Transport and Retention of Poly(Acrylic Acid-co-Maleic Acid) Coated Magnetite Nanoparticles in Porous Media: Effect of Input Concentration, Ionic Strength and Grain Size
Understanding the physicochemical factors affecting nanoparticle transport in porous media is critical for their environmental application. Water-saturated column experiments were conducted to investigate the effects of input concentration (Co), ionic strength (IS), and sand grain size on the transp...
Saved in:
Published in | Nanomaterials (Basel, Switzerland) Vol. 12; no. 9; p. 1536 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
02.05.2022
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 2079-4991 2079-4991 |
DOI | 10.3390/nano12091536 |
Cover
Loading…
Abstract | Understanding the physicochemical factors affecting nanoparticle transport in porous media is critical for their environmental application. Water-saturated column experiments were conducted to investigate the effects of input concentration (Co), ionic strength (IS), and sand grain size on the transport of poly(acrylic acid-co-maleic acid) coated magnetite nanoparticles (PAM@MNP). Mass recoveries in the column effluent ranged from 45.2 to 99.3%. The highest relative retention of PAM@MNP was observed for the lowest Co. Smaller Co also resulted in higher relative retention (39.8%) when IS increased to 10 mM. However, relative retention became much less sensitive to solution IS as Co increased. The high mobility is attributed to the PAM coating provoking steric stability of PAM@MNP against homoaggregation. PAM@MNP retention was about 10-fold higher for smaller grain sizes, i.e., 240 µm and 350 µm versus 607 µm. The simulated maximum retained concentration on the solid phase (Smax) and retention rate coefficient (k1) increased with decreasing Co and grain sizes, reflecting higher retention rates at these parameters. The study revealed under various IS for the first time the high mobility premise of polymer-coated magnetite nanoparticles at realistic (<10 mg L−1) environmental concentrations, thereby highlighting an untapped potential for novel environmental PAM@MNP application usage. |
---|---|
AbstractList | Understanding the physicochemical factors affecting nanoparticle transport in porous media is critical for their environmental application. Water-saturated column experiments were conducted to investigate the effects of input concentration (Co), ionic strength (IS), and sand grain size on the transport of poly(acrylic acid-co-maleic acid) coated magnetite nanoparticles (PAM@MNP). Mass recoveries in the column effluent ranged from 45.2 to 99.3%. The highest relative retention of PAM@MNP was observed for the lowest Co. Smaller Co also resulted in higher relative retention (39.8%) when IS increased to 10 mM. However, relative retention became much less sensitive to solution IS as Co increased. The high mobility is attributed to the PAM coating provoking steric stability of PAM@MNP against homoaggregation. PAM@MNP retention was about 10-fold higher for smaller grain sizes, i.e., 240 µm and 350 µm versus 607 µm. The simulated maximum retained concentration on the solid phase (Smax) and retention rate coefficient (k1) increased with decreasing Co and grain sizes, reflecting higher retention rates at these parameters. The study revealed under various IS for the first time the high mobility premise of polymer-coated magnetite nanoparticles at realistic (<10 mg L−1) environmental concentrations, thereby highlighting an untapped potential for novel environmental PAM@MNP application usage. Understanding the physicochemical factors affecting nanoparticle transport in porous media is critical for their environmental application. Water-saturated column experiments were conducted to investigate the effects of input concentration (Co), ionic strength (IS), and sand grain size on the transport of poly(acrylic acid-co-maleic acid) coated magnetite nanoparticles (PAM@MNP). Mass recoveries in the column effluent ranged from 45.2 to 99.3%. The highest relative retention of PAM@MNP was observed for the lowest Co. Smaller Co also resulted in higher relative retention (39.8%) when IS increased to 10 mM. However, relative retention became much less sensitive to solution IS as Co increased. The high mobility is attributed to the PAM coating provoking steric stability of PAM@MNP against homoaggregation. PAM@MNP retention was about 10-fold higher for smaller grain sizes, i.e., 240 µm and 350 µm versus 607 µm. The simulated maximum retained concentration on the solid phase (Smax) and retention rate coefficient (k1) increased with decreasing Co and grain sizes, reflecting higher retention rates at these parameters. The study revealed under various IS for the first time the high mobility premise of polymer-coated magnetite nanoparticles at realistic (<10 mg L−1) environmental concentrations, thereby highlighting an untapped potential for novel environmental PAM@MNP application usage.Understanding the physicochemical factors affecting nanoparticle transport in porous media is critical for their environmental application. Water-saturated column experiments were conducted to investigate the effects of input concentration (Co), ionic strength (IS), and sand grain size on the transport of poly(acrylic