Molecular Chaperones and Proteolytic Machineries Regulate Protein Homeostasis in Aging Cells
Throughout their life cycles, cells are subject to a variety of stresses that lead to a compromise between cell death and survival. Survival is partially provided by the cell proteostasis network, which consists of molecular chaperones, a ubiquitin-proteasome system of degradation and autophagy. The...
Saved in:
Published in | Cells (Basel, Switzerland) Vol. 9; no. 5; p. 1308 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
24.05.2020
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 2073-4409 2073-4409 |
DOI | 10.3390/cells9051308 |
Cover
Loading…
Abstract | Throughout their life cycles, cells are subject to a variety of stresses that lead to a compromise between cell death and survival. Survival is partially provided by the cell proteostasis network, which consists of molecular chaperones, a ubiquitin-proteasome system of degradation and autophagy. The cooperation of these systems impacts the correct function of protein synthesis/modification/transport machinery starting from the adaption of nascent polypeptides to cellular overcrowding until the utilization of damaged or needless proteins. Eventually, aging cells, in parallel to the accumulation of flawed proteins, gradually lose their proteostasis mechanisms, and this loss leads to the degeneration of large cellular masses and to number of age-associated pathologies and ultimately death. In this review, we describe the function of proteostasis mechanisms with an emphasis on the possible associations between them. |
---|---|
AbstractList | Throughout their life cycles, cells are subject to a variety of stresses that lead to a compromise between cell death and survival. Survival is partially provided by the cell proteostasis network, which consists of molecular chaperones, a ubiquitin-proteasome system of degradation and autophagy. The cooperation of these systems impacts the correct function of protein synthesis/modification/transport machinery starting from the adaption of nascent polypeptides to cellular overcrowding until the utilization of damaged or needless proteins. Eventually, aging cells, in parallel to the accumulation of flawed proteins, gradually lose their proteostasis mechanisms, and this loss leads to the degeneration of large cellular masses and to number of age-associated pathologies and ultimately death. In this review, we describe the function of proteostasis mechanisms with an emphasis on the possible associations between them.Throughout their life cycles, cells are subject to a variety of stresses that lead to a compromise between cell death and survival. Survival is partially provided by the cell proteostasis network, which consists of molecular chaperones, a ubiquitin-proteasome system of degradation and autophagy. The cooperation of these systems impacts the correct function of protein synthesis/modification/transport machinery starting from the adaption of nascent polypeptides to cellular overcrowding until the utilization of damaged or needless proteins. Eventually, aging cells, in parallel to the accumulation of flawed proteins, gradually lose their proteostasis mechanisms, and this loss leads to the degeneration of large cellular masses and to number of age-associated pathologies and ultimately death. In this review, we describe the function of proteostasis mechanisms with an emphasis on the possible associations between them. Throughout their life cycles, cells are subject to a variety of stresses that lead to a compromise between cell death and survival. Survival is partially provided by the cell proteostasis network, which consists of molecular chaperones, a ubiquitin-proteasome system of degradation and autophagy. The cooperation of these systems impacts the correct function of protein synthesis/modification/transport machinery starting from the adaption of nascent polypeptides to cellular overcrowding until the utilization of damaged or needless proteins. Eventually, aging cells, in parallel to the accumulation of flawed proteins, gradually lose their proteostasis mechanisms, and this loss leads to the degeneration of large cellular masses and to number of age-associated pathologies and ultimately death. In this review, we describe the function of proteostasis mechanisms with an emphasis on the possible associations between them. |
Author | Margulis, Boris Tsimokha, Anna Guzhova, Irina Zubova, Svetlana |
AuthorAffiliation | Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; margulis@incras.ru (B.M.); atsimokha@incras.ru (A.T.); egretta_julia@mail.ru (S.Z.) |
AuthorAffiliation_xml | – name: Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; margulis@incras.ru (B.M.); atsimokha@incras.ru (A.T.); egretta_julia@mail.ru (S.Z.) |
Author_xml | – sequence: 1 givenname: Boris surname: Margulis fullname: Margulis, Boris – sequence: 2 givenname: Anna surname: Tsimokha fullname: Tsimokha, Anna – sequence: 3 givenname: Svetlana surname: Zubova fullname: Zubova, Svetlana – sequence: 4 givenname: Irina orcidid: 0000-0002-8775-7713 surname: Guzhova fullname: Guzhova, Irina |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32456366$$D View this record in MEDLINE/PubMed |
BookMark | eNptks1rFDEUwINUbK29eZYBLz24mu-ZXISyqC20KKI3IWSSN7NZZpM1yQj97812W9kWc8nH-70fL3l5iY5CDIDQa4LfM6bwBwvTlBUWhOHuGTqhuGULzrE6Olgfo7Oc17iOjkiCxQt0zCgXkkl5gn7dxAnsPJnULFdmC6n6c2OCa76lWCBOt8Xb5sbYlQ-QfI19h7HiBfaAD81l3EDMxWSfm7q9GH0Ym-WusFfo-WCmDGf38yn6-fnTj-Xl4vrrl6vlxfXC8rYri8EJyQnBSoIVMPRESkzF4EAY4VTfM85N3ylhWmmhJUwJ4Ea1lLlW9tQxdoqu9l4XzVpvk9-YdKuj8fruIKZRm1TvMYF2gwDD-5b2puXc4p5zJ6VkXGI-AHbV9XHv2s79BpyFUJKZHkkfR4Jf6TH-0S1VhApeBef3ghR_z5CL3vi865MJEOesKa-NIYxiUtG3T9B1nFOoT3VHSa4k6Sr15rCif6U8NLECdA_YFHNOMGjriyk-7gr0kyZY7z6LPvwsNendk6QH73_xvx8MwUc |
CitedBy_id | crossref_primary_10_3390_cells11111772 crossref_primary_10_31857_S0041377123030100 crossref_primary_10_1007_s10555_023_10085_3 crossref_primary_10_3390_cells13242101 crossref_primary_10_1016_j_crstbi_2022_11_002 crossref_primary_10_3390_ijms25115608 crossref_primary_10_1093_dnares_dsae031 crossref_primary_10_3390_nu13082843 crossref_primary_10_1002_2211_5463_13049 crossref_primary_10_1111_acel_13834 crossref_primary_10_3390_ph15080923 crossref_primary_10_14336_AD_2021_1213 crossref_primary_10_3390_ijms23020649 crossref_primary_10_1016_j_mad_2021_111430 crossref_primary_10_18632_aging_205109 crossref_primary_10_1134_S1990519X23050139 crossref_primary_10_1016_j_jbc_2021_100338 crossref_primary_10_31857_S0041377123040090 crossref_primary_10_1186_s12979_022_00274_z crossref_primary_10_3389_fragi_2022_861686 crossref_primary_10_1134_S1990519X23060093 crossref_primary_10_3390_ijms25169090 crossref_primary_10_1134_S0026893321050022 crossref_primary_10_1134_S1062360422060091 crossref_primary_10_3390_molecules27248950 crossref_primary_10_1007_s11033_021_06744_9 crossref_primary_10_1039_D3NR06044F crossref_primary_10_3390_cells14030222 crossref_primary_10_3390_ijms21186647 crossref_primary_10_1016_j_mam_2022_101157 crossref_primary_10_1016_j_ejmech_2021_113577 |
