A Human Gut Commensal Ferments Cranberry Carbohydrates To Produce Formate

Commensal bifidobacteria colonize the human gastrointestinal tract and catabolize glycans that are impervious to host digestion. Accordingly, typically secretes acetate and lactate as fermentative end products. This study tested the hypothesis that utilizes cranberry-derived xyloglucans in a strain-...

Full description

Saved in:
Bibliographic Details
Published inApplied and environmental microbiology Vol. 83; no. 17
Main Authors Özcan, Ezgi, Sun, Jiadong, Rowley, David C, Sela, David A
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 01.09.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Commensal bifidobacteria colonize the human gastrointestinal tract and catabolize glycans that are impervious to host digestion. Accordingly, typically secretes acetate and lactate as fermentative end products. This study tested the hypothesis that utilizes cranberry-derived xyloglucans in a strain-dependent manner. Interestingly, the strain that efficiently utilizes cranberry xyloglucans secretes 2.0 to 2.5 mol of acetate-lactate. The 1.5 acetate:lactate ratio theoretical yield obtained in hexose fermentations shifts during xyloglucan metabolism. Accordingly, this metabolic shift is characterized by increased acetate and formate production at the expense of lactate. α-l-Arabinofuranosidase, an arabinan endo-1,5-α-l-arabinosidase, and a β-xylosidase with a carbohydrate substrate-binding protein and carbohydrate ABC transporter membrane proteins are upregulated (>2-fold change), which suggests carbon flux through this catabolic pathway. Finally, syntrophic interactions occurred with strains that utilize carbohydrate products derived from initial degradation from heterologous bacteria. This was a study of bacterial metabolism of complex cranberry carbohydrates termed xyloglucans that are likely not digested prior to reaching the colon. This is significant, as bifidobacteria interact with this dietary compound to potentially impact human host health through energy and metabolite production by utilizing these substrates. Specific bacterial strains utilize cranberry xyloglucans as a nutritive source, indicating unknown mechanisms that are not universal in bifidobacteria. In addition, xyloglucan metabolism proceeds by using an alternative pathway that could lead to further research to investigate mechanisms underlying this interaction. Finally, we observed cross-feeding between bacteria in which one strain degrades the cranberry xyloglucan to make it available to a second strain. Similar nutritive strategies are known to occur within the gut. In aggregate, this study may lead to novel foods or supplements used to impact human health through rational manipulation of the human microbiome.
AbstractList Commensal bifidobacteria colonize the human gastrointestinal tract and catabolize glycans that are impervious to host digestion. Accordingly, Bifidobacterium longum typically secretes acetate and lactate as fermentative end products. This study tested the hypothesis that B. longum utilizes cranberry-derived xyloglucans in a strain-dependent manner. Interestingly, the B. longum strain that efficiently utilizes cranberry xyloglucans secretes 2.0 to 2.5 mol of acetate-lactate. The 1.5 acetate:lactate ratio theoretical yield obtained in hexose fermentations shifts during xyloglucan metabolism. Accordingly, this metabolic shift is characterized by increased acetate and formate production at the expense of lactate. α-l-Arabinofuranosidase, an arabinan endo-1,5-α-l-arabinosidase, and a β-xylosidase with a carbohydrate substrate-binding protein and carbohydrate ABC transporter membrane proteins are upregulated (>2-fold change), which suggests carbon flux through this catabolic pathway. Finally, syntrophic interactions occurred with strains that utilize carbohydrate products derived from initial degradation from heterologous bacteria.IMPORTANCE This was a study of bacterial metabolism of complex cranberry carbohydrates termed xyloglucans that are likely not digested prior to reaching the colon. This is significant, as bifidobacteria interact with this dietary compound to potentially impact human host health through energy and metabolite production by utilizing these substrates. Specific bacterial strains utilize cranberry xyloglucans as a nutritive source, indicating unknown mechanisms that are not universal in bifidobacteria. In addition, xyloglucan metabolism proceeds by using an alternative pathway that could lead to further research to investigate mechanisms underlying this interaction. Finally, we observed cross-feeding between bacteria in which one strain degrades the cranberry xyloglucan to make it available to a second strain. Similar nutritive strategies are known to occur within the gut. In aggregate, this study may lead to novel foods or supplements used to impact human health through rational manipulation of the human microbiome.
