref_primary_10_1002_adma_202406748
crossref_primary_10_1016_j_cej_2023_148217
crossref_primary_10_1039_D3CY01499A
crossref_primary_10_1002_anie_202208904
crossref_primary_10_1016_j_matt_2022_08_021
crossref_primary_10_1016_j_apsusc_2024_159346
crossref_primary_10_1016_j_apcatb_2023_123271
crossref_primary_10_1016_j_cej_2023_147129
crossref_primary_10_1021_acs_energyfuels_3c00717
crossref_primary_10_1039_D4NJ01105H
crossref_primary_10_1016_j_cej_2024_151584
crossref_primary_10_3390_nano13222944
crossref_primary_10_1002_smll_202301116
crossref_primary_10_1021_acscatal_3c05181
crossref_primary_10_1021_acscatal_4c07453
crossref_primary_10_1002_anie_202401443
crossref_primary_10_1002_smtd_202201258
crossref_primary_10_1021_acsaem_2c00767
crossref_primary_10_1039_D2DT01899C
crossref_primary_10_1021_acsami_2c12146
crossref_primary_10_1002_anie_202308089
crossref_primary_10_1016_j_apcatb_2023_123398
crossref_primary_10_1002_adfm_202312056
crossref_primary_10_1002_smll_202411444
crossref_primary_10_1016_j_cej_2023_147365
crossref_primary_10_1016_j_cej_2022_141261
crossref_primary_10_1016_j_jcis_2024_08_224
crossref_primary_10_1016_j_ccr_2022_214889
crossref_primary_10_1021_acs_iecr_4c04377
crossref_primary_10_1021_jacs_4c05873
crossref_primary_10_1007_s40242_025_4249_z
crossref_primary_10_1039_D3CP01425H
crossref_primary_10_1016_j_bios_2022_114817
crossref_primary_10_1021_acscatal_3c05053
crossref_primary_10_1016_j_ijhydene_2024_03_006
crossref_primary_10_1016_j_cej_2023_145053
crossref_primary_10_1002_advs_202205020
crossref_primary_10_1016_j_surfin_2024_105245
crossref_primary_10_1021_acsanm_4c00133
crossref_primary_10_1021_acs_jpclett_4c03643
crossref_primary_10_1080_10643389_2024_2309845
crossref_primary_10_1039_D2NJ04564H
crossref_primary_10_1016_j_envres_2024_118690
crossref_primary_10_1002_adfm_202421847
crossref_primary_10_1007_s11356_025_36054_7
crossref_primary_10_1002_bkcs_12790
crossref_primary_10_1039_D3NR01760E
crossref_primary_10_1093_nsr_nwae189
crossref_primary_10_1039_D4TA02453B
crossref_primary_10_1016_j_jcis_2023_07_039
crossref_primary_10_1039_D2TA03481F
crossref_primary_10_1039_D3CC02843G
crossref_primary_10_1021_acsami_3c15681
crossref_primary_10_1039_D3RA03120A
crossref_primary_10_1002_ange_202304634
crossref_primary_10_1016_j_surfin_2024_104395
crossref_primary_10_1021_acscatal_4c07797
crossref_primary_10_1016_j_seppur_2024_127638
crossref_primary_10_1002_ange_202208904
crossref_primary_10_1021_acsanm_3c02571
crossref_primary_10_1007_s11705_024_2398_0
crossref_primary_10_1021_acscatal_3c01003
crossref_primary_10_1016_j_chemosphere_2023_140663
crossref_primary_10_1021_acsnano_4c04562
crossref_primary_10_1002_marc_202400529
crossref_primary_10_1039_D2CC02708A
crossref_primary_10_1039_D4QI02449D
crossref_primary_10_1016_j_cej_2024_152096
crossref_primary_10_1016_j_materresbull_2024_112824
crossref_primary_10_1016_j_jwpe_2024_106883
crossref_primary_10_1039_D3CC01512B
crossref_primary_10_1002_anie_202304634
crossref_primary_10_1016_j_jcis_2022_11_129
crossref_primary_10_1016_j_chemosphere_2023_138340
crossref_primary_10_1002_adfm_202312265
crossref_primary_10_1039_D3NJ05636H
crossref_primary_10_1016_j_seppur_2024_128955
crossref_primary_10_1021_accountsmr_2c00172
Cites_doi 10.1021/acscatal.5b02922
10.1016/j.matt.2020.04.002
10.1126/science.1241488
10.1002/adma.201301207
10.1039/c2jm00097k
10.1016/j.apcatb.2020.119167
10.1016/j.joule.2021.12.011
10.1021/jacs.8b13051
10.1002/adma.201702944
10.1038/srep04237
10.1002/ange.201503410
10.1021/acs.jpclett.9b01020
10.1021/jacs.0c08409
10.1016/j.nantod.2016.05.008
10.1021/ja02184a002
10.1039/B608532F
10.1002/advs.201600371
10.1016/j.jcat.2017.08.030
10.1039/C7TA01082F
10.1039/C8EE01316K
10.1002/anie.201512038
10.1002/adfm.201300125
10.1016/j.apcatb.2020.119539
10.1143/JJAP.21.L482
10.1002/adma.202105482
10.1021/acsenergylett.7b00267
10.1016/j.cej.2020.124718
10.1039/c2gc16681j
10.1002/anie.202109851
10.1002/adfm.200700797
10.1002/adma.201605148
10.1002/adfm.201901024
10.1002/advs.201900289
10.1103/PhysRev.92.580
10.1021/nn5015215
10.1038/nmat4299
10.1021/am300661s
10.1021/ar4002312
10.1002/adma.202008180
10.1021/ja993867
10.1126/science.abc1226
10.1016/0378-4363(81)90223-0
10.1021/nn200025p
10.1038/s41586-021-03957-7
10.1021/acs.chemrev.6b00558
10.1021/cm0630800
10.1002/adma.201806314
10.1021/ja207103j
10.1038/nmat3696
10.1038/nchem.1095
10.1007/s40820-021-00668-6
10.1002/smll.202102155
10.1002/adma.201806482
10.1016/j.cej.2020.124474
10.1039/C9MH01668F
10.1021/ic062192q
10.1021/acscatal.7b01781
10.1002/adfm.202001922
10.1126/science.aac8343
10.1021/acs.chemrev.7b00091
10.1021/jacs.7b02648
10.1021/jacs.1c03940
10.1002/anie.201506966
10.1002/adma.201605646
10.1002/adma.201800295
10.1021/acscentsci.1c00289
10.1021/la900923z
10.1021/nl5032293
10.1002/adfm.201904932
10.1039/C3CS60401B
10.1016/j.chempr.2017.05.014
10.1002/anie.201904058
10.1038/natrevmats.2017.45
10.1021/acs.chemrev.0c01328
10.1021/acsnano.7b06131
10.1016/j.apcatb.2021.120929
10.1002/adfm.201800548
10.1002/smll.201600382
10.1016/j.pmatsci.2017.09.002
