Single-cell RNA sequencing reveals the cellular heterogeneity of aneurysmal infrarenal abdominal aorta

Abstract Aims The artery contains numerous cell types which contribute to multiple vascular diseases. However, the heterogeneity and cellular responses of these vascular cells during abdominal aortic aneurysm (AAA) progression have not been well characterized. Methods and results Single-cell RNA seq...

Full description

Saved in:
Bibliographic Details
Published inCardiovascular research Vol. 117; no. 5; pp. 1402 - 1416
Main Authors Zhao, Guizhen, Lu, Haocheng, Chang, Ziyi, Zhao, Yang, Zhu, Tianqing, Chang, Lin, Guo, Yanhong, Garcia-Barrio, Minerva T, Chen, Y Eugene, Zhang, Jifeng
Format Journal Article
LanguageEnglish
Published England Oxford University Press 23.04.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Aims The artery contains numerous cell types which contribute to multiple vascular diseases. However, the heterogeneity and cellular responses of these vascular cells during abdominal aortic aneurysm (AAA) progression have not been well characterized. Methods and results Single-cell RNA sequencing was performed on the infrarenal abdominal aortas (IAAs) from C57BL/6J mice at Days 7 and 14 post-sham or peri-adventitial elastase-induced AAA. Unbiased clustering analysis of the transcriptional profiles from >4500 aortic cells identified 17 clusters representing nine-cell lineages, encompassing vascular smooth muscle cells (VSMCs), fibroblasts, endothelial cells, immune cells (macrophages, T cells, B cells, and dendritic cells), and two types of rare cells, including neural cells and erythrocyte cells. Seurat clustering analysis identified four smooth muscle cell (SMC) subpopulations and five monocyte/macrophage subpopulations, with distinct transcriptional profiles. During AAA progression, three major SMC subpopulations were proportionally decreased, whereas the small subpopulation was increased, accompanied with down-regulation of SMC contractile markers and up-regulation of pro-inflammatory genes. Another AAA-associated cellular response is immune cell expansion, particularly monocytes/macrophages. Elastase exposure induced significant expansion and activation of aortic resident macrophages, blood-derived monocytes and inflammatory macrophages. We also identified increased blood-derived reparative macrophages expressing anti-inflammatory cytokines suggesting that resolution of inflammation and vascular repair also persist during AAA progression. Conclusion Our data identify AAA disease-relevant transcriptional signatures of vascular cells in the IAA. Furthermore, we characterize the heterogeneity and cellular responses of VSMCs and monocytes/macrophages during AAA progression, which provide insights into their function and the regulation of AAA onset and progression. Graphical Abstract
AbstractList The artery contains numerous cell types which contribute to multiple vascular diseases. However, the heterogeneity and cellular responses of these vascular cells during abdominal aortic aneurysm (AAA) progression have not been well characterized.AIMSThe artery contains numerous cell types which contribute to multiple vascular diseases. However, the heterogeneity and cellular responses of these vascular cells during abdominal aortic aneurysm (AAA) progression have not been well characterized.Single-cell RNA sequencing was performed on the infrarenal abdominal aortas (IAAs) from C57BL/6J mice at Days 7 and 14 post-sham or peri-adventitial elastase-induced AAA. Unbiased clustering analysis of the transcriptional profiles from >4500 aortic cells identified 17 clusters representing nine-cell lineages, encompassing vascular smooth muscle cells (VSMCs), fibroblasts, endothelial cells, immune cells (macrophages, T cells, B cells, and dendritic cells), and two types of rare cells, including neural cells and erythrocyte cells. Seurat clustering analysis identified four smooth muscle cell (SMC) subpopulations and five monocyte/macrophage subpopulations, with distinct transcriptional profiles. During AAA progression, three major SMC subpopulations were proportionally decreased, whereas the small subpopulation was increased, accompanied with down-regulation of SMC contractile markers and up-regulation of pro-inflammatory genes. Another AAA-associated cellular response is immune cell expansion, particularly monocytes/macrophages. Elastase exposure induced significant expansion and activation of aortic resident macrophages, blood-derived monocytes and inflammatory macrophages. We also identified increased blood-derived reparative macrophages expressing anti-inflammatory cytokines suggesting that resolution of inflammation and vascular repair also persist during AAA progression.METHODS AND RESULTSSingle-cell RNA sequencing was performed on the infrarenal abdominal aortas (IAAs) from C57BL/6J mice at Days 7 and 14 post-sham or peri-adventitial elastase-induced AAA. Unbiased clustering analysis of the transcriptional profiles from >4500 aortic cells identified 17 clusters representing nine-cell lineages, encompassing vascular smooth muscle cells (VSMCs), fibroblasts, endothelial cells, immune cells (macrophages, T cells, B cells, and dendritic cells), and two types of rare cells, including neural cells and erythrocyte cells. Seurat clustering analysis identified four smooth muscle cell (SMC) subpopulations and five monocyte/macrophage subpopulations, with distinct transcriptional profiles. During AAA progression, three major SMC subpopulations were proportionally decreased, whereas the small subpopulation was increased, accompanied with down-regulation of SMC contractile markers and up-regulation of pro-inflammatory genes. Another AAA-associated cellular response is immune cell expansion, particularly monocytes/macrophages. Elastase exposure induced significant expansion and activation of aortic resident macrophages, blood-derived monocytes and inflammatory macrophages. We also identified increased blood-derived reparative macrophages expressing anti-inflammatory cytokines suggesting that resolution of inflammation and vascular repair also persist during AAA progression.Our data identify AAA disease-relevant transcriptional signatures of vascular cells in the IAA. Furthermore, we characterize the heterogeneity and cellular responses of VSMCs and monocytes/macrophages during AAA progression, which provide insights into their function and the regulation of AAA onset and progression.CONCLUSIONOur data identify AAA disease-relevant transcriptional signatures of vascular cells in the IAA. Furthermore, we characterize the heterogeneity and cellular responses of VSMCs and monocytes/macrophages during AAA progression, which provide insights into their function and the regulation of AAA onset and progression.