acid-co-maleic acid) coated magnetite nanoparticles (PAM@MNP). Mass recoveries in the column effluent ranged from 45.2 to 99.3%. The highest relative retention of PAM@MNP was observed for the lowest Co. Smaller Co also resulted in higher relative retention (39.8%) when IS increased to 10 mM. However, relative retention became much less sensitive to solution IS as Co increased. The high mobility is attributed to the PAM coating provoking steric stability of PAM@MNP against homoaggregation. PAM@MNP retention was about 10-fold higher for smaller grain sizes, i.e., 240 µm and 350 µm versus 607 µm. The simulated maximum retained concentration on the solid phase (Smax) and retention rate coefficient (k1) increased with decreasing Co and grain sizes, reflecting higher retention rates at these parameters. The study revealed under various IS for the first time the high mobility premise of polymer-coated magnetite nanoparticles at realistic (<10 mg L−1) environmental concentrations, thereby highlighting an untapped potential for novel environmental PAM@MNP application usage. Understanding the physicochemical factors affecting nanoparticle transport in porous media is critical for their environmental application. Water-saturated column experiments were conducted to investigate the effects of input concentration (Co), ionic strength (IS), and sand grain size on the transport of poly(acrylic acid-co-maleic acid) coated magnetite nanoparticles (PAM@MNP). Mass recoveries in the column effluent ranged from 45.2 to 99.3%. The highest relative retention of PAM@MNP was observed for the lowest Co. Smaller Co also resulted in higher relative retention (39.8%) when IS increased to 10 mM. However, relative retention became much less sensitive to solution IS as Co increased. The high mobility is attributed to the PAM coating provoking steric stability of PAM@MNP against homoaggregation. PAM@MNP retention was about 10-fold higher for smaller grain sizes, i.e., 240 µm and 350 µm versus 607 µm. The simulated maximum retained concentration on the solid phase (Smax) and retention rate coefficient (k1) increased with decreasing Co and grain sizes, reflecting higher retention rates at these parameters. The study revealed under various IS for the first time the high mobility premise of polymer-coated magnetite nanoparticles at realistic (<10 mg L −1 ) environmental concentrations, thereby highlighting an untapped potential for novel environmental PAM@MNP application usage. |
Author | Klumpp, Erwin Liang, Yan Zhang, Miaoyue Mlih, Rawan Tombácz, Etelka Bol, Roland |
AuthorAffiliation | 5 Soós Ernő Water Technology Research and Development Center, University of Pannonia, H-8800 Nagykanizsa, Hungary; e.tombacz@chem.u-szeged.hu 1 Institute of Bio- and Geosciences, Agrosphere (IBG–3), Research Centre Juelich (FZJ), 52425 Juelich, Germany; r.bol@fz-juelich.de (R.B.); e.klumpp@fz-juelich.de (E.K.) 2 Institute for Environmental Research, Biology 5, RWTH Aachen University, 52074 Aachen, Germany 4 School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; zhangmy53@mail.sysu.edu.cn 6 School of Natural Sciences, Environment Centre Wales, Bangor University, Bangor LL57 2DG, UK 3 School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; liangyan@gxu.edu.cn |
AuthorAffiliation_xml | – name: 2 Institute for Environmental Research, Biology 5, RWTH Aachen University, 52074 Aachen, Germany – name: 4 School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; zhangmy53@mail.sysu.edu.cn – name: 5 Soós Ernő Water Technology Research and Development Center, University of Pannonia, H-8800 Nagykanizsa, Hungary; e.tombacz@chem.u-szeged.hu – name: 3 School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; liangyan@gxu.edu.cn – name: 6 School of Natural Sciences, Environment Centre Wales, Bangor University, Bangor LL57 2DG, UK – name: 1 Institute of Bio- and Geosciences, Agrosphere (IBG–3), Research Centre Juelich (FZJ), 52425 Juelich, Germany; r.bol@fz-juelich.de (R.B.); e.klumpp@fz-juelich.de (E.K.) |
Author_xml | – sequence: 1 givenname: Rawan surname: Mlih fullname: Mlih, Rawan – sequence: 2 givenname: Yan surname: Liang fullname: Liang, Yan – sequence: 3 givenname: Miaoyue orcidid: 0000-0002-2939-6665 surname: Zhang fullname: Zhang, Miaoyue – sequence: 4 givenname: Etelka orcidid: 0000-0002-2068-0459 surname: Tombácz fullname: Tombácz, Etelka – sequence: 5 givenname: Roland orcidid: 0000-0003-3015-7706 surname: Bol fullname: Bol, Roland – sequence: 6 givenname: Erwin surname: Klumpp fullname: Klumpp, Erwin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35564244$$D View this record in MEDLINE/PubMed |
BookMark | eNptkstuEzEUhi1URNvQHWtkiU2ROjAeey7uAimKSonUAKJlbXns49TRxA4eD1L6RrwlzqUorfDGt_98_s_xOUVHzjtA6A3JP1DK849OOk-KnJOSVi_QSZHXPGOck6OD9TE66_tFngYntCnpK3RMy7JiBWMn6M9dkK5f-RCxdBr_gAguWu-wN_i779bnYxXWnVV4rKzOlM9msoP99j2eeBlB45mcO4g2Av6a_KxkiFZ10GPrEiP4occz0FZe4itjQMUNe-pWQ0zxTqX3gtw8eYGn3iX0bQzg5vF-a-g6yES5tQ_wGr00suvhbD-P0M_PV3eTL9nNt-vpZHyTKVY3MTONYpQ2ipAmly2huio0r03NNKukoW1e160uWckM15Wum1TFltNGMlJVUPKWjtB0x9VeLsQq2KUMa-GlFdsDH-Zin6BIam14WZTQMqaMkmAMZRSKvGlYBTSxPu1Yq6Fdgt7l2j2BPr1x9l7M_W_BSU4LwhPgfA8I_tcAfRRL2yvoOukg1VUUVZWyrktKkvTdM-nCD8GlUm1UNHVDnXQj9PbQ0T8rjx2RBMVOoILv-wBGKBu3_5MM2k6QXGw6Txx2Xgq6eBb0yP2v_C_I29sb |