10.1002/adfm.201706462
10.1002/advs.201700087
10.1351/PAC-CON-08-07-03
10.1002/anie.202017041
10.1002/adma.201401877
10.1016/j.nanoen.2016.06.042
10.1002/adma.201204453
10.1016/j.nanoen.2016.06.029
10.1002/adma.202100143
10.1021/acs.chemrev.9b00550
10.1021/ja501866r
10.1021/acsnano.6b05240
10.1016/j.memsci.2020.117864
10.1002/adfm.201800136
10.1002/adma.201804883
10.1126/science.1194975
10.1021/acscatal.8b01645
10.1103/PhysRevB.34.7467
10.1126/science.1102896
10.1021/acscatal.9b03411
10.1039/D0CS00332H
10.1126/science.1078962
10.1039/C4TA02781G
10.1038/ncomms11480
10.1002/adma.201704548
10.1016/j.jhazmat.2020.122957
10.1038/nnano.2008.210
10.1002/adma.201601960
10.1016/j.checat.2021.09.010
10.1002/adma.201601413
10.1021/acsami.6b08413
10.1002/adfm.201703923
10.1016/j.joule.2022.01.001
10.1021/acsami.0c12905
10.1039/C8CS00773J
10.1002/adma.201903545
10.1016/j.apcatb.2020.118760
10.1038/nmat2317
10.1021/ja00744a055
10.1021/jacs.1c12212
10.1038/s41560-021-00795-9
10.1016/j.apcatb.2019.117770
10.1016/j.apcatb.2019.118581
10.1021/acscatal.6b02613
10.1039/C9TA11167K
10.1021/nn102472s
10.1021/jacs.9b02578
10.1039/C9TA11318E
10.1021/acs.chemrev.9b00348
10.1002/ange.202101894
10.1038/s41929-021-00605-1
10.1002/aenm.202003159
10.1002/anie.201602543
10.1039/C8NH00027A
10.1021/acsami.9b08109
10.1039/C4CC08996K
10.1016/j.nanoen.2012.11.003
10.1126/science.aba0690
10.1038/351304a0
10.1002/aenm.201901973
10.1021/ja809307s
10.1002/adma.201503648
10.1002/adma.202100812
10.1038/s41560-021-00927-1
10.1002/adma.202101741
10.1038/s41586-021-03907-3
10.1021/acscatal.7b02013
10.1021/acscatal.9b04925
10.1016/0009-2614(92)85069-M
10.1039/D0CS00175A
10.1038/ncomms4813
10.1016/j.apcatb.2018.08.049
10.1038/ncomms2066
10.1002/adma.201906437
10.1126/science.1226419
10.1021/jacs.6b04669
10.1021/nl801827v
10.1039/C7NR05997C
10.1039/C7NR06721F
10.1002/adma.201901997
10.1021/cm500641a
10.1039/b200393g
10.1002/anie.201916510
10.1126/sciadv.abb9823
10.1002/adma.201804211
10.1039/c3ta13188b
10.1002/anie.202111426
10.1002/cssc.201801980
10.1016/j.apmt.2016.09.012
10.1021/ja308249k
10.1002/anie.201807643
10.1021/acsnano.8b00110
10.1038/s41467-019-10392-w
10.1021/ja411321s
10.1038/nnano.2015.54
10.1021/acsnano.7b07755
10.1021/acs.chemrev.8b00315
10.1186/s11671-017-2016-x
10.1002/adma.201902868
10.1002/adfm.201200922
10.1002/ange.201803514
10.1007/s40242-020-0182-3
10.1021/jacs.7b02290
10.1002/adfm.201503221
10.1021/ja3014049
10.1002/anie.202002136
10.1016/j.nanoen.2021.105783
10.1126/science.1171245
10.1016/j.jallcom.2021.159400
10.1038/s41467-021-26219-6
10.1021/acscatal.1c05357
10.1016/j.apcatb.2016.09.051
10.1021/jacs.6b04629
10.1021/nn305288z
10.1039/C4EE03803G
ContentType Journal Article
Copyright 2022 The Authors. Advanced Materials published by Wiley‐VCH GmbH
2022 The Authors. Advanced Materials published by Wiley-VCH GmbH.
2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. Advanced Materials published by Wiley‐VCH GmbH
– notice: 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202200180
DatabaseName Wiley Online Library Open Access (WRLC)
CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Materials Research Database
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 35262973
10_1002_adma_202200180
ADMA202200180
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: King Abdullah University of Science and Technology
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADNMO
AETEA
AFFNX
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
AEUQT
AFPWT
NPM
RWI
RWM
WRC
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4790-14ed56f728980d254acba810e545aff89202a853619e8312279b41eebed844753
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 01:45:44 EDT 2025
Fri Jul 25 02:25:29 EDT 2025
Wed Feb 19 02:25:53 EST 2025
Thu Apr 24 22:59:27 EDT 2025
Tue Jul 01 02:33:15 EDT 2025
Wed Jun 11 08:29:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords molecular activation
electron transfer
photocatalysis
surface modification
2D materials
Language English
License Attribution
2022 The Authors. Advanced Materials published by Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4790-14ed56f728980d254acba810e545aff89202a853619e8312279b41eebed844753
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-8105-8903
0000-0002-5422-1349
0000-0003-1601-2471
0000-0002-7437-1088
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202200180
PMID 35262973
PQID 2674196149
PQPubID 2045203
PageCount 33
ParticipantIDs proquest_miscellaneous_2637580009
proquest_journals_2674196149
pubmed_primary_35262973
crossref_primary_10_1002_adma_202200180
crossref_citationtrail_10_1002_adma_202200180
wiley_primary_10_1002_adma_202200180_ADMA202200180
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1991; 351
2013; 1
2013; 2
2009; 81
2019; 11
2019; 10
2021; 281
2014; 26
2020; 601
2020; 12
2020; 10
2013; 7
2012; 14
2014; 136
2018; 8
2018; 3
1971; 93
2012; 134
1992; 198
2014; 14
2019; 29
2018; 30
2000; 122
2021; 83
2012; 22
2017; 202
2007; 19
2018; 28
2019; 6
2019; 31
2015; 127
2015; 51
2015; 54
2016; 10