The artery contains numerous cell types which contribute to multiple vascular diseases. However, the heterogeneity and cellular responses of these vascular cells during abdominal aortic aneurysm (AAA) progression have not been well characterized. Single-cell RNA sequencing was performed on the infrarenal abdominal aortas (IAAs) from C57BL/6J mice at Days 7 and 14 post-sham or peri-adventitial elastase-induced AAA. Unbiased clustering analysis of the transcriptional profiles from >4500 aortic cells identified 17 clusters representing nine-cell lineages, encompassing vascular smooth muscle cells (VSMCs), fibroblasts, endothelial cells, immune cells (macrophages, T cells, B cells, and dendritic cells), and two types of rare cells, including neural cells and erythrocyte cells. Seurat clustering analysis identified four smooth muscle cell (SMC) subpopulations and five monocyte/macrophage subpopulations, with distinct transcriptional profiles. During AAA progression, three major SMC subpopulations were proportionally decreased, whereas the small subpopulation was increased, accompanied with down-regulation of SMC contractile markers and up-regulation of pro-inflammatory genes. Another AAA-associated cellular response is immune cell expansion, particularly monocytes/macrophages. Elastase exposure induced significant expansion and activation of aortic resident macrophages, blood-derived monocytes and inflammatory macrophages. We also identified increased blood-derived reparative macrophages expressing anti-inflammatory cytokines suggesting that resolution of inflammation and vascular repair also persist during AAA progression. Our data identify AAA disease-relevant transcriptional signatures of vascular cells in the IAA. Furthermore, we characterize the heterogeneity and cellular responses of VSMCs and monocytes/macrophages during AAA progression, which provide insights into their function and the regulation of AAA onset and progression.
Abstract Aims The artery contains numerous cell types which contribute to multiple vascular diseases. However, the heterogeneity and cellular responses of these vascular cells during abdominal aortic aneurysm (AAA) progression have not been well characterized. Methods and results Single-cell RNA sequencing was performed on the infrarenal abdominal aortas (IAAs) from C57BL/6J mice at Days 7 and 14 post-sham or peri-adventitial elastase-induced AAA. Unbiased clustering analysis of the transcriptional profiles from >4500 aortic cells identified 17 clusters representing nine-cell lineages, encompassing vascular smooth muscle cells (VSMCs), fibroblasts, endothelial cells, immune cells (macrophages, T cells, B cells, and dendritic cells), and two types of rare cells, including neural cells and erythrocyte cells. Seurat clustering analysis identified four smooth muscle cell (SMC) subpopulations and five monocyte/macrophage subpopulations, with distinct transcriptional profiles. During AAA progression, three major SMC subpopulations were proportionally decreased, whereas the small subpopulation was increased, accompanied with down-regulation of SMC contractile markers and up-regulation of pro-inflammatory genes. Another AAA-associated cellular response is immune cell expansion, particularly monocytes/macrophages. Elastase exposure induced significant expansion and activation of aortic resident macrophages, blood-derived monocytes and inflammatory macrophages. We also identified increased blood-derived reparative macrophages expressing anti-inflammatory cytokines suggesting that resolution of inflammation and vascular repair also persist during AAA progression. Conclusion Our data identify AAA disease-relevant transcriptional signatures of vascular cells in the IAA. Furthermore, we characterize the heterogeneity and cellular responses of VSMCs and monocytes/macrophages during AAA progression, which provide insights into their function and the regulation of AAA onset and progression. Graphical Abstract
Author Chen, Y Eugene
Zhao, Guizhen
Zhang, Jifeng
Zhu, Tianqing
Zhao, Yang
Garcia-Barrio, Minerva T
Guo, Yanhong
Chang, Ziyi
Chang, Lin
Lu, Haocheng
AuthorAffiliation 1 Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center , NCRC Bldg26, Room 357S. 2800 Plymouth Rd, Ann Arbor, MI 48109, USA
2 Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University , Changsha 410011, PR China
AuthorAffiliation_xml – name: 1 Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center , NCRC Bldg26, Room 357S. 2800 Plymouth Rd, Ann Arbor, MI 48109, USA
– name: 2 Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University , Changsha 410011, PR China
Author_xml – sequence: 1
  givenname: Guizhen
  orcidid: 0000-0002-2648-8986
  surname: Zhao
  fullname: Zhao, Guizhen
  organization: Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, NCRC Bldg26, Room 357S. 2800 Plymouth Rd, Ann Arbor, MI 48109, USA
– sequence: 2
  givenname: Haocheng
  orcidid: 0000-0002-5740-8010
  surname: Lu
  fullname: Lu, Haocheng
  organization: Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, NCRC Bldg26, Room 357S. 2800 Plymouth Rd, Ann Arbor, MI 48109, USA
– sequence: 3
  givenname: Ziyi
  orcidid: 0000-0002-0417-9998
  surname: Chang
  fullname: Chang, Ziyi
  organization: Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, NCRC Bldg26, Room 357S. 2800 Plymouth Rd, Ann Arbor, MI 48109, USA
– sequence: 4
  givenname: Yang
  orcidid: 0000-0002-1428-5145
  surname: Zhao
  fullname: Zhao, Yang