Cites_doi | 10.1242/jcs.132605 10.1038/s41418-019-0480-9 10.1556/2060.105.2018.3.20 10.1111/acel.12446 10.1091/mbc.e03-12-0893 10.3389/fnmol.2017.00177 10.1080/15548627.2019.1603545 10.1016/j.cell.2018.04.028 10.1007/s12192-017-0787-8 10.1074/jbc.M301048200 10.1379/CSC-119R.1 10.1074/jbc.RA119.011280 10.1016/j.exer.2006.12.002 10.1006/excr.1998.4069 10.1007/s12192-017-0765-1 10.1096/fj.04-2578fje 10.1146/annurev-biochem-060614-033955 10.1016/j.cell.2005.11.007 10.1016/j.biocel.2007.01.002 10.1007/s12264-015-1543-7 10.1096/fj.06-6751com 10.1038/onc.2011.5 10.1016/j.abb.2003.10.010 10.15252/embj.201796697 10.1513/pats.200909-102JS 10.1016/j.mad.2005.01.008 10.1016/j.freeradbiomed.2011.06.015 10.1080/15548627.2016.1248018 10.3389/fmolb.2019.00030 10.1016/j.redox.2017.07.008 10.1016/S0306-4522(00)00067-1 10.3389/fnagi.2019.00049 10.1007/s00018-018-2836-6 10.1093/emboj/cdg529 10.1002/pmic.201900408 10.3390/ijms18112351 10.1128/MCB.00426-18 10.1093/hmg/ddu073 10.1379/1466-1268(2003)008<0303:CALBTC>2.0.CO;2 10.1016/j.jprot.2013.06.025 10.1016/j.cell.2013.05.039 10.1371/journal.pone.0017369 10.1006/abbi.2001.2663 10.1038/s41467-019-13540-4 10.1016/j.bbrc.2014.02.124 10.1016/j.jss.2005.09.019 10.1080/15548627.2020.1725404 10.1021/acs.jmedchem.9b00101 10.1096/fj.03-0164fje 10.1038/npp.2015.219 10.1038/s41467-019-14187-x 10.1016/S0531-5565(02)00134-1 10.1146/annurev-genet-111212-133232 10.1016/j.exger.2011.05.002 10.15252/embj.201796699 10.1128/MCB.02070-07 10.1093/emboj/19.21.5720 10.1038/onc.2010.171 10.1096/fj.03-0395fje 10.1002/path.2697 10.1126/science.273.5274.501 10.1016/S0047-6374(98)00052-9 10.4161/auto.5269 10.1016/j.bbadis.2018.09.001 10.1038/s41580-019-0101-y 10.1038/nature10604 10.1126/science.1083701 10.3389/fnmol.2016.00093 10.3390/cells3030674 10.1016/j.celrep.2014.09.042 10.1074/jbc.M002102200 10.1007/s10522-008-9135-9 10.1016/j.neulet.2010.01.049 10.1016/j.celrep.2016.12.033 10.1016/j.molcel.2015.05.030 10.1038/nature04723 10.1042/BCJ20160005 10.3390/ijms20184507 10.18632/aging.100613 10.18632/aging.100939 10.1093/emboj/18.21.5943 10.1093/emboj/cdg349 10.1016/j.tips.2014.09.001 10.1016/j.freeradbiomed.2011.08.001 10.1007/s00018-008-7535-2 10.1016/j.cell.2014.05.045 10.1016/j.celrep.2019.03.044 10.1038/nature05925 10.1007/s10522-018-9773-5 10.1016/j.molcel.2017.05.031 10.3390/ijms20246195 10.1016/j.cell.2012.06.031 10.1096/fj.04-3084fje 10.1038/s41467-018-03509-0 10.1074/jbc.273.35.22284 10.1016/j.tcb.2017.08.002 10.1038/sj.emboj.7601360 10.1002/mus.10094 10.1152/ajpregu.1991.260.4.R663 10.4161/auto.20649 10.1038/s41467-017-00314-z 10.1016/j.cell.2017.04.003 10.1002/1873-3468.12750 10.1038/s41580-018-0033-y 10.1242/jcs.210724 10.1016/j.exger.2016.03.015 10.1016/j.tibs.2013.08.001 10.1016/j.biocel.2012.04.010 10.1242/jcs.001073 10.1074/jbc.M413007200 10.1074/jbc.M506096200 10.1016/j.mad.2009.10.003 10.1007/978-981-15-0602-4_4 10.15252/embj.201489062 10.3389/fendo.2018.00778 10.1038/s41467-019-14164-4 10.1111/j.1474-9726.2008.00401.x 10.4161/auto.5618 10.1016/j.cell.2007.06.044 10.1038/emboj.2009.29 10.1146/annurev-biochem-060815-014922 10.1016/j.mad.2009.09.004 10.1379/1466-1268(2004)009<0049:MHSSSP>2.0.CO;2 10.1016/j.tem.2019.09.007 10.3390/ijms20225815 10.1089/ars.2011.4394 10.1016/S0531-5565(02)00128-6 10.1016/0197-4580(92)90088-F 10.1016/j.abb.2007.03.034 10.1523/JNEUROSCI.0699-18.2018 10.1007/s12192-018-0877-2 10.1371/journal.pone.0007719 10.1091/mbc.e07-10-1048 10.1038/jid.2010.383 10.1016/j.bbadis.2005.08.003 10.1016/j.abb.2004.05.006 10.1111/j.1471-4159.2004.02453.x 10.1016/S0014-5793(03)00582-9 10.20944/preprints201807.0137.v1 10.1016/j.bbamcr.2009.11.012 10.1155/2020/9369524 |
ContentType | Journal Article |
Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 by the authors. 2020 |
Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 by the authors. 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M7P P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 5PM DOA |
DOI | 10.3390/cells9051308 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Genetics Abstracts Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2073-4409 |
ExternalDocumentID | oai_doaj_org_article_df5ea4b72ba744c0b44d66634604fe0d PMC7291254 32456366 10_3390_cells9051308 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | 53G 5VS 8FE 8FH AADQD AAFWJ AAYXX ABDBF ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BBNVY BCNDV BENPR BHPHI CCPQU CITATION DIK EBD ESX GROUPED_DOAJ HCIFZ HYE IAO IHR KQ8 LK8 M48 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PROAC RPM CGR CUY CVF ECM EIF NPM PQGLB 8FD ABUWG AZQEC DWQXO FR3 GNUQQ P64 PKEHL PQEST PQQKQ PQUKI PRINS RC3 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c478t-fd56411096ec5efb166025fde5a5d9bb344ab895a76ce71395e4a9723d76b2d33 |
IEDL.DBID | DOA |
ISSN | 2073-4409 |
IngestDate | Wed Aug 27 01:31:58 EDT 2025 Thu Aug 21 18:18:19 EDT 2025 Fri Jul 11 08:44:23 EDT 2025 Fri Jul 25 11:56:44 EDT 2025 Mon Jul 21 06:09:41 EDT 2025 Tue Jul 01 01:06:03 EDT 2025 Thu Apr 24 22:59:25 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | autophagy aging molecular chaperones ubiquitin-proteasomal system |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c478t-fd56411096ec5efb166025fde5a5d9bb344ab895a76ce71395e4a9723d76b2d33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-8775-7713 |
OpenAccessLink | https://doaj.org/article/df5ea4b72ba744c0b44d66634604fe0d |
PMID | 32456366 |
PQID | 2407649618 |
PQPubID | 2032536 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_df5ea4b72ba744c0b44d66634604fe0d pubmedcentral_primary_oai_pubmedcentral_nih_gov_7291254 proquest_miscellaneous_2407313201 proquest_journals_2407649618 pubmed_primary_32456366 crossref_citationtrail_10_3390_cells9051308 crossref_primary_10_3390_cells9051308 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200524 |
PublicationDateYYYYMMDD | 2020-05-24 |
PublicationDate_xml | – month: 5 year: 2020 text: 20200524 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Cells (Basel, Switzerland) |
PublicationTitleAlternate | Cells |