2020; 269
2014; 47
2020; 36
1953; 92
2020; 265
2020; 389
2013; 341
2013; 340
2021; 143
2020; 32
2004; 306
2011; 3
2011; 5
2003; 299
2011; 133
2003; 32
2017; 139
2016; 12
2014; 43
2016; 11
2016; 5
2016; 6
2016; 7
2020; 393
2020; 30
2018; 239
2022; 6
2019; 48
2018; 92
2022; 12
2020; 398
2020; 276
2021; 133
2018; 12
2016; 28
2021; 60
2018; 11
2016; 27
2016; 26
2016; 8
2017; 5
2017; 7
2013; 25
2017; 2
2017; 4
2020; 120
2013; 23
1986; 34
2019; 58
2020; 369
2020; 368
2020; 59
1981; 105
2008; 3
2015; 349
2021; 121
2017; 355
2017; 9
2017; 117
2020; 8
2018; 130
2020; 7
2020; 6
2014; 5
2014; 4
2020; 2
2014; 2
2021; 33
2021; 598
2013; 12
1982; 21
2020; 49
2019; 119
2021; 870
2014; 8
2009; 324
1914; 36
1834 2014; 10 26
2009; 25
2021; 7
2021; 6
2015; 14
2021; 4
2017; 27
2008; 18
2015; 10
2006
2017; 29
2009; 131
2021; 1
2019; 141
2015; 8
2011; 331
2016; 55
2022; 144
2021; 13
2015; 25
2012; 3
2015; 27
2021; 12
2021; 11
2017; 11
2021; 17
2017; 12
2009; 9
2009; 8
2013; 135
2016; 138
2012; 4
2007; 46
2022; 303
2019; 255
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_71_1
e_1_2_9_107_1
e_1_2_9_122_1
e_1_2_9_145_1
e_1_2_9_168_1
e_1_2_9_18_1
e_1_2_9_183_1
e_1_2_9_160_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_6_1
e_1_2_9_119_1
e_1_2_9_60_1
e_1_2_9_111_1
e_1_2_9_134_1
e_1_2_9_157_1
e_1_2_9_195_1
e_1_2_9_172_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_129_1
e_1_2_9_144_1
e_1_2_9_167_1
e_1_2_9_106_1
e_1_2_9_121_1
e_1_2_9_19_1
e_1_2_9_182_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_5_1
e_1_2_9_118_1
e_1_2_9_133_1
e_1_2_9_156_1
e_1_2_9_179_1
e_1_2_9_69_1
e_1_2_9_110_1
e_1_2_9_171_1
e_1_2_9_194_1
e_1_2_9_31_1
e_1_2_9_77_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_109_1
e_1_2_9_101_1
e_1_2_9_124_1
e_1_2_9_147_1
e_1_2_9_39_1
e_1_2_9_162_1
e_1_2_9_16_1
e_1_2_9_185_1
e_1_2_9_20_1
e_1_2_9_89_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_113_1
e_1_2_9_159_1
e_1_2_9_136_1
e_1_2_9_151_1
e_1_2_9_28_1
e_1_2_9_174_1
e_1_2_9_78_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_93_1
e_1_2_9_108_1
e_1_2_9_70_1
e_1_2_9_100_1
e_1_2_9_123_1
e_1_2_9_169_1
e_1_2_9_146_1
e_1_2_9_17_1
e_1_2_9_184_1
e_1_2_9_161_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_112_1
Liebig J. V. (e_1_2_9_36_1) 1834; 10
e_1_2_9_135_1
e_1_2_9_158_1
e_1_2_9_173_1
e_1_2_9_29_1
e_1_2_9_150_1
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_190_1
e_1_2_9_52_1
e_1_2_9_90_1
e_1_2_9_103_1
e_1_2_9_126_1
e_1_2_9_149_1
e_1_2_9_14_1
e_1_2_9_141_1
e_1_2_9_187_1
e_1_2_9_37_1
e_1_2_9_164_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_2_1
e_1_2_9_138_1
e_1_2_9_115_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_130_1
e_1_2_9_176_1
e_1_2_9_191_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_102_1
e_1_2_9_148_1
e_1_2_9_125_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_140_1
e_1_2_9_163_1
e_1_2_9_186_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_1_1
e_1_2_9_114_1
e_1_2_9_137_1
e_1_2_9_9_1
e_1_2_9_152_1
e_1_2_9_175_1
e_1_2_9_27_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_128_1
e_1_2_9_166_1
e_1_2_9_105_1
e_1_2_9_189_1
e_1_2_9_120_1
e_1_2_9_58_1
e_1_2_9_143_1
e_1_2_9_181_1
Zhang H. (e_1_2_9_153_1) 2016; 55
e_1_2_9_62_1
e_1_2_9_24_1
e_1_2_9_85_1
e_1_2_9_4_1
e_1_2_9_117_1
e_1_2_9_155_1
e_1_2_9_178_1
e_1_2_9_47_1
e_1_2_9_132_1
e_1_2_9_193_1
e_1_2_9_170_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_13_1
e_1_2_9_97_1
e_1_2_9_127_1
e_1_2_9_188_1
e_1_2_9_104_1
e_1_2_9_59_1
e_1_2_9_142_1
e_1_2_9_165_1
e_1_2_9_36_2
e_1_2_9_180_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_86_1
e_1_2_9_3_1
e_1_2_9_139_1
e_1_2_9_116_1
e_1_2_9_177_1
e_1_2_9_25_1
e_1_2_9_131_1
e_1_2_9_154_1
e_1_2_9_48_1
e_1_2_9_192_1
References_xml – volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 12
  start-page: 1919
  year: 2022
  publication-title: ACS Catal.
– volume: 4
  start-page: 374
  year: 2021
  publication-title: Nat. Catal.
– volume: 130
  start-page: 8855
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 28
  start-page: 6940
  year: 2016
  publication-title: Adv. Mater.
– volume: 81
  start-page: 195
  year: 2009
  publication-title: Pure Appl. Chem.
– volume: 6
  start-page: 9823
  year: 2020
  publication-title: Sci. Adv.
– volume: 139
  start-page: 7586
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 25
  start-page: 6885
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 351
  year: 2016
  publication-title: Nano Today
– volume: 134
  start-page: 8328
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 60
  start-page: 8705
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 601
  year: 2020
  publication-title: J. Membr. Sci.
– volume: 276
  year: 2020
  publication-title: Appl. Catal., B
– volume: 7
  start-page: 5209
  year: 2017
  publication-title: ACS Catal.
– volume: 119
  year: 2019
  publication-title: Chem. Rev.
– volume: 389
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 92
  start-page: 580
  year: 1953
  publication-title: Phys. Rev.
– start-page: 4530
  year: 2006
  publication-title: Chem. Commun.