  organization: Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, NCRC Bldg26, Room 357S. 2800 Plymouth Rd, Ann Arbor, MI 48109, USA
– sequence: 5
  givenname: Tianqing
  surname: Zhu
  fullname: Zhu, Tianqing
  organization: Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, NCRC Bldg26, Room 357S. 2800 Plymouth Rd, Ann Arbor, MI 48109, USA
– sequence: 6
  givenname: Lin
  surname: Chang
  fullname: Chang, Lin
  organization: Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, NCRC Bldg26, Room 357S. 2800 Plymouth Rd, Ann Arbor, MI 48109, USA
– sequence: 7
  givenname: Yanhong
  surname: Guo
  fullname: Guo, Yanhong
  organization: Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, NCRC Bldg26, Room 357S. 2800 Plymouth Rd, Ann Arbor, MI 48109, USA
– sequence: 8
  givenname: Minerva T
  surname: Garcia-Barrio
  fullname: Garcia-Barrio, Minerva T
  organization: Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, NCRC Bldg26, Room 357S. 2800 Plymouth Rd, Ann Arbor, MI 48109, USA
– sequence: 9
  givenname: Y Eugene
  surname: Chen
  fullname: Chen, Y Eugene
  email: echenum@umich.edu
  organization: Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, NCRC Bldg26, Room 357S. 2800 Plymouth Rd, Ann Arbor, MI 48109, USA
– sequence: 10
  givenname: Jifeng
  orcidid: 0000-0001-5161-4705
  surname: Zhang
  fullname: Zhang, Jifeng
  email: jifengz@umich.edu
  organization: Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, NCRC Bldg26, Room 357S. 2800 Plymouth Rd, Ann Arbor, MI 48109, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32678909$$D View this record in MEDLINE/PubMed
BookMark eNp9UU1r3DAQFSWh2aQ99V50KoXgVrJkW74UQmjaQkigH2cxlse7Kra0leSF_feVs9vQFtqD0Izemzd6M-fkxHmHhLzg7A1nrXhrdiEfgJLLJ2TFm6oqRCmrE7JijKmiFrU4I-cxfs9pVTXyKTkTZd2olrUrMnyxbj1iYXAc6ee7Kxrxx4zO5FcacIcwRpo2SBd8HiHQDSYMfo0ObdpTP1BwOId9nGCk1g0BArocQtf7yT5EPiR4Rk6HLIXPj_cF-Xbz_uv1x-L2_sOn66vbwshGpWIY2r4fDFR9o1gnwdQ17zkvUQ4NAO9rVgsl2rKrBOsl7xpRYm-U6hbXwoC4IO8Outu5mzKELgUY9TbYCcJee7D6T8TZjV77nVasllLILPD6KBB8HkRMerJxMZ9t-jnqUpaybYXiVaa-_L3XY5Nfw82EywPBBB9jwOGRwpleVqfz6vRxdZnN_2IbmyBZv3zUjv-oeXWo8fP2v-I_AaGirmw
CitedBy_id crossref_primary_10_1016_j_atherosclerosis_2025_119134
crossref_primary_10_1177_00033197241284848
crossref_primary_10_3389_fbioe_2023_1324406
crossref_primary_10_3389_fcvm_2022_1062106
crossref_primary_10_1038_s12276_023_01130_w
crossref_primary_10_1093_cvr_cvab083
crossref_primary_10_2147_JIR_S499593
crossref_primary_10_3389_fimmu_2023_1138126
crossref_primary_10_1093_cvr_cvae117
crossref_primary_10_1186_s12916_023_03232_8
crossref_primary_10_3389_fcvm_2022_791875
crossref_primary_10_1016_j_heliyon_2023_e13622
crossref_primary_10_3389_fgene_2022_836593
crossref_primary_10_1161_ATVBAHA_121_316237
crossref_primary_10_1161_ATVBAHA_123_318771
crossref_primary_10_1002_advs_202104338
crossref_primary_10_1016_j_csbj_2021_08_021
crossref_primary_10_1115_1_4064965
crossref_primary_10_1093_cvr_cvab196
crossref_primary_10_1111_jcmm_17301
crossref_primary_10_1161_ATVBAHA_121_317275
crossref_primary_10_1016_j_bbadis_2023_166919
crossref_primary_10_1016_j_jhepr_2023_100718
crossref_primary_10_51789_cmsj_2022_2_e16
crossref_primary_10_1172_JCI173690
crossref_primary_10_7554_eLife_91729
crossref_primary_10_1172_jci_insight_162987
crossref_primary_10_1016_j_bioactmat_2022_07_005
crossref_primary_10_3389_fcvm_2022_950961
crossref_primary_10_1016_j_intimp_2024_113438
crossref_primary_10_1038_s41392_022_00943_x
crossref_primary_10_1016_j_biopha_2024_117079
crossref_primary_10_1016_j_jvssci_2021_09_001
crossref_primary_10_3389_fimmu_2022_705472
crossref_primary_10_1016_j_exger_2022_111703
crossref_primary_10_1016_j_bioactmat_2023_02_009
crossref_primary_10_1016_j_semcdb_2023_07_011
crossref_primary_10_3389_fcvm_2022_927542
crossref_primary_10_1161_ATVBAHA_124_321085
crossref_primary_10_1038_s12276_021_00704_w
crossref_primary_10_3390_ijms241411701
crossref_primary_10_1161_HYPERTENSIONAHA_123_20597
crossref_primary_10_1161_ATVBAHA_123_319329
crossref_primary_10_1016_j_celrep_2023_113171
crossref_primary_10_3390_jcdd11110349
crossref_primary_10_4103_ijves_ijves_60_23
crossref_primary_10_1021_acsabm_4c01549
crossref_primary_10_1016_j_jprot_2025_105374
crossref_primary_10_1161_CIRCRESAHA_124_325152
crossref_primary_10_1016_j_cjca_2023_09_009
crossref_primary_10_1038_s41467_021_27874_5
crossref_primary_10_1186_s40659_024_00542_w
crossref_primary_10_1536_ihj_23_623
crossref_primary_10_1161_ATVBAHA_123_319828
crossref_primary_10_3390_biom12040509
crossref_primary_10_1186_s12967_024_05763_x
crossref_primary_10_1096_fj_202301198RR
crossref_primary_10_3389_fcvm_2022_1063683
crossref_primary_10_1002_ctm2_70121
crossref_primary_10_1002_advs_202414500
crossref_primary_10_2337_db23_0981
crossref_primary_10_1186_s12929_022_00808_z
crossref_primary_10_3389_fimmu_2020_609161
crossref_primary_10_1038_s41467_024_51780_1
crossref_primary_10_1161_ATVBAHA_124_321129
crossref_primary_10_1161_CIRCULATIONAHA_120_049922
crossref_primary_10_1016_j_vph_2024_107419
crossref_primary_10_1016_j_cjca_2024_08_274
crossref_primary_10_1016_j_pharmthera_2024_108652
crossref_primary_10_1096_fj_202101576R
crossref_primary_10_3390_cells13020168
crossref_primary_10_1007_s00772_022_00908_y
crossref_primary_10_1161_STROKEAHA_122_038776
crossref_primary_10_1152_ajpcell_00448_2024
crossref_primary_10_3389_fcvm_2022_831789
crossref_primary_10_1097_SLA_0000000000005551
crossref_primary_10_1161_ATVBAHA_122_317484
crossref_primary_10_3389_fimmu_2024_1486209
crossref_primary_10_1161_CIRCRESAHA_124_324323