PublicationYear | 2020 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Zoubeidi (ref_54) 2012; 44 Connell (ref_92) 2000; 3 Dasuri (ref_116) 2011; 51 Ling (ref_50) 2017; 8 ref_12 Hipp (ref_5) 2019; 20 Cuervo (ref_85) 2000; 275 Lechler (ref_28) 2017; 18 Wen (ref_57) 2004; 15 Mayer (ref_43) 2013; 38 Imai (ref_127) 2003; 22 McDonough (ref_142) 2003; 8 Kawamata (ref_63) 2008; 19 Heydari (ref_31) 1993; 13 Njomen (ref_120) 2019; 62 Hsu (ref_23) 2003; 300 Athonvarangkul (ref_70) 2015; 847 Sha (ref_145) 2017; 36 Huang (ref_109) 2000; 98 Vernace (ref_99) 2007; 21 Santagata (ref_19) 2014; 158 Tomita (ref_98) 2018; 39 Galluzzi (ref_59) 2017; 36 ref_24 Chondrogianni (ref_117) 2003; 278 Grune (ref_126) 2011; 51 Guo (ref_146) 2015; 31 ref_22 Nijman (ref_91) 2005; 123 Nardai (ref_38) 2002; 37 Arias (ref_78) 2015; 59 ref_27 Taylor (ref_123) 2005; 10 Bandyopadhyay (ref_77) 2008; 28 Aguilera (ref_72) 2013; 47 Kabbage (ref_150) 2008; 65 Kabeya (ref_66) 2000; 19 Pardue (ref_30) 1992; 13 Motosugi (ref_119) 2019; 6 Gamerdinger (ref_152) 2009; 28 Cuervo (ref_86) 2012; 8 Karvinen (ref_40) 2016; 79 ref_73 Komatsu (ref_132) 2006; 441 Aparicio (ref_130) 2020; 16 Scott (ref_96) 2015; 41 Meng (ref_14) 2011; 30 Shang (ref_93) 2014; 446 Han (ref_139) 2016; 15 Taldone (ref_44) 2014; 35 Yamaguchi (ref_55) 2007; 62 Behl (ref_151) 2017; 10 ref_147 Suzuki (ref_67) 2013; 126 Kaushik (ref_83) 2008; 445 Heydari (ref_25) 1998; 241 Vasilaki (ref_37) 2002; 25 Brehme (ref_42) 2014; 9 Papaevgeniou (ref_9) 2016; 1449 Oda (ref_13) 2018; 131 Arias (ref_80) 2019; 31 Njemini (ref_35) 2008; 7 Frakes (ref_10) 2017; 66 Kametaka (ref_61) 1998; 273 Lee (ref_39) 2011; 46 Takayama (ref_149) 2001; 3 Rajasekaran (ref_58) 2007; 130 Lizama (ref_148) 2018; 38 Piec (ref_41) 2005; 19 Sigmond (ref_68) 2008; 4 Zeng (ref_113) 2005; 126 Chondrogianni (ref_118) 2005; 280 Greussing (ref_107) 2011; 131 Carra (ref_53) 2017; 22 Dai (ref_143) 2003; 22 Chung (ref_36) 2006; 1762 Ferrington (ref_114) 2005; 19 Dues (ref_11) 2016; 8 Husom (ref_102) 2004; 421 Zheng (ref_88) 2017; 86 Khan (ref_94) 2019; 1865 Barna (ref_128) 2018; 75 Mendillo (ref_18) 2012; 150 McArdle (ref_47) 2003; 18 Li (ref_138) 2019; 1206 Bossola (ref_103) 2008; 9 Carvalho (ref_3) 2016; 1449 Xiao (ref_21) 1999; 18 Blasco (ref_2) 2013; 153 Cuervo (ref_76) 1996; 273 Breusing (ref_110) 2009; 130 Vihervaara (ref_16) 2014; 127 Dong (ref_81) 2020; 11 Cassidy (ref_71) 2020; 11 Petropoulos (ref_106) 2000; 55 Ho (ref_82) 2019; 16 Labbadia (ref_4) 2015; 84 Arrigo (ref_52) 2017; 22 Fimia (ref_64) 2007; 447 Dasuri (ref_111) 2009; 130 Kim (ref_134) 2007; 462 Bejarano (ref_74) 2010; 7 Gupte (ref_56) 2010; 472 Nezis (ref_133) 2012; 17 Kevei (ref_6) 2017; 591 Glick (ref_65) 2010; 221 Viteri (ref_104) 2004; 427 Sarbassov (ref_135) 2005; 280 Walker (ref_20) 2003; 17 Ding (ref_121) 2003; 546 Kapphahn (ref_112) 2007; 84 Suryadinata (ref_89) 2014; 3 Tawo (ref_95) 2017; 169 Tandara (ref_34) 2006; 132 Yang (ref_60) 2020; 27 Fonager (ref_33) 2002; 37 Dai (ref_137) 2014; 34 Watanabe (ref_129) 2016; 13 Beedholm (ref_122) 2004; 9 Hansen (ref_8) 2018; 19 Ullah (ref_144) 2020; 295 Hwang (ref_97) 2007; 62 Bozaykut (ref_125) 2020; 2020 Echeverria (ref_46) 2010; 1803 Piskovatska (ref_140) 2018; 20 Prodromou (ref_48) 2016; 473 Carnemolla (ref_26) 2014; 23 Bulteau (ref_108) 2002; 397 McCormick (ref_153) 2018; 105 Bozaykut (ref_15) 2013; 89 ref_45 Loeffler (ref_75) 2019; 11 Kirisako (ref_90) 2006; 25 Andersson (ref_101) 2013; 5 Kiffin (ref_84) 2007; 120 Li (ref_17) 2017; 27 Blake (ref_29) 1991; 260 Neckers (ref_49) 2018; 23 LeComte (ref_124) 2010; 29 Joshi (ref_141) 2016; 9 Lopez (ref_32) 1998; 104 Koren (ref_87) 2018; 173 Su (ref_136) 2016; 18 Janssens (ref_51) 2019; 27 Kim (ref_62) 2011; 13 Alfaro (ref_79) 2019; 9 Kudryashova (ref_1) 2020; 20 Thibaudeau (ref_100) 2018; 9 Korovila (ref_7) 2017; 13 Simonsen (ref_69) 2007; 4 Kumsta (ref_131) 2019; 10 Ponnappan (ref_105) 2007; 39 Kabashi (ref_115) 2004; 89 |
References_xml | – volume: 127 start-page: 261 year: 2014 ident: ref_16 article-title: HSF1 at a glance publication-title: J. Cell Sci. doi: 10.1242/jcs.132605 – volume: 27 start-page: 858 year: 2020 ident: ref_60 article-title: Autophagy and disease: Unanswered questions publication-title: Cell Death Differ. doi: 10.1038/s41418-019-0480-9 – volume: 105 start-page: 247 year: 2018 ident: ref_153 article-title: The effect of aging on the autophagic and heat shock response in human peripheral blood mononuclear cells publication-title: Physiol. Int. doi: 10.1556/2060.105.2018.3.20 – volume: 1449 start-page: 1 year: 2016 ident: ref_9 article-title: UPS Activation in the Battle Against Aging and Aggregation-Related Diseases: An Extended Review publication-title: Adv. Struct. Saf. Stud. – volume: 15 start-page: 416 year: 2016 ident: ref_139 article-title: AMPK activation protects cells from oxidative stress-induced senescence via autophagic flux restoration and intracellular NAD + elevation publication-title: Aging Cell doi: 10.1111/acel.12446 – volume: 15 start-page: 2335 year: 2004 ident: ref_57 article-title: Desmin Aggregate Formation by R120G αB-Crystallin Is Caused by Altered Filament Interactions and Is Dependent upon Network Status in Cells publication-title: Mol. Boil. Cell doi: 10.1091/mbc.e03-12-0893 – volume: 10 start-page: 177 year: 2017 ident: ref_151 article-title: The Role of the Multifunctional BAG3 Protein in Cellular Protein Quality Control and in Disease publication-title: Front. Mol. Neurosci. doi: 10.3389/fnmol.2017.00177 – volume: 16 start-page: 347 year: 2019 ident: ref_82 article-title: Age-dependent accumulation of oligomeric SNCA/α-synuclein from impaired degradation in mutant LRRK2 knockin mouse model of Parkinson disease: Role for therapeutic activation of chaperone-mediated autophagy (CMA) publication-title: Autophagy doi: 10.1080/15548627.2019.1603545 – volume: 173 start-page: 1622 year: 2018 ident: ref_87 article-title: The Eukaryotic Proteome Is Shaped by E3 Ubiquitin Ligases Targeting C-Terminal Degrons publication-title: Cell doi: 10.1016/j.cell.2018.04.028 – volume: 22 start-page: 601 year: 2017 ident: ref_53 article-title: The growing world of small heat shock proteins: From structure to functions publication-title: Cell Stress Chaperones doi: 10.1007/s12192-017-0787-8 – volume: 278 start-page: 28026 year: 2003 ident: ref_117 article-title: Central Role of the Proteasome in Senescence and Survival of Human Fibroblasts publication-title: J. Boil. Chem. doi: 10.1074/jbc.M301048200 – volume: 10 start-page: 230 year: 2005 ident: ref_123 article-title: Proteasome activity or expression is not altered by activation of the heat shock transcription factor Hsf1 in cultured fibroblasts or myoblasts publication-title: Cell Stress Chaperones doi: 10.1379/CSC-119R.1 – volume: 126 start-page: 2534 year: 2013 ident: ref_67 article-title: Fine mapping of autophagy-related proteins during autophagosome formation in Saccharomyces cerevisiae publication-title: J. Cell Sci. – volume: 295 start-page: 4696 year: 2020 ident: ref_144 article-title: The E3 ubiquitin ligase STUB1 attenuates cell senescence by promoting the ubiquitination and degradation of the core circadian regulator BMAL1 publication-title: J. Boil. Chem. doi: 10.1074/jbc.RA119.011280 – volume: 84 start-page: 646 year: 2007 ident: ref_112 article-title: Age-dependent inhibition of proteasome chymotrypsin-like activity in the retina publication-title: Exp. Eye Res. doi: 10.1016/j.exer.2006.12.002 – volume: 241 start-page: 404 year: 1998 ident: ref_25 article-title: The Expression of Heat Shock Protein 70 Decreases with Cellular Senescencein Vitroand in Cells Derived from Young and Old Human Subjects publication-title: Exp. Cell Res. doi: 10.1006/excr.1998.4069 – volume: 22 start-page: 517 year: 2017 ident: ref_52 article-title: Mammalian HspB1 (Hsp27) is a molecular sensor linked to the physiology and environment of the cell publication-title: Cell Stress Chaperones doi: 10.1007/s12192-017-0765-1 – volume: 19 start-page: 1 year: 2005 ident: ref_114 article-title: Altered proteasome structure, function, and oxidation in aged muscle publication-title: FASEB J. doi: 10.1096/fj.04-2578fje – volume: 84 start-page: 435 year: 2015 ident: ref_4 article-title: The biology of proteostasis in aging and disease publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-060614-033955 – volume: 123 start-page: 773 year: 2005 ident: ref_91 article-title: A Genomic and Functional Inventory of Deubiquitinating Enzymes publication-title: Cell doi: 10.1016/j.cell.2005.11.007 – volume: 39 start-page: 799 year: 2007 ident: ref_105 article-title: Lower expression of catalytic and structural subunits of the proteasome contributes to decreased proteolysis in peripheral blood T lymphocytes during aging publication-title: Int. J. Biochem. Cell Boil. doi: 10.1016/j.biocel.2007.01.002 – volume: 31 start-page: 469 year: 2015 ident: ref_146 article-title: Regulation of autophagic flux by CHIP publication-title: Neurosci. Bull. doi: 10.1007/s12264-015-1543-7 – volume: 21 start-page: 2672 year: 2007 ident: ref_99 article-title: Aging perturbs 26S proteasome assembly in Drosophila melanogaster publication-title: FASEB J. doi: 10.1096/fj.06-6751com – volume: 30 start-page: 2836 year: 2011 ident: ref_14 article-title: Heat shock protein Hsp72 plays an essential role in Her2-induced mammary tumorigenesis publication-title: Oncogene doi: 10.1038/onc.2011.5 – volume: 421 start-page: 67 year: 2004 ident: ref_102 article-title: Altered proteasome function and subunit composition in aged muscle publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2003.10.010 – volume: 36 start-page: 1811 year: 2017 ident: ref_59 article-title: Molecular definitions of autophagy and related processes publication-title: Embo J. doi: 10.15252/embj.201796697 – volume: 7 start-page: 29 year: 2010 ident: ref_74 article-title: Chaperone-Mediated Autophagy publication-title: Proc. Am. Thorac. Soc. doi: 10.1513/pats.200909-102JS – volume: 126 start-page: 760 year: 2005 ident: ref_113 article-title: Proteasomal activity in brain differs between species and brain regions and changes with age publication-title: Mech. Ageing Dev. doi: 10.1016/j.mad.2005.01.008 – volume: 51 start-page: 1355 year: 2011 ident: ref_126 article-title: HSP70 mediates dissociation and reassociation of the 26S proteasome during adaptation to oxidative stress publication-title: Free Radic. Boil. Med. doi: 10.1016/j.freeradbiomed.2011.06.015 – volume: 13 start-page: 133 year: 2016 ident: ref_129 article-title: HSF1 stress response pathway regulates autophagy receptor SQSTM1/p62-associated proteostasis publication-title: Autophagy doi: 10.1080/15548627.2016.1248018 – volume: 6 start-page: 30 year: 2019 ident: ref_119 article-title: Dynamic Regulation of Proteasome Expression publication-title: Front. Mol. Biosci. doi: 10.3389/fmolb.2019.00030 – volume: 13 start-page: 550 year: 2017 ident: ref_7 article-title: Proteostasis, oxidative stress and aging publication-title: Redox Boil. doi: 10.1016/j.redox.2017.07.008 – volume: 98 start-page: 149 year: 2000 ident: ref_109 article-title: Decreased levels of proteasome activity and proteasome expression in aging spinal cord publication-title: Neuroscience doi: 10.1016/S0306-4522(00)00067-1 – volume: 11 start-page: 49 year: 2019 ident: ref_75 article-title: Influence of Normal Aging on Brain Autophagy: A Complex Scenario publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2019.00049 – volume: 13 start-page: 2909 year: 1993 ident: ref_31 article-title: Expression of heat shock protein 70 is altered by age and diet at the level of transcription publication-title: Mol. Cell. Boil. – volume: 75 start-page: 2897 year: 2018 ident: ref_128 article-title: Roles of heat shock factor 1 beyond the heat shock response publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-018-2836-6 – volume: 22 start-page: 5446 year: 2003 ident: ref_143 article-title: CHIP activates HSF1 and confers protection against apoptosis and cellular stress publication-title: Embo J. doi: 10.1093/emboj/cdg529 – volume: 20 start-page: e1900408 year: 2020 ident: ref_1 article-title: Aging Biomarkers: From Functional Tests to Multi-Omics Approaches publication-title: Proteomics doi: 10.1002/pmic.201900408 – ident: ref_73 doi: 10.3390/ijms18112351 – volume: 39 start-page: e00426-18 year: 2018 ident: ref_98 article-title: Specific Modification of Aged Proteasomes Revealed by Tag-Exchangeable Knock-In Mice publication-title: Mol. Cell. Boil. doi: 10.1128/MCB.00426-18 – volume: 1449 start-page: 71 year: 2016 ident: ref_3 article-title: Review and Literature Mining on Proteostasis Factors and Cancer publication-title: Adv. Struct. Saf. Stud. – volume: 23 start-page: 3641 year: 2014 ident: ref_26 article-title: Contesting the dogma of an age-related heat shock response impairment: Implications for cardiac-specific age-related disorders publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddu073 – volume: 8 start-page: 303 year: 2003 ident: ref_142 article-title: CHIP: A link between the chaperone and proteasome systems publication-title: Cell Stress Chaperones doi: 10.1379/1466-1268(2003)008<0303:CALBTC>2.0.CO;2 – volume: 89 start-page: 238 year: 2013 ident: ref_15 article-title: The role of heat stress on the age related protein carbonylation publication-title: J. Proteom. doi: 10.1016/j.jprot.2013.06.025 – volume: 153 start-page: 1194 year: 2013 ident: ref_2 article-title: The Hallmarks of Aging publication-title: Cell doi: 10.1016/j.cell.2013.05.039 – ident: ref_24 doi: 10.1371/journal.pone.0017369 – volume: 397 start-page: 298 year: 2002 ident: ref_108 article-title: Age-Dependent Declines in Proteasome Activity in the Heart publication-title: Arch. Biochem. Biophys. doi: 10.1006/abbi.2001.2663 – volume: 10 start-page: 1 year: 2019 ident: ref_131 article-title: The autophagy receptor p62/SQST-1 promotes proteostasis and longevity in C. elegans by inducing autophagy publication-title: Nat. Commun. doi: 10.1038/s41467-019-13540-4 – volume: 446 start-page: 387 year: 2014 ident: ref_93 article-title: Hsp70 and Hsp90 oppositely regulate TGF-β signaling through CHIP/Stub1 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2014.02.124 – volume: 132 start-page: 32 year: 2006 ident: ref_34 article-title: Age Effect on HSP70: Decreased Resistance to Ischemic and Oxidative Stress in