– volume: 48
  start-page: 908
  year: 2019
  publication-title: Chem. Soc. Rev.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 26
  start-page: 692
  year: 2016
  publication-title: Nano Energy
– volume: 10 26
  start-page: 10 5160
  year: 1834 2014
  publication-title: Ann. Pharm. Adv. Mater.
– volume: 9
  start-page: 30
  year: 2009
  publication-title: Nano Lett.
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 351
  start-page: 304
  year: 1991
  publication-title: Nature
– volume: 14
  start-page: 6964
  year: 2014
  publication-title: Nano Lett.
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 3
  start-page: 538
  year: 2008
  publication-title: Nat. Nanotechnol.
– volume: 22
  start-page: 4763
  year: 2012
  publication-title: Adv. Funct. Mater.
– volume: 47
  start-page: 1067
  year: 2014
  publication-title: Acc. Chem. Res.
– volume: 6
  start-page: 2462
  year: 2016
  publication-title: ACS Catal.
– volume: 14
  start-page: 826
  year: 2015
  publication-title: Nat. Mater.
– volume: 12
  start-page: 282
  year: 2017
  publication-title: Nanoscale Res. Lett.
– volume: 26
  start-page: 2374
  year: 2014
  publication-title: Chem. Mater.
– volume: 5
  start-page: 3813
  year: 2014
  publication-title: Nat. Commun.
– volume: 6
  start-page: 1124
  year: 2021
  publication-title: Nat. Energy
– volume: 51
  start-page: 858
  year: 2015
  publication-title: Chem. Commun.
– volume: 136
  start-page: 1730
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 398
  year: 2020
  publication-title: J. Hazard. Mater.
– volume: 6
  start-page: 294
  year: 2022
  publication-title: Joule
– volume: 117
  start-page: 6225
  year: 2017
  publication-title: Chem. Rev.
– volume: 299
  start-page: 377
  year: 2003
  publication-title: Science
– volume: 25
  start-page: 3820
  year: 2013
  publication-title: Adv. Mater.
– volume: 25
  year: 2009
  publication-title: Langmuir
– volume: 870
  year: 2021
  publication-title: J. Alloys Compd.
– volume: 14
  start-page: 930
  year: 2012
  publication-title: Green Chem.
– volume: 324
  start-page: 1312
  year: 2009
  publication-title: Science
– volume: 133
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 25
  start-page: 2452
  year: 2013
  publication-title: Adv. Mater.
– volume: 17
  year: 2021
  publication-title: Small
– volume: 141
  start-page: 9610
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 43
  start-page: 2841
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 2
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 138
  start-page: 8928
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 198
  start-page: 383
  year: 1992
  publication-title: Chem. Phys. Lett.
– volume: 5
  start-page: 2332
  year: 2011
  publication-title: ACS Nano
– volume: 340
  start-page: 1420
  year: 2013
  publication-title: Science
– volume: 28
  start-page: 6959
  year: 2016
  publication-title: Adv. Mater.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 331
  start-page: 568
  year: 2011
  publication-title: Science
– volume: 143
  year: 2021
  publication-title: J. Am. Chem. Soc.
– volume: 46
  start-page: 4028
  year: 2007
  publication-title: Inorg. Chem.
– volume: 7
  start-page: 1504
  year: 2013
  publication-title: ACS Nano
– volume: 105
  start-page: 99
  year: 1981
  publication-title: Physica B+C
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 55
  start-page: 6716
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 7
  start-page: 6225
  year: 2017
  publication-title: ACS Catal.
– volume: 7
  start-page: 1014
  year: 2020
  publication-title: Mater. Horiz.
– volume: 144
  start-page: 2079
  year: 2022
  publication-title: J. Am. Chem. Soc.
– volume: 131
  start-page: 1680
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 269
  year: 2020
  publication-title: Appl. Catal., B
– volume: 3
  start-page: 317
  year: 2018
  publication-title: Nanoscale Horiz.
– volume: 12
  start-page: 5923
  year: 2021
  publication-title: Nat. Commun.
– volume: 281
  year: 2021
  publication-title: Appl. Catal., B
– volume: 133
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 55
  start-page: 5003
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 135
  start-page: 18
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 349
  start-page: 1208
  year: 2015
  publication-title: Science
– volume: 10
  start-page: 9193
  year: 2016
  publication-title: ACS Nano
– volume: 3
  start-page: 1057
  year: 2012
  publication-title: Nat. Commun.
– volume: 265
  year: 2020
  publication-title: Appl. Catal., B
– volume: 22
  start-page: 8083
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 10
  start-page: 2904
  year: 2019
  publication-title: J. Phys. Chem. Lett.
– volume: 10
  start-page: 437
  year: 2015
  publication-title: Nat. Nanotechnol.
– volume: 355
  start-page: 101
  year: 2017
  publication-title: J. Catal.
– volume: 11
  start-page: 2581
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 8276
  year: 2016
  publication-title: ACS Catal.
– volume: 139
  start-page: 4258
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 73
  year: 2016
  publication-title: Appl. Mater. Today
– volume: 10
  start-page: 2840
  year: 2019
  publication-title: Nat. Commun.
– volume: 130
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 13
  start-page: 136
  year: 2021
  publication-title: Nano‐Micro Lett.
– volume: 12
  start-page: 5333
  year: 2018
  publication-title: ACS Nano
– volume: 93
  start-page: 3795
  year: 1971
  publication-title: J. Am. Chem. Soc.
– volume: 23
  start-page: 3952
  year: 2013
  publication-title: Adv. Funct. Mater.
– volume: 8
  start-page: 5304
  year: 2014
  publication-title: ACS Nano
– volume: 8
  start-page: 76
  year: 2009
  publication-title: Nat. Mater.
– volume: 49
  start-page: 6592
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 393
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 117
  start-page: 8129
  year: 2017
  publication-title: Chem. Rev.
– volume: 8
  start-page: 207
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 369
  start-page: 1621
  year: 2020
  publication-title: Science
– volume: 18
  start-page: 1518
  year: 2008
  publication-title: Adv. Funct. Mater.
– volume: 119
  start-page: 4777
  year: 2019
  publication-title: Chem. Rev.
– volume: 32
  start-page: 276
  year: 2003
  publication-title: Chem. Soc. Rev.
– volume: 341
  start-page: 1502
  year: 2013
  publication-title: Science
– volume: 368
  start-page: 587
  year: 2020
  publication-title: Science
– volume: 255
  year: 2019
  publication-title: Appl. Catal., B
– volume: 12
  start-page: 836
  year: 2013
  publication-title: Nat. Mater.
