A Consensus Ochratoxin A Biosynthetic Pathway: Insights from the Genome Sequence of Aspergillus ochraceus and a Comparative Genomic Analysis

Ochratoxin A (OTA) is a significant mycotoxin that contaminates cereal products, coffee, grapes, wine, cheese, and meat. OTA is nephrotoxic, carcinogenic, teratogenic, and immunotoxic. OTA contamination is a serious threat to food safety, endangers human health, and can cause huge economic losses. A...

Full description

Saved in:
Bibliographic Details
Published inApplied and environmental microbiology Vol. 84; no. 19
Main Authors Wang, Yan, Wang, Liuqing, Wu, Fan, Liu, Fei, Wang, Qi, Zhang, Xiaoling, Selvaraj, Jonathan Nimal, Zhao, Yueju, Xing, Fuguo, Yin, Wen-Bing, Liu, Yang
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 01.10.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ochratoxin A (OTA) is a significant mycotoxin that contaminates cereal products, coffee, grapes, wine, cheese, and meat. OTA is nephrotoxic, carcinogenic, teratogenic, and immunotoxic. OTA contamination is a serious threat to food safety, endangers human health, and can cause huge economic losses. At present, >20 species of the genera Aspergillus and Penicillium are known to produce OTA. Here we demonstrate that a consensus OTA biosynthetic pathway exists in all OTA-producing fungi and is encoded by a gene cluster containing four highly conserved biosynthetic genes and a bZIP transcription factor. Ochratoxin A (OTA) is a toxic secondary metabolite produced by Aspergillus and Penicillium species that widely contaminates food and feed. We sequenced and assembled the complete ∼37-Mb genome of Aspergillus ochraceus fc-1, a well-known producer of OTA. Key genes of the OTA biosynthetic pathway were identified by comparative genomic analyses with five other sequenced OTA-producing fungi: A. carbonarius , A. niger , A. steynii , A. westerdijkiae , and Penicillium nordicum . OTA production was completely inhibited in the deletion mutants (Δ otaA , Δ otaB , Δ otaC , Δ otaD , and Δ otaR1 ), and OTA biosynthesis was restored by feeding a postblock substrate to the corresponding mutant. The OTA biosynthetic pathway was unblocked in the Δ otaD mutant by the addition of heterologously expressed halogenase. OTA biosynthesis begins with a polyketide synthase (PKS), OtaA, utilizing acetyl coenzyme A (acetyl-CoA) and malonyl-CoA to synthesize 7-methylmellein, which is oxidized to OTβ by cytochrome P450 monooxygenase (OtaC). OTβ and l -β-phenylalanine are combined by a nonribosomal peptide synthetase (NRPS), OtaB, to form an amide bond to synthesize OTB. Finally, OTB is chlorinated by a halogenase (OtaD) to OTA. The otaABCD genes were expressed at low levels in the Δ otaR1 mutant. A second regulator, otaR2 , which is adjacent to the biosynthetic gene, could modulate only the expression of otaA , otaB , and otaD . Thus, we have identified a consensus OTA biosynthetic pathway that can be used to prevent and control OTA synthesis and will help us understand the variation and production of the intermediate components in the biosynthetic pathway. IMPORTANCE Ochratoxin A (OTA) is a significant mycotoxin that contaminates cereal products, coffee, grapes, wine, cheese, and meat. OTA is nephrotoxic, carcinogenic, teratogenic, and immunotoxic. OTA contamination is a serious threat to food safety, endangers human health, and can cause huge economic losses. At present, >20 species of the genera Aspergillus and Penicillium are known to produce OTA. Here we demonstrate that a consensus OTA biosynthetic pathway exists in all OTA-producing fungi and is encoded by a gene cluster containing four highly conserved biosynthetic genes and a bZIP transcription factor.