CitedBy_id | crossref_primary_10_3389_fenvs_2022_1114940 crossref_primary_10_1016_j_chemosphere_2024_143259 |
Cites_doi | 10.1021/es034049r 10.1016/j.jhazmat.2015.12.071 10.1021/es802628n 10.1155/2012/608298 10.1016/j.scitotenv.2008.11.022 10.1016/j.watres.2013.02.025 10.1021/es071936b 10.1021/ef500340h 10.1021/es300314n 10.1016/j.envpol.2019.01.106 10.1021/es9015525 10.2134/jeq2009.0423 10.1021/acs.est.7b04037 10.1021/es00080a012 10.2136/vzj2004.0384 10.1029/1999WR900015 10.1016/j.watres.2012.11.019 10.1016/j.jconhyd.2014.05.007 10.1016/j.jconhyd.2011.09.005 10.1007/s11356-016-6255-7 10.2136/vzj2007.0077 10.1016/j.jcis.2008.04.064 10.1007/s11270-016-3097-3 10.4236/jep.2016.75066 10.1021/es102398e 10.1029/2011WR010812 10.1016/j.envpol.2021.116700 10.1016/j.jhazmat.2011.07.033 10.1007/s40571-016-0130-7 10.1016/j.colsurfa.2013.01.023 10.1134/S1070328408030032 10.1007/s10311-020-01173-9 10.1016/j.jconhyd.2005.09.006 10.1021/sc400047q 10.1016/j.watres.2013.11.038 10.1021/es202643c 10.1016/j.envpol.2009.08.003 10.1016/j.jenvman.2016.12.068 10.1016/j.jconhyd.2007.01.009 10.1029/2005WR004791 10.1016/j.scitotenv.2014.08.073 10.1016/j.ibiod.2016.09.027 10.1007/s11356-019-04965-x 10.1039/C4NR05088F 10.1021/es902240k 10.1107/S0108270188013368 10.1016/B978-012373738-0.50016-7 10.1016/j.ymeth.2021.04.018 10.1007/s10450-012-9468-1 10.1007/s10311-019-00931-8 10.1016/0021-9797(77)90150-3 10.1007/s11783-015-0814-x 10.2147/IJN.S214236 10.1007/s13205-018-1286-z 10.1006/jcis.2000.7097 10.1016/j.envpol.2021.116661 10.1002/jssc.201100256 10.1002/9781118939314 10.1897/08-155.1 10.3390/ijerph17165817 10.1016/j.geoderma.2018.02.016 10.1039/C2EM30691C 10.1007/s11671-008-9174-9 10.1016/j.cej.2020.125809 10.1016/j.jhazmat.2016.06.065 10.1021/la302660p 10.1016/j.arabjc.2017.05.011 10.1016/j.colsurfa.2013.04.048 10.1039/C7EN00152E 10.1016/j.scitotenv.2010.03.033 10.3390/nano10050917 10.1016/j.envpol.2019.113803 10.1002/0471238961.1301120506051220.a01.pub2 10.1016/j.jhazmat.2016.06.060 10.1021/acs.iecr.5b03279 10.1016/j.jcis.2005.08.003 10.1021/es025899u 10.1155/2014/864068 10.1137/0111030 10.1016/j.jwpe.2019.100845 10.1016/j.watres.2014.09.025 10.1021/cm021349j 10.1021/acs.energyfuels.5b01785 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG 8FH ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO F28 FR3 GNUQQ H8D H8G HCIFZ JG9 JQ2 KB. KR7 L7M LK8 L~C L~D M7P P64 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/nano12091536 |
DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Materials Science Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biological Science Database Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Materials Research Database ProQuest Central Student ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Biological Science Collection ProQuest Central (New) ANTE: Abstracts in New Technology & Engineering Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection Ceramic Abstracts Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts Materials Science Collection ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library Biotechnology Research Abstracts ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Materials Science & Engineering Collection Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2079-4991 |
ExternalDocumentID | oai_doaj_org_article_9b3df9525eb44cfcaeff343e208846e3 PMC9103219 35564244 10_3390_nano12091536 |
Genre | Journal Article |
GeographicLocations | Germany |
GeographicLocations_xml | – name: Germany |
GrantInformation_xml | – fundername: Federal Ministry of Education and Research grantid: 01DH16027 – fundername: Palestinian German Scientific Bridge (PGSB) grantid: 01DH16027 |
GroupedDBID | 53G 5VS 8FE 8FG 8FH AADQD AAFWJ AAHBH AAYXX ABJCF ADBBV ADMLS AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BGLVJ BHPHI CCPQU CITATION D1I GROUPED_DOAJ HCIFZ HYE I-F IAO ITC KB. KQ8 LK8 M7P MODMG M~E OK1 PDBOC PGMZT PHGZM PHGZT PIMPY PROAC RPM NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC DWQXO F28 FR3 GNUQQ H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c478t-f8c4338c1180ab13d62d97f74d46af3b077bd5454f9d6d78390b938a4166e59b3 |
IEDL.DBID | 8FG |
ISSN | 2079-4991 |
IngestDate | Wed Aug 27 01:27:33 EDT 2025 Thu Aug 21 18:03:56 EDT 2025 Thu Sep 04 23:11:45 EDT 2025 Fri Jul 25 12:06:02 EDT 2025 Wed Feb 19 02:25:14 EST 2025 Tue Jul 01 01:17:34 EDT 2025 Thu Apr 24 22:54:03 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | saturated column mathematical modeling breakthrough curve coated magnetite nanoparticles deposition profile |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c478t-f8c4338c1180ab13d62d97f74d46af3b077bd5454f9d6d78390b938a4166e59b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2939-6665 0000-0002-2068-0459 0000-0003-3015-7706 |
OpenAccessLink | https://www.proquest.com/docview/2663079775?pq-origsite=%requestingapplication% |
PMID | 35564244 |
PQID | 2663079775 |
PQPubID | 2032354 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9b3df9525eb44cfcaeff343e208846e3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9103219 proquest_miscellaneous_2664787531 proquest_journals_2663079775 pubmed_primary_35564244 crossref_citationtrail_10_3390_nano12091536 crossref_primary_10_3390_nano12091536 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220502 |