– volume: 27
  start-page: 138
  year: 2016
  publication-title: Nano Energy
– volume: 11
  year: 2017
  publication-title: ACS Nano
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 2
  start-page: 1308
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 8
  start-page: 8649
  year: 2018
  publication-title: ACS Catal.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 121
  year: 2021
  publication-title: Chem. Rev.
– volume: 10
  start-page: 1024
  year: 2020
  publication-title: ACS Catal.
– volume: 11
  start-page: 3591
  year: 2018
  publication-title: ChemSusChem
– volume: 36
  start-page: 611
  year: 2020
  publication-title: Chem. Res. Chin. Univ.
– volume: 239
  start-page: 525
  year: 2018
  publication-title: Appl. Catal., B
– volume: 49
  start-page: 6666
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 34
  start-page: 7467
  year: 1986
  publication-title: Phys. Rev. B
– volume: 9
  year: 2017
  publication-title: Nanoscale
– volume: 303
  year: 2022
  publication-title: Appl. Catal., B
– volume: 12
  start-page: 6640
  year: 2016
  publication-title: Small
– volume: 127
  start-page: 9398
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 36
  start-page: 1344
  year: 1914
  publication-title: J. Am. Chem. Soc.
– volume: 2
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 1
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 19
  start-page: 4396
  year: 2007
  publication-title: Chem. Mater.
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 3372
  year: 2012
  publication-title: ACS Appl. Mater. Interfaces
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 21
  start-page: L482
  year: 1982
  publication-title: J. Appl. Phys.
– volume: 306
  start-page: 666
  year: 2004
  publication-title: Science
– volume: 2
  start-page: 751
  year: 2017
  publication-title: Chem
– volume: 4
  start-page: 4237
  year: 2014
  publication-title: Sci. Rep.
– volume: 8
  start-page: 1231
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 8
  start-page: 323
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 143
  start-page: 2173
  year: 2021
  publication-title: J. Am. Chem. Soc.
– volume: 54
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 6
  start-page: 388
  year: 2021
  publication-title: Nat. Energy
– volume: 141
  start-page: 3797
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 1377
  year: 2020
  publication-title: Matter
– volume: 83
  year: 2021
  publication-title: Nano Energy
– volume: 1
  start-page: 1367
  year: 2021
  publication-title: Chem Catal.
– volume: 10
  start-page: 2431
  year: 2020
  publication-title: ACS Catal.
– volume: 136
  start-page: 6826
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 1176
  year: 2021
  publication-title: ACS Cent. Sci.
– volume: 122
  start-page: 1834
  year: 2000
  publication-title: J. Am. Chem. Soc.
– volume: 55
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 2
  start-page: 377
  year: 2013
  publication-title: Nano Energy
– volume: 598
  start-page: 304
  year: 2021
  publication-title: Nature
– volume: 598
  start-page: 604
  year: 2021
  publication-title: Nature
– volume: 120
  start-page: 8814
  year: 2020
  publication-title: Chem. Rev.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 59
  start-page: 6590
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 202
  start-page: 430
  year: 2017
  publication-title: Appl. Catal., B
– volume: 92
  start-page: 33
  year: 2018
  publication-title: Prog. Mater. Sci.
– volume: 6
  start-page: 92
  year: 2022
  publication-title: Joule
– volume: 4
  year: 2017
  publication-title: Sci. Adv.
– volume: 138
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 27
  start-page: 7372
  year: 2015
  publication-title: Adv. Mater.
– volume: 4
  year: 2017
  publication-title: Adv. Sci.
– volume: 3
  start-page: 634
  year: 2011
  publication-title: Nat. Chem.
– volume: 5
  start-page: 2593
  year: 2011
  publication-title: ACS Nano
– ident: e_1_2_9_145_1
  doi: 10.1021/acscatal.5b02922
– ident: e_1_2_9_11_1
  doi: 10.1016/j.matt.2020.04.002
– ident: e_1_2_9_129_1
  doi: 10.1126/science.1241488
– ident: e_1_2_9_79_1
  doi: 10.1002/adma.201301207
– ident: e_1_2_9_42_1
  doi: 10.1039/c2jm00097k
– ident: e_1_2_9_10_1
  doi: 10.1016/j.apcatb.2020.119167
– ident: e_1_2_9_179_1
  doi: 10.1016/j.joule.2021.12.011
– ident: e_1_2_9_139_1
  doi: 10.1021/jacs.8b13051
– ident: e_1_2_9_74_1
  doi: 10.1002/adma.201702944
– ident: e_1_2_9_88_1
  doi: 10.1038/srep04237
– ident: e_1_2_9_142_1
  doi: 10.1002/ange.201503410
– ident: e_1_2_9_146_1
  doi: 10.1021/acs.jpclett.9b01020
– ident: e_1_2_9_182_1
  doi: 10.1021/jacs.0c08409
– ident: e_1_2_9_89_1
  doi: 10.1016/j.nantod.2016.05.008
– ident: e_1_2_9_58_1
  doi: 10.1021/ja02184a002
– ident: e_1_2_9_37_1
  doi: 10.1039/B608532F
– ident: e_1_2_9_113_1
  doi: 10.1002/advs.201600371
– ident: e_1_2_9_187_1
  doi: 10.1016/j.jcat.2017.08.030
– ident: e_1_2_9_131_1
  doi: 10.1039/C7TA01082F
– ident: e_1_2_9_158_1
  doi: 10.1039/C8EE01316K
– ident: e_1_2_9_72_1
  doi: 10.1002/anie.201512038
– ident: e_1_2_9_104_1
  doi: 10.1002/adfm.201300125
– ident: e_1_2_9_185_1
  doi: 10.1016/j.apcatb.2020.119539
– ident: e_1_2_9_59_1
  doi: 10.1143/JJAP.21.L482
– ident: e_1_2_9_166_1
  doi: 10.1002/adma.202105482
– ident: e_1_2_9_117_1
  doi: 10.1021/acsenergylett.7b00267
– volume: 10
  start-page: 10
  year: 1834
  ident: e_1_2_9_36_1
  publication-title: Ann. Pharm.