crossref_primary_10_7554_eLife_91729_3
crossref_primary_10_1093_cvr_cvac018
crossref_primary_10_1172_JCI158309
crossref_primary_10_3389_fcvm_2021_753711
crossref_primary_10_1016_j_atherosclerosis_2023_06_010
crossref_primary_10_1096_fj_202400001RR
crossref_primary_10_3389_fcvm_2023_1248561
crossref_primary_10_1016_j_bioactmat_2023_11_020
crossref_primary_10_1172_jci_insight_167041
crossref_primary_10_1016_j_bbadis_2022_166452
crossref_primary_10_1007_s10517_023_05829_8
crossref_primary_10_3389_fcvm_2023_1172080
crossref_primary_10_1186_s12964_022_00993_2
crossref_primary_10_3389_fcvm_2023_1221620
crossref_primary_10_1172_JCI183527
crossref_primary_10_3389_fimmu_2024_1412022
crossref_primary_10_3390_jcm13247778
crossref_primary_10_1055_a_1663_8208
crossref_primary_10_1161_ATVBAHA_121_315852
crossref_primary_10_3389_fimmu_2024_1307748
crossref_primary_10_1096_fj_202402873R
crossref_primary_10_3389_fimmu_2022_858256
crossref_primary_10_3389_fcvm_2024_1359734
crossref_primary_10_3389_fonc_2022_1045477
crossref_primary_10_3389_fgene_2021_698124
crossref_primary_10_1016_j_ejphar_2024_176397
crossref_primary_10_1016_j_nano_2022_102564
crossref_primary_10_1093_eurheartj_ehac686
crossref_primary_10_1038_s42003_023_04492_z
crossref_primary_10_1016_j_biopha_2022_113547
crossref_primary_10_1016_j_bcp_2025_116800
crossref_primary_10_3390_life12020191
crossref_primary_10_3389_fcvm_2022_846421
crossref_primary_10_1089_dna_2021_0923
crossref_primary_10_1111_imm_13796
crossref_primary_10_1161_HYPERTENSIONAHA_122_17963
crossref_primary_10_1161_JAHA_121_023601
crossref_primary_10_1049_syb2_12106
crossref_primary_10_1016_j_jare_2025_03_018
crossref_primary_10_1161_CIRCRESAHA_122_321109
crossref_primary_10_1161_ATVBAHA_120_315607
crossref_primary_10_3389_fimmu_2022_927125
crossref_primary_10_1038_s12276_021_00671_2
crossref_primary_10_1038_s41392_024_01840_1
crossref_primary_10_3389_fcvm_2021_643519
crossref_primary_10_1016_j_yjmcc_2024_10_012
crossref_primary_10_3389_fphar_2022_1004525
crossref_primary_10_1002_adbi_202300673
crossref_primary_10_3390_biom13020399
crossref_primary_10_1161_ATVBAHA_121_316600
crossref_primary_10_1016_j_gene_2024_148820
Cites_doi 10.1038/nrcardio.2017.52
10.18632/oncotarget.14815
10.1038/nri.2017.76
10.1161/ATVBAHA.119.312000
10.1038/nrcardio.2010.180
10.1161/01.ATV.0000214999.12921.4f
10.1101/gad.308904
10.1016/bs.pmbts.2017.02.002
10.1371/journal.pone.0117838
10.1161/CIRCRESAHA.116.305368
10.1161/01.ATV.0000152725.76020.3c
10.1038/s41586-018-0744-4
10.1161/ATVBAHA.118.311289
10.14814/phy2.14058
10.1161/01.ATV.0000059405.51042.A0
10.2217/fca.12.71
10.1016/j.stem.2020.02.013
10.1038/s41467-018-07495-1
10.1172/jci.insight.126556
10.1038/s41467-018-06891-x
10.1016/j.immuni.2017.10.016
10.1016/j.jvs.2016.07.105
10.1038/ni.3343
10.1161/ATVBAHA.119.312787
10.1111/febs.14019
10.1074/jbc.M708137200
10.1067/mva.2000.102847
10.1097/CRD.0b013e3181b04698
10.1002/iub.416
10.1111/j.1365-2249.2005.02938.x
10.1161/CIRCRESAHA.117.311450
10.1074/jbc.M707882200
10.1161/CIRCRESAHA.115.304634
10.3389/fimmu.2019.01979
10.1161/CIRCULATIONAHA.118.038362
10.1161/ATVBAHA.117.309897
10.1016/j.surg.2012.02.010
10.1161/ATVBAHA.119.312732
10.1016/j.vph.2016.05.002
10.1161/CIRCRESAHA.117.311071
10.1038/ni.3374
10.1161/CIRCRESAHA.117.312513
10.1161/CIRCRESAHA.117.312509
10.1016/j.ejvs.2016.07.004
10.1161/ATVBAHA.119.312131
10.1161/CIRCRESAHA.116.309194
10.1016/j.jtcvs.2009.07.075
10.1161/01.RES.84.3.360
10.1161/ATVBAHA.111.235002
10.1161/ATVBAHA.119.312399
10.1161/CIRCRESAHA.116.301313
10.1161/ATVBAHA.113.301328
ContentType Journal Article
Copyright Published on behalf of the European Society of Cardiology. All rights reserved. © The Author(s) 2020. For permissions, please email: journals.permissions@oup.com. 2020
Published on behalf of the European Society of Cardiology. All rights reserved. © The Author(s) 2020. For permissions, please email: journals.permissions@oup.com.
Copyright_xml – notice: Published on behalf of the European Society of Cardiology. All rights reserved. © The Author(s) 2020. For permissions, please email: journals.permissions@oup.com. 2020
– notice: Published on behalf of the European Society of Cardiology. All rights reserved. © The Author(s) 2020. For permissions, please email: journals.permissions@oup.com.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/cvr/cvaa214
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1755-3245
EndPage 1416
ExternalDocumentID PMC8064434
32678909
10_1093_cvr_cvaa214
10.1093/cvr/cvaa214
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01 HL137214
– fundername: NHLBI NIH HHS
  grantid: R01 HL068878
– fundername: NHLBI NIH HHS
  grantid: R01 HL134569
– fundername: NHLBI NIH HHS
  grantid: R01 HL138139
– fundername: ; ;
  grantid: HL138139; HL068878; HL134569
– fundername: ; ;
  grantid: 20P0ST35110064
GroupedDBID ---
--K
-E4
.2P
.55
.GJ
.I3
.ZR
08P
0R~
18M
1B1
1TH
29B
2WC
3O-
4.4
48X
53G
5GY
5RE
5VS
5WD
6.Y
6J9
70D
AABZA
AACZT
AAJKP
AAJQQ
AAMVS
AAOGV
AAPGJ
AAPNW
AAPQZ
AAPXW
AARHZ
AASNB
AAUAY
AAUQX
AAVAP
AAWDT
ABEUO
ABHFT
ABIXL
ABJNI
ABKDP
ABLJU
ABNHQ
ABNKS
ABOCM
ABPTD
ABQLI
ABQNK
ABQTQ
ABSAR
ABSMQ
ABWST
ABXVV
ABZBJ
ACFRR
ACGFO
ACGFS
ACMRT
ACPQN
ACUFI
ACUTJ
ACUTO
ACYHN
ACZBC
ADBBV
ADEYI
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADJQC
ADOCK
ADQBN
ADRIX
ADRTK
ADVEK
ADYVW
ADZXQ
AEGPL
AEGXH
AEJOX
AEKPW
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFZL
AFIYH
AFOFC
AFSHK
AFXAL
AFXEN
AFYAG
AGINJ
AGKEF
AGKRT
AGMDO
AGQXC
AGSYK
AGUTN
AHXPO
AI.
AIAGR
AIJHB
AJEEA
ALMA_UNASSIGNED_HOLDINGS
ALUQC
APIBT
APJGH
APWMN
AQDSO
AQKUS
ASPBG
ATGXG
ATTQO
AVNTJ
AVWKF
AXUDD
AZFZN
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BTRTY
BVRKM
BZKNY
C45
CDBKE
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EBD
EBS
EE~
EIHJH
EJD
EMOBN
ENERS
F5P
F9B
FECEO
FEDTE
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HVGLF
HW0
HZ~
IHE
IOX
J21
J5H
JXSIZ
KAQDR
KBUDW
KC5
KOP
KSI
KSN
L7B
LMP
M-Z
M41
M49
MBLQV
MHKGH
MJL
N4W
N9A
NGC
NOMLY
NOYVH
NQ-
NU-
NVLIB
O0~
O9-
OAUYM
OAWHX
OCZFY
ODMLO
OJQWA
OJZSN
OK1
OOVWX
OPAEJ
OVD
OWPYF
O~Y
P2P
PAFKI
PB-
PEELM
Q1.
Q5Y
QBD
R44
RD5
RIG
ROL
ROX
ROZ
RPZ
RUSNO
RW1
RXO
SEL
SV3
TCURE
TEORI
TJX
TMA
VH1
W8F
WH7
X7H
X7M
XPP
YAYTL
YKOAZ
YXANX
ZGI
ZXP
~91
AAYXX
ABDFA
ABEJV
ABGNP
ABPQP
ABVGC
ADNBA
AEMQT
AGORE
AHGBF
AHMMS
AJBYB
AJNCP
ALXQX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c478t-ff9ddfca5d780b4ac661d112e4f7aa1d60638392b530d41b732edc88b17553ca3
ISSN 0008-6363
1755-3245
IngestDate Thu Aug 21 14:32:41 EDT 2025
Thu Jul 10 23:37:13 EDT 2025
Thu Apr 03 07:06:46 EDT 2025
Thu Apr 24 23:10:36 EDT 2025
Tue Jul 01 04:12:07 EDT 2025
Wed Aug 28 03:17:23 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Vascular smooth muscle cell
Lineage heterogeneity
Single-cell RNA sequencing
Abdominal aortic aneurysm
Macrophage
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
Published on behalf of the European Society of Cardiology. All rights reserved. © The Author(s) 2020. For permissions, please email: journals.permissions@oup.com.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c478t-ff9ddfca5d780b4ac661d112e4f7aa1d60638392b530d41b732edc88b17553ca3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0417-9998
0000-0001-5161-4705
0000-0002-5740-8010
0000-0002-2648-8986
0000-0002-1428-5145
OpenAccessLink https://academic.oup.com/cardiovascres/article-pdf/117/5/1402/37313802/cvaa214.pdf
PMID 32678909
PQID 2424993815
PQPubID 23479
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8064434
proquest_miscellaneous_2424993815
pubmed_primary_32678909
crossref_primary_10_1093_cvr_cvaa214
crossref_citationtrail_10_1093_cvr_cvaa214
oup_primary_10_1093_cvr_cvaa214
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-23
PublicationDateYYYYMMDD 2021-04-23
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-23
  day: 23
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Cardiovascular research
PublicationTitleAlternate Cardiovasc Res
PublicationYear 2021
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Winkels (2021042318144794800_cvaa214-B14) 2018; 122
Gu (2021042318144794800_cvaa214-B12) 2019; 39
Raffort (2021042318144794800_cvaa214-B5) 2017; 14
Zhao (2021042318144794800_cvaa214-B4) 2017; 121
Chen (2021042318144794800_cvaa214-B42) 2020; 26
Meher (2021042318144794800_cvaa214-B54) 2018; 38
Liu (2021042318144794800_cvaa214-B23) 2019; 39
Rowe (2021042318144794800_cvaa214-B21) 2000; 31
Shimizu (2021042318144794800_cvaa214-B46) 2006; 26
Psaltis (2021042318144794800_cvaa214-B44) 2015; 116
Shen (2021042318144794800_cvaa214-B25) 2017; 8
Lysgaard Poulsen (2021042318144794800_cvaa214-B36) 2016; 52
Klapproth (2021042318144794800_cvaa214-B48) 2016; 17
Petsophonsakul (2021042318144794800_cvaa214-B24) 2019; 39
Jung (2021042318144794800_cvaa214-B33) 2015; 10
Nordon (2021042318144794800_cvaa214-B2) 2011; 8
Nahrendorf (2021042318144794800_cvaa214-B35) 2016; 119
Lagna (2021042318144794800_cvaa214-B45) 2007; 282
Gu (2021042318144794800_cvaa214-B13) 2019; 39
Rizas (2021042318144794800_cvaa214-B6) 2009; 17
Papalexi (2021042318144794800_cvaa214-B15) 2018; 18
Lepore (2021042318144794800_cvaa214-B29) 2005; 25
Dobnikar (2021042318144794800_cvaa214-B10) 2018; 9
Zhang (2021042318144794800_cvaa214-B22) 2003; 116
Bhamidipati (2021042318144794800_cvaa214-B17) 2012; 152
Feil (2021042318144794800_cvaa214-B9) 2014; 115
Lv (2021042318144794800_cvaa214-B41) 2011; 63
Sagan (2021042318144794800_cvaa214-B53) 2019; 10
Sun (2021042318144794800_cvaa214-B31) 2012; 32
Hadi (2021042318144794800_cvaa214-B37) 2018; 9
Da Ros (2021042318144794800_cvaa214-B43) 2017; 47
Qin (2021042318144794800_cvaa214-B32) 2013; 9
Wu (2021042318144794800_cvaa214-B40) 2008; 283
Park (2021042318144794800_cvaa214-B26) 2017; 284
Kalluri (2021042318144794800_cvaa214-B11) 2019; 140
He (2021042318144794800_cvaa214-B16) 2018; 38
Lu (2021042318144794800_cvaa214-B19) 2017; 66
Domenga (2021042318144794800_cvaa214-B30) 2004; 18
Ensan (2021042318144794800_cvaa214-B49) 2016; 17
Libby (2021042318144794800_cvaa214-B50) 2015; 116
Butcher (2021042318144794800_cvaa214-B18) 2011; 53
Abe (2021042318144794800_cvaa214-B39) 2003; 23
Cochain (2021042318144794800_cvaa214-B8) 2018; 122
Honold (2021042318144794800_cvaa214-B47) 2018; 122
Salmon (2021042318144794800_cvaa214-B38) 2019; 7
Davis (2021042318144794800_cvaa214-B1) 2019; 39
Biddy (2021042318144794800_cvaa214-B7) 2018; 564
Heiss (2021042318144794800_cvaa214-B28) 2016; 83
Ailawadi (2021042318144794800_cvaa214-B20) 2009; 138
Bolego (2021042318144794800_cvaa214-B51) 2013; 33
Rabkin (2021042318144794800_cvaa214-B3) 2017; 147
Sutliff (2021042318144794800_cvaa214-B27) 1999; 84
Mould (2021042318144794800_cvaa214-B34) 2019; 4
Galle (2021042318144794800_cvaa214-B52) 2005; 142
33723571 - Cardiovasc Res. 2021 Apr 23;117(5):1243-1244
References_xml – volume: 14
  start-page: 457
  year: 2017
  ident: 2021042318144794800_cvaa214-B5
  article-title: Monocytes and macrophages in abdominal aortic aneurysm
  publication-title: Nat Rev Cardiol
  doi: 10.1038/nrcardio.2017.52
– volume: 8
  start-page: 12133
  year: 2017
  ident: 2021042318144794800_cvaa214-B25
  article-title: DUSP1 inhibits cell proliferation, metastasis and invasion and angiogenesis in gallbladder cancer
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.14815
– volume: 18
  start-page: 35
  year: 2018
  ident: 2021042318144794800_cvaa214-B15
  article-title: Single-cell RNA sequencing to explore immune cell heterogeneity
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri.2017.76
– volume: 39
  start-page: e83
  year: 2019
  ident: 2021042318144794800_cvaa214-B1
  article-title: Updates of recent aortic aneurysm research
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/ATVBAHA.119.312000
– volume: 8
  start-page: 92
  year: 2011
  ident: 2021042318144794800_cvaa214-B2
  article-title: Pathophysiology and epidemiology of abdominal aortic aneurysms
  publication-title: Nat Rev Cardiol
  doi: 10.1038/nrcardio.2010.180
– volume: 26
  start-page: 987
  year: 2006
  ident: 2021042318144794800_cvaa214-B46
  article-title: Inflammation and cellular immune responses in abdominal aortic aneurysms
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/01.ATV.0000214999.12921.4f
– volume: 18
  start-page: 2730
  year: 2004
  ident: 2021042318144794800_cvaa214-B30
  article-title: Notch3 is required for arterial identity and maturation of vascular smooth muscle cells
  publication-title: Genes Dev
  doi: 10.1101/gad.308904
– volume: 147
  start-page: 239
  year: 2017
  ident: 2021042318144794800_cvaa214-B3
  article-title: The role matrix metalloproteinases in the production of aortic aneurysm
  publication-title: Prog Mol Biol Transl Sci
  doi: 10.1016/bs.pmbts.2017.02.002
– volume: 10
  start-page: e0117838
  year: 2015
  ident: 2021042318144794800_cvaa214-B33
  article-title: Modulation of macrophage activities in proliferation, lysosome, and phagosome by the nonspecific immunostimulator, mica
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0117838
– volume: 116
  start-page: 1392
  year: 2015
  ident: 2021042318144794800_cvaa214-B44
  article-title: Vascular wall progenitor cells in health and disease
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.116.305368
– volume: 25
  start-page: 309
  year: 2005
  ident: 2021042318144794800_cvaa214-B29
  article-title: GATA-6 regulates genes promoting synthetic functions in vascular smooth muscle cells
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/01.ATV.0000152725.76020.3c
– volume: 564
  start-page: 219
  year: 2018
  ident: 2021042318144794800_cvaa214-B7
  article-title: Single-cell mapping of lineage and identity in direct reprogramming
  publication-title: Nature
  doi: 10.1038/s41586-018-0744-4
– volume: 38
  start-page: 1616
  year: 2018
  ident: 2021042318144794800_cvaa214-B16
  article-title: Deficiency of FAM3D (Family With Sequence Similarity 3, Member D), a novel chemokine, attenuates neutrophil recruitment and ameliorates abdominal aortic aneurysm development
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/ATVBAHA.118.311289
– volume: 7
  start-page: e14058
  year: 2019
  ident: 2021042318144794800_cvaa214-B38
  article-title: Klf4, Klf2, and Zfp148 activate autophagy-related genes in smooth muscle cells during aortic aneurysm formation
  publication-title: Physiol Rep
  doi: 10.14814/phy2.14058
– volume: 23
  start-page: 404
  year: 2003
  ident: 2021042318144794800_cvaa214-B39
  article-title: GATA-6 is involved in PPARgamma-mediated activation of differentiated phenotype in human vascular smooth muscle cells
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/01.ATV.0000059405.51042.A0
– volume: 9
  start-page: 89
  year: 2013
  ident: 2021042318144794800_cvaa214-B32
  article-title: Cysteine protease cathepsins and matrix metalloproteinases in the development of abdominal aortic aneurysms
  publication-title: Future Cardiol
  doi: 10.2217/fca.12.71
– volume: 26
  start-page: 542
  year: 2020
  ident: 2021042318144794800_cvaa214-B42
  article-title: Smooth muscle cell reprogramming in aortic aneurysms
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2020.02.013
– volume: 9
  start-page: 5022
  year: 2018
  ident: 2021042318144794800_cvaa214-B37
  article-title: Macrophage-derived netrin-1 promotes abdominal aortic aneurysm formation by activating MMP3 in vascular smooth muscle cells
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-07495-1
– volume: 4
  year: 2019
  ident: 2021042318144794800_cvaa214-B34
  article-title: Single cell RNA sequencing identifies unique inflammatory airspace macrophage subsets
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.126556
– volume: 9
  start-page: 4567
  year: 2018
  ident: 2021042318144794800_cvaa214-B10
  article-title: Disease-relevant transcriptional signatures identified in individual smooth muscle cells from healthy mouse vessels
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-06891-x
– volume: 47
  start-page: 959
  year: 2017
  ident: 2021042318144794800_cvaa214-B43
  article-title: Targeting interleukin-1beta protects from aortic aneurysms induced by disrupted transforming growth factor beta signaling
  publication-title: Immunity
  doi: 10.1016/j.immuni.2017.10.016
– volume: 66
  start-page: 232
  year: 2017
  ident: 2021042318144794800_cvaa214-B19
  article-title: A novel chronic advanced stage abdominal aortic aneurysm murine model
  publication-title: J Vasc Surg
  doi: 10.1016/j.jvs.2016.07.105
– volume: 17
  start-page: 159
  year: 2016
  ident: 2021042318144794800_cvaa214-B49
  article-title: Self-renewing resident arterial macrophages arise from embryonic CX3CR1(+) precursors and circulating monocytes immediately after birth
  publication-title: Nat Immunol