PublicationDateYYYYMMDD | 2022-05-02 |
PublicationDate_xml | – month: 5 year: 2022 text: 20220502 day: 2 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Nanomaterials (Basel, Switzerland) |
PublicationTitleAlternate | Nanomaterials (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Hsiou (ref_58) 1989; 45 Rahman (ref_74) 2014; 499 Luxton (ref_78) 2010; 44 Horst (ref_46) 2015; 9 Tiraferri (ref_45) 2008; 324 Krenkova (ref_26) 2011; 34 Becker (ref_56) 2017; 4 Baalousha (ref_44) 2009; 407 Yan (ref_6) 2013; 15 Bradford (ref_66) 2003; 37 Liang (ref_85) 2021; 276 Zhang (ref_37) 2019; 247 ref_57 Marquardt (ref_67) 1963; 11 ref_11 Bychkova (ref_59) 2008; 34 Gargiulo (ref_64) 2007; 92 Deshpande (ref_65) 1999; 35 Giraldo (ref_16) 2013; 19 Pan (ref_48) 2010; 158 Becker (ref_55) 2015; 7 Cecchin (ref_7) 2017; 119 Niculescu (ref_21) 2021; 199 (ref_63) 2008; 7 Tufenkji (ref_34) 2004; 38 Saberinasr (ref_82) 2016; 227 Alonso (ref_15) 2020; 399 Su (ref_20) 2017; 322 Kmetz (ref_52) 2016; 30 Shipley (ref_42) 2009; 28 ref_23 Soares (ref_47) 2020; 18 Napper (ref_79) 1977; 58 Panda (ref_19) 2021; 19 Phenrat (ref_27) 2010; 44 Li (ref_8) 2016; 23 Bradford (ref_35) 2004; 3 Liang (ref_71) 2013; 47 French (ref_77) 2009; 43 Wu (ref_25) 2008; 3 Samrot (ref_14) 2019; 14 Kuhnena (ref_41) 2000; 231 Hong (ref_73) 2009; 43 Cheng (ref_13) 2012; 2012 Zhang (ref_18) 2011; 193 Elimelech (ref_30) 1990; 24 Huang (ref_17) 2013; 1 Bhateria (ref_12) 2019; 31 Bradford (ref_84) 2011; 47 Raychoudhury (ref_33) 2014; 50 Kim (ref_29) 2003; 15 (ref_62) 2006; 295 Wang (ref_75) 2012; 46 Saleh (ref_76) 2008; 42 Ersenkal (ref_50) 2011; 126 Khan (ref_22) 2019; 12 Lin (ref_40) 2010; 39 Pillai (ref_9) 2016; 7 Lu (ref_81) 2021; 276 Vallabani (ref_1) 2018; 8 Tosco (ref_43) 2012; 46 Shen (ref_39) 2013; 433 Rani (ref_10) 2017; 190 Pham (ref_31) 2017; 4 Zhang (ref_68) 2017; 322 Xue (ref_54) 2014; 28 Nesztor (ref_60) 2013; 435 Lin (ref_53) 2016; 55 Bauer (ref_24) 2012; 28 ref_3 Golzar (ref_51) 2014; 2014 Bradford (ref_83) 2006; 82 ref_2 Liang (ref_36) 2020; 258 Wang (ref_70) 2014; 164 Bradford (ref_32) 2006; 42 Wang (ref_49) 2017; 51 ref_5 Hu (ref_28) 2010; 408 Rahmatpour (ref_72) 2018; 322 ref_4 Degenkolb (ref_69) 2019; 26 Wang (ref_38) 2016; 318 Kasel (ref_61) 2013; 47 Sun (ref_80) 2015; 68 |
References_xml | – volume: 38 start-page: 529 year: 2004 ident: ref_34 article-title: Correlation Equation for Predicting Single-Collector Efficiency in Physicochemical Filtration in Saturated Porous Media publication-title: Environ. Sci. Technol. doi: 10.1021/es034049r – volume: 322 start-page: 284 year: 2017 ident: ref_68 article-title: Transport of stabilized iron nanoparticles in porous media: Effects of surface and solution chemistry and role of adsorption publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2015.12.071 – volume: 43 start-page: 1354 year: 2009 ident: ref_77 article-title: Influence of Ionic Strength, pH, and Cation Valence on Aggregation Kinetics of Titanium Dioxide Nanoparticles publication-title: Environ. Sci. Technol. doi: 10.1021/es802628n – volume: 2012 start-page: 608298 year: 2012 ident: ref_13 article-title: Synthesis and Characterization of Iron Oxide Nanoparticles and Applications in the Removal of Heavy Metals from Industrial Wastewater publication-title: Int. J. Photoenergy doi: 10.1155/2012/608298 – volume: 407 start-page: 2093 year: 2009 ident: ref_44 article-title: Aggregation and disaggregation of iron oxide nanoparticles: Influence of particle concentration, pH and natural organic matter publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2008.11.022 – volume: 47 start-page: 2572 year: 2013 ident: ref_71 article-title: Sensitivity of the transport and retention of stabilized silver nanoparticles to physicochemical factors publication-title: Water Res. doi: 10.1016/j.watres.2013.02.025 – volume: 42 start-page: 3349 year: 2008 ident: ref_76 article-title: Ionic Strength and Composition Affect the Mobility of Surface-Modified Fe0 Nanoparticles in Water-Saturated Sand Columns publication-title: Environ. Sci. Technol. doi: 10.1021/es071936b – volume: 28 start-page: 3655 year: 2014 ident: ref_54 article-title: Effect of Grafted Copolymer Composition on Iron Oxide Nanoparticle Stability and Transport in Porous Media at High Salinity publication-title: Energy Fuels doi: 10.1021/ef500340h – volume: 46 start-page: 7151 year: 2012 ident: ref_75 article-title: Retention and Transport of Silica Nanoparticles in Saturated Porous Media: Effect of Concentration and Particle Size publication-title: Environ. Sci. Technol. doi: 10.1021/es300314n – volume: 247 start-page: 907 year: 2019 ident: ref_37 article-title: Co-transport of multi-walled carbon nanotubes and sodium dodecylbenzenesulfonate in chemically heterogeneous porous media publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.01.106 – volume: 43 start-page: 8834 year: 2009 ident: ref_73 article-title: Transport of Iron-Based Nanoparticles: Role of Magnetic Properties publication-title: Environ. Sci. Technol. doi: 10.1021/es9015525 – volume: 39 start-page: 1896 year: 2010 ident: ref_40 article-title: Fate and Transport of Engineered Nanomaterials in the Environment publication-title: J. Environ. Qual. doi: 10.2134/jeq2009.0423 – ident: ref_23 – volume: 51 start-page: 12405 year: 2017 ident: ref_49 article-title: Carboxymethylcellulose Mediates the Transport of Carbon Nanotube—Magnetite Nanohybrid Aggregates in Water-Saturated Porous Media publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b04037 – volume: 24 start-page: 1528 year: 1990 ident: ref_30 article-title: Kinetics of deposition of colloidal particles in porous media publication-title: Environ. Sci. Technol. doi: 10.1021/es00080a012 – volume: 3 start-page: 384 year: 2004 ident: ref_35 article-title: Straining and Attachment of Colloids in Physically Heterogeneous Porous Media publication-title: Vadose Zone J. doi: 10.2136/vzj2004.0384 – volume: 35 start-page: 1619 year: 1999 ident: ref_65 article-title: Modeling the effects of systematic variation in ionic strength on the attachment kinetics ofPseudomonas fluorescensUPER-1 in saturated sand columns publication-title: Water Resour. Res. doi: 10.1029/1999WR900015 – volume: 47 start-page: 933 year: 2013 ident: ref_61 article-title: Transport and retention of multi-walled carbon nanotubes in saturated porous media: Effects of input concentration and grain size publication-title: Water Res. doi: 10.1016/j.watres.2012.11.019 – volume: 164 start-page: 35 year: 2014 ident: ref_70 article-title: Hyperexponential and nonmonotonic retention of polyvinylpyrrolidone-coated silver nanoparticles in an Ultisol publication-title: J. Contam. Hydrol. doi: 10.1016/j.jconhyd.2014.05.007 – volume: 126 start-page: 248 year: 2011 ident: ref_50 article-title: Impact of dilution on the transport of poly(acrylic acid) supported magnetite nanoparticles in porous media publication-title: J. Contam. Hydrol. doi: 10.1016/j.jconhyd.2011.09.005 – volume: 23 start-page: 11533 year: 2016 ident: ref_8 article-title: Decontaminating soil organic pollutants with manufactured nanoparticles publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-016-6255-7 – volume: 7 start-page: 587 year: 2008 ident: ref_63 article-title: Development and Applications of the HYDRUS and STANMOD Software Packages and Related Codes publication-title: Vadose Zone J. doi: 10.2136/vzj2007.0077 – volume: 324 start-page: 71 year: 2008 ident: ref_45 article-title: Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2008.04.064 – volume: 227 start-page: 394 year: 2016 ident: ref_82 article-title: Transport of CMC-Stabilized nZVI in Saturated Sand Column: The Effect of Particle Concentration and Soil Grain Size publication-title: Water Air Soil Pollut. doi: 10.1007/s11270-016-3097-3 – volume: 7 start-page: 734 year: 2016 ident: ref_9 article-title: Nano-Phytotechnological Remediation of Endosulfan Using Zero Valent Iron Nanoparticles publication-title: J. Environ. Prot. doi: 10.4236/jep.2016.75066 – volume: 44 start-page: 9086 year: 2010 ident: ref_27 article-title: Transport and Deposition of Polymer-Modified Fe0 Nanoparticles in 2-D Heterogeneous Porous Media: Effects of Particle Concentration, Fe0 Content, and Coatings publication-title: Environ. Sci. Technol. doi: 10.1021/es102398e – volume: 47 start-page: W10503 year: 2011 ident: ref_84 article-title: Modeling colloid transport and retention in saturated porous media under unfavorable attachment conditions publication-title: Water Resour. Res. doi: 10.1029/2011WR010812 – volume: 276 start-page: 116700 year: 2021 ident: ref_81 article-title: Transport and retention of porous silicon-coated zero-valent iron in saturated porous media publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2021.116700 – volume: 193 start-page: 325 year: 2011 ident: ref_18 article-title: Novel magnetic Fe3O4@C nanoparticles as adsorbents for removal of organic dyes from aqueous solution publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2011.07.033 – volume: 4 start-page: 87 year: 2017 ident: ref_31 article-title: Nanoparticle transport in heterogeneous porous media with particle tracking numerical methods publication-title: Comput. Part. Mech. doi: 10.1007/s40571-016-0130-7 – volume: 435 start-page: 91 year: 2013 ident: ref_60 article-title: Adsorption of organic acids on magnetite nanoparticles, pH-dependent colloidal stability and salt tolerance publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2013.01.023 – volume: 34 start-page: 172 year: 2008 ident: ref_59 article-title: The potentiometric study of maleic acid complexation with the alkaline-earth metal ions in aqueous solutions publication-title: Russ. J. Coord. Chem. doi: 10.1134/S1070328408030032 – volume: 19 start-page: 2487 year: 2021 ident: ref_19 article-title: Magnetite nanoparticles as sorbents for dye removal: A review publication-title: Environ. Chem. Lett. doi: 10.1007/s10311-020-01173-9 – volume: 82 start-page: 99 year: 2006 ident: ref_83 article-title: Concentration dependent transport of colloids in saturated porous media publication-title: J. Contam. Hydrol. doi: 10.1016/j.jconhyd.2005.09.006 – volume: 1 start-page: 731 year: 2013 ident: ref_17 article-title: Magnetic Nanoparticle Adsorbents for Emerging Organic Contaminants publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/sc400047q – volume: 50 start-page: 80 year: 2014 ident: ref_33 article-title: Straining of polyelectrolyte-stabilized nanoscale zero valent iron particles during transport through granular porous media publication-title: Water Res. doi: 