– ident: e_1_2_9_106_1
  doi: 10.1016/j.cej.2020.124718
– ident: e_1_2_9_195_1
  doi: 10.1039/c2gc16681j
– ident: e_1_2_9_163_1
  doi: 10.1002/anie.202109851
– ident: e_1_2_9_83_1
  doi: 10.1002/adfm.200700797
– ident: e_1_2_9_154_1
  doi: 10.1002/adma.201605148
– ident: e_1_2_9_46_1
  doi: 10.1002/adfm.201901024
– ident: e_1_2_9_165_1
  doi: 10.1002/advs.201900289
– ident: e_1_2_9_63_1
  doi: 10.1103/PhysRev.92.580
– ident: e_1_2_9_99_1
  doi: 10.1021/nn5015215
– ident: e_1_2_9_67_1
  doi: 10.1038/nmat4299
– ident: e_1_2_9_15_1
  doi: 10.1021/am300661s
– ident: e_1_2_9_98_1
  doi: 10.1021/ar4002312
– ident: e_1_2_9_171_1
  doi: 10.1002/adma.202008180
– ident: e_1_2_9_190_1
  doi: 10.1021/ja993867
– ident: e_1_2_9_7_1
  doi: 10.1126/science.abc1226
– ident: e_1_2_9_64_1
  doi: 10.1016/0378-4363(81)90223-0
– ident: e_1_2_9_82_1
  doi: 10.1021/nn200025p
– ident: e_1_2_9_4_1
  doi: 10.1038/s41586-021-03957-7
– ident: e_1_2_9_13_1
  doi: 10.1021/acs.chemrev.6b00558
– ident: e_1_2_9_84_1
  doi: 10.1021/cm0630800
– ident: e_1_2_9_173_1
  doi: 10.1002/adma.201806314
– ident: e_1_2_9_14_1
  doi: 10.1021/ja207103j
– ident: e_1_2_9_184_1
  doi: 10.1038/nmat3696
– ident: e_1_2_9_151_1
  doi: 10.1038/nchem.1095
– ident: e_1_2_9_152_1
  doi: 10.1007/s40820-021-00668-6
– ident: e_1_2_9_62_1
  doi: 10.1002/smll.202102155
– ident: e_1_2_9_27_1
  doi: 10.1002/adma.201806482
– ident: e_1_2_9_35_1
  doi: 10.1016/j.cej.2020.124474
– ident: e_1_2_9_121_1
  doi: 10.1039/C9MH01668F
– ident: e_1_2_9_60_1
  doi: 10.1021/ic062192q
– ident: e_1_2_9_94_1
  doi: 10.1021/acscatal.7b01781
– ident: e_1_2_9_160_1
  doi: 10.1002/adfm.202001922
– ident: e_1_2_9_119_1
  doi: 10.1126/science.aac8343
– ident: e_1_2_9_114_1
  doi: 10.1021/acs.chemrev.7b00091
– ident: e_1_2_9_53_1
  doi: 10.1021/jacs.7b02648
– ident: e_1_2_9_109_1
  doi: 10.1021/jacs.1c03940
– ident: e_1_2_9_20_1
  doi: 10.1002/anie.201506966
– ident: e_1_2_9_24_1
  doi: 10.1002/adma.201605646
– ident: e_1_2_9_61_1
  doi: 10.1002/adma.201800295
– ident: e_1_2_9_107_1
  doi: 10.1021/acscentsci.1c00289
– ident: e_1_2_9_38_1
  doi: 10.1021/la900923z
– ident: e_1_2_9_68_1
  doi: 10.1021/nl5032293
– ident: e_1_2_9_102_1
  doi: 10.1002/adfm.201904932
– ident: e_1_2_9_90_1
  doi: 10.1039/C3CS60401B
– ident: e_1_2_9_115_1
  doi: 10.1016/j.chempr.2017.05.014
– ident: e_1_2_9_28_1
  doi: 10.1002/anie.201904058
– ident: e_1_2_9_111_1
  doi: 10.1038/natrevmats.2017.45
– ident: e_1_2_9_1_1
  doi: 10.1021/acs.chemrev.0c01328
– ident: e_1_2_9_161_1
  doi: 10.1021/acsnano.7b06131
– ident: e_1_2_9_43_1
  doi: 10.1016/j.apcatb.2021.120929
– ident: e_1_2_9_162_1
  doi: 10.1002/adfm.201800548
– ident: e_1_2_9_81_1
  doi: 10.1002/smll.201600382
– ident: e_1_2_9_143_1
  doi: 10.1016/j.pmatsci.2017.09.002
– ident: e_1_2_9_147_1
  doi: 10.1002/adfm.201706462
– ident: e_1_2_9_78_1
  doi: 10.1002/advs.201700087
– ident: e_1_2_9_194_1
  doi: 10.1351/PAC-CON-08-07-03
– ident: e_1_2_9_141_1
  doi: 10.1002/anie.202017041
– ident: e_1_2_9_36_2
  doi: 10.1002/adma.201401877
– ident: e_1_2_9_54_1
  doi: 10.1016/j.nanoen.2016.06.042
– ident: e_1_2_9_18_1
  doi: 10.1002/adma.201204453
– ident: e_1_2_9_169_1
  doi: 10.1016/j.nanoen.2016.06.029
– ident: e_1_2_9_168_1
  doi: 10.1002/adma.202100143
– ident: e_1_2_9_116_1
  doi: 10.1021/acs.chemrev.9b00550
– ident: e_1_2_9_19_1
  doi: 10.1021/ja501866r
– ident: e_1_2_9_128_1
  doi: 10.1021/acsnano.6b05240
– ident: e_1_2_9_120_1
  doi: 10.1016/j.memsci.2020.117864
– ident: e_1_2_9_167_1
  doi: 10.1002/adfm.201800136
– ident: e_1_2_9_175_1
  doi: 10.1002/adma.201804883
– ident: e_1_2_9_48_1
  doi: 10.1126/science.1194975
– ident: e_1_2_9_25_1
  doi: 10.1021/acscatal.8b01645
– ident: e_1_2_9_70_1
  doi: 10.1103/PhysRevB.34.7467
– ident: e_1_2_9_76_1
  doi: 10.1126/science.1102896
– ident: e_1_2_9_123_1
  doi: 10.1021/acscatal.9b03411
– ident: e_1_2_9_12_1
  doi: 10.1039/D0CS00332H
– ident: e_1_2_9_136_1
  doi: 10.1126/science.1078962
– ident: e_1_2_9_40_1
  doi: 10.1039/C4TA02781G
– ident: e_1_2_9_23_1
  doi: 10.1038/ncomms11480
– ident: e_1_2_9_101_1
  doi: 10.1002/adma.201704548
– ident: e_1_2_9_49_1
  doi: 10.1016/j.jhazmat.2020.122957
– ident: e_1_2_9_85_1
  doi: 10.1038/nnano.2008.210
– ident: e_1_2_9_21_1
  doi: 10.1002/adma.201601960
– ident: e_1_2_9_6_1
  doi: 10.1016/j.checat.2021.09.010
– ident: e_1_2_9_193_1
  doi: 10.1002/adma.201601413
– ident: e_1_2_9_51_1
  doi: 10.1021/acsami.6b08413
– ident: e_1_2_9_122_1
  doi: 10.1002/adfm.201703923
– ident: e_1_2_9_178_1
  doi: 10.1016/j.joule.2022.01.001
– ident: e_1_2_9_125_1
  doi: 10.1021/acsami.0c12905