HDF publication-title: J. Surg. Res. doi: 10.1016/j.jss.2005.09.019 – volume: 16 start-page: 772 year: 2020 ident: ref_130 article-title: The selective autophagy receptor SQSTM1/p62 improves lifespan and proteostasis in an evolutionarily conserved manner publication-title: Autophagy doi: 10.1080/15548627.2020.1725404 – volume: 62 start-page: 6469 year: 2019 ident: ref_120 article-title: Proteasome Activation as a New Therapeutic Approach to Target Proteotoxic Disorders publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.9b00101 – volume: 17 start-page: 1 year: 2003 ident: ref_20 article-title: Heat shock factor functions at the convergence of the stress response and developmental pathways in Caenorhabditis elegans publication-title: FASEB J. doi: 10.1096/fj.03-0164fje – volume: 41 start-page: 896 year: 2015 ident: ref_96 article-title: Protein Expression of Proteasome Subunits in Elderly Patients with Schizophrenia publication-title: Neuropsychopharmacology doi: 10.1038/npp.2015.219 – volume: 11 start-page: 307 year: 2020 ident: ref_71 article-title: Temporal inhibition of autophagy reveals segmental reversal of ageing with increased cancer risk publication-title: Nat. Commun. doi: 10.1038/s41467-019-14187-x – volume: 37 start-page: 1257 year: 2002 ident: ref_38 article-title: Chaperone function and chaperone overload in the aged. A preliminary analysis publication-title: Exp. Gerontol. doi: 10.1016/S0531-5565(02)00134-1 – volume: 47 start-page: 1 year: 2013 ident: ref_72 article-title: Causes of Genome Instability publication-title: Annu. Rev. Genet. doi: 10.1146/annurev-genet-111212-133232 – volume: 46 start-page: 768 year: 2011 ident: ref_39 article-title: Heat shock protein 90 and its cochaperone, p23, are markedly increased in the aged gerbil hippocampus publication-title: Exp. Gerontol. doi: 10.1016/j.exger.2011.05.002 – volume: 36 start-page: 2544 year: 2017 ident: ref_145 article-title: STUB 1 regulates TFEB -induced autophagy-lysosome pathway publication-title: Embo J. doi: 10.15252/embj.201796699 – volume: 28 start-page: 5747 year: 2008 ident: ref_77 article-title: The Chaperone-Mediated Autophagy Receptor Organizes in Dynamic Protein Complexes at the Lysosomal Membrane publication-title: Mol. Cell. Boil. doi: 10.1128/MCB.02070-07 – volume: 19 start-page: 5720 year: 2000 ident: ref_66 article-title: LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing publication-title: Embo J. doi: 10.1093/emboj/19.21.5720 – volume: 29 start-page: 4216 year: 2010 ident: ref_124 article-title: Roles of heat shock factor 1 and 2 in response to proteasome inhibition: Consequence on p53 stability publication-title: Oncogene doi: 10.1038/onc.2010.171 – volume: 18 start-page: 1 year: 2003 ident: ref_47 article-title: Overexpression of HSP70 in mouse skeletal muscle protects against muscle damage and age-related muscle dysfunction publication-title: FASEB J. doi: 10.1096/fj.03-0395fje – volume: 221 start-page: 3 year: 2010 ident: ref_65 article-title: Autophagy: Cellular and molecular mechanisms publication-title: J. Pathol. doi: 10.1002/path.2697 – volume: 273 start-page: 501 year: 1996 ident: ref_76 article-title: A Receptor for the Selective Uptake and Degradation of Proteins by Lysosomes publication-title: Science doi: 10.1126/science.273.5274.501 – volume: 104 start-page: 59 year: 1998 ident: ref_32 article-title: Effect of age and dietary restriction on expression of heat shock protein 70 in rat alveolar macrophages publication-title: Mech. Ageing Dev. doi: 10.1016/S0047-6374(98)00052-9 – volume: 4 start-page: 176 year: 2007 ident: ref_69 article-title: Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult Drosophila publication-title: Autophagy doi: 10.4161/auto.5269 – volume: 1865 start-page: 1745 year: 2019 ident: ref_94 article-title: Conserved signaling pathways genetically associated with longevity across the species publication-title: Biochim. Et Biophys. Acta (BBA) Mol. Basis Dis. doi: 10.1016/j.bbadis.2018.09.001 – volume: 20 start-page: 421 year: 2019 ident: ref_5 article-title: The proteostasis network and its decline in ageing publication-title: Nat. Rev. Mol. Cell Boil. doi: 10.1038/s41580-019-0101-y – volume: 13 start-page: 132 year: 2011 ident: ref_62 article-title: AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1 publication-title: Nature doi: 10.1038/nature10604 – volume: 300 start-page: 1142 year: 2003 ident: ref_23 article-title: Regulation of Aging and Age-Related Disease by DAF-16 and Heat-Shock Factor publication-title: Science doi: 10.1126/science.1083701 – volume: 9 start-page: 5115 year: 2016 ident: ref_141 article-title: A Decade of Boon or Burden: What Has the CHIP Ever Done for Cellular Protein Quality Control Mechanism Implicated in Neurodegeneration and Aging? publication-title: Front. Mol. Neurosci. doi: 10.3389/fnmol.2016.00093 – volume: 445 start-page: 227 year: 2008 ident: ref_83 article-title: Chaperone-Mediated Autophagy publication-title: Breast Cancer – volume: 3 start-page: 674 year: 2014 ident: ref_89 article-title: Mechanisms of Generating Polyubiquitin Chains of Different Topology publication-title: Cells doi: 10.3390/cells3030674 – volume: 9 start-page: 1135 year: 2014 ident: ref_42 article-title: A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.09.042 – volume: 275 start-page: 31505 year: 2000 ident: ref_85 article-title: Age-related Decline in Chaperone-mediated Autophagy publication-title: J. Boil. Chem. doi: 10.1074/jbc.M002102200 – volume: 9 start-page: 261 year: 2008 ident: ref_103 article-title: Proteasome activities in the rectus abdominis muscle of young and older individuals publication-title: Biogerontology doi: 10.1007/s10522-008-9135-9 – volume: 472 start-page: 90 year: 2010 ident: ref_56 article-title: Age-related changes in HSP25 expression in basal ganglia and cortex of F344/BN rats publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2010.01.049 – volume: 18 start-page: 454 year: 2017 ident: ref_28 article-title: Reduced Insulin/IGF-1 Signaling Restores the Dynamic Properties of Key Stress Granule Proteins during Aging publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.12.033 – volume: 59 start-page: 270 year: 2015 ident: ref_78 article-title: Lysosomal mTORC2/PHLPP1/Akt Regulate Chaperone-Mediated Autophagy publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.05.030 – volume: 441 start-page: 880 year: 2006 ident: ref_132 article-title: Loss of autophagy in the central nervous system causes neurodegeneration in mice publication-title: Nature doi: 10.1038/nature04723 – volume: 473 start-page: 2439 year: 2016 ident: ref_48 article-title: Mechanisms of Hsp90 regulation publication-title: Biochem. J. doi: 10.1042/BCJ20160005 – ident: ref_12 doi: 10.3390/ijms20184507 – volume: 5 start-page: 802 year: 2013 ident: ref_101 article-title: Enhancing protein disaggregation