Commensal bifidobacteria colonize the human gastrointestinal tract and catabolize glycans that are impervious to host digestion. Accordingly, typically secretes acetate and lactate as fermentative end products. This study tested the hypothesis that utilizes cranberry-derived xyloglucans in a strain-dependent manner. Interestingly, the strain that efficiently utilizes cranberry xyloglucans secretes 2.0 to 2.5 mol of acetate-lactate. The 1.5 acetate:lactate ratio theoretical yield obtained in hexose fermentations shifts during xyloglucan metabolism. Accordingly, this metabolic shift is characterized by increased acetate and formate production at the expense of lactate. α-l-Arabinofuranosidase, an arabinan endo-1,5-α-l-arabinosidase, and a β-xylosidase with a carbohydrate substrate-binding protein and carbohydrate ABC transporter membrane proteins are upregulated (>2-fold change), which suggests carbon flux through this catabolic pathway. Finally, syntrophic interactions occurred with strains that utilize carbohydrate products derived from initial degradation from heterologous bacteria. This was a study of bacterial metabolism of complex cranberry carbohydrates termed xyloglucans that are likely not digested prior to reaching the colon. This is significant, as bifidobacteria interact with this dietary compound to potentially impact human host health through energy and metabolite production by utilizing these substrates. Specific bacterial strains utilize cranberry xyloglucans as a nutritive source, indicating unknown mechanisms that are not universal in bifidobacteria. In addition, xyloglucan metabolism proceeds by using an alternative pathway that could lead to further research to investigate mechanisms underlying this interaction. Finally, we observed cross-feeding between bacteria in which one strain degrades the cranberry xyloglucan to make it available to a second strain. Similar nutritive strategies are known to occur within the gut. In aggregate, this study may lead to novel foods or supplements used to impact human health through rational manipulation of the human microbiome.
Commensal bifidobacteria colonize the human gastrointestinal tract and catabolize glycans that are impervious to host digestion. Accordingly, Bifidobacterium longum typically secretes acetate and lactate as fermentative end products. This study tested the hypothesis that B. longum utilizes cranberry-derived xyloglucans in a strain-dependent manner. Interestingly, the B. longum strain that efficiently utilizes cranberry xyloglucans secretes 2.0 to 2.5 mol of acetate-lactate. The 1.5 acetate:lactate ratio theoretical yield obtained in hexose fermentations shifts during xyloglucan metabolism. Accordingly, this metabolic shift is characterized by increased acetate and formate production at the expense of lactate. α- l -Arabinofuranosidase, an arabinan endo-1,5-α- l -arabinosidase, and a β-xylosidase with a carbohydrate substrate-binding protein and carbohydrate ABC transporter membrane proteins are upregulated (>2-fold change), which suggests carbon flux through this catabolic pathway. Finally, syntrophic interactions occurred with strains that utilize carbohydrate products derived from initial degradation from heterologous bacteria. IMPORTANCE This was a study of bacterial metabolism of complex cranberry carbohydrates termed xyloglucans that are likely not digested prior to reaching the colon. This is significant, as bifidobacteria interact with this dietary compound to potentially impact human host health through energy and metabolite production by utilizing these substrates. Specific bacterial strains utilize cranberry xyloglucans as a nutritive source, indicating unknown mechanisms that are not universal in bifidobacteria. In addition, xyloglucan metabolism proceeds by using an alternative pathway that could lead to further research to investigate mechanisms underlying this interaction. Finally, we observed cross-feeding between bacteria in which one strain degrades the cranberry xyloglucan to make it available to a second strain. Similar nutritive strategies are known to occur within the gut. In aggregate, this study may lead to novel foods or supplements used to impact human health through rational manipulation of the human microbiome.
ABSTRACT Commensal bifidobacteria colonize the human gastrointestinal tract and catabolize glycans that are impervious to host digestion. Accordingly, Bifidobacterium longum typically secretes acetate and lactate as fermentative end products. This study tested the hypothesis that B. longum utilizes cranberry-derived xyloglucans in a strain-dependent manner. Interestingly, the B. longum strain that efficiently utilizes cranberry xyloglucans secretes 2.0 to 2.5 mol of acetate-lactate. The 1.5 acetate:lactate ratio theoretical yield obtained in hexose fermentations shifts during xyloglucan metabolism. Accordingly, this metabolic shift is characterized by increased acetate and formate production at the expense of lactate. α- l -Arabinofuranosidase, an arabinan endo-1,5-α- l -arabinosidase, and a β-xylosidase with a carbohydrate substrate-binding protein and carbohydrate ABC transporter membrane proteins are upregulated (>2-fold change), which suggests carbon flux through this catabolic pathway. Finally, syntrophic interactions occurred with strains that utilize carbohydrate products derived from initial degradation from heterologous bacteria. IMPORTANCE This was a study of bacterial metabolism of complex cranberry carbohydrates termed xyloglucans that are likely not digested prior to reaching the colon. This is significant, as bifidobacteria interact with this dietary compound to potentially impact human host health through energy and metabolite production by utilizing these substrates. Specific bacterial strains utilize cranberry xyloglucans as a nutritive source, indicating unknown mechanisms that are not universal in bifidobacteria. In addition, xyloglucan metabolism proceeds by using an alternative pathway that could lead to further research to investigate mechanisms underlying this interaction. Finally, we observed cross-feeding between bacteria in which one strain degrades the cranberry xyloglucan to make it available to a second strain. Similar nutritive strategies are known to occur within the gut. In aggregate, this study may lead to novel foods or supplements used to impact human health through rational manipulation of the human microbiome.