10.1016/j.watres.2013.11.038 – volume: 46 start-page: 4008 year: 2012 ident: ref_43 article-title: Transport of Ferrihydrite Nanoparticles in Saturated Porous Media: Role of Ionic Strength and Flow Rate publication-title: Environ. Sci. Technol. doi: 10.1021/es202643c – volume: 158 start-page: 35 year: 2010 ident: ref_48 article-title: Immobilization of non-point phosphorus using stabilized magnetite nanoparticles with enhanced transportability and reactivity in soils publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2009.08.003 – volume: 190 start-page: 208 year: 2017 ident: ref_10 article-title: Recent strategies for removal and degradation of persistent & toxic organochlorine pesticides using nanoparticles: A review publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2016.12.068 – volume: 92 start-page: 255 year: 2007 ident: ref_64 article-title: Bacteria transport and deposition under unsaturated conditions: The role of the matrix grain size and the bacteria surface protein publication-title: J. Contam. Hydrol. doi: 10.1016/j.jconhyd.2007.01.009 – volume: 42 start-page: 1 year: 2006 ident: ref_32 article-title: Significance of straining in colloid deposition: Evidence and implications publication-title: Water Resour. Res. doi: 10.1029/2005WR004791 – volume: 499 start-page: 402 year: 2014 ident: ref_74 article-title: Modeling and sensitivity analysis on the transport of aluminum oxide nanoparticles in saturated sand: Effects of ionic strength, flow rate, and nanoparticle concentration publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2014.08.073 – volume: 119 start-page: 419 year: 2017 ident: ref_7 article-title: Nanobioremediation: Integration of nanoparticles and bioremediation for sustainable remediation of chlorinated organic contaminants in soils publication-title: Int. Biodeterior. Biodegrad. doi: 10.1016/j.ibiod.2016.09.027 – volume: 26 start-page: 15905 year: 2019 ident: ref_69 article-title: Transport and retention of differently coated CeO2 nanoparticles in saturated sediment columns under laboratory and near-natural conditions publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-019-04965-x – volume: 7 start-page: 1047 year: 2015 ident: ref_55 article-title: In situ measurement and simulation of nano-magnetite mobility in porous media subject to transient salinity publication-title: Nanoscale doi: 10.1039/C4NR05088F – volume: 44 start-page: 1260 year: 2010 ident: ref_78 article-title: Impact of Environmental Conditions (pH, Ionic Strength, and Electrolyte Type) on the Surface Charge and Aggregation of Silver Nanoparticles Suspensions publication-title: Environ. Sci. Technol. doi: 10.1021/es902240k – volume: 45 start-page: 721 year: 1989 ident: ref_58 article-title: Structures of tetracarbonyl (2–3-η-maleic acid) iron, cis-[Fe (C4H4O4)(CO)4](1) and tetracarbonyl (2–3-η-fumaric acid) iron, trans-[Fe (C4H4O4)(CO)4](2) publication-title: Acta Crystallogr. Sect. C Cryst. Struct. Commun. doi: 10.1107/S0108270188013368 – ident: ref_2 doi: 10.1016/B978-012373738-0.50016-7 – volume: 199 start-page: 16 year: 2021 ident: ref_21 article-title: Magnetite nanoparticles: Synthesis methods—A comparative review publication-title: Methods doi: 10.1016/j.ymeth.2021.04.018 – volume: 19 start-page: 465 year: 2013 ident: ref_16 article-title: Magnetite nanoparticles for removal of heavy metals from aqueous solutions: Synthesis and characterization publication-title: Adsorption doi: 10.1007/s10450-012-9468-1 – volume: 18 start-page: 151 year: 2020 ident: ref_47 article-title: Recent advances on magnetic biosorbents and their applications for water treatment publication-title: Environ. Chem. Lett. doi: 10.1007/s10311-019-00931-8 – volume: 58 start-page: 390 year: 1977 ident: ref_79 article-title: Steric stabilization publication-title: J. Colloid Interface Sci. doi: 10.1016/0021-9797(77)90150-3 – volume: 9 start-page: 746 year: 2015 ident: ref_46 article-title: Nanosized magnetite in low cost materials for remediation of water polluted with toxic metals, azo- and antraquinonic dyes publication-title: Front. Environ. Sci. Eng. doi: 10.1007/s11783-015-0814-x – ident: ref_11 – volume: 14 start-page: 8105 year: 2019 ident: ref_14 article-title: Surface-Engineered Super-Paramagnetic Iron Oxide Nanoparticles For Chromium Removal publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S214236 – volume: 8 start-page: 279 year: 2018 ident: ref_1 article-title: Recent advances and future prospects of iron oxide nanoparticles in biomedicine and diagnostics publication-title: 3 Biotech doi: 10.1007/s13205-018-1286-z – volume: 231 start-page: 32 year: 2000 ident: ref_41 article-title: Transport of Iron Oxide Colloids in Packed Quartz Sand Media: Monolayer and Multilayer Deposition publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.2000.7097 – volume: 276 start-page: 116661 year: 2021 ident: ref_85 article-title: Evidence on enhanced transport and release of silver nanoparticles by colloids in soil due to modification of grain surface morphology and co-transport publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2021.116661 – volume: 34 start-page: 2106 year: 2011 ident: ref_26 article-title: Iron oxide nanoparticle coating of organic polymer-based monolithic columns for phosphopeptide enrichment