  doi: 10.1038/ni.3343
– volume: 39
  start-page: 1351
  year: 2019
  ident: 2021042318144794800_cvaa214-B24
  article-title: Role of vascular smooth muscle cell phenotypic switching and calcification in aortic aneurysm formation
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/ATVBAHA.119.312787
– volume: 284
  start-page: 784
  year: 2017
  ident: 2021042318144794800_cvaa214-B26
  article-title: The transcriptional modulator Ifrd1 controls PGC-1alpha expression under short-term adrenergic stimulation in brown adipocytes
  publication-title: FEBS J
  doi: 10.1111/febs.14019
– volume: 282
  start-page: 37244
  year: 2007
  ident: 2021042318144794800_cvaa214-B45
  article-title: Control of phenotypic plasticity of smooth muscle cells by bone morphogenetic protein signaling through the myocardin-related transcription factors
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M708137200
– volume: 31
  start-page: 567
  year: 2000
  ident: 2021042318144794800_cvaa214-B21
  article-title: Vascular smooth muscle cell apoptosis in aneurysmal, occlusive, and normal human aortas
  publication-title: J Vasc Surg
  doi: 10.1067/mva.2000.102847
– volume: 17
  start-page: 201
  year: 2009
  ident: 2021042318144794800_cvaa214-B6
  article-title: Immune cells and molecular mediators in the pathogenesis of the abdominal aortic aneurysm
  publication-title: Cardiol Rev
  doi: 10.1097/CRD.0b013e3181b04698
– volume: 63
  start-page: 62
  year: 2011
  ident: 2021042318144794800_cvaa214-B41
  article-title: Activating transcription factor 3 regulates survivability and migration of vascular smooth muscle cells
  publication-title: IUBMB Life
  doi: 10.1002/iub.416
– volume: 142
  start-page: 519
  year: 2005
  ident: 2021042318144794800_cvaa214-B52
  article-title: Predominance of type 1 CD4+ T cells in human abdominal aortic aneurysm
  publication-title: Clin Exp Immunol
  doi: 10.1111/j.1365-2249.2005.02938.x
– volume: 121
  start-page: 1331
  year: 2017
  ident: 2021042318144794800_cvaa214-B4
  article-title: Unspliced XBP1 confers VSMC homeostasis and prevents aortic aneurysm formation via FoxO4 interaction
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.117.311450
– volume: 283
  start-page: 3942
  year: 2008
  ident: 2021042318144794800_cvaa214-B40
  article-title: KLF2 transcription factor modulates blood vessel maturation through smooth muscle cell migration
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M707882200
– volume: 115
  start-page: 662
  year: 2014
  ident: 2021042318144794800_cvaa214-B9
  article-title: Transdifferentiation of vascular smooth muscle cells to macrophage-like cells during atherogenesis
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.115.304634
– volume: 10
  start-page: 1979
  year: 2019
  ident: 2021042318144794800_cvaa214-B53
  article-title: T cells are dominant population in human abdominal aortic aneurysms and their infiltration in the perivascular tissue correlates with disease severity
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2019.01979
– volume: 140
  start-page: 147
  year: 2019
  ident: 2021042318144794800_cvaa214-B11
  article-title: Single-cell analysis of the normal mouse aorta reveals functionally distinct endothelial cell populations
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.118.038362
– volume: 38
  start-page: 843
  year: 2018
  ident: 2021042318144794800_cvaa214-B54
  article-title: Novel role of IL (interleukin)-1β in neutrophil extracellular trap formation and abdominal aortic aneurysms
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/ATVBAHA.117.309897
– volume: 152
  start-page: 238
  year: 2012
  ident: 2021042318144794800_cvaa214-B17
  article-title: Development of a novel murine model of aortic aneurysms using peri-adventitial elastase
  publication-title: Surgery
  doi: 10.1016/j.surg.2012.02.010
– volume: 39
  start-page: 2049
  year: 2019
  ident: 2021042318144794800_cvaa214-B13
  article-title: Single-cell RNA-sequencing and metabolomics analyses reveal the contribution of perivascular adipose tissue stem cells to vascular remodeling
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/ATVBAHA.119.312732
– volume: 83
  start-page: 47
  year: 2016
  ident: 2021042318144794800_cvaa214-B28
  article-title: Increased aerobic glycolysis is important for the motility of activated VSMC and inhibited by indirubin-3'-monoxime
  publication-title: Vascul Pharmacol
  doi: 10.1016/j.vph.2016.05.002
– volume: 116
  start-page: 1549
  year: 2003
  ident: 2021042318144794800_cvaa214-B22
  article-title: Increased apoptosis and decreased density of medial smooth muscle cells in human abdominal aortic aneurysms
  publication-title: Chin Med J (Engl)
– volume: 122
  start-page: 113
  year: 2018
  ident: 2021042318144794800_cvaa214-B47
  article-title: Resident and monocyte-derived macrophages in cardiovascular disease
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.117.311071
– volume: 17
  start-page: 117
  year: 2016
  ident: 2021042318144794800_cvaa214-B48
  article-title: Multilayered ancestry of arterial macrophages
  publication-title: Nat Immunol
  doi: 10.1038/ni.3374
– volume: 122
  start-page: 1675
  year: 2018
  ident: 2021042318144794800_cvaa214-B14
  article-title: Atlas of the immune cell repertoire in mouse atherosclerosis defined by single-cell RNA-sequencing and mass cytometry
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.117.312513
– volume: 122
  start-page: 1661
  year: 2018
  ident: 2021042318144794800_cvaa214-B8
  article-title: Single-cell RNA-Seq reveals the transcriptional landscape and heterogeneity of aortic macrophages in murine atherosclerosis
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.117.312509
– volume: 52
  start-page: 487
  year: 2016
  ident: 2021042318144794800_cvaa214-B36
  article-title: Animal models used to explore abdominal aortic aneurysms: a systematic review
  publication-title: Eur J Vasc Endovasc Surg
  doi: 10.1016/j.ejvs.2016.07.004
– volume: 39
  start-page: 1715
  year: 2019
  ident: 2021042318144794800_cvaa214-B23
  article-title: Smooth muscle cell phenotypic diversity
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/ATVBAHA.119.312131
– volume: 53
  start-page: 2848
  year: 2011
  ident: 2021042318144794800_cvaa214-B18
  article-title: Flow cytometry analysis of immune cells within murine aortas
  publication-title: J Vis Exp
– volume: 119
  start-page: 414
  year: 2016
  ident: 2021042318144794800_cvaa214-B35
  article-title: Abandoning M1/M2 for a network model of macrophage function
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.116.309194
– volume: 138
  start-page: 1392
  year: 2009
  ident: 2021042318144794800_cvaa214-B20
  article-title: Smooth muscle phenotypic modulation is an early event in aortic aneurysms
  publication-title: J Thorac Cardiovasc Surg
  doi: 10.1016/j.jtcvs.2009.07.075
– volume: 84
  start-page: 360
  year: 1999
  ident: 2021042318144794800_cvaa214-B27
  article-title: Phospholamban is present in endothelial cells and modulates endothelium-dependent relaxation. Evidence from phospholamban gene-ablated mice
  publication-title: Circ Res
  doi: 10.1161/01.RES.84.3.360
– volume: 32
  start-page: 15
  year: 2012
  ident: 2021042318144794800_cvaa214-B31
  article-title: Cathepsin K deficiency reduces elastase perfusion-induced abdominal aortic aneurysms in mice
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/ATVBAHA.111.235002
– volume: 39
  start-page: 1055
  year: 2019
  ident: 2021042318144794800_cvaa214-B12
  article-title: Adventitial cell atlas of wt (wild type) and ApoE (Apolipoprotein E)-deficient mice defined by single-cell RNA sequencing
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/ATVBAHA.119.312399
– volume: 116
  start-page: 307
  year: 2015
  ident: 2021042318144794800_cvaa214-B50
  article-title: Inflammation and immunity in diseases of the arterial tree: players and layers
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.116.301313
– volume: 33
  start-page: 1127
  year: 2013
  ident: 2021042318144794800_cvaa214-B51
  article-title: Macrophage function and polarization in cardiovascular disease: a role of estrogen signaling?
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/ATVBAHA.113.301328
– reference: 33723571 - Cardiovasc Res. 2021 Apr 23;117(5):1243-1244
SSID ssj0005574
Score 2.650528
Snippet Abstract Aims The artery contains numerous cell types which contribute to multiple vascular diseases. However, the heterogeneity and cellular responses of...
The artery contains numerous cell types which contribute to multiple vascular diseases. However, the heterogeneity and cellular responses of these vascular...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1402
SubjectTerms Animals
Aorta, Abdominal - metabolism
Aorta, Abdominal - pathology
Aortic Aneurysm, Abdominal - chemically induced
Aortic Aneurysm, Abdominal - genetics
Aortic Aneurysm, Abdominal - metabolism
Aortic Aneurysm, Abdominal - pathology
Cell Lineage
Cluster Analysis
Disease Models, Animal
Editor's Choice
Gene Expression Profiling
Macrophages - metabolism
Macrophages - pathology
Mice
Mice, Inbred C57BL
Monocytes - metabolism
Monocytes - pathology
Muscle, Smooth, Vascular - metabolism
Muscle, Smooth, Vascular - pathology
Myocytes, Smooth Muscle - metabolism
Myocytes, Smooth Muscle - pathology
Original
Pancreatic Elastase
Phenotype
RNA-Seq
Single-Cell Analysis
Transcriptome
Title Single-cell RNA sequencing reveals the cellular heterogeneity of aneurysmal infrarenal abdominal aorta
URI https://www.ncbi.nlm.nih.gov/pubmed/32678909
https://www.proquest.com/docview/2424993815
https://pubmed.ncbi.nlm.nih.gov/PMC8064434
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swGBVbB6UvY_dmVw36tOI2saRYfixlW3dpH7YWur4YSZZIoI1LmgzaX7_vk-Rbyca2FxNsRSI6x9KR8p1PhGxJ5owbKpVYw0TCrZaJdHacCJUPtU4t1wYNzodH44MT_vlUnLbhtt5dstA75malr-R_UIV7gCu6ZP8B2aZSuAGfAV-4AsJw_SuMv8O8c24T3Hzf_na0tx3jonH1j5mZMDMy6kp87qNNJxj7UkF1NgZiKExneX114TNvuDkawzB3gC6rcNaXQnHe1a_7_fDVmCqo2VI-myi_9fpxOb2ZtCazr0s_wyk8nSvOlCGiIAw0Z9Pr6e0afqhYMO5IpCP8cyWYhndsGEUzIRJQaqI3zAaPZuST6AyasMZLV47mIdOV-Tn3V6XS4DftIHt54aEFDYqG3ryd1JpQw_rRXXIvhZWEX3V_-tJGAYmMR9smtLYLbe3GljbIev3dnmbp-SA7y5HbUbUdmXL8gNyP6wu6F8jykNyxs0dk_TBGUDwmrsMZCpyhLWdo5AwFztCaM7THGVo52nKGtpyhDWeo58wTcvLh_fH-QRLP2kgMz-QicS4vS2eUKDM51FwZ0G0laHHLXabUqByjtAUtrQUblnykM5bCL5VSI9bMKPaUrM2qmd0ktBSlYrmDl9xJ7qD7HKj4PHUuVcyacTkg7-reLExMRI_noZwXISCCFYBCEVEYkK2m8GXIv7K62BuA5c8l3taQFTCCYi9Cf1XLqwINUqDS5UgMyLMAYVNRzYAByXrgNgUwO3v_yWw68VnaJYh9zvjz39b5gmy0b89LsraYL-0rULgL_dpz9BcfkrC1
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-cell+RNA+sequencing+reveals+the+cellular+heterogeneity+of+aneurysmal+infrarenal+abdominal+aorta&rft.jtitle=Cardiovascular+research&rft.au=Zhao%2C+Guizhen&rft.au=Lu%2C+Haocheng&rft.au=Chang%2C+Ziyi&rft.au=Zhao%2C+Yang&rft.date=2021-04-23&rft.eissn=1755-3245&rft.volume=117&rft.issue=5&rft.spage=1402&rft_id=info:doi/10.1093%2Fcvr%2Fcvaa214&rft_id=info%3Apmid%2F32678909&rft.externalDocID=32678909
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-6363&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-6363&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-6363&client=summon