– ident: e_1_2_9_92_1
  doi: 10.1039/C8CS00773J
– ident: e_1_2_9_159_1
  doi: 10.1002/adma.201903545
– ident: e_1_2_9_65_1
  doi: 10.1016/j.apcatb.2020.118760
– ident: e_1_2_9_44_1
  doi: 10.1038/nmat2317
– ident: e_1_2_9_191_1
  doi: 10.1021/ja00744a055
– ident: e_1_2_9_181_1
  doi: 10.1021/jacs.1c12212
– ident: e_1_2_9_32_1
  doi: 10.1038/s41560-021-00795-9
– ident: e_1_2_9_96_1
  doi: 10.1016/j.apcatb.2019.117770
– ident: e_1_2_9_186_1
  doi: 10.1016/j.apcatb.2019.118581
– ident: e_1_2_9_138_1
  doi: 10.1021/acscatal.6b02613
– ident: e_1_2_9_66_1
  doi: 10.1039/C9TA11167K
– ident: e_1_2_9_91_1
  doi: 10.1021/nn102472s
– ident: e_1_2_9_133_1
  doi: 10.1021/jacs.9b02578
– ident: e_1_2_9_144_1
  doi: 10.1039/C9TA11318E
– ident: e_1_2_9_127_1
  doi: 10.1021/acs.chemrev.9b00348
– ident: e_1_2_9_31_1
  doi: 10.1002/ange.202101894
– ident: e_1_2_9_148_1
  doi: 10.1038/s41929-021-00605-1
– ident: e_1_2_9_177_1
  doi: 10.1002/aenm.202003159
– ident: e_1_2_9_22_1
  doi: 10.1002/anie.201602543
– ident: e_1_2_9_97_1
  doi: 10.1039/C8NH00027A
– ident: e_1_2_9_140_1
  doi: 10.1021/acsami.9b08109
– ident: e_1_2_9_41_1
  doi: 10.1039/C4CC08996K
– ident: e_1_2_9_87_1
  doi: 10.1016/j.nanoen.2012.11.003
– ident: e_1_2_9_2_1
  doi: 10.1126/science.aba0690
– ident: e_1_2_9_3_1
  doi: 10.1038/351304a0
– ident: e_1_2_9_170_1
  doi: 10.1002/aenm.201901973
– ident: e_1_2_9_39_1
  doi: 10.1021/ja809307s
– ident: e_1_2_9_52_1
  doi: 10.1002/adma.201503648
– ident: e_1_2_9_183_1
  doi: 10.1002/adma.202100812
– ident: e_1_2_9_9_1
  doi: 10.1038/s41560-021-00927-1
– ident: e_1_2_9_110_1
  doi: 10.1002/adma.202101741
– ident: e_1_2_9_8_1
  doi: 10.1038/s41586-021-03907-3
– ident: e_1_2_9_156_1
  doi: 10.1021/acscatal.7b02013
– ident: e_1_2_9_172_1
  doi: 10.1021/acscatal.9b04925
– ident: e_1_2_9_69_1
  doi: 10.1016/0009-2614(92)85069-M
– ident: e_1_2_9_126_1
  doi: 10.1039/D0CS00175A
– ident: e_1_2_9_50_1
  doi: 10.1038/ncomms4813
– ident: e_1_2_9_56_1
  doi: 10.1016/j.apcatb.2018.08.049
– ident: e_1_2_9_17_1
  doi: 10.1038/ncomms2066
– ident: e_1_2_9_192_1
  doi: 10.1002/adma.201906437
– ident: e_1_2_9_103_1
  doi: 10.1126/science.1226419
– ident: e_1_2_9_118_1
  doi: 10.1021/jacs.6b04669
– ident: e_1_2_9_86_1
  doi: 10.1021/nl801827v
– ident: e_1_2_9_132_1
  doi: 10.1039/C7NR05997C
– ident: e_1_2_9_134_1
  doi: 10.1039/C7NR06721F
– ident: e_1_2_9_108_1
  doi: 10.1002/adma.201901997
– volume: 55
  start-page: 14308
  year: 2016
  ident: e_1_2_9_153_1
  publication-title: Angew. Chem., Int. Ed.
– ident: e_1_2_9_130_1
  doi: 10.1021/cm500641a
– ident: e_1_2_9_112_1
  doi: 10.1039/b200393g
– ident: e_1_2_9_30_1
  doi: 10.1002/anie.201916510
– ident: e_1_2_9_174_1
  doi: 10.1126/sciadv.abb9823
– ident: e_1_2_9_95_1
  doi: 10.1002/adma.201804211
– ident: e_1_2_9_55_1
  doi: 10.1039/c3ta13188b
– ident: e_1_2_9_75_1
  doi: 10.1002/anie.202111426
– ident: e_1_2_9_188_1
  doi: 10.1002/cssc.201801980
– ident: e_1_2_9_105_1
  doi: 10.1016/j.apmt.2016.09.012
– ident: e_1_2_9_57_1
  doi: 10.1021/ja308249k
– ident: e_1_2_9_124_1
  doi: 10.1002/anie.201807643
– ident: e_1_2_9_180_1
  doi: 10.1021/acsnano.8b00110
– ident: e_1_2_9_29_1
  doi: 10.1038/s41467-019-10392-w
– ident: e_1_2_9_47_1
  doi: 10.1021/ja411321s
– ident: e_1_2_9_73_1
  doi: 10.1038/nnano.2015.54
– ident: e_1_2_9_100_1
  doi: 10.1021/acsnano.7b07755
– ident: e_1_2_9_5_1
  doi: 10.1021/acs.chemrev.8b00315
– ident: e_1_2_9_71_1
  doi: 10.1186/s11671-017-2016-x
– ident: e_1_2_9_80_1
  doi: 10.1002/adma.201902868
– ident: e_1_2_9_45_1
  doi: 10.1002/adfm.201200922
– ident: e_1_2_9_26_1
  doi: 10.1002/ange.201803514
– ident: e_1_2_9_34_1
  doi: 10.1007/s40242-020-0182-3
– ident: e_1_2_9_157_1
  doi: 10.1021/jacs.7b02290
– ident: e_1_2_9_176_1
  doi: 10.1002/adfm.201503221
– ident: e_1_2_9_16_1
  doi: 10.1021/ja3014049
– ident: e_1_2_9_135_1
  doi: 10.1002/anie.202002136
– ident: e_1_2_9_155_1
  doi: 10.1016/j.nanoen.2021.105783
– ident: e_1_2_9_77_1
  doi: 10.1126/science.1171245
– ident: e_1_2_9_137_1
  doi: 10.1016/j.jallcom.2021.159400
– ident: e_1_2_9_33_1
  doi: 10.1038/s41467-021-26219-6
– ident: e_1_2_9_164_1
  doi: 10.1021/acscatal.1c05357
– ident: e_1_2_9_149_1
  doi: 10.1016/j.apcatb.2016.09.051
– ident: e_1_2_9_189_1
  doi: 10.1021/jacs.6b04629
– ident: e_1_2_9_93_1
  doi: 10.1021/nn305288z
– ident: e_1_2_9_150_1
  doi: 10.1039/C4EE03803G
SSID ssj0009606
Score 2.7180939
SecondaryResourceType review_article
Snippet 2D materials show many particular properties, such as high surface‐to‐volume ratio, high anisotropic degree, and adjustable chemical functionality. These...