publication-title: J. Sep. Sci. doi: 10.1002/jssc.201100256 – ident: ref_5 doi: 10.1002/9781118939314 – volume: 28 start-page: 509 year: 2009 ident: ref_42 article-title: Adsorption of Arsenic to Magnetite Nanoparticles: Effect of Particle Concentration, Ph, Ionic Strength, and Temperature publication-title: Environ. Toxicol. Chem. doi: 10.1897/08-155.1 – ident: ref_4 doi: 10.3390/ijerph17165817 – volume: 322 start-page: 89 year: 2018 ident: ref_72 article-title: Transport of silver nanoparticles in intact columns of calcareous soils: The role of flow conditions and soil texture publication-title: Geoderma doi: 10.1016/j.geoderma.2018.02.016 – volume: 15 start-page: 63 year: 2013 ident: ref_6 article-title: Iron nanoparticles for environmental clean-up: Recent developments and future outlook publication-title: Environ. Sci. Process. Impacts doi: 10.1039/C2EM30691C – volume: 3 start-page: 397 year: 2008 ident: ref_25 article-title: Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Functionalization Strategies publication-title: Nanoscale Res. Lett. doi: 10.1007/s11671-008-9174-9 – volume: 399 start-page: 125809 year: 2020 ident: ref_15 article-title: Magnetite nanoparticles for the remediation of soils co-contaminated with As and PAHs publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.125809 – volume: 318 start-page: 233 year: 2016 ident: ref_38 article-title: Review of key factors controlling engineered nanoparticle transport in porous media publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2016.06.065 – volume: 28 start-page: 16638 year: 2012 ident: ref_24 article-title: Designed Polyelectrolyte Shell on Magnetite Nanocore for Dilution-Resistant Biocompatible Magnetic Fluids publication-title: Langmuir doi: 10.1021/la302660p – volume: 12 start-page: 908 year: 2019 ident: ref_22 article-title: Nanoparticles: Properties, applications and toxicities publication-title: Arab. J. Chem. doi: 10.1016/j.arabjc.2017.05.011 – volume: 433 start-page: 14 year: 2013 ident: ref_39 article-title: Influence of surface chemical heterogeneity on attachment and detachment of microparticles publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2013.04.048 – volume: 4 start-page: 1512 year: 2017 ident: ref_56 article-title: Simulation of magnetite nanoparticle mobility in a heterogeneous flow cell publication-title: Environ. Sci. Nano doi: 10.1039/C7EN00152E – volume: 408 start-page: 3477 year: 2010 ident: ref_28 article-title: Effect of dissolved organic matter on the stability of magnetite nanoparticles under different pH and ionic strength conditions publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2010.03.033 – ident: ref_3 doi: 10.3390/nano10050917 – volume: 258 start-page: 113803 year: 2020 ident: ref_36 article-title: Evidence for the critical role of nanoscale surface roughness on the retention and release of silver nanoparticles in porous media publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.113803 – ident: ref_57 doi: 10.1002/0471238961.1301120506051220.a01.pub2 – volume: 322 start-page: 48 year: 2017 ident: ref_20 article-title: Environmental implications and applications of engineered nanoscale magnetite and its hybrid nanocomposites: A review of recent literature publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2016.06.060 – volume: 55 start-page: 1522 year: 2016 ident: ref_53 article-title: Low Adsorption of Magnetite Nanoparticles with Uniform Polyelectrolyte Coatings in Concentrated Brine on Model Silica and Sandstone publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.5b03279 – volume: 295 start-page: 115 year: 2006 ident: ref_62 article-title: The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparticles publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2005.08.003 – volume: 37 start-page: 2242 year: 2003 ident: ref_66 article-title: Modeling Colloid Attachment, Straining, and Exclusion in Saturated Porous Media publication-title: Environ. Sci. Technol. doi: 10.1021/es025899u – volume: 2014 start-page: 864068 year: 2014 ident: ref_51 article-title: Experimental Study and Numerical Solution of Poly Acrylic Acid Supported Magnetite Nanoparticles Transport in a One-Dimensional Porous Media publication-title: Adv. Mater. Sci. Eng. doi: 10.1155/2014/864068 – volume: 11 start-page: 431 year: 1963 ident: ref_67 article-title: An Algorithm for Least-Squares Estimation of Nonlinear Parameters publication-title: J. Soc. Ind. Appl. Math. doi: 10.1137/0111030 – volume: 31 start-page: 100845 year: 2019 ident: ref_12 article-title: A review on nanotechnological application of magnetic iron oxides for heavy metal removal publication-title: J. Water Process Eng. doi: 10.1016/j.jwpe.2019.100845 – volume: 68 start-page: 24 year: 2015 ident: ref_80 article-title: Transport, retention, and size perturbation of graphene oxide in saturated porous media: Effects of input concentration and grain size publication-title: Water Res. doi: 10.1016/j.watres.2014.09.025 – volume: 15 start-page: 1617 year: 2003 ident: ref_29 article-title: Protective Coating of Superparamagnetic Iron Oxide Nanoparticles publication-title: Chem. Mater. doi: 10.1021/cm021349j – volume: 30 start-page: 1915 year: 2016 ident: ref_52 article-title: Improved Mobility of Magnetite Nanoparticles at High Salinity with Polymers and Surfactants publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.5b01785 |
SSID | ssj0000913853 |
Score | 2.2030866 |
Snippet | Understanding the physicochemical factors affecting nanoparticle transport in porous media is critical for their environmental application. Water-saturated... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1536 |
SubjectTerms | Acids Acrylic acid breakthrough curve coated magnetite nanoparticles Coatings deposition profile Electrolytes Experiments Grain size Ionic strength Magnetite Maleic acid mathematical modeling Mobility Nanoparticles Particle size Pollutants Polymer coatings Polymers Porous media Protective coatings Retention saturated column Solid phases Surfactants |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT-WAeJNSKiOBBIKo2dix496WitIiLUJApd4iP9tIK6faZg_lH_EvO5OkURaBuHBM4iQTz4znm3j8mZBXUjIjhOcpCyKkPBQhLb3WqYVQUYTMSeXwP-Tiizg-5Z_PirPJVl9YE9bTA_cdt68Mc0EVeeEN5zZY7UNgnPkc3IML3_F8ZiqbJFPdGKxmDAJRX-nOIK_fjzo2uE4UPFxsxKCOqv9P-PL3MslJ3Dm6T-4NgJHOe0EfkDs-PiR3JzSCj8ivkaGc6ujoN8TB2N-0CfRrs7x-M7er62Vt6dzWLrVNuoCoMBy-pYcNwE1HF_o84oozT2HAhUx6KJijdYRnrJr1FcU5HX1Ae75jfPZJvFy3cH_sRcdXvqcnyLVLcbI7nrcXnUCfcBsK-r3-6R-T06OPPw6P02ELhtRyWbZpKC2HJNYiUZw2M-ZE7pQMkjsudGAmk9I4AGE8KCecBLSVGcVKDTBP-AJ094RsxSb6Z4SWkHyWgYuMc8nVTBkD0Cy3lotgdG55Qt7dKqWyAz85bpOxrCBPQRVWUxUm5PXY-rLn5fhLuw-o37ENsml3J8DGqqErq3_ZWEJ2b62jGlz8qgJkA-MjwOciIS_Hy-CcOOOiowfFYBskP4JxLiFPe2MaJQGgJ3CVYULkhpltiLp5JdYXHQG4QhbEmdr5H9_2nGznuKIDazjzXbLVrtb-BeCs1ux1LnUDnkwpRQ priority: 102 providerName: Directory of Open Access Journals |
Title | Transport and Retention of Poly(Acrylic Acid-co-Maleic Acid) Coated Magnetite Nanoparticles in Porous Media: Effect of Input Concentration, Ionic Strength and Grain Size |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35564244 https://www.proquest.com/docview/2663079775 https://www.proquest.com/docview/2664787531 https://pubmed.ncbi.nlm.nih.gov/PMC9103219 https://doaj.org/article/9b3df9525eb44cfcaeff343e208846e3 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF5Be4ED4l1DiRYJJBBYTez1rpcLSqumLVKqqlCpN2ufqaVoHfI4lH_Ev2TGdkyCgKPjjT3yzM58OzvzLSFvhEg1547Fqec-Zj7zce6Uig2Eisz3rZAW85Djc356xb5cZ9dtwm3RllWufWLtqG1lMEd-AIEEzBHQSvZ59j3GU6Nwd7U9QuMu2R3gAOwUH510ORbkvIRw1NS7p7C6PwgqVNgtCvOcb0WimrD_byjzz2LJjegzekgetLCRDhs9PyJ3XHhM7m-QCT4hPzuecqqCpZeIhvGr08rTi2p6-25o5rfT0tChKW1sqngMsaG9fE-PKgCdlo7VJGDfmaPgdmE93ZbN0TLAM-bVakFxZ0d9og3rMT77LMxWS_h_aETHV36kZ8i4S3HLO0yWN7VAJ3gYBf1a_nBPydXo-NvRadwexBAbJvJl7HPDYClrkC5O6UFqeWKl8IJZxpVPdV8IbQGKMS8ttwIwV1_LNFcA9rjLpE6fkZ1QBbdHaA5L0Nwz3mdMMDmQWgNAS4xh3GuVGBaRD2ulFKZlKcfDMqYFrFZQhcWmCiPyths9a9g5_jHuEPXbjUFO7fqHaj4p2k9ZgJzWyyzJnGbMeKOc9ylLXQKOmHGXRmR_bR1FO9EXxW-zjMjr7jZMUdx3UcGBYnAMUiCBt4vI88aYOkkA7nHsNYyI2DKzLVG374TypqYBl8iFOJAv_i_WS3IvwY4NrNFM9snOcr5yrwBHLXWvniw9snt4fH5x2auzEb8Aiw8idg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6V9AAcEG8MBRaJSiCwmtjrtY2EUFpaEtpEVR9Sb2afqaVoHfIQCv-IC7-RmdgxCQJuPSZeb0aZ2Zlvdne-IeRlHIeSc8P80HLrMxtZPzFC-ApCRWSbOk417kP2-rxzzj5fRBcb5OeyFgavVS594sJR60LhHvkOBBIwR0Ar0YfRVx-7RuHp6rKFRmkWh2b-DVK2yfvuR9DvdhAc7J_tdfyqq4CvWJxMfZsoBnmZQu4zIVuh5oFOYxszzbiwoWzGsdSAK5hNNdcxAIimTMNEAHLhJkplCPNeI5sMK1obZHN3v398Uu_qIMsmBMDyhn0Ir-444QqsTwXPwtdi36JFwN9w7Z_XM1fi3cFtcqsCqrRdWtYdsmHcXXJzhb7wHvlRM6NT4TQ9QfyNeqaFpcfFcP6qrcbzYa5oW-XaV4Xfg2hUfXxN9wqAuZr2xMBhpZuh4Oghg68u6tHcwRzjYjaheJYk3tGSZxnn7rrRbArvu1J0_Mm3tIscvxQP2d1gerkQ6BO2v6Cn-Xdzn5xfiZIekIYrnHlEaAJJb2IZbzIWs7SVSgmQMFCKcStFoJhH3iyVkqmKFx3bcwwzyI9QhdmqCj2yXY8elXwg_xi3i_qtxyCL9-KLYjzIqr8yAzm1TaMgMpIxZZUw1oYsNAG4fsZN6JGtpXVklWuZZL8Xgkde1I_BKeBJj3AGFINjkHQJ_KtHHpbGVEsCAJNjdaNH4jUzWxN1_YnLLxfE4ymyL7bSx_8X6zm53jnrHWVH3f7hE3IjwHoRvCEabJHGdDwzTwHFTeWzaulQ8uWqV-svHdldHg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1tb9MwELbGkBB8QLwTGGAkJoEgaps4doKEUNnoVsamiTFp34Jfu0qVU_oiVP4Rf4Ffx12ShhYB3_axjeOeeue7x_bdc4Q8EyJWnFsWxo67kLnEhamVMtQQKhLXNiIzeA55eMT3T9mHs-Rsg_xc1sJgWuXSJ5aO2hQaz8hbEEjAHAGtJC1Xp0Uc7_bejr-G2EEKb1qX7TQqEzmwi2-wfZu-6e-CrrejqPf-885-WHcYCDUT6Sx0qWawR9PIgyZVJzY8MplwghnGpYtVWwhlAGMwlxluBICJtsriVAKK4TbJVAzzXiKXRQyCYZV6b68530G-TQiFVa59DC-2vPQFVqqCj-FrUbBsFvA3hPtnouZK5OvdINdryEq7lY3dJBvW3yLXVogMb5MfDUc6ld7QT4jEUeO0cPS4GC2ed_VkMRpq2tVDE-oiPIS4VH98QXcKALyGHsqBx5o3S8Hlw16-TtmjQw9zTIr5lOKtknxNK8ZlnLvvx_MZvO8r0fEnX9E-sv1SvG73g9l5KdAeNsKgJ8Pv9g45vRAV3SWbvvD2PqEpbH9Tx3ibMcGyTqYUgMNIa8adkpFmAXm5VEqua4Z0bNQxymGnhCrMV1UYkO1m9LhiBvnHuHeo32YM8nmXXxSTQV7_lTnIaVyWRIlVjGmnpXUuZrGNIAgwbuOAbC2tI6-dzDT_vSQC8rR5DO4B73ykt6AYHIP0S-BpA3KvMqZGEoCaHOscAyLWzGxN1PUnfnheUpBnyMPYyR78X6wn5Aqs0fxj_-jgIbkaYeEIpopGW2RzNpnbRwDnZupxuW4o-XLRC_UXWYJf7g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transport+and+Retention+of+Poly%28Acrylic+Acid-co-Maleic+Acid%29+Coated+Magnetite+Nanoparticles+in+Porous+Media%3A+Effect+of+Input+Concentration%2C+Ionic+Strength+and+Grain+Size&rft.jtitle=Nanomaterials+%28Basel%2C+Switzerland%29&rft.au=Mlih%2C+Rawan&rft.au=Liang%2C+Yan&rft.au=Zhang%2C+Miaoyue&rft.au=Tomb%C3%A1cz%2C+Etelka&rft.date=2022-05-02&rft.issn=2079-4991&rft.eissn=2079-4991&rft.volume=12&rft.issue=9&rft_id=info:doi/10.3390%2Fnano12091536&rft_id=info%3Apmid%2F35564244&rft.externalDocID=35564244 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-4991&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-4991&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-4991&client=summon |