restores proteasome activity in aged cells publication-title: Aging doi: 10.18632/aging.100613 – volume: 3 start-page: E237 year: 2001 ident: ref_149 article-title: Molecular chaperone targeting and regulation by BAG family proteins publication-title: Nature – volume: 8 start-page: 777 year: 2016 ident: ref_11 article-title: Aging causes decreased resistance to multiple stresses and a failure to activate specific stress response pathways publication-title: Aging doi: 10.18632/aging.100939 – volume: 18 start-page: 5943 year: 1999 ident: ref_21 article-title: HSF1 is required for extra-embryonic development, postnatal growth and protection during inflammatory responses in mice publication-title: Embo J. doi: 10.1093/emboj/18.21.5943 – volume: 22 start-page: 3557 year: 2003 ident: ref_127 article-title: The molecular chaperone Hsp90 plays a role in the assembly and maintenance of the 26S proteasome publication-title: Embo J. doi: 10.1093/emboj/cdg349 – volume: 55 start-page: B220 year: 2000 ident: ref_106 article-title: Increase of oxidatively modified protein is associated with a decrease of proteasome activity and content in aging epidermal cells publication-title: J. Gerontol. Ser. A Boil. Sci. Med. Sci. – volume: 35 start-page: 592 year: 2014 ident: ref_44 article-title: Selective targeting of the stress chaperome as a therapeutic strategy publication-title: Trends Pharmacol. Sci. doi: 10.1016/j.tips.2014.09.001 – volume: 51 start-page: 1727 year: 2011 ident: ref_116 article-title: Proteasome alterations during adipose differentiation and aging: Links to impaired adipocyte differentiation and development of oxidative stress publication-title: Free Radic. Boil. Med. doi: 10.1016/j.freeradbiomed.2011.08.001 – volume: 65 start-page: 1390 year: 2008 ident: ref_150 article-title: The BAG proteins: A ubiquitous family of chaperone regulators publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-008-7535-2 – volume: 158 start-page: 564 year: 2014 ident: ref_19 article-title: The reprogramming of tumor stroma by HSF1 is a potent enabler of malignancy publication-title: Cell doi: 10.1016/j.cell.2014.05.045 – volume: 27 start-page: 467 year: 2019 ident: ref_51 article-title: Transcriptomics-Based Screening Identifies Pharmacological Inhibition of Hsp90 as a Means to Defer Aging publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.03.044 – volume: 447 start-page: 1121 year: 2007 ident: ref_64 article-title: Ambra1 regulates autophagy and development of the nervous system publication-title: Nature doi: 10.1038/nature05925 – volume: 20 start-page: 33 year: 2018 ident: ref_140 article-title: Metformin as a geroprotector: Experimental and clinical evidence publication-title: Biogerontology doi: 10.1007/s10522-018-9773-5 – volume: 66 start-page: 761 year: 2017 ident: ref_10 article-title: The UPR ER: Sensor and Coordinator of Organismal Homeostasis publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.05.031 – ident: ref_45 doi: 10.3390/ijms20246195 – volume: 150 start-page: 549 year: 2012 ident: ref_18 article-title: HSF1 Drives a Transcriptional Program Distinct from Heat Shock to Support Highly Malignant Human Cancers publication-title: Cell doi: 10.1016/j.cell.2012.06.031 – volume: 19 start-page: 1143 year: 2005 ident: ref_41 article-title: Differential proteome analysis of aging in rat skeletal muscle publication-title: FASEB J. doi: 10.1096/fj.04-3084fje – volume: 9 start-page: 1097 year: 2018 ident: ref_100 article-title: A common mechanism of proteasome impairment by neurodegenerative disease-associated oligomers publication-title: Nat. Commun. doi: 10.1038/s41467-018-03509-0 – volume: 273 start-page: 22284 year: 1998 ident: ref_61 article-title: Apg14p and Apg6/Vps30p form a protein complex essential for autophagy in the yeast, Saccharomyces cerevisiae publication-title: J. Biol. Chem. doi: 10.1074/jbc.273.35.22284 – volume: 27 start-page: 895 year: 2017 ident: ref_17 article-title: Rethinking HSF1 in Stress, Development, and Organismal Health publication-title: Trends Cell Boil. doi: 10.1016/j.tcb.2017.08.002 – volume: 847 start-page: 73 year: 2015 ident: ref_70 article-title: Autophagy and aging publication-title: Single Mol. Single Cell Seq. – volume: 25 start-page: 4877 year: 2006 ident: ref_90 article-title: A ubiquitin ligase complex assembles linear polyubiquitin chains publication-title: Embo J. doi: 10.1038/sj.emboj.7601360 – volume: 25 start-page: 902 year: 2002 ident: ref_37 article-title: Attenuated HSP70 response in skeletal muscle of aged rats following contractile activity publication-title: Muscle Nerve doi: 10.1002/mus.10094 – volume: 260 start-page: R663 year: 1991 ident: ref_29 article-title: Concomitant decline in heat-induced hyperthermia and HSP70 mRNA expression in aged rats publication-title: Am. J. Physiol. Integr. Comp. Physiol. doi: 10.1152/ajpregu.1991.260.4.R663 – volume: 8 start-page: 1152 year: 2012 ident: ref_86 article-title: Dietary lipids and aging compromise chaperone-mediated autophagy by similar mechanisms publication-title: Autophagy doi: 10.4161/auto.20649 – volume: 8 start-page: 422 year: 2017 ident: ref_50 article-title: Identification of HSP90 inhibitors as a novel class of senolytics publication-title: Nat. Commun. doi: 10.1038/s41467-017-00314-z – volume: 169 start-page: 470 year: 2017 ident: ref_95 article-title: The Ubiquitin Ligase CHIP Integrates Proteostasis and Aging by Regulation of Insulin Receptor Turnover publication-title: Cell doi: 10.1016/j.cell.2017.04.003 – volume: 591 start-page: 2616 year: 2017 ident: ref_6 article-title: Repair or destruction-an intimate liaison between ubiquitin ligases and molecular chaperones in proteostasis publication-title: FEBS Lett. doi: 10.1002/1873-3468.12750 – volume: 19 start-page: 579 year: 2018 ident: ref_8 article-title: Autophagy as a promoter of longevity: Insights from model organisms publication-title: Nat. Rev. Mol. Cell Boil. doi: 10.1038/s41580-018-0033-y – volume: 131 start-page: jcs210724 year: 2018 ident: ref_13 article-title: Acute HSF1 depletion induces cellular senescence through the MDM2-p53-p21 pathway in human diploid fibroblasts publication-title: J. Cell Sci. doi: 10.1242/jcs.210724 – volume: 79 start-page: 46 year: 2016 ident: ref_40 article-title: Effects of intrinsic aerobic capacity, aging and voluntary running on skeletal muscle sirtuins and heat shock proteins publication-title: Exp. Gerontol. doi: 10.1016/j.exger.2016.03.015 – volume: 38 start-page: 507 year: 2013 ident: ref_43 article-title: Hsp70 chaperone dynamics and molecular mechanism publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2013.08.001 – volume: 44 start-page: 1646 year: 2012 ident: ref_54 article-title: Small heat shock proteins in cancer therapy and prognosis publication-title: Int. J. Biochem. Cell Boil. doi: 10.1016/j.biocel.2012.04.010 – volume: 120 start-page: 782 year: 2007 ident: ref_84 article-title: Altered dynamics of the lysosomal receptor for chaperone-mediated autophagy with age publication-title: J. Cell Sci. doi: 10.1242/jcs.001073 – volume: 280 start-page: 11840 year: 2005 ident: ref_118 article-title: Overexpression of Proteasome 5 Assembled Subunit Increases the Amount of Proteasome and Confers Ameliorated Response to Oxidative Stress and Higher Survival Rates publication-title: J. Boil. Chem. doi: 10.1074/jbc.M413007200 – volume: 18 start-page: 527 year: 2016 ident: ref_136 article-title: HSF1 critically attunes proteotoxic stress sensing by mTORC1 to combat stress and promote growth publication-title: Nature – volume: 280 start-page: 39505 year: 2005 ident: ref_135 article-title: Redox Regulation of the Nutrient-sensitive Raptor-mTOR Pathway and Complex publication-title: J. Boil. Chem. doi: 10.1074/jbc.M506096200 – volume: 130 start-page: 777 year: 2009 ident: ref_111 article-title: Aging and dietary restriction alter proteasome biogenesis and composition in the brain and liver publication-title: Mech. Ageing Dev. doi: 10.1016/j.mad.2009.10.003 – volume: 1206 start-page: 85 year: 2019 ident: ref_138 article-title: AMPK and Autophagy publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-981-15-0602-4_4 – volume: 34 start-page: 275 year: 2014 ident: ref_137 article-title: Suppression of the HSF 1-mediated proteotoxic stress response by the metabolic stress sensor AMPK publication-title: Embo J. doi: 10.15252/embj.201489062 – volume: 9 start-page: 778 year: 2019 ident: ref_79 article-title: Chaperone Mediated Autophagy in the Crosstalk of Neurodegenerative Diseases and Metabolic Disorders publication-title: Front. Endocrinol. doi: 10.3389/fendo.2018.00778 – volume: 11 start-page: 645 year: 2020 ident: ref_81 article-title: Monitoring spatiotemporal changes in chaperone-mediated autophagy in vivo publication-title: Nat. Commun. doi: 10.1038/s41467-019-14164-4 – volume: 7 start-page: 498 year: 2008 ident: ref_35 article-title: Aging-related differences in basal heatshock protein 70 levels in lymphocytes are linked to altered frequencies of lymphocyte subsets publication-title: Aging Cell doi: 10.1111/j.1474-9726.2008.00401.x – volume: 4 start-page: 330 year: 2008 ident: ref_68 article-title: Longevity pathways converge on autophagy genes to regulate life span in Caenorhabditis elegans publication-title: Autophagy doi: 10.4161/auto.5618 – volume: 130 start-page: 427 year: 2007 ident: ref_58 article-title: Human αB-Crystallin Mutation Causes Oxido-Reductive Stress and Protein Aggregation Cardiomyopathy in Mice publication-title: Cell doi: 10.1016/j.cell.2007.06.044 – volume: 28 start-page: 889 year: 2009 ident: ref_152 article-title: Protein quality control during aging involves recruitment of the macroautophagy pathway by BAG3 publication-title: Embo J. doi: 10.1038/emboj.2009.29 – volume: 62 start-page: 490 year: 2007 ident: ref_97 article-title: Age-Associated Decrease in Proteasome Content and Activities in Human Dermal Fibroblasts: Restoration of Normal Level of Proteasome Subunits Reduces Aging Markers in Fibroblasts From Elderly Persons publication-title: J. Gerontol. Ser. A Boil. Sci. Med. Sci. – volume: 86 start-page: 129 year: 2017 ident: ref_88 article-title: Ubiquitin Ligases: Structure, Function, and Regulation publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-060815-014922 – volume: 130 start-page: 748 year: 2009 ident: ref_110 article-title: Inverse correlation of protein oxidation and proteasome activity in liver and lung publication-title: Mech. Ageing Dev. doi: 10.1016/j.mad.2009.09.004 – volume: 9 start-page: 49 year: 2004 ident: ref_122 article-title: Mild heat stress stimulates 20S proteasome and its 11S activator in human fibroblasts undergoing aging in vitro publication-title: Cell Stress Chaperones doi: 10.1379/1466-1268(2004)009<0049:MHSSSP>2.0.CO;2 – volume: 31 start-page: 53 year: 2019 ident: ref_80 article-title: Pros and Cons of Chaperone-Mediated Autophagy in Cancer Biology publication-title: Trends Endocrinol. Metab. doi: 10.1016/j.tem.2019.09.007 – ident: ref_22 doi: 10.3390/ijms20225815 – volume: 17 start-page: 786 year: 2012 ident: ref_133 article-title: p62 at the Interface of Autophagy, Oxidative Stress Signaling, and Cancer publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2011.4394 – volume: 37 start-page: 1223 year: 2002 ident: ref_33 article-title: Mild stress-induced stimulation of heat-shock protein synthesis and improved functional ability of human fibroblasts undergoing aging in vitro publication-title: Exp. Gerontol. doi: 10.1016/S0531-5565(02)00128-6 – volume: 13 start-page: 661 year: 1992 ident: ref_30 article-title: Hsp70 mRNA induction is reduced in neurons of aged rat hippocampus after thermal stress publication-title: Neurobiol. Aging doi: 10.1016/0197-4580(92)90088-F – volume: 462 start-page: 245 year: 2007 ident: ref_134 article-title: Selective degradation of mitochondria by mitophagy publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2007.03.034 – volume: 38 start-page: 6825 year: 2018 ident: ref_148 article-title: Neuronal Preconditioning Requires the Mitophagic Activity of C-terminus of HSC70-Interacting Protein publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0699-18.2018 – volume: 3 start-page: 93 year: 2000 ident: ref_92 article-title: The co-chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins publication-title: Nature – volume: 23 start-page: 467 year: 2018 ident: ref_49 article-title: Methods to validate Hsp90 inhibitor specificity, to identify off-target effects, and to rethink approaches for further clinical development publication-title: Cell Stress Chaperones doi: 10.1007/s12192-018-0877-2 – ident: ref_27 doi: 10.1371/journal.pone.0007719 – volume: 19 start-page: 2039 year: 2008 ident: ref_63 article-title: Organization of the Pre-autophagosomal Structure Responsible for Autophagosome Formation publication-title: Mol. Boil. Cell doi: 10.1091/mbc.e07-10-1048 – volume: 131 start-page: 594 year: 2011 ident: ref_107 article-title: Functional Interplay between Mitochondrial and Proteasome Activity in Skin Aging publication-title: J. Investig. Dermatol. doi: 10.1038/jid.2010.383 – volume: 1762 start-page: 103 year: 2006 ident: ref_36 article-title: Age-related alterations in expression of apoptosis regulatory proteins and heat shock proteins in rat skeletal muscle publication-title: Biochim. Et Biophys. Acta (BBA) Mol. Basis Dis. doi: 10.1016/j.bbadis.2005.08.003 – volume: 427 start-page: 197 year: 2004 ident: ref_104 article-title: Age-dependent protein modifications and declining proteasome activity in the human lens publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2004.05.006 – volume: 89 start-page: 1325 year: 2004 ident: ref_115 article-title: Focal dysfunction of the proteasome: A pathogenic factor in a mouse model of amyotrophic lateral sclerosis publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.2004.02453.x – volume: 546 start-page: 228 year: 2003 ident: ref_121 article-title: Role of the proteasome in protein oxidation and neural viability following low-level oxidative stress publication-title: FEBS Lett. doi: 10.1016/S0014-5793(03)00582-9 – ident: ref_147 doi: 10.20944/preprints201807.0137.v1 – volume: 62 start-page: 481 year: 2007 ident: ref_55 article-title: Age-related increase of insoluble, phosphorylated small heat shock proteins in human skeletal muscle publication-title: J. Gerontol. Ser. A Boil. Sci. Med. Sci. – volume: 1803 start-page: 641 year: 2010 ident: ref_46 article-title: Molecular chaperones, essential partners of steroid hormone receptors for activity and mobility publication-title: Biochim. Et Biophys. Acta (BBA) Bioenerg. doi: 10.1016/j.bbamcr.2009.11.012 – volume: 2020 start-page: 9369524 year: 2020 ident: ref_125 article-title: HSP70 Inhibition Leads to the Activation of Proteasomal System under Mild Hyperthermia Conditions in Young and Senescent Fibroblasts publication-title: Oxidative Med. Cell. Longev. doi: 10.1155/2020/9369524 |
SSID | ssj0000816105 |
Score | 2.2944124 |
SecondaryResourceType | review_article |
Snippet | Throughout their life cycles, cells are subject to a variety of stresses that lead to a compromise between cell death and survival. Survival is partially... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1308 |
SubjectTerms | Age Aging Animals Autophagy Cell death Cell growth Cell survival Cellular Senescence Chaperones Cooperativity Degeneration Disease Endoplasmic reticulum Fibroblasts Heat shock proteins Homeostasis Humans Kinases Life cycles Models, Biological molecular chaperones Molecular Chaperones - metabolism Nematodes Oxidative stress Phagocytosis Polypeptides Proteasomes Protein biosynthesis Protein synthesis Protein transport Proteolysis Proteostasis Review Senescence Stress response Ubiquitin ubiquitin-proteasomal system |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Na9wwEB3ShEIvpd91mwYF2lMx8VojyXsqSUgIhQ0hNJBDwejL7UKw0_XmkH_fGdvr7pY2F4OtMR5LI3meJL8H8DGnoIiVIWwS0acoXUiZEiUlOKSmmc-z0EknzM712RV-vVbXw4RbO2yrXI2J3UAdGs9z5AeMPDSyPsmX218pq0bx6uogofEIdmgILijCd45Ozi8ux1kWlpWgDKLf8S4J3x_wfHjLpFSSFSXXvkUdZf-_8sy_t0uufX9On8HTIXEUh31LP4etWL-Ax72U5P1L-D5b6dwK_qUgLpiDX9g6iAtmYmhu7uk-Meu2TjK3cSsuexX62BvMa8GK6Q0li-28FXR6yPJF4phf5BVcnZ58Oz5LB-WE1KMplmkVlEbmEtXRq1i5idaU21QhKqvC1DmJaF0xVdZoHwmmTlVEy_pjwWiXBylfw3ZNfr4FEZRxWFV0sDkGgy4rrPWU9ahJKLzHBD6v6rD0A604q1vclAQvuMbL9RpP4NNofdvTafzH7oibY7RhEuzuQrP4UQ59qgyVihadyZ01iD5ziIHQmESdYRWzkMDuqjHLoWe25Z84SmB_LKY-xY-3dWzuehumtMwmCbzp2370RPJKsdQ6AbMRFRuubpbU858dbzfhGEon8d3Dbr2HJzlj-kylOe7C9nJxFz9Q4rN0e0N0_waliAXY priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9RAFD6USsEXUeslWssU6pNEZ5MzM9kHkbZYSmFFxIU-CGFu0YUlq5stuP_ec3JZulrf-hJI5oTMNfN9k8n3ARxn1CliZYibRPQp5i6kLImSEh1SY-kzGVrrhMknfTHFyyt1tQOD22hfgc2t1I79pKbL-dvfv9YfaMC_Z8ZJlP0dL3E3rDOV81-_92hOMmziMOmBfvtOLgjZSNXtfP_npq05qZXuvw1v_r1t8sY8dP4QHvQAUpx0Lf4IdmL9GPY6S8n1PnybDH63gn8tiEvW4he2DuIzKzIs5mu6T0zaLZSscdyIL50bfewCZrVg5_QFgcZm1gg6PWEbI3HGBXkC0_OPX88u0t5BIfVoilVaBaWRNUV19CpWbqQ1YZwqRGVVGDuXI1pXjJU12keiq2MV0bIPWTDaZSHPn8JuTfl8DiIo47Cq6GAzDAadLKz1hH7UKBTeYwJvhjosfS8vzi4X85JoBtd4ebPGE3i9if7ZyWr8J-6Um2MTw2LY7YXF8nvZj60yVCpadCZz1iB66RADsbIctcQqypDAwdCY5dDBSmayGtnvJoGjTTKNLX68rePiuothaUs5SuBZ1_abnOT8xTjXOgGz1Su2srqdUs9-tPrdxGcIVuKLuyjbS7if8QqAVGmGB7C7Wl7HVwSTVu6wHQF_AFxKFHc priority: 102 providerName: Scholars Portal |
Title | Molecular Chaperones and Proteolytic Machineries Regulate Protein Homeostasis in Aging Cells |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32456366 https://www.proquest.com/docview/2407649618 https://www.proquest.com/docview/2407313201 https://pubmed.ncbi.nlm.nih.gov/PMC7291254 https://doaj.org/article/df5ea4b72ba744c0b44d66634604fe0d |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB1KSqGX0jb9cJMGBdpTMdHaI8l7TEJCKGwIoYEcCkZfpgvBG-LNIf8-M5Z38ZaWXHIx2BpjWRpZ79nyewDfCkqK2BjiJhF9jqULOUui5ESH1FT6QobeOmF2rs-u8Oe1uh5ZffGasCQPnBruIDQqWnSmcNYgeukQA0HuErXEJsrAT1-a80Zkqn8GV4RkpEor3Uvi9Qf8HrxjMaqSnSRHc1Av1f8vfPn3MsnRvHP6Ft4MgFEcpoq-gxexfQ-vkoXkwzb8nq38bQX_ShDvWHtf2DaIC1ZgWNw80Hli1i-ZZE3jTlwm9_mYAuatYKf0BYHEbt4J2j1k2yJxzDfyAa5OT34dn-WDY0Lu0VTLvAlKI2uI6uhVbNxEa8I0TYjKqjB1rkS0rpoqa7SPRE-nKqJl37FgtCtCWX6ErZbq-RlEUMZh09DGFhgMOllZ6wntqEmovMcMfqzasPaDnDi7WtzURCu4xetxi2fwfR19m2Q0_hN3xN2xjmHx6_4ApUQ9pET9VEpksLvqzHoYkV3NzFUj-9tksL8uprHEl7dtXNynGJaylJMMPqW-X9ek5C_EpdYZmI2s2KjqZkk7_9PrdRN_IRiJX57j3nbgdcGMX6q8wF3YWt7dx68Ei5ZuD14enZxfXO71I4G2M6weAXEQD8Q |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VqRBcEO8aCl0kekJWHXt2nRwQ6lMpbaKqaqUekMy-DJEqp8SpUP4Uv5EZP0KCgFsvluwdy-Pd2d2Z2d3vA3gXk1H4PKXYxKMNMTEuZEiUkMIh2Y9sHLmKOmE4UoNL_HQlr9bgZ3sWhrdVtmNiNVC7ieUc-Q5HHgqZn-TjzfeQWaN4dbWl0KjN4sTPf1DIVn44PqD23Y7jo8OL_UHYsAqEFtPeLMydVMg4m8pb6XPTVYrm_dx5qaXrG5MgatPrS50q6ymE60uPmrm5XKpM7DgBSkP-OibkKnRgfe9wdHa-yOowjQV5LPUO-yTpRzucfy8ZBCthBsulua-iCPibX_vn9syl-e7oETxsHFWxW1vWY1jzxRO4V1NXzp_C52HLqyv4CIOfMua_0IUTZ4z8MLme03tiWG3VZCzlUpzXrPe-FhgXghnaJ-ScluNS0O0u0yWJff6RZ3B5J3X6HDoF6bkBwsnUYJ7TRcfoUjRRT2tLXpbsup61GMD7tg4z28CYM5vGdUbhDNd4tlzjAWwvpG9q-I5_yO1xcyxkGHS7ejCZfs2aPpy5XHqNJo2NThFtZBAdRX8JqghzH7kANtvGzJqRoMx-220AbxfF1If587rwk9tahiE0o24AL-q2X2iS8Mp0olQA6YpVrKi6WlKMv1U44RQ3kfuKL_-v1hbcH1wMT7PT49HJK3gQcz4hkmGMm9CZTW_9a3K6ZuZNY-kCvtx15_oFnEdCoQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VrUBcEO8aCiwSPSErjj27Tg4I9RW1lERRRaUekMy-XCJVTolTofw1fh0zfoQEAbdeLNk7lte7s7szs7PfB_A2JqXweUq-iUcbYmJcyJAoIblDsh_ZOHIVdcJwpI7P8eOFvNiAn-1ZGE6rbOfEaqJ2U8sx8g57HgqZn6STN2kR48PBh-vvITNI8U5rS6dRq8ipX_wg9618f3JIfb0bx4OjzwfHYcMwEFpMe_Mwd1IhY24qb6XPTVcpsgFy56WWrm9MgqhNry91qqwnd64vPWrm6XKpMrHjYChN_1spHx_dhK39o9H4bBnhYUoLsl7qbPsk6UcdjsWXDIiVMJvlyjpY0QX8zcb9M1VzZe0bPID7jdEq9motewgbvngEd2oay8Vj-DJsOXYFH2fwM8b_F7pwYswoENOrBb0nhlXaJuMql-LMXzJtmK8FJoVgtvYpGarlpBR0u8fUSeKAf-QJnN9Kmz6FzYLquQ3CydRgntNFx-hSNFFPa0sWl-y6nrUYwLu2DTPbQJozs8ZVRq4Nt3i22uIB7C6lr2soj3_I7XN3LGUYgLt6MJ1dZs14zlwuvUaTxkaniDYyiI48wQRVhLmPXAA7bWdmzaxQZr91OIA3y2Iaz_x5XfjpTS3DcJpRN4Bndd8va5LwLnWiVADpmlasVXW9pJh8qzDDyYciUxaf_79ar-EuDars08no9AXcizm0EMkwxh3YnM9u_Euyv-bmVaPoAr7e9tj6BXm_Rt8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+Chaperones+and+Proteolytic+Machineries+Regulate+Protein+Homeostasis+in+Aging+Cells&rft.jtitle=Cells+%28Basel%2C+Switzerland%29&rft.au=Boris+Margulis&rft.au=Anna+Tsimokha&rft.au=Svetlana+Zubova&rft.au=Irina+Guzhova&rft.date=2020-05-24&rft.pub=MDPI+AG&rft.eissn=2073-4409&rft.volume=9&rft.issue=5&rft.spage=1308&rft_id=info:doi/10.3390%2Fcells9051308&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_df5ea4b72ba744c0b44d66634604fe0d |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4409&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4409&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4409&client=summon |