2D materials show many particular properties, such as high surface-to-volume ratio, high anisotropic degree, and adjustable chemical functionality. These...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2200180
SubjectTerms 2D materials
Carbon dioxide
Charge transfer
electron transfer
Hydrogen peroxide
Materials science
molecular activation
Nitrogenation
Photocatalysis
Photocatalysts
Solar energy conversion
surface modification
Surface reactions
Two dimensional materials
Water splitting
Title Surface Modification of 2D Photocatalysts for Solar Energy Conversion
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202200180
https://www.ncbi.nlm.nih.gov/pubmed/35262973
https://www.proquest.com/docview/2674196149
https://www.proquest.com/docview/2637580009
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Li9swEB66ObWH7bvNvtBCoScntizL0jHkwVJICZsGcjOyJVPoEpeNc-j--p2REydpWQrtzQ8JjzUz1jfy6BuAT1JarSKjgzi3LhA4ZwY61TKQogxdEafCJrRRePpV3izEl2WyPNjF3_BDtAtu5Bn-e00ObvJ1f08aaqznDeKUFKQoaKeELUJFt3v-KILnnmwvRhGkUDvWxpD3j7sfz0p_QM1j5OqnnslLMDuhm4yTH71NnfeKh9_4HP_nrV7B6RaXskFjSK_hmVu9gRcHbIVvYTzf3JemcGxaWUow8jplVcn4iM2-V3Xll4J-res1QyTM5hQ0s7HfW8iGlNzuV-bewWIy_ja8CbZVGIJCpDoMIuFsIssUIzMVWownTZEbFYUOsZcpS6VRWoOTPkZiTsURMRLmInJoHFYRm2D8HjqrauU-ApM8tHghSUVeIEzTmqcyscoUoRK5tboLwU4LWbGlKKdKGXdZQ67MMxqerB2eLnxu2_9syDmebHmxU2q2ddJ1xiXCKY34BB983d5G96J_Jmblqg21iTGiIlPqwofGGNpHUWkBKv3VBe5V-hcZssFoOmjPzv6l0zk8p-MmVe0COvX9xl0iKKrzKzjhYnblzf8R4YT_0g
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VcgAO5Q1LCxgJxClt4jiOfeCw6m61pd0K0VbqLXViR0igDepmVZV_xV_hF3XGeZQFISSkHjjGcfwc299Mxt8AvJbSahUZHcS5dYHAMzPQqZaBFGXoijgVNqGLwtMDOTkW70-SkxX43t2FafgheoMbrQy_X9MCJ4P01hVrqLGeOIiTV5AKW7_KPXdxjlrb_N3uCKf4Dec746PtSdAGFggKkeowiISziSxTVDZUaFFFMkVuVBQ6hBOmLJXGUg2eY6hcOBVHRLKXi8hhf60igrwYy70BNymMONH1jz5eMVaRQuDp_WLstBSq44kM-dZye5fPwd_A7TJW9ofdzl340Q1T4-PyeXNR55vFt18YJP-rcbwHay30ZsNmrdyHFTd7AHd-ImR8COPDxVlpCsemlSUfKi-2rCoZH7EPn6q68taui3k9Zwj22SHZBdjYX59k2-S_742Pj-D4WvrxGFZn1cw9BSZ5aDEhSUVeIBLVmqcyscoUoRK5tXoAQTftWdGysFMwkC9Zwx_NM5qOrJ-OAbzt839t-Ef-mHOjk6Ks3YfmGZeIGDVCMKz4Vf8adxD6LWRmrlpQnhiVRpLdATxppK-viqInUHSzAXAvQ39pQzYcTYf907N_-egl3JocTfez_d2DvXW4TemNZ94GrNZnC_ccMWCdv_CrjsHpdYvnJYWdWj0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1RT9swED4xkKbtYdrGNrrBMBLTniwSx3Hshz1UtBUMiioxJN4yJ3a0B9Qg2mriX-0n7s5Jwyo0ISHxGMdxnDtf_J19_g5gXylndGwNTwrnucQ5k5vMKK5kFfkyyaRL6aDw-EwdXcjvl-nlGvxZnoVp-CG6BTeyjPC_JgO_dtXBHWmodYE3SFBQkI7asMoTf_sbnbbZt-MBaviLEKPhj8Mj3uYV4KXMTMRj6V2qqgx9DR059JBsWVgdRx7RhK0qbbBVi9MY-hZeJzFx7BUy9vi5ThM_XoLtPoMN2mGkIDIhJ3c0vypk86TdRW6U1EuayEgcrPZ3dRq8h21XoXKY60av4VULUlm_GVVvYM1P38LLf6gLN2F4vripbOnZuHYUbRQUzOqKiQGb_KrndVgXup3NZwxhMTsnD5oNw0FDdkiR7mGZ7h1cPIno3sP6tJ76LWBKRA4L0kwWJWI2Y0SmUqdtGWlZOGd6wJcSysuWr5zSZlzlDdOyyEmieSfRHnzt6l83TB3_rbm9FHjeWuwsFwqxlUGwgi_e626jrdEGip36ekF1EnSvSM09-NAoqnsV5RmgPGA9EEFzD_Qh7w_G_e7q42Me2oXnk8EoPz0-O_kEL6i4CWHbhvX5zcLvIFiaF5_D-GTw86kN4i9NURiJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface+Modification+of+2D+Photocatalysts+for+Solar+Energy+Conversion&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Feng%2C+Chengyang&rft.au=Wu%2C+Zhi-Peng&rft.au=Huang%2C+Kuo-Wei&rft.au=Ye%2C+Jinhua&rft.date=2022-06-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=34&rft.issue=23&rft.spage=e2200180&rft_id=info:doi/10.1002%2Fadma.202200180&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon