Single-cell RNA sequencing reveals the cellular heterogeneity of aneurysmal infrarenal abdominal aorta
Abstract Aims The artery contains numerous cell types which contribute to multiple vascular diseases. However, the heterogeneity and cellular responses of these vascular cells during abdominal aortic aneurysm (AAA) progression have not been well characterized. Methods and results Single-cell RNA seq...
Saved in:
Published in | Cardiovascular research Vol. 117; no. 5; pp. 1402 - 1416 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
23.04.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Aims
The artery contains numerous cell types which contribute to multiple vascular diseases. However, the heterogeneity and cellular responses of these vascular cells during abdominal aortic aneurysm (AAA) progression have not been well characterized.
Methods and results
Single-cell RNA sequencing was performed on the infrarenal abdominal aortas (IAAs) from C57BL/6J mice at Days 7 and 14 post-sham or peri-adventitial elastase-induced AAA. Unbiased clustering analysis of the transcriptional profiles from >4500 aortic cells identified 17 clusters representing nine-cell lineages, encompassing vascular smooth muscle cells (VSMCs), fibroblasts, endothelial cells, immune cells (macrophages, T cells, B cells, and dendritic cells), and two types of rare cells, including neural cells and erythrocyte cells. Seurat clustering analysis identified four smooth muscle cell (SMC) subpopulations and five monocyte/macrophage subpopulations, with distinct transcriptional profiles. During AAA progression, three major SMC subpopulations were proportionally decreased, whereas the small subpopulation was increased, accompanied with down-regulation of SMC contractile markers and up-regulation of pro-inflammatory genes. Another AAA-associated cellular response is immune cell expansion, particularly monocytes/macrophages. Elastase exposure induced significant expansion and activation of aortic resident macrophages, blood-derived monocytes and inflammatory macrophages. We also identified increased blood-derived reparative macrophages expressing anti-inflammatory cytokines suggesting that resolution of inflammation and vascular repair also persist during AAA progression.
Conclusion
Our data identify AAA disease-relevant transcriptional signatures of vascular cells in the IAA. Furthermore, we characterize the heterogeneity and cellular responses of VSMCs and monocytes/macrophages during AAA progression, which provide insights into their function and the regulation of AAA onset and progression.
Graphical Abstract |
---|---|
AbstractList | The artery contains numerous cell types which contribute to multiple vascular diseases. However, the heterogeneity and cellular responses of these vascular cells during abdominal aortic aneurysm (AAA) progression have not been well characterized.AIMSThe artery contains numerous cell types which contribute to multiple vascular diseases. However, the heterogeneity and cellular responses of these vascular cells during abdominal aortic aneurysm (AAA) progression have not been well characterized.Single-cell RNA sequencing was performed on the infrarenal abdominal aortas (IAAs) from C57BL/6J mice at Days 7 and 14 post-sham or peri-adventitial elastase-induced AAA. Unbiased clustering analysis of the transcriptional profiles from >4500 aortic cells identified 17 clusters representing nine-cell lineages, encompassing vascular smooth muscle cells (VSMCs), fibroblasts, endothelial cells, immune cells (macrophages, T cells, B cells, and dendritic cells), and two types of rare cells, including neural cells and erythrocyte cells. Seurat clustering analysis identified four smooth muscle cell (SMC) subpopulations and five monocyte/macrophage subpopulations, with distinct transcriptional profiles. During AAA progression, three major SMC subpopulations were proportionally decreased, whereas the small subpopulation was increased, accompanied with down-regulation of SMC contractile markers and up-regulation of pro-inflammatory genes. Another AAA-associated cellular response is immune cell expansion, particularly monocytes/macrophages. Elastase exposure induced significant expansion and activation of aortic resident macrophages, blood-derived monocytes and inflammatory macrophages. We also identified increased blood-derived reparative macrophages expressing anti-inflammatory cytokines suggesting that resolution of inflammation and vascular repair also persist during AAA progression.METHODS AND RESULTSSingle-cell RNA sequencing was performed on the infrarenal abdominal aortas (IAAs) from C57BL/6J mice at Days 7 and 14 post-sham or peri-adventitial elastase-induced AAA. Unbiased clustering analysis of the transcriptional profiles from >4500 aortic cells identified 17 clusters representing nine-cell lineages, encompassing vascular smooth muscle cells (VSMCs), fibroblasts, endothelial cells, immune cells (macrophages, T cells, B cells, and dendritic cells), and two types of rare cells, including neural cells and erythrocyte cells. Seurat clustering analysis identified four smooth muscle cell (SMC) subpopulations and five monocyte/macrophage subpopulations, with distinct transcriptional profiles. During AAA progression, three major SMC subpopulations were proportionally decreased, whereas the small subpopulation was increased, accompanied with down-regulation of SMC contractile markers and up-regulation of pro-inflammatory genes. Another AAA-associated cellular response is immune cell expansion, particularly monocytes/macrophages. Elastase exposure induced significant expansion and activation of aortic resident macrophages, blood-derived monocytes and inflammatory macrophages. We also identified increased blood-derived reparative macrophages expressing anti-inflammatory cytokines suggesting that resolution of inflammation and vascular repair also persist during AAA progression.Our data identify AAA disease-relevant transcriptional signatures of vascular cells in the IAA. Furthermore, we characterize the heterogeneity and cellular responses of VSMCs and monocytes/macrophages during AAA progression, which provide insights into their function and the regulation of AAA onset and progression.CONCLUSIONOur data identify AAA disease-relevant transcriptional signatures of vascular cells in the IAA. Furthermore, we characterize the heterogeneity and cellular responses of VSMCs and monocytes/macrophages during AAA progression, which provide insights into their function and the regulation of AAA onset and progression. The artery contains numerous cell types which contribute to multiple vascular diseases. However, the heterogeneity and cellular responses of these vascular cells during abdominal aortic aneurysm (AAA) progression have not been well characterized. Single-cell RNA sequencing was performed on the infrarenal abdominal aortas (IAAs) from C57BL/6J mice at Days 7 and 14 post-sham or peri-adventitial elastase-induced AAA. Unbiased clustering analysis of the transcriptional profiles from >4500 aortic cells identified 17 clusters representing nine-cell lineages, encompassing vascular smooth muscle cells (VSMCs), fibroblasts, endothelial cells, immune cells (macrophages, T cells, B cells, and dendritic cells), and two types of rare cells, including neural cells and erythrocyte cells. Seurat clustering analysis identified four smooth muscle cell (SMC) subpopulations and five monocyte/macrophage subpopulations, with distinct transcriptional profiles. During AAA progression, three major SMC subpopulations were proportionally decreased, whereas the small subpopulation was increased, accompanied with down-regulation of SMC contractile markers and up-regulation of pro-inflammatory genes. Another AAA-associated cellular response is immune cell expansion, particularly monocytes/macrophages. Elastase exposure induced significant expansion and activation of aortic resident macrophages, blood-derived monocytes and inflammatory macrophages. We also identified increased blood-derived reparative macrophages expressing anti-inflammatory cytokines suggesting that resolution of inflammation and vascular repair also persist during AAA progression. Our data identify AAA disease-relevant transcriptional signatures of vascular cells in the IAA. Furthermore, we characterize the heterogeneity and cellular responses of VSMCs and monocytes/macrophages during AAA progression, which provide insights into their function and the regulation of AAA onset and progression. Abstract Aims The artery contains numerous cell types which contribute to multiple vascular diseases. However, the heterogeneity and cellular responses of these vascular cells during abdominal aortic aneurysm (AAA) progression have not been well characterized. Methods and results Single-cell RNA sequencing was performed on the infrarenal abdominal aortas (IAAs) from C57BL/6J mice at Days 7 and 14 post-sham or peri-adventitial elastase-induced AAA. Unbiased clustering analysis of the transcriptional profiles from >4500 aortic cells identified 17 clusters representing nine-cell lineages, encompassing vascular smooth muscle cells (VSMCs), fibroblasts, endothelial cells, immune cells (macrophages, T cells, B cells, and dendritic cells), and two types of rare cells, including neural cells and erythrocyte cells. Seurat clustering analysis identified four smooth muscle cell (SMC) subpopulations and five monocyte/macrophage subpopulations, with distinct transcriptional profiles. During AAA progression, three major SMC subpopulations were proportionally decreased, whereas the small subpopulation was increased, accompanied with down-regulation of SMC contractile markers and up-regulation of pro-inflammatory genes. Another AAA-associated cellular response is immune cell expansion, particularly monocytes/macrophages. Elastase exposure induced significant expansion and activation of aortic resident macrophages, blood-derived monocytes and inflammatory macrophages. We also identified increased blood-derived reparative macrophages expressing anti-inflammatory cytokines suggesting that resolution of inflammation and vascular repair also persist during AAA progression. Conclusion Our data identify AAA disease-relevant transcriptional signatures of vascular cells in the IAA. Furthermore, we characterize the heterogeneity and cellular responses of VSMCs and monocytes/macrophages during AAA progression, which provide insights into their function and the regulation of AAA onset and progression. Graphical Abstract |
Author | Chen, Y Eugene Zhao, Guizhen Zhang, Jifeng Zhu, Tianqing Zhao, Yang Garcia-Barrio, Minerva T Guo, Yanhong Chang, Ziyi Chang, Lin Lu, Haocheng |
AuthorAffiliation | 1 Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center , NCRC Bldg26, Room 357S. 2800 Plymouth Rd, Ann Arbor, MI 48109, USA 2 Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University , Changsha 410011, PR China |
AuthorAffiliation_xml | – name: 1 Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center , NCRC Bldg26, Room 357S. 2800 Plymouth Rd, Ann Arbor, MI 48109, USA – name: 2 Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University , Changsha 410011, PR China |
Author_xml | – sequence: 1 givenname: Guizhen orcidid: 0000-0002-2648-8986 surname: Zhao fullname: Zhao, Guizhen organization: Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, NCRC Bldg26, Room 357S. 2800 Plymouth Rd, Ann Arbor, MI 48109, USA – sequence: 2 givenname: Haocheng orcidid: 0000-0002-5740-8010 surname: Lu fullname: Lu, Haocheng organization: Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, NCRC Bldg26, Room 357S. 2800 Plymouth Rd, Ann Arbor, MI 48109, USA – sequence: 3 givenname: Ziyi orcidid: 0000-0002-0417-9998 surname: Chang fullname: Chang, Ziyi organization: Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, NCRC Bldg26, Room 357S. 2800 Plymouth Rd, Ann Arbor, MI 48109, USA – sequence: 4 givenname: Yang orcidid: 0000-0002-1428-5145 surname: Zhao fullname: Zhao, Yang organization: Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, NCRC Bldg26, Room 357S. 2800 Plymouth Rd, Ann Arbor, MI 48109, USA – sequence: 5 givenname: Tianqing surname: Zhu fullname: Zhu, Tianqing organization: Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, NCRC Bldg26, Room 357S. 2800 Plymouth Rd, Ann Arbor, MI 48109, USA – sequence: 6 givenname: Lin surname: Chang fullname: Chang, Lin organization: Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, NCRC Bldg26, Room 357S. 2800 Plymouth Rd, Ann Arbor, MI 48109, USA – sequence: 7 givenname: Yanhong surname: Guo fullname: Guo, Yanhong organization: Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, NCRC Bldg26, Room 357S. 2800 Plymouth Rd, Ann Arbor, MI 48109, USA – sequence: 8 givenname: Minerva T surname: Garcia-Barrio fullname: Garcia-Barrio, Minerva T organization: Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, NCRC Bldg26, Room 357S. 2800 Plymouth Rd, Ann Arbor, MI 48109, USA – sequence: 9 givenname: Y Eugene surname: Chen fullname: Chen, Y Eugene email: echenum@umich.edu organization: Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, NCRC Bldg26, Room 357S. 2800 Plymouth Rd, Ann Arbor, MI 48109, USA – sequence: 10 givenname: Jifeng orcidid: 0000-0001-5161-4705 surname: Zhang fullname: Zhang, Jifeng email: jifengz@umich.edu organization: Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, NCRC Bldg26, Room 357S. 2800 Plymouth Rd, Ann Arbor, MI 48109, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32678909$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UU1r3DAQFSWh2aQ99V50KoXgVrJkW74UQmjaQkigH2cxlse7Kra0leSF_feVs9vQFtqD0Izemzd6M-fkxHmHhLzg7A1nrXhrdiEfgJLLJ2TFm6oqRCmrE7JijKmiFrU4I-cxfs9pVTXyKTkTZd2olrUrMnyxbj1iYXAc6ee7Kxrxx4zO5FcacIcwRpo2SBd8HiHQDSYMfo0ObdpTP1BwOId9nGCk1g0BArocQtf7yT5EPiR4Rk6HLIXPj_cF-Xbz_uv1x-L2_sOn66vbwshGpWIY2r4fDFR9o1gnwdQ17zkvUQ4NAO9rVgsl2rKrBOsl7xpRYm-U6hbXwoC4IO8Outu5mzKELgUY9TbYCcJee7D6T8TZjV77nVasllLILPD6KBB8HkRMerJxMZ9t-jnqUpaybYXiVaa-_L3XY5Nfw82EywPBBB9jwOGRwpleVqfz6vRxdZnN_2IbmyBZv3zUjv-oeXWo8fP2v-I_AaGirmw |
CitedBy_id | crossref_primary_10_1016_j_atherosclerosis_2025_119134 crossref_primary_10_1177_00033197241284848 crossref_primary_10_3389_fbioe_2023_1324406 crossref_primary_10_3389_fcvm_2022_1062106 crossref_primary_10_1038_s12276_023_01130_w crossref_primary_10_1093_cvr_cvab083 crossref_primary_10_2147_JIR_S499593 crossref_primary_10_3389_fimmu_2023_1138126 crossref_primary_10_1093_cvr_cvae117 crossref_primary_10_1186_s12916_023_03232_8 crossref_primary_10_3389_fcvm_2022_791875 crossref_primary_10_1016_j_heliyon_2023_e13622 crossref_primary_10_3389_fgene_2022_836593 crossref_primary_10_1161_ATVBAHA_121_316237 crossref_primary_10_1161_ATVBAHA_123_318771 crossref_primary_10_1002_advs_202104338 crossref_primary_10_1016_j_csbj_2021_08_021 crossref_primary_10_1115_1_4064965 crossref_primary_10_1093_cvr_cvab196 crossref_primary_10_1111_jcmm_17301 crossref_primary_10_1161_ATVBAHA_121_317275 crossref_primary_10_1016_j_bbadis_2023_166919 crossref_primary_10_1016_j_jhepr_2023_100718 crossref_primary_10_51789_cmsj_2022_2_e16 crossref_primary_10_1172_JCI173690 crossref_primary_10_7554_eLife_91729 crossref_primary_10_1172_jci_insight_162987 crossref_primary_10_1016_j_bioactmat_2022_07_005 crossref_primary_10_3389_fcvm_2022_950961 crossref_primary_10_1016_j_intimp_2024_113438 crossref_primary_10_1038_s41392_022_00943_x crossref_primary_10_1016_j_biopha_2024_117079 crossref_primary_10_1016_j_jvssci_2021_09_001 crossref_primary_10_3389_fimmu_2022_705472 crossref_primary_10_1016_j_exger_2022_111703 crossref_primary_10_1016_j_bioactmat_2023_02_009 crossref_primary_10_1016_j_semcdb_2023_07_011 crossref_primary_10_3389_fcvm_2022_927542 crossref_primary_10_1161_ATVBAHA_124_321085 crossref_primary_10_1038_s12276_021_00704_w crossref_primary_10_3390_ijms241411701 crossref_primary_10_1161_HYPERTENSIONAHA_123_20597 crossref_primary_10_1161_ATVBAHA_123_319329 crossref_primary_10_1016_j_celrep_2023_113171 crossref_primary_10_3390_jcdd11110349 crossref_primary_10_4103_ijves_ijves_60_23 crossref_primary_10_1021_acsabm_4c01549 crossref_primary_10_1016_j_jprot_2025_105374 crossref_primary_10_1161_CIRCRESAHA_124_325152 crossref_primary_10_1016_j_cjca_2023_09_009 crossref_primary_10_1038_s41467_021_27874_5 crossref_primary_10_1186_s40659_024_00542_w crossref_primary_10_1536_ihj_23_623 crossref_primary_10_1161_ATVBAHA_123_319828 crossref_primary_10_3390_biom12040509 crossref_primary_10_1186_s12967_024_05763_x crossref_primary_10_1096_fj_202301198RR crossref_primary_10_3389_fcvm_2022_1063683 crossref_primary_10_1002_ctm2_70121 crossref_primary_10_1002_advs_202414500 crossref_primary_10_2337_db23_0981 crossref_primary_10_1186_s12929_022_00808_z crossref_primary_10_3389_fimmu_2020_609161 crossref_primary_10_1038_s41467_024_51780_1 crossref_primary_10_1161_ATVBAHA_124_321129 crossref_primary_10_1161_CIRCULATIONAHA_120_049922 crossref_primary_10_1016_j_vph_2024_107419 crossref_primary_10_1016_j_cjca_2024_08_274 crossref_primary_10_1016_j_pharmthera_2024_108652 crossref_primary_10_1096_fj_202101576R crossref_primary_10_3390_cells13020168 crossref_primary_10_1007_s00772_022_00908_y crossref_primary_10_1161_STROKEAHA_122_038776 crossref_primary_10_1152_ajpcell_00448_2024 crossref_primary_10_3389_fcvm_2022_831789 crossref_primary_10_1097_SLA_0000000000005551 crossref_primary_10_1161_ATVBAHA_122_317484 crossref_primary_10_3389_fimmu_2024_1486209 crossref_primary_10_1161_CIRCRESAHA_124_324323 crossref_primary_10_7554_eLife_91729_3 crossref_primary_10_1093_cvr_cvac018 crossref_primary_10_1172_JCI158309 crossref_primary_10_3389_fcvm_2021_753711 crossref_primary_10_1016_j_atherosclerosis_2023_06_010 crossref_primary_10_1096_fj_202400001RR crossref_primary_10_3389_fcvm_2023_1248561 crossref_primary_10_1016_j_bioactmat_2023_11_020 crossref_primary_10_1172_jci_insight_167041 crossref_primary_10_1016_j_bbadis_2022_166452 crossref_primary_10_1007_s10517_023_05829_8 crossref_primary_10_3389_fcvm_2023_1172080 crossref_primary_10_1186_s12964_022_00993_2 crossref_primary_10_3389_fcvm_2023_1221620 crossref_primary_10_1172_JCI183527 crossref_primary_10_3389_fimmu_2024_1412022 crossref_primary_10_3390_jcm13247778 crossref_primary_10_1055_a_1663_8208 crossref_primary_10_1161_ATVBAHA_121_315852 crossref_primary_10_3389_fimmu_2024_1307748 crossref_primary_10_1096_fj_202402873R crossref_primary_10_3389_fimmu_2022_858256 crossref_primary_10_3389_fcvm_2024_1359734 crossref_primary_10_3389_fonc_2022_1045477 crossref_primary_10_3389_fgene_2021_698124 crossref_primary_10_1016_j_ejphar_2024_176397 crossref_primary_10_1016_j_nano_2022_102564 crossref_primary_10_1093_eurheartj_ehac686 crossref_primary_10_1038_s42003_023_04492_z crossref_primary_10_1016_j_biopha_2022_113547 crossref_primary_10_1016_j_bcp_2025_116800 crossref_primary_10_3390_life12020191 crossref_primary_10_3389_fcvm_2022_846421 crossref_primary_10_1089_dna_2021_0923 crossref_primary_10_1111_imm_13796 crossref_primary_10_1161_HYPERTENSIONAHA_122_17963 crossref_primary_10_1161_JAHA_121_023601 crossref_primary_10_1049_syb2_12106 crossref_primary_10_1016_j_jare_2025_03_018 crossref_primary_10_1161_CIRCRESAHA_122_321109 crossref_primary_10_1161_ATVBAHA_120_315607 crossref_primary_10_3389_fimmu_2022_927125 crossref_primary_10_1038_s12276_021_00671_2 crossref_primary_10_1038_s41392_024_01840_1 crossref_primary_10_3389_fcvm_2021_643519 crossref_primary_10_1016_j_yjmcc_2024_10_012 crossref_primary_10_3389_fphar_2022_1004525 crossref_primary_10_1002_adbi_202300673 crossref_primary_10_3390_biom13020399 crossref_primary_10_1161_ATVBAHA_121_316600 crossref_primary_10_1016_j_gene_2024_148820 |
Cites_doi | 10.1038/nrcardio.2017.52 10.18632/oncotarget.14815 10.1038/nri.2017.76 10.1161/ATVBAHA.119.312000 10.1038/nrcardio.2010.180 10.1161/01.ATV.0000214999.12921.4f 10.1101/gad.308904 10.1016/bs.pmbts.2017.02.002 10.1371/journal.pone.0117838 10.1161/CIRCRESAHA.116.305368 10.1161/01.ATV.0000152725.76020.3c 10.1038/s41586-018-0744-4 10.1161/ATVBAHA.118.311289 10.14814/phy2.14058 10.1161/01.ATV.0000059405.51042.A0 10.2217/fca.12.71 10.1016/j.stem.2020.02.013 10.1038/s41467-018-07495-1 10.1172/jci.insight.126556 10.1038/s41467-018-06891-x 10.1016/j.immuni.2017.10.016 10.1016/j.jvs.2016.07.105 10.1038/ni.3343 10.1161/ATVBAHA.119.312787 10.1111/febs.14019 10.1074/jbc.M708137200 10.1067/mva.2000.102847 10.1097/CRD.0b013e3181b04698 10.1002/iub.416 10.1111/j.1365-2249.2005.02938.x 10.1161/CIRCRESAHA.117.311450 10.1074/jbc.M707882200 10.1161/CIRCRESAHA.115.304634 10.3389/fimmu.2019.01979 10.1161/CIRCULATIONAHA.118.038362 10.1161/ATVBAHA.117.309897 10.1016/j.surg.2012.02.010 10.1161/ATVBAHA.119.312732 10.1016/j.vph.2016.05.002 10.1161/CIRCRESAHA.117.311071 10.1038/ni.3374 10.1161/CIRCRESAHA.117.312513 10.1161/CIRCRESAHA.117.312509 10.1016/j.ejvs.2016.07.004 10.1161/ATVBAHA.119.312131 10.1161/CIRCRESAHA.116.309194 10.1016/j.jtcvs.2009.07.075 10.1161/01.RES.84.3.360 10.1161/ATVBAHA.111.235002 10.1161/ATVBAHA.119.312399 10.1161/CIRCRESAHA.116.301313 10.1161/ATVBAHA.113.301328 |
ContentType | Journal Article |
Copyright | Published on behalf of the European Society of Cardiology. All rights reserved. © The Author(s) 2020. For permissions, please email: journals.permissions@oup.com. 2020 Published on behalf of the European Society of Cardiology. All rights reserved. © The Author(s) 2020. For permissions, please email: journals.permissions@oup.com. |
Copyright_xml | – notice: Published on behalf of the European Society of Cardiology. All rights reserved. © The Author(s) 2020. For permissions, please email: journals.permissions@oup.com. 2020 – notice: Published on behalf of the European Society of Cardiology. All rights reserved. © The Author(s) 2020. For permissions, please email: journals.permissions@oup.com. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1093/cvr/cvaa214 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1755-3245 |
EndPage | 1416 |
ExternalDocumentID | PMC8064434 32678909 10_1093_cvr_cvaa214 10.1093/cvr/cvaa214 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R01 HL137214 – fundername: NHLBI NIH HHS grantid: R01 HL068878 – fundername: NHLBI NIH HHS grantid: R01 HL134569 – fundername: NHLBI NIH HHS grantid: R01 HL138139 – fundername: ; ; grantid: HL138139; HL068878; HL134569 – fundername: ; ; grantid: 20P0ST35110064 |
GroupedDBID | --- --K -E4 .2P .55 .GJ .I3 .ZR 08P 0R~ 18M 1B1 1TH 29B 2WC 3O- 4.4 48X 53G 5GY 5RE 5VS 5WD 6.Y 6J9 70D AABZA AACZT AAJKP AAJQQ AAMVS AAOGV AAPGJ AAPNW AAPQZ AAPXW AARHZ AASNB AAUAY AAUQX AAVAP AAWDT ABEUO ABHFT ABIXL ABJNI ABKDP ABLJU ABNHQ ABNKS ABOCM ABPTD ABQLI ABQNK ABQTQ ABSAR ABSMQ ABWST ABXVV ABZBJ ACFRR ACGFO ACGFS ACMRT ACPQN ACUFI ACUTJ ACUTO ACYHN ACZBC ADBBV ADEYI ADEZT ADGZP ADHKW ADHZD ADIPN ADJQC ADOCK ADQBN ADRIX ADRTK ADVEK ADYVW ADZXQ AEGPL AEGXH AEJOX AEKPW AEKSI AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFNX AFFZL AFIYH AFOFC AFSHK AFXAL AFXEN AFYAG AGINJ AGKEF AGKRT AGMDO AGQXC AGSYK AGUTN AHXPO AI. AIAGR AIJHB AJEEA ALMA_UNASSIGNED_HOLDINGS ALUQC APIBT APJGH APWMN AQDSO AQKUS ASPBG ATGXG ATTQO AVNTJ AVWKF AXUDD AZFZN BAWUL BAYMD BCRHZ BEYMZ BHONS BTRTY BVRKM BZKNY C45 CDBKE CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EBD EBS EE~ EIHJH EJD EMOBN ENERS F5P F9B FECEO FEDTE FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HVGLF HW0 HZ~ IHE IOX J21 J5H JXSIZ KAQDR KBUDW KC5 KOP KSI KSN L7B LMP M-Z M41 M49 MBLQV MHKGH MJL N4W N9A NGC NOMLY NOYVH NQ- NU- NVLIB O0~ O9- OAUYM OAWHX OCZFY ODMLO OJQWA OJZSN OK1 OOVWX OPAEJ OVD OWPYF O~Y P2P PAFKI PB- PEELM Q1. Q5Y QBD R44 RD5 RIG ROL ROX ROZ RPZ RUSNO RW1 RXO SEL SV3 TCURE TEORI TJX TMA VH1 W8F WH7 X7H X7M XPP YAYTL YKOAZ YXANX ZGI ZXP ~91 AAYXX ABDFA ABEJV ABGNP ABPQP ABVGC ADNBA AEMQT AGORE AHGBF AHMMS AJBYB AJNCP ALXQX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c478t-ff9ddfca5d780b4ac661d112e4f7aa1d60638392b530d41b732edc88b17553ca3 |
ISSN | 0008-6363 1755-3245 |
IngestDate | Thu Aug 21 14:32:41 EDT 2025 Thu Jul 10 23:37:13 EDT 2025 Thu Apr 03 07:06:46 EDT 2025 Thu Apr 24 23:10:36 EDT 2025 Tue Jul 01 04:12:07 EDT 2025 Wed Aug 28 03:17:23 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Vascular smooth muscle cell Lineage heterogeneity Single-cell RNA sequencing Abdominal aortic aneurysm Macrophage |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model Published on behalf of the European Society of Cardiology. All rights reserved. © The Author(s) 2020. For permissions, please email: journals.permissions@oup.com. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c478t-ff9ddfca5d780b4ac661d112e4f7aa1d60638392b530d41b732edc88b17553ca3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0417-9998 0000-0001-5161-4705 0000-0002-5740-8010 0000-0002-2648-8986 0000-0002-1428-5145 |
OpenAccessLink | https://academic.oup.com/cardiovascres/article-pdf/117/5/1402/37313802/cvaa214.pdf |
PMID | 32678909 |
PQID | 2424993815 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8064434 proquest_miscellaneous_2424993815 pubmed_primary_32678909 crossref_primary_10_1093_cvr_cvaa214 crossref_citationtrail_10_1093_cvr_cvaa214 oup_primary_10_1093_cvr_cvaa214 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-23 |
PublicationDateYYYYMMDD | 2021-04-23 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-23 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Cardiovascular research |
PublicationTitleAlternate | Cardiovasc Res |
PublicationYear | 2021 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Winkels (2021042318144794800_cvaa214-B14) 2018; 122 Gu (2021042318144794800_cvaa214-B12) 2019; 39 Raffort (2021042318144794800_cvaa214-B5) 2017; 14 Zhao (2021042318144794800_cvaa214-B4) 2017; 121 Chen (2021042318144794800_cvaa214-B42) 2020; 26 Meher (2021042318144794800_cvaa214-B54) 2018; 38 Liu (2021042318144794800_cvaa214-B23) 2019; 39 Rowe (2021042318144794800_cvaa214-B21) 2000; 31 Shimizu (2021042318144794800_cvaa214-B46) 2006; 26 Psaltis (2021042318144794800_cvaa214-B44) 2015; 116 Shen (2021042318144794800_cvaa214-B25) 2017; 8 Lysgaard Poulsen (2021042318144794800_cvaa214-B36) 2016; 52 Klapproth (2021042318144794800_cvaa214-B48) 2016; 17 Petsophonsakul (2021042318144794800_cvaa214-B24) 2019; 39 Jung (2021042318144794800_cvaa214-B33) 2015; 10 Nordon (2021042318144794800_cvaa214-B2) 2011; 8 Nahrendorf (2021042318144794800_cvaa214-B35) 2016; 119 Lagna (2021042318144794800_cvaa214-B45) 2007; 282 Gu (2021042318144794800_cvaa214-B13) 2019; 39 Rizas (2021042318144794800_cvaa214-B6) 2009; 17 Papalexi (2021042318144794800_cvaa214-B15) 2018; 18 Lepore (2021042318144794800_cvaa214-B29) 2005; 25 Dobnikar (2021042318144794800_cvaa214-B10) 2018; 9 Zhang (2021042318144794800_cvaa214-B22) 2003; 116 Bhamidipati (2021042318144794800_cvaa214-B17) 2012; 152 Feil (2021042318144794800_cvaa214-B9) 2014; 115 Lv (2021042318144794800_cvaa214-B41) 2011; 63 Sagan (2021042318144794800_cvaa214-B53) 2019; 10 Sun (2021042318144794800_cvaa214-B31) 2012; 32 Hadi (2021042318144794800_cvaa214-B37) 2018; 9 Da Ros (2021042318144794800_cvaa214-B43) 2017; 47 Qin (2021042318144794800_cvaa214-B32) 2013; 9 Wu (2021042318144794800_cvaa214-B40) 2008; 283 Park (2021042318144794800_cvaa214-B26) 2017; 284 Kalluri (2021042318144794800_cvaa214-B11) 2019; 140 He (2021042318144794800_cvaa214-B16) 2018; 38 Lu (2021042318144794800_cvaa214-B19) 2017; 66 Domenga (2021042318144794800_cvaa214-B30) 2004; 18 Ensan (2021042318144794800_cvaa214-B49) 2016; 17 Libby (2021042318144794800_cvaa214-B50) 2015; 116 Butcher (2021042318144794800_cvaa214-B18) 2011; 53 Abe (2021042318144794800_cvaa214-B39) 2003; 23 Cochain (2021042318144794800_cvaa214-B8) 2018; 122 Honold (2021042318144794800_cvaa214-B47) 2018; 122 Salmon (2021042318144794800_cvaa214-B38) 2019; 7 Davis (2021042318144794800_cvaa214-B1) 2019; 39 Biddy (2021042318144794800_cvaa214-B7) 2018; 564 Heiss (2021042318144794800_cvaa214-B28) 2016; 83 Ailawadi (2021042318144794800_cvaa214-B20) 2009; 138 Bolego (2021042318144794800_cvaa214-B51) 2013; 33 Rabkin (2021042318144794800_cvaa214-B3) 2017; 147 Sutliff (2021042318144794800_cvaa214-B27) 1999; 84 Mould (2021042318144794800_cvaa214-B34) 2019; 4 Galle (2021042318144794800_cvaa214-B52) 2005; 142 33723571 - Cardiovasc Res. 2021 Apr 23;117(5):1243-1244 |
References_xml | – volume: 14 start-page: 457 year: 2017 ident: 2021042318144794800_cvaa214-B5 article-title: Monocytes and macrophages in abdominal aortic aneurysm publication-title: Nat Rev Cardiol doi: 10.1038/nrcardio.2017.52 – volume: 8 start-page: 12133 year: 2017 ident: 2021042318144794800_cvaa214-B25 article-title: DUSP1 inhibits cell proliferation, metastasis and invasion and angiogenesis in gallbladder cancer publication-title: Oncotarget doi: 10.18632/oncotarget.14815 – volume: 18 start-page: 35 year: 2018 ident: 2021042318144794800_cvaa214-B15 article-title: Single-cell RNA sequencing to explore immune cell heterogeneity publication-title: Nat Rev Immunol doi: 10.1038/nri.2017.76 – volume: 39 start-page: e83 year: 2019 ident: 2021042318144794800_cvaa214-B1 article-title: Updates of recent aortic aneurysm research publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/ATVBAHA.119.312000 – volume: 8 start-page: 92 year: 2011 ident: 2021042318144794800_cvaa214-B2 article-title: Pathophysiology and epidemiology of abdominal aortic aneurysms publication-title: Nat Rev Cardiol doi: 10.1038/nrcardio.2010.180 – volume: 26 start-page: 987 year: 2006 ident: 2021042318144794800_cvaa214-B46 article-title: Inflammation and cellular immune responses in abdominal aortic aneurysms publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/01.ATV.0000214999.12921.4f – volume: 18 start-page: 2730 year: 2004 ident: 2021042318144794800_cvaa214-B30 article-title: Notch3 is required for arterial identity and maturation of vascular smooth muscle cells publication-title: Genes Dev doi: 10.1101/gad.308904 – volume: 147 start-page: 239 year: 2017 ident: 2021042318144794800_cvaa214-B3 article-title: The role matrix metalloproteinases in the production of aortic aneurysm publication-title: Prog Mol Biol Transl Sci doi: 10.1016/bs.pmbts.2017.02.002 – volume: 10 start-page: e0117838 year: 2015 ident: 2021042318144794800_cvaa214-B33 article-title: Modulation of macrophage activities in proliferation, lysosome, and phagosome by the nonspecific immunostimulator, mica publication-title: PLoS One doi: 10.1371/journal.pone.0117838 – volume: 116 start-page: 1392 year: 2015 ident: 2021042318144794800_cvaa214-B44 article-title: Vascular wall progenitor cells in health and disease publication-title: Circ Res doi: 10.1161/CIRCRESAHA.116.305368 – volume: 25 start-page: 309 year: 2005 ident: 2021042318144794800_cvaa214-B29 article-title: GATA-6 regulates genes promoting synthetic functions in vascular smooth muscle cells publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/01.ATV.0000152725.76020.3c – volume: 564 start-page: 219 year: 2018 ident: 2021042318144794800_cvaa214-B7 article-title: Single-cell mapping of lineage and identity in direct reprogramming publication-title: Nature doi: 10.1038/s41586-018-0744-4 – volume: 38 start-page: 1616 year: 2018 ident: 2021042318144794800_cvaa214-B16 article-title: Deficiency of FAM3D (Family With Sequence Similarity 3, Member D), a novel chemokine, attenuates neutrophil recruitment and ameliorates abdominal aortic aneurysm development publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/ATVBAHA.118.311289 – volume: 7 start-page: e14058 year: 2019 ident: 2021042318144794800_cvaa214-B38 article-title: Klf4, Klf2, and Zfp148 activate autophagy-related genes in smooth muscle cells during aortic aneurysm formation publication-title: Physiol Rep doi: 10.14814/phy2.14058 – volume: 23 start-page: 404 year: 2003 ident: 2021042318144794800_cvaa214-B39 article-title: GATA-6 is involved in PPARgamma-mediated activation of differentiated phenotype in human vascular smooth muscle cells publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/01.ATV.0000059405.51042.A0 – volume: 9 start-page: 89 year: 2013 ident: 2021042318144794800_cvaa214-B32 article-title: Cysteine protease cathepsins and matrix metalloproteinases in the development of abdominal aortic aneurysms publication-title: Future Cardiol doi: 10.2217/fca.12.71 – volume: 26 start-page: 542 year: 2020 ident: 2021042318144794800_cvaa214-B42 article-title: Smooth muscle cell reprogramming in aortic aneurysms publication-title: Cell Stem Cell doi: 10.1016/j.stem.2020.02.013 – volume: 9 start-page: 5022 year: 2018 ident: 2021042318144794800_cvaa214-B37 article-title: Macrophage-derived netrin-1 promotes abdominal aortic aneurysm formation by activating MMP3 in vascular smooth muscle cells publication-title: Nat Commun doi: 10.1038/s41467-018-07495-1 – volume: 4 year: 2019 ident: 2021042318144794800_cvaa214-B34 article-title: Single cell RNA sequencing identifies unique inflammatory airspace macrophage subsets publication-title: JCI Insight doi: 10.1172/jci.insight.126556 – volume: 9 start-page: 4567 year: 2018 ident: 2021042318144794800_cvaa214-B10 article-title: Disease-relevant transcriptional signatures identified in individual smooth muscle cells from healthy mouse vessels publication-title: Nat Commun doi: 10.1038/s41467-018-06891-x – volume: 47 start-page: 959 year: 2017 ident: 2021042318144794800_cvaa214-B43 article-title: Targeting interleukin-1beta protects from aortic aneurysms induced by disrupted transforming growth factor beta signaling publication-title: Immunity doi: 10.1016/j.immuni.2017.10.016 – volume: 66 start-page: 232 year: 2017 ident: 2021042318144794800_cvaa214-B19 article-title: A novel chronic advanced stage abdominal aortic aneurysm murine model publication-title: J Vasc Surg doi: 10.1016/j.jvs.2016.07.105 – volume: 17 start-page: 159 year: 2016 ident: 2021042318144794800_cvaa214-B49 article-title: Self-renewing resident arterial macrophages arise from embryonic CX3CR1(+) precursors and circulating monocytes immediately after birth publication-title: Nat Immunol doi: 10.1038/ni.3343 – volume: 39 start-page: 1351 year: 2019 ident: 2021042318144794800_cvaa214-B24 article-title: Role of vascular smooth muscle cell phenotypic switching and calcification in aortic aneurysm formation publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/ATVBAHA.119.312787 – volume: 284 start-page: 784 year: 2017 ident: 2021042318144794800_cvaa214-B26 article-title: The transcriptional modulator Ifrd1 controls PGC-1alpha expression under short-term adrenergic stimulation in brown adipocytes publication-title: FEBS J doi: 10.1111/febs.14019 – volume: 282 start-page: 37244 year: 2007 ident: 2021042318144794800_cvaa214-B45 article-title: Control of phenotypic plasticity of smooth muscle cells by bone morphogenetic protein signaling through the myocardin-related transcription factors publication-title: J Biol Chem doi: 10.1074/jbc.M708137200 – volume: 31 start-page: 567 year: 2000 ident: 2021042318144794800_cvaa214-B21 article-title: Vascular smooth muscle cell apoptosis in aneurysmal, occlusive, and normal human aortas publication-title: J Vasc Surg doi: 10.1067/mva.2000.102847 – volume: 17 start-page: 201 year: 2009 ident: 2021042318144794800_cvaa214-B6 article-title: Immune cells and molecular mediators in the pathogenesis of the abdominal aortic aneurysm publication-title: Cardiol Rev doi: 10.1097/CRD.0b013e3181b04698 – volume: 63 start-page: 62 year: 2011 ident: 2021042318144794800_cvaa214-B41 article-title: Activating transcription factor 3 regulates survivability and migration of vascular smooth muscle cells publication-title: IUBMB Life doi: 10.1002/iub.416 – volume: 142 start-page: 519 year: 2005 ident: 2021042318144794800_cvaa214-B52 article-title: Predominance of type 1 CD4+ T cells in human abdominal aortic aneurysm publication-title: Clin Exp Immunol doi: 10.1111/j.1365-2249.2005.02938.x – volume: 121 start-page: 1331 year: 2017 ident: 2021042318144794800_cvaa214-B4 article-title: Unspliced XBP1 confers VSMC homeostasis and prevents aortic aneurysm formation via FoxO4 interaction publication-title: Circ Res doi: 10.1161/CIRCRESAHA.117.311450 – volume: 283 start-page: 3942 year: 2008 ident: 2021042318144794800_cvaa214-B40 article-title: KLF2 transcription factor modulates blood vessel maturation through smooth muscle cell migration publication-title: J Biol Chem doi: 10.1074/jbc.M707882200 – volume: 115 start-page: 662 year: 2014 ident: 2021042318144794800_cvaa214-B9 article-title: Transdifferentiation of vascular smooth muscle cells to macrophage-like cells during atherogenesis publication-title: Circ Res doi: 10.1161/CIRCRESAHA.115.304634 – volume: 10 start-page: 1979 year: 2019 ident: 2021042318144794800_cvaa214-B53 article-title: T cells are dominant population in human abdominal aortic aneurysms and their infiltration in the perivascular tissue correlates with disease severity publication-title: Front Immunol doi: 10.3389/fimmu.2019.01979 – volume: 140 start-page: 147 year: 2019 ident: 2021042318144794800_cvaa214-B11 article-title: Single-cell analysis of the normal mouse aorta reveals functionally distinct endothelial cell populations publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.118.038362 – volume: 38 start-page: 843 year: 2018 ident: 2021042318144794800_cvaa214-B54 article-title: Novel role of IL (interleukin)-1β in neutrophil extracellular trap formation and abdominal aortic aneurysms publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/ATVBAHA.117.309897 – volume: 152 start-page: 238 year: 2012 ident: 2021042318144794800_cvaa214-B17 article-title: Development of a novel murine model of aortic aneurysms using peri-adventitial elastase publication-title: Surgery doi: 10.1016/j.surg.2012.02.010 – volume: 39 start-page: 2049 year: 2019 ident: 2021042318144794800_cvaa214-B13 article-title: Single-cell RNA-sequencing and metabolomics analyses reveal the contribution of perivascular adipose tissue stem cells to vascular remodeling publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/ATVBAHA.119.312732 – volume: 83 start-page: 47 year: 2016 ident: 2021042318144794800_cvaa214-B28 article-title: Increased aerobic glycolysis is important for the motility of activated VSMC and inhibited by indirubin-3'-monoxime publication-title: Vascul Pharmacol doi: 10.1016/j.vph.2016.05.002 – volume: 116 start-page: 1549 year: 2003 ident: 2021042318144794800_cvaa214-B22 article-title: Increased apoptosis and decreased density of medial smooth muscle cells in human abdominal aortic aneurysms publication-title: Chin Med J (Engl) – volume: 122 start-page: 113 year: 2018 ident: 2021042318144794800_cvaa214-B47 article-title: Resident and monocyte-derived macrophages in cardiovascular disease publication-title: Circ Res doi: 10.1161/CIRCRESAHA.117.311071 – volume: 17 start-page: 117 year: 2016 ident: 2021042318144794800_cvaa214-B48 article-title: Multilayered ancestry of arterial macrophages publication-title: Nat Immunol doi: 10.1038/ni.3374 – volume: 122 start-page: 1675 year: 2018 ident: 2021042318144794800_cvaa214-B14 article-title: Atlas of the immune cell repertoire in mouse atherosclerosis defined by single-cell RNA-sequencing and mass cytometry publication-title: Circ Res doi: 10.1161/CIRCRESAHA.117.312513 – volume: 122 start-page: 1661 year: 2018 ident: 2021042318144794800_cvaa214-B8 article-title: Single-cell RNA-Seq reveals the transcriptional landscape and heterogeneity of aortic macrophages in murine atherosclerosis publication-title: Circ Res doi: 10.1161/CIRCRESAHA.117.312509 – volume: 52 start-page: 487 year: 2016 ident: 2021042318144794800_cvaa214-B36 article-title: Animal models used to explore abdominal aortic aneurysms: a systematic review publication-title: Eur J Vasc Endovasc Surg doi: 10.1016/j.ejvs.2016.07.004 – volume: 39 start-page: 1715 year: 2019 ident: 2021042318144794800_cvaa214-B23 article-title: Smooth muscle cell phenotypic diversity publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/ATVBAHA.119.312131 – volume: 53 start-page: 2848 year: 2011 ident: 2021042318144794800_cvaa214-B18 article-title: Flow cytometry analysis of immune cells within murine aortas publication-title: J Vis Exp – volume: 119 start-page: 414 year: 2016 ident: 2021042318144794800_cvaa214-B35 article-title: Abandoning M1/M2 for a network model of macrophage function publication-title: Circ Res doi: 10.1161/CIRCRESAHA.116.309194 – volume: 138 start-page: 1392 year: 2009 ident: 2021042318144794800_cvaa214-B20 article-title: Smooth muscle phenotypic modulation is an early event in aortic aneurysms publication-title: J Thorac Cardiovasc Surg doi: 10.1016/j.jtcvs.2009.07.075 – volume: 84 start-page: 360 year: 1999 ident: 2021042318144794800_cvaa214-B27 article-title: Phospholamban is present in endothelial cells and modulates endothelium-dependent relaxation. Evidence from phospholamban gene-ablated mice publication-title: Circ Res doi: 10.1161/01.RES.84.3.360 – volume: 32 start-page: 15 year: 2012 ident: 2021042318144794800_cvaa214-B31 article-title: Cathepsin K deficiency reduces elastase perfusion-induced abdominal aortic aneurysms in mice publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/ATVBAHA.111.235002 – volume: 39 start-page: 1055 year: 2019 ident: 2021042318144794800_cvaa214-B12 article-title: Adventitial cell atlas of wt (wild type) and ApoE (Apolipoprotein E)-deficient mice defined by single-cell RNA sequencing publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/ATVBAHA.119.312399 – volume: 116 start-page: 307 year: 2015 ident: 2021042318144794800_cvaa214-B50 article-title: Inflammation and immunity in diseases of the arterial tree: players and layers publication-title: Circ Res doi: 10.1161/CIRCRESAHA.116.301313 – volume: 33 start-page: 1127 year: 2013 ident: 2021042318144794800_cvaa214-B51 article-title: Macrophage function and polarization in cardiovascular disease: a role of estrogen signaling? publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/ATVBAHA.113.301328 – reference: 33723571 - Cardiovasc Res. 2021 Apr 23;117(5):1243-1244 |
SSID | ssj0005574 |
Score | 2.650528 |
Snippet | Abstract
Aims
The artery contains numerous cell types which contribute to multiple vascular diseases. However, the heterogeneity and cellular responses of... The artery contains numerous cell types which contribute to multiple vascular diseases. However, the heterogeneity and cellular responses of these vascular... |
SourceID | pubmedcentral proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1402 |
SubjectTerms | Animals Aorta, Abdominal - metabolism Aorta, Abdominal - pathology Aortic Aneurysm, Abdominal - chemically induced Aortic Aneurysm, Abdominal - genetics Aortic Aneurysm, Abdominal - metabolism Aortic Aneurysm, Abdominal - pathology Cell Lineage Cluster Analysis Disease Models, Animal Editor's Choice Gene Expression Profiling Macrophages - metabolism Macrophages - pathology Mice Mice, Inbred C57BL Monocytes - metabolism Monocytes - pathology Muscle, Smooth, Vascular - metabolism Muscle, Smooth, Vascular - pathology Myocytes, Smooth Muscle - metabolism Myocytes, Smooth Muscle - pathology Original Pancreatic Elastase Phenotype RNA-Seq Single-Cell Analysis Transcriptome |
Title | Single-cell RNA sequencing reveals the cellular heterogeneity of aneurysmal infrarenal abdominal aorta |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32678909 https://www.proquest.com/docview/2424993815 https://pubmed.ncbi.nlm.nih.gov/PMC8064434 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swGBVbB6UvY_dmVw36tOI2saRYfixlW3dpH7YWur4YSZZIoI1LmgzaX7_vk-Rbyca2FxNsRSI6x9KR8p1PhGxJ5owbKpVYw0TCrZaJdHacCJUPtU4t1wYNzodH44MT_vlUnLbhtt5dstA75malr-R_UIV7gCu6ZP8B2aZSuAGfAV-4AsJw_SuMv8O8c24T3Hzf_na0tx3jonH1j5mZMDMy6kp87qNNJxj7UkF1NgZiKExneX114TNvuDkawzB3gC6rcNaXQnHe1a_7_fDVmCqo2VI-myi_9fpxOb2ZtCazr0s_wyk8nSvOlCGiIAw0Z9Pr6e0afqhYMO5IpCP8cyWYhndsGEUzIRJQaqI3zAaPZuST6AyasMZLV47mIdOV-Tn3V6XS4DftIHt54aEFDYqG3ryd1JpQw_rRXXIvhZWEX3V_-tJGAYmMR9smtLYLbe3GljbIev3dnmbp-SA7y5HbUbUdmXL8gNyP6wu6F8jykNyxs0dk_TBGUDwmrsMZCpyhLWdo5AwFztCaM7THGVo52nKGtpyhDWeo58wTcvLh_fH-QRLP2kgMz-QicS4vS2eUKDM51FwZ0G0laHHLXabUqByjtAUtrQUblnykM5bCL5VSI9bMKPaUrM2qmd0ktBSlYrmDl9xJ7qD7HKj4PHUuVcyacTkg7-reLExMRI_noZwXISCCFYBCEVEYkK2m8GXIv7K62BuA5c8l3taQFTCCYi9Cf1XLqwINUqDS5UgMyLMAYVNRzYAByXrgNgUwO3v_yWw68VnaJYh9zvjz39b5gmy0b89LsraYL-0rULgL_dpz9BcfkrC1 |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-cell+RNA+sequencing+reveals+the+cellular+heterogeneity+of+aneurysmal+infrarenal+abdominal+aorta&rft.jtitle=Cardiovascular+research&rft.au=Zhao%2C+Guizhen&rft.au=Lu%2C+Haocheng&rft.au=Chang%2C+Ziyi&rft.au=Zhao%2C+Yang&rft.date=2021-04-23&rft.eissn=1755-3245&rft.volume=117&rft.issue=5&rft.spage=1402&rft_id=info:doi/10.1093%2Fcvr%2Fcvaa214&rft_id=info%3Apmid%2F32678909&rft.externalDocID=32678909 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-6363&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-6363&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-6363&client=summon |