AbstractList Ochratoxin A (OTA) is a toxic secondary metabolite produced by Aspergillus and Penicillium species that widely contaminates food and feed. We sequenced and assembled the complete ∼37-Mb genome of Aspergillusochraceus fc-1, a well-known producer of OTA. Key genes of the OTA biosynthetic pathway were identified by comparative genomic analyses with five other sequenced OTA-producing fungi: A. carbonarius, A. niger, A. steynii, A. westerdijkiae, and Penicillium nordicum OTA production was completely inhibited in the deletion mutants (ΔotaA, ΔotaB, ΔotaC, ΔotaD, and ΔotaR1), and OTA biosynthesis was restored by feeding a postblock substrate to the corresponding mutant. The OTA biosynthetic pathway was unblocked in the ΔotaD mutant by the addition of heterologously expressed halogenase. OTA biosynthesis begins with a polyketide synthase (PKS), OtaA, utilizing acetyl coenzyme A (acetyl-CoA) and malonyl-CoA to synthesize 7-methylmellein, which is oxidized to OTβ by cytochrome P450 monooxygenase (OtaC). OTβ and l-β-phenylalanine are combined by a nonribosomal peptide synthetase (NRPS), OtaB, to form an amide bond to synthesize OTB. Finally, OTB is chlorinated by a halogenase (OtaD) to OTA. The otaABCD genes were expressed at low levels in the ΔotaR1 mutant. A second regulator, otaR2, which is adjacent to the biosynthetic gene, could modulate only the expression of otaA, otaB, and otaD Thus, we have identified a consensus OTA biosynthetic pathway that can be used to prevent and control OTA synthesis and will help us understand the variation and production of the intermediate components in the biosynthetic pathway.IMPORTANCE Ochratoxin A (OTA) is a significant mycotoxin that contaminates cereal products, coffee, grapes, wine, cheese, and meat. OTA is nephrotoxic, carcinogenic, teratogenic, and immunotoxic. OTA contamination is a serious threat to food safety, endangers human health, and can cause huge economic losses. At present, >20 species of the genera Aspergillus and Penicillium are known to produce OTA. Here we demonstrate that a consensus OTA biosynthetic pathway exists in all OTA-producing fungi and is encoded by a gene cluster containing four highly conserved biosynthetic genes and a bZIP transcription factor.Ochratoxin A (OTA) is a toxic secondary metabolite produced by Aspergillus and Penicillium species that widely contaminates food and feed. We sequenced and assembled the complete ∼37-Mb genome of Aspergillusochraceus fc-1, a well-known producer of OTA. Key genes of the OTA biosynthetic pathway were identified by comparative genomic analyses with five other sequenced OTA-producing fungi: A. carbonarius, A. niger, A. steynii, A. westerdijkiae, and Penicillium nordicum OTA production was completely inhibited in the deletion mutants (ΔotaA, ΔotaB, ΔotaC, ΔotaD, and ΔotaR1), and OTA biosynthesis was restored by feeding a postblock substrate to the corresponding mutant. The OTA biosynthetic pathway was unblocked in the ΔotaD mutant by the addition of heterologously expressed halogenase. OTA biosynthesis begins with a polyketide synthase (PKS), OtaA, utilizing acetyl coenzyme A (acetyl-CoA) and malonyl-CoA to synthesize 7-methylmellein, which is oxidized to OTβ by cytochrome P450 monooxygenase (OtaC). OTβ and l-β-phenylalanine are combined by a nonribosomal peptide synthetase (NRPS), OtaB, to form an amide bond to synthesize OTB. Finally, OTB is chlorinated by a halogenase (OtaD) to OTA. The otaABCD genes were expressed at low levels in the ΔotaR1 mutant. A second regulator, otaR2, which is adjacent to the biosynthetic gene, could modulate only the expression of otaA, otaB, and otaD Thus, we have identified a consensus OTA biosynthetic pathway that can be used to prevent and control OTA synthesis and will help us understand the variation and production of the intermediate components in the biosynthetic pathway.IMPORTANCE Ochratoxin A (OTA) is a significant mycotoxin that contaminates cereal products, coffee, grapes, wine, cheese, and meat. OTA is nephrotoxic, carcinogenic, teratogenic, and immunotoxic. OTA contamination is a serious threat to food safety, endangers human health, and can cause huge economic losses. At present, >20 species of the genera Aspergillus and Penicillium are known to produce OTA. Here we demonstrate that a consensus OTA biosynthetic pathway exists in all OTA-producing fungi and is encoded by a gene cluster containing four highly conserved biosynthetic genes and a bZIP transcription factor.
Ochratoxin A (OTA) is a significant mycotoxin that contaminates cereal products, coffee, grapes, wine, cheese, and meat. OTA is nephrotoxic, carcinogenic, teratogenic, and immunotoxic. OTA contamination is a serious threat to food safety, endangers human health, and can cause huge economic losses. At present, >20 species of the genera Aspergillus and Penicillium are known to produce OTA. Here we demonstrate that a consensus OTA biosynthetic pathway exists in all OTA-producing fungi and is encoded by a gene cluster containing four highly conserved biosynthetic genes and a bZIP transcription factor. Ochratoxin A (OTA) is a toxic secondary metabolite produced by Aspergillus and Penicillium species that widely contaminates food and feed. We sequenced and assembled the complete ∼37-Mb genome of Aspergillus ochraceus fc-1, a well-known producer of OTA. Key genes of the OTA biosynthetic pathway were identified by comparative genomic analyses with five other sequenced OTA-producing fungi: A. carbonarius , A. niger , A. steynii , A. westerdijkiae , and Penicillium nordicum . OTA production was completely inhibited in the deletion mutants (Δ otaA , Δ otaB , Δ otaC , Δ otaD , and Δ otaR1 ), and OTA biosynthesis was restored by feeding a postblock substrate to the corresponding mutant. The OTA biosynthetic pathway was unblocked in the Δ otaD mutant by the addition of heterologously expressed halogenase. OTA biosynthesis begins with a polyketide synthase (PKS), OtaA, utilizing acetyl coenzyme A (acetyl-CoA) and malonyl-CoA to synthesize 7-methylmellein, which is oxidized to OTβ by cytochrome P450 monooxygenase (OtaC). OTβ and l -β-phenylalanine are combined by a nonribosomal peptide synthetase (NRPS), OtaB, to form an amide bond to synthesize OTB. Finally, OTB is chlorinated by a halogenase (OtaD) to OTA. The otaABCD genes were expressed at low levels in the Δ otaR1 mutant. A second regulator, otaR2 , which is adjacent to the biosynthetic gene, could modulate only the expression of otaA , otaB , and otaD . Thus, we have identified a consensus OTA biosynthetic pathway that can be used to prevent and control OTA synthesis and will help us understand the variation and production of the intermediate components in the biosynthetic pathway. IMPORTANCE Ochratoxin A (OTA) is a significant mycotoxin that contaminates cereal products, coffee, grapes, wine, cheese, and meat. OTA is nephrotoxic, carcinogenic, teratogenic, and immunotoxic. OTA contamination is a serious threat to food safety, endangers human health, and can cause huge economic losses. At present, >20 species of the genera Aspergillus and Penicillium are known to produce OTA. Here we demonstrate that a consensus OTA biosynthetic pathway exists in all OTA-producing fungi and is encoded by a gene cluster containing four highly conserved biosynthetic genes and a bZIP transcription factor.
Ochratoxin A (OTA) is a toxic secondary metabolite produced by and species that widely contaminates food and feed. We sequenced and assembled the complete ∼37-Mb genome of fc-1, a well-known producer of OTA. Key genes of the OTA biosynthetic pathway were identified by comparative genomic analyses with five other sequenced OTA-producing fungi: , , , , and OTA production was completely inhibited in the deletion mutants (Δ , Δ , Δ , Δ , and Δ ), and OTA biosynthesis was restored by feeding a postblock substrate to the corresponding mutant. The OTA biosynthetic pathway was unblocked in the Δ mutant by the addition of heterologously expressed halogenase. OTA biosynthesis begins with a polyketide synthase (PKS), OtaA, utilizing acetyl coenzyme A (acetyl-CoA) and malonyl-CoA to synthesize 7-methylmellein, which is oxidized to OTβ by cytochrome P450 monooxygenase (OtaC). OTβ and l-β-phenylalanine are combined by a nonribosomal peptide synthetase (NRPS), OtaB, to form an amide bond to synthesize OTB. Finally, OTB is chlorinated by a halogenase (OtaD) to OTA. The genes were expressed at low levels in the Δ mutant. A second regulator, , which is adjacent to the biosynthetic gene, could modulate only the expression of , , and Thus, we have identified a consensus OTA biosynthetic pathway that can be used to prevent and control OTA synthesis and will help us understand the variation and production of the intermediate components in the biosynthetic pathway. Ochratoxin A (OTA) is a significant mycotoxin that contaminates cereal products, coffee, grapes, wine, cheese, and meat. OTA is nephrotoxic, carcinogenic, teratogenic, and immunotoxic. OTA contamination is a serious threat to food safety, endangers human health, and can cause huge economic losses. At present, >20 species of the genera and are known to produce OTA. Here we demonstrate that a consensus OTA biosynthetic pathway exists in all OTA-producing fungi and is encoded by a gene cluster containing four highly conserved biosynthetic genes and a bZIP transcription factor.
Ochratoxin A (OTA) is a toxic secondary metabolite produced by Aspergillus and Penicillium species that widely contaminates food and feed. We sequenced and assembled the complete ∼37-Mb genome of Aspergillus ochraceus fc-1, a well-known producer of OTA. Key genes of the OTA biosynthetic pathway were identified by comparative genomic analyses with five other sequenced OTA-producing fungi: A. carbonarius, A. niger, A. steynii, A. westerdijkiae, and Penicillium nordicum. OTA production was completely inhibited in the deletion mutants (ΔotaA, ΔotaB, ΔotaC, ΔotaD, and ΔotaR1), and OTA biosynthesis was restored by feeding a postblock substrate to the corresponding mutant. The OTA biosynthetic pathway was unblocked in the ΔotaD mutant by the addition of heterologously expressed halogenase. OTA biosynthesis begins with a polyketide synthase (PKS), OtaA, utilizing acetyl coenzyme A (acetyl-CoA) and malonyl-CoA to synthesize 7-methylmellein, which is oxidized to OTβ by cytochrome P450 monooxygenase (OtaC). OTβ and l-β-phenylalanine are combined by a nonribosomal peptide synthetase (NRPS), OtaB, to form an amide bond to synthesize OTB. Finally, OTB is chlorinated by a halogenase (OtaD) to OTA. The otaABCD genes were expressed at low levels in the ΔotaR1 mutant. A second regulator, otaR2, which is adjacent to the biosynthetic gene, could modulate only the expression of otaA, otaB, and otaD. Thus, we have identified a consensus OTA biosynthetic pathway that can be used to prevent and control OTA synthesis and will help us understand the variation and production of the intermediate components in the biosynthetic pathway.
Author Selvaraj, Jonathan Nimal
Wu, Fan
Zhao, Yueju
Liu, Fei
Zhang, Xiaoling
Wang, Qi
Xing, Fuguo
Yin, Wen-Bing
Liu, Yang
Wang, Yan
Wang, Liuqing
Author_xml – sequence: 1
  givenname: Yan
  orcidid: 0000-0001-5115-0015
  surname: Wang
  fullname: Wang, Yan
  organization: Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, China
– sequence: 2
  givenname: Liuqing
  surname: Wang
  fullname: Wang, Liuqing
  organization: Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
– sequence: 3
  givenname: Fan
  surname: Wu
  fullname: Wu, Fan
  organization: State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
– sequence: 4
  givenname: Fei
  surname: Liu
  fullname: Liu, Fei
  organization: Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
– sequence: 5
  givenname: Qi
  surname: Wang
  fullname: Wang, Qi
  organization: Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
– sequence: 6
  givenname: Xiaoling
  surname: Zhang
  fullname: Zhang, Xiaoling
  organization: State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
– sequence: 7
  givenname: Jonathan Nimal
  surname: Selvaraj
  fullname: Selvaraj, Jonathan Nimal
  organization: Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
– sequence: 8
  givenname: Yueju
  surname: Zhao
  fullname: Zhao, Yueju
  organization: Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, China
– sequence: 9
  givenname: Fuguo
  surname: Xing
  fullname: Xing, Fuguo
  organization: Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, China
– sequence: 10
  givenname: Wen-Bing
  surname: Yin
  fullname: Yin, Wen-Bing
  organization: State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
– sequence: 11
  givenname: Yang
  surname: Liu
  fullname: Liu, Yang
  organization: Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30054361$$D View this record in MEDLINE/PubMed
BookMark eNptkkFvFCEUx4mpsdvVm2dD4sWDU4GBgfHQZNzU2qSmJvZOWAZ2aGZgBaa638EPLWvXRhtPEN7v_d_7P94JOPLBGwBeYnSKMRHvuvPPpwgj1FZYPAELjFpRsbpujsCiPLYVIRQdg5OUbhFCFDXiGTiuEWK0bvAC_OzgKvhkfJoTvNZDVDn8cB528IMLaefzYLLT8IvKw3e1ew8vfXKbISdoY5hgicIL48Nk4FfzbTZeGxgs7NLWxI0bx6IZ9pralJvyPVSl2rRVpYq7O6QW9c6rcZdceg6eWjUm8-JwLsHNx_Ob1afq6vrictVdVZpykStrLdekURTRGjMlmNaGojXr-14Q2uI1Nw1rLaPcWtYYrVnNSYusKKabuq2X4OxedjuvJ9Nr43NUo9xGN6m4k0E5-W_Eu0Fuwp1sMG1avhd4cxCIobhOWU4uaTOOypswJ0kQF0wwznlBXz9Cb8Mci99CYcI446T0tASv_u7ooZU__1SAt_eAjiGlaOwDgpHcr4EsayB_r4HEouDkEa5dLjMPez9u_H_SLx4utrI
CitedBy_id crossref_primary_10_1094_PHYTO_02_22_0053_SYM
crossref_primary_10_1128_mra_01278_22
crossref_primary_10_3390_toxins12110697
crossref_primary_10_1016_j_ijfoodmicro_2019_108498
crossref_primary_10_3390_toxins12080515
crossref_primary_10_59400_jts1857
crossref_primary_10_1021_acs_jafc_1c08160
crossref_primary_10_3390_toxins15040292
crossref_primary_10_1111_lam_13661
crossref_primary_10_1080_21501203_2024_2408259
crossref_primary_10_1080_10408398_2021_1879730
crossref_primary_10_3390_ijms22157878
crossref_primary_10_3390_toxins13010051
crossref_primary_10_1016_j_envpol_2022_120767
crossref_primary_10_1016_j_ijfoodmicro_2020_108783
crossref_primary_10_1016_j_biotechadv_2020_107630
crossref_primary_10_3390_metabo13070785
crossref_primary_10_3390_foods13081184
crossref_primary_10_1016_j_heliyon_2023_e19921
crossref_primary_10_1080_10408398_2022_2095554
crossref_primary_10_3390_toxins13020111
crossref_primary_10_1016_j_fbio_2023_103287
crossref_primary_10_3390_ijms25042195
crossref_primary_10_3390_toxins15070432
crossref_primary_10_3390_ijms222413261
crossref_primary_10_1016_j_crfs_2024_100866
crossref_primary_10_1016_j_biotechadv_2025_108547
crossref_primary_10_1038_s41598_024_69421_4
crossref_primary_10_3389_fmicb_2019_02759
crossref_primary_10_1016_j_toxrep_2025_101952
crossref_primary_10_3389_fmicb_2022_1073950
crossref_primary_10_3389_fmicb_2023_1120659
crossref_primary_10_1016_j_fm_2021_103865
crossref_primary_10_1016_j_toxicon_2023_107085
crossref_primary_10_3390_ijms21249462
crossref_primary_10_1080_21501203_2024_2355333
crossref_primary_10_3390_microorganisms11061384
crossref_primary_10_1093_femsle_fnac116
crossref_primary_10_1016_j_fgb_2024_103865
crossref_primary_10_1016_j_jare_2024_07_023
crossref_primary_10_1016_j_cofs_2022_100923
crossref_primary_10_3390_toxins13040251
crossref_primary_10_1016_j_fbr_2021_04_003
crossref_primary_10_3389_fmicb_2019_02921
crossref_primary_10_1007_s00018_024_05160_z
crossref_primary_10_3390_toxins14080551
crossref_primary_10_3389_fmicb_2020_581309
crossref_primary_10_4014_jmb_2402_02007
crossref_primary_10_1016_j_foodcont_2021_108788
crossref_primary_10_3389_fchem_2022_938626
crossref_primary_10_3390_toxins16030128
crossref_primary_10_1016_j_heliyon_2023_e12835
crossref_primary_10_3390_w16243620
crossref_primary_10_1002_jsfa_11140
crossref_primary_10_3390_toxins12120754
crossref_primary_10_1016_j_postharvbio_2024_112797
crossref_primary_10_1016_j_fct_2022_113437
crossref_primary_10_1039_D1NP00074H
crossref_primary_10_3390_d15121183
crossref_primary_10_3390_toxins12050296
crossref_primary_10_1128_mBio_01399_21
crossref_primary_10_1016_j_ijfoodmicro_2023_110342
crossref_primary_10_1146_annurev_nutr_013120_043659
crossref_primary_10_1016_j_lwt_2023_115576
crossref_primary_10_1016_j_foodcont_2024_110343
crossref_primary_10_1016_j_lwt_2021_111610
crossref_primary_10_1002_advs_202412757
crossref_primary_10_1016_j_ijfoodmicro_2021_109113
crossref_primary_10_3389_fmicb_2021_611881
crossref_primary_10_1007_s12550_024_00553_2
crossref_primary_10_1016_j_postharvbio_2020_111152
crossref_primary_10_1016_j_lwt_2025_117551
crossref_primary_10_1021_acsanm_1c01421
crossref_primary_10_3390_stresses3010018
crossref_primary_10_1016_j_fm_2021_103967
crossref_primary_10_1016_j_foodres_2023_112501
crossref_primary_10_3389_fmicb_2021_631392
crossref_primary_10_3390_toxins10090340
crossref_primary_10_3390_toxins14110745
crossref_primary_10_1021_acs_jafc_8b04523
Cites_doi 10.1101/gr.133652.111
10.1128/AEM.02508-12
10.1016/j.ijfoodmicro.2014.03.013
10.1007/0-387-28391-9_12
10.1186/gb-2008-9-1-r7
10.1016/j.simyco.2014.07.001
10.1093/bioinformatics/bth315
10.1093/oxfordjournals.molbev.a026334
10.1038/2051112a0
10.1007/BF02956777
10.1093/nar/gku1257
10.1007/s00438-003-0809-3
10.1023/B:EJPP.0000032405.21833.89
10.1128/aem.59.1.156-162.1993
10.1007/978-1-4615-0629-4_2
10.1093/nar/gks1116
10.4315/0362-028X-42.10.815
10.1016/j.cofs.2017.09.011
10.1016/j.ijfoodmicro.2012.12.014
10.1016/j.cofs.2018.04.001
10.1021/acs.jafc.6b03907
10.1016/j.syapm.2005.03.008
10.1016/j.ijfoodmicro.2015.07.020
10.1099/mic.0.26619-0
10.1128/AEM.64.10.3718-3723.1998
10.1371/journal.pone.0147089
10.3390/toxins8110333
10.1080/19440049.2014.981763
10.1046/j.1365-2885.2000.00244.x
10.3390/toxins5040717
10.1101/gr.1865504
10.1016/j.fgb.2005.11.005
10.1016/j.ijfoodmicro.2015.08.020
10.1016/j.etap.2011.05.013
10.1093/nar/gkg770
10.1128/AEM.01209-16
10.1007/s12088-013-0408-x
10.1101/gr.081612.108
10.3390/toxins8030083
10.1038/nbt1282
10.1016/j.fgb.2008.09.015
10.1007/978-1-59745-251-9_3
10.1093/nar/gki458
10.1093/bioinformatics/btr088
10.1186/s12864-016-2974-x
10.1016/S0031-9422(01)00316-8
10.1080/02652030500344811
10.3390/toxins7082723
10.1093/bioinformatics/btl446
10.1046/j.1365-2958.1998.00907.x
10.1016/j.ijfoodmicro.2014.03.007
ContentType Journal Article
Copyright Copyright © 2018 American Society for Microbiology.
Copyright American Society for Microbiology Oct 2018
Copyright © 2018 American Society for Microbiology. 2018 American Society for Microbiology
Copyright_xml – notice: Copyright © 2018 American Society for Microbiology.
– notice: Copyright American Society for Microbiology Oct 2018
– notice: Copyright © 2018 American Society for Microbiology. 2018 American Society for Microbiology
DBID AAYXX
CITATION
NPM
7QL
7QO
7SN
7SS
7ST
7T7
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
SOI
7X8
5PM
DOI 10.1128/AEM.01009-18
DatabaseName CrossRef
PubMed
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Biotechnology Research Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
CrossRef
Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
Biology
DocumentTitleAlternate A Consensus Ochratoxin A Biosynthetic Pathway
EISSN 1098-5336
ExternalDocumentID PMC6146979
30054361
10_1128_AEM_01009_18
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: 31601577
– fundername: ;
  grantid: 2013CB127800
– fundername: ;
  grantid: 2017YFC1600900
GroupedDBID ---
-~X
.55
.GJ
0R~
23M
2WC
39C
3O-
4.4
53G
5GY
5RE
5VS
6J9
85S
AAGFI
AAYXX
AAZTW
ABOGM
ABPPZ
ACBTR
ACGFO
ACIWK
ACNCT
ACPRK
ADBBV
ADUKH
ADXHL
AENEX
AFFNX
AFRAH
AGCDD
AGVNZ
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
BTFSW
C1A
CITATION
CS3
D0L
DIK
E.-
E3Z
EBS
EJD
F5P
GX1
H13
HYE
HZ~
H~9
K-O
KQ8
L7B
MVM
NEJ
O9-
OHT
P2P
PQQKQ
RHI
RNS
RPM
RSF
RXW
TAE
TAF
TN5
TR2
TWZ
UHB
VH1
W8F
WH7
WHG
WOQ
X6Y
X7M
XJT
YV5
ZCG
ZGI
ZXP
ZY4
~02
~KM
NPM
OK1
RHF
UCJ
Z5M
7QL
7QO
7SN
7SS
7ST
7T7
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
SOI
7X8
5PM
ID FETCH-LOGICAL-c478t-fff7c26a404315a85cce40b5ddd82491b7e659f547ff56ecc537290f80546393
ISSN 0099-2240
1098-5336
IngestDate Thu Aug 21 13:46:24 EDT 2025
Fri Jul 11 12:27:59 EDT 2025
Mon Jun 30 08:35:35 EDT 2025
Wed Feb 19 02:34:15 EST 2025
Tue Jul 01 02:20:13 EDT 2025
Thu Apr 24 22:55:13 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords Aspergillus ochraceus
genome
mycotoxin
ochratoxin A
regulation
biosynthetic pathway
comparative genomics
Language English
License Copyright © 2018 American Society for Microbiology.
All Rights Reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c478t-fff7c26a404315a85cce40b5ddd82491b7e659f547ff56ecc537290f80546393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Citation Wang Y, Wang L, Wu F, Liu F, Wang Q, Zhang X, Selvaraj JN, Zhao Y, Xing F, Yin W-B, Liu Y. 2018. A consensus ochratoxin A biosynthetic pathway: insights from the genome sequence of Aspergillus ochraceus and a comparative genomic analysis. Appl Environ Microbiol 84:e01009-18. https://doi.org/10.1128/AEM.01009-18.
Y.W. and L.W. contributed equally to this work.
ORCID 0000-0001-5115-0015
OpenAccessLink https://aem.asm.org/content/aem/84/19/e01009-18.full.pdf
PMID 30054361
PQID 2125757246
PQPubID 42251
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6146979
proquest_miscellaneous_2078585777
proquest_journals_2125757246
pubmed_primary_30054361
crossref_primary_10_1128_AEM_01009_18
crossref_citationtrail_10_1128_AEM_01009_18
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-10-01
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Applied and environmental microbiology
PublicationTitleAlternate Appl Environ Microbiol
PublicationYear 2018
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_3_50_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_40_2
Collyda C (e_1_3_3_52_2) 2007; 129
e_1_3_3_5_2
e_1_3_3_7_2
Frisvad JC (e_1_3_3_26_2) 2004; 50
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_46_2
IARC (e_1_3_3_8_2) 1993; 56
e_1_3_3_44_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_57_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
Hu Z-L (e_1_3_3_51_2) 2008; 9
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
Joint FAO/WHO Expert Committee on Food Additives (e_1_3_3_6_2) 2001
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
References_xml – ident: e_1_3_3_44_2
  doi: 10.1101/gr.133652.111
– ident: e_1_3_3_14_2
  doi: 10.1128/AEM.02508-12
– ident: e_1_3_3_33_2
  doi: 10.1016/j.ijfoodmicro.2014.03.013
– ident: e_1_3_3_27_2
  doi: 10.1007/0-387-28391-9_12
– ident: e_1_3_3_46_2
  doi: 10.1186/gb-2008-9-1-r7
– volume: 56
  start-page: 489
  year: 1993
  ident: e_1_3_3_8_2
  article-title: Ochratoxin A
  publication-title: IARC Monogr Eval Carcinog Risks Hum
– ident: e_1_3_3_24_2
  doi: 10.1016/j.simyco.2014.07.001
– ident: e_1_3_3_49_2
  doi: 10.1093/bioinformatics/bth315
– ident: e_1_3_3_55_2
  doi: 10.1093/oxfordjournals.molbev.a026334
– ident: e_1_3_3_9_2
  doi: 10.1038/2051112a0
– ident: e_1_3_3_38_2
  doi: 10.1007/BF02956777
– ident: e_1_3_3_20_2
  doi: 10.1093/nar/gku1257
– ident: e_1_3_3_42_2
  doi: 10.1007/s00438-003-0809-3
– ident: e_1_3_3_16_2
  doi: 10.1023/B:EJPP.0000032405.21833.89
– ident: e_1_3_3_41_2
  doi: 10.1128/aem.59.1.156-162.1993
– ident: e_1_3_3_10_2
  doi: 10.1007/978-1-4615-0629-4_2
– volume: 129
  start-page: 1245
  year: 2007
  ident: e_1_3_3_52_2
  article-title: Enhancing the quality of phylogenetic analysis using fuzzy hidden Markov model alignments
  publication-title: Stud Health Technol Inform
– ident: e_1_3_3_53_2
  doi: 10.1093/nar/gks1116
– volume: 50
  start-page: 23
  year: 2004
  ident: e_1_3_3_26_2
  article-title: New ochratoxin A producing species of Aspergillus section Circumdati
  publication-title: Stud Mycol
– ident: e_1_3_3_12_2
  doi: 10.4315/0362-028X-42.10.815
– ident: e_1_3_3_18_2
  doi: 10.1016/j.cofs.2017.09.011
– volume: 9
  start-page: 108
  year: 2008
  ident: e_1_3_3_51_2
  article-title: CateGOrizer: a Web-based program to batch analyze Gene Ontology classification categories
  publication-title: Online J Bioinform
– ident: e_1_3_3_31_2
  doi: 10.1016/j.ijfoodmicro.2012.12.014
– ident: e_1_3_3_19_2
  doi: 10.1016/j.cofs.2018.04.001
– ident: e_1_3_3_36_2
  doi: 10.1021/acs.jafc.6b03907
– ident: e_1_3_3_34_2
  doi: 10.1016/j.syapm.2005.03.008
– ident: e_1_3_3_29_2
  doi: 10.1016/j.ijfoodmicro.2015.07.020
– ident: e_1_3_3_35_2
  doi: 10.1099/mic.0.26619-0
– ident: e_1_3_3_43_2
  doi: 10.1128/AEM.64.10.3718-3723.1998
– ident: e_1_3_3_39_2
  doi: 10.1371/journal.pone.0147089
– ident: e_1_3_3_4_2
  doi: 10.3390/toxins8110333
– ident: e_1_3_3_3_2
  doi: 10.1080/19440049.2014.981763
– ident: e_1_3_3_7_2
  doi: 10.1046/j.1365-2885.2000.00244.x
– ident: e_1_3_3_28_2
  doi: 10.3390/toxins5040717
– ident: e_1_3_3_50_2
  doi: 10.1101/gr.1865504
– ident: e_1_3_3_30_2
  doi: 10.1016/j.fgb.2005.11.005
– ident: e_1_3_3_25_2
  doi: 10.1016/j.ijfoodmicro.2015.08.020
– ident: e_1_3_3_23_2
  doi: 10.1016/j.etap.2011.05.013
– ident: e_1_3_3_45_2
  doi: 10.1093/nar/gkg770
– ident: e_1_3_3_17_2
  doi: 10.1128/AEM.01209-16
– ident: e_1_3_3_37_2
  doi: 10.1007/s12088-013-0408-x
– volume-title: International Programme on Chemical Safety
  year: 2001
  ident: e_1_3_3_6_2
– ident: e_1_3_3_48_2
  doi: 10.1101/gr.081612.108
– ident: e_1_3_3_11_2
  doi: 10.3390/toxins8030083
– ident: e_1_3_3_21_2
  doi: 10.1038/nbt1282
– ident: e_1_3_3_32_2
  doi: 10.1016/j.fgb.2008.09.015
– ident: e_1_3_3_54_2
  doi: 10.1007/978-1-59745-251-9_3
– ident: e_1_3_3_47_2
  doi: 10.1093/nar/gki458
– ident: e_1_3_3_56_2
  doi: 10.1093/bioinformatics/btr088
– ident: e_1_3_3_22_2
  doi: 10.1186/s12864-016-2974-x
– ident: e_1_3_3_13_2
  doi: 10.1016/S0031-9422(01)00316-8
– ident: e_1_3_3_2_2
  doi: 10.1080/02652030500344811
– ident: e_1_3_3_15_2
  doi: 10.3390/toxins7082723
– ident: e_1_3_3_57_2
  doi: 10.1093/bioinformatics/btl446
– ident: e_1_3_3_40_2
  doi: 10.1046/j.1365-2958.1998.00907.x
– ident: e_1_3_3_5_2
  doi: 10.1016/j.ijfoodmicro.2014.03.007
SSID ssj0004068
Score 2.5582008
Snippet Ochratoxin A (OTA) is a significant mycotoxin that contaminates cereal products, coffee, grapes, wine, cheese, and meat. OTA is nephrotoxic, carcinogenic,...
Ochratoxin A (OTA) is a toxic secondary metabolite produced by and species that widely contaminates food and feed. We sequenced and assembled the complete...
Ochratoxin A (OTA) is a toxic secondary metabolite produced by Aspergillus and Penicillium species that widely contaminates food and feed. We sequenced and...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms Aspergillus ochraceus
Biosynthesis
Coenzyme A
Conserved sequence
Cytochrome P450
Cytochrome P450 monooxygenase
Cytochromes P450
Deletion mutant
Food contamination
Food Microbiology
Fungi
Gene expression
Genes
Genomes
Genomic analysis
Metabolites
Nucleotide sequence
Ochratoxin A
Penicillium
Phenylalanine
Polyketide synthase
Spotlight
Substrates
Toxins
Transcription factors
Title A Consensus Ochratoxin A Biosynthetic Pathway: Insights from the Genome Sequence of Aspergillus ochraceus and a Comparative Genomic Analysis
URI https://www.ncbi.nlm.nih.gov/pubmed/30054361
https://www.proquest.com/docview/2125757246
https://www.proquest.com/docview/2078585777
https://pubmed.ncbi.nlm.nih.gov/PMC6146979
Volume 84
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKEAIeEJRbYSAjwdOULU3j2OGtQh0DdRsPnVSeolwcFqmkQFqN8Rv40ZzjS-JCkQYvUWU7TqXz5eQ7ts93CHkpeFyGUqQeF2nogcMTXoaJukVaFvB9kz7LMBv5-CQ6Ogvfz9m817tws0tW2X7-Y2teyf9YFdrArpgl-w-WbSeFBvgN9oUrWBiuV7LxWNXbxGIVzd5pfo475t9x_QIrTDaXNXA7lGP9ACTvIlXKTu_qBoPxpssqeSvr5WcJLkOfqFbEFMXDP1WLBcy6xFlzudZKzql2H0YsXN0K81tdE5fnWnKLdzm5dJiqUnXST91qvvY4Hzuo2qZptf5qv67YvFZs2zlIVOkWWbnrF0PRnoSzLhcVTYF0GkHsLW3GT-tSchaP8Xb_H2BOw3hyvA9xJhZ6EN13zu7tn5wmh2fTaTKbzGfXyPUA4ouRXeaxCbW-yaE0f8NmTATiwJ17k8v8EaD8fs7WIS6zu-SOiTjoWMPnHunJuk9u6Bqkl31y06amN31y21GnvE9-jmkLL9rBi46pCy9q4PWaWnBRBBeFXqrBRS246LKkDrhoCy4KMKEpdcBFDbioBdcDMjuczN4ceaZ4h5eHXKy8six5HkSpUm9iqWB5LkM_Y0VRCAj5hxmXEYtLFvKyZBE4EoYbyH4pfCzQEI8ekp16WcvHhPqRVFFKzArgokWRZWk5YqOMARPmRcoGZM9aIcmNsD3WV1kkKsANRAI2S5TNkqEYkFft6C9a0OUv43atQRPzyjcJ8DwIb3gQRgPyou0Gh4y7bGktl2sYA6QbYnDO-YA80vZvH4S1IcJRNBwQvoGMdgCKvW_21NW5En0HGh3FPH5yhec-Jbe6F22X7Ky-reUzoM6r7LmC-S96VsmD
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Consensus+Ochratoxin+A+Biosynthetic+Pathway%3A+Insights+from+the+Genome+Sequence+of+Aspergillus+ochraceus+and+a+Comparative+Genomic+Analysis&rft.jtitle=Applied+and+environmental+microbiology&rft.au=Wang%2C+Yan&rft.au=Wang%2C+Liuqing&rft.au=Wu%2C+Fan&rft.au=Liu%2C+Fei&rft.date=2018-10-01&rft.issn=1098-5336&rft.eissn=1098-5336&rft.volume=84&rft.issue=19&rft_id=info:doi/10.1128%2FAEM.01009-18&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0099-2240&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0099-2240&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0099-2240&client=summon