Commensal bifidobacteria colonize the human gastrointestinal tract and catabolize glycans that are impervious to host digestion. Accordingly, Bifidobacterium longum typically secretes acetate and lactate as fermentative end products. This study tested the hypothesis that B. longum utilizes cranberry-derived xyloglucans in a strain-dependent manner. Interestingly, the B. longum strain that efficiently utilizes cranberry xyloglucans secretes 2.0 to 2.5 mol of acetate-lactate. The 1.5 acetate:lactate ratio theoretical yield obtained in hexose fermentations shifts during xyloglucan metabolism. Accordingly, this metabolic shift is characterized by increased acetate and formate production at the expense of lactate. α-l-Arabinofuranosidase, an arabinan endo-1,5-α-l-arabinosidase, and a β-xylosidase with a carbohydrate substrate-binding protein and carbohydrate ABC transporter membrane proteins are upregulated (>2-fold change), which suggests carbon flux through this catabolic pathway. Finally, syntrophic interactions occurred with strains that utilize carbohydrate products derived from initial degradation from heterologous bacteria.
Author Özcan, Ezgi
Sun, Jiadong
Sela, David A
Rowley, David C
Author_xml – sequence: 1
  givenname: Ezgi
  surname: Özcan
  fullname: Özcan, Ezgi
  organization: Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
– sequence: 2
  givenname: Jiadong
  surname: Sun
  fullname: Sun, Jiadong
  organization: College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
– sequence: 3
  givenname: David C
  surname: Rowley
  fullname: Rowley, David C
  organization: College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
– sequence: 4
  givenname: David A
  orcidid: 0000-0002-3354-7470
  surname: Sela
  fullname: Sela, David A
  email: davidsela@umass.edu
  organization: Center for Microbiome Research, University of Massachusetts Medical School, Worcester, Massachusetts, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28667113$$D View this record in MEDLINE/PubMed
BookMark eNpdkc1P3DAQxa2KqiyUW8-VpV44NNRjO3Z8qbSKWECiag9wtibJpCxKYmonSPvfY8qHaE8zmvnp6T29A7Y3hYkY-wTiBEBW35DGEwHC2QLsO7bKW1WUSpk9thLCuUJKLfbZQUq3QggtTPWB7cvKGAugVuxizc-XESd-tsy8DuNIU8KBbyjmbU68jjg1FOOO1xibcLPrIs6U-FXgv2Lolpb4JsQx3z6y9z0OiY6e5yG73pxe1efF5c-zi3p9WbTaVnNB4NC1TpFuSTTGUZc9UaO1NmWPjevQoXB9AwjY9yDJorKlVC2CslKV6pB9f9K9W5qRujbbjDj4u7gdMe58wK3_9zNtb_zvcO_L0oC0LgscPwvE8GehNPtxm1oaBpwoLMmDg1JpoxVk9Mt_6G1Y4pTjZaq0YCopbaa-PlFtDClF6l_NgPCPHfn16Q__tyMPj_jntwFe4ZdS1AM8hI5u
CitedBy_id crossref_primary_10_1007_s13668_023_00449_0
crossref_primary_10_1016_j_lwt_2019_108452
crossref_primary_10_3389_fvets_2020_00150
crossref_primary_10_3389_fnut_2018_00046
crossref_primary_10_1016_j_fbio_2024_104380
crossref_primary_10_1016_j_copbio_2021_07_012
crossref_primary_10_1016_j_heliyon_2024_e29787
crossref_primary_10_1021_acschembio_1c00563
crossref_primary_10_3390_microorganisms8040481
crossref_primary_10_1038_s41598_019_54696_9
crossref_primary_10_3390_nu12082181
crossref_primary_10_3389_fpsyt_2019_00034
crossref_primary_10_3390_microorganisms9030656
crossref_primary_10_1016_j_cofs_2021_06_003
crossref_primary_10_3390_microorganisms10071346
crossref_primary_10_1093_bfgp_elaa029
crossref_primary_10_1146_annurev_food_111519_014337
crossref_primary_10_3390_ijms25126655
crossref_primary_10_1186_s12866_021_02106_4
crossref_primary_10_1038_s41522_024_00493_w
crossref_primary_10_1016_j_jafr_2020_100025
crossref_primary_10_1021_acs_jnatprod_8b01044
crossref_primary_10_1039_C9FO01274E
crossref_primary_10_3389_fmicb_2018_02690
crossref_primary_10_1016_j_carbpol_2024_121869
crossref_primary_10_3390_antibiotics11020218
crossref_primary_10_1021_acs_jnatprod_8b01043
crossref_primary_10_1080_19490976_2023_2192546
crossref_primary_10_1093_af_vfy002
crossref_primary_10_1128_msystems_01248_21
Cites_doi 10.3945/an.113.004473
10.1038/srep15782
10.1128/AEM.00573-09
10.1128/AEM.06762-11
10.1038/ismej.2015.236
10.1021/jf901397b
10.1128/AEM.72.2.1006-1012.2006
10.1126/science.1109051
10.1194/jlr.R036012
10.1155/2015/567809
10.1111/jam.12415
10.3748/wjg.v17.i12.1519
10.1006/anae.1996.0031
10.1080/19490976.2015.1105425
10.1093/mp/ssq067
10.1111/j.1750-3841.2010.01772.x
10.1128/AEM.00146-06
10.1128/AEM.02853-13
10.1371/journal.pone.0017315
10.1016/S0167-7012(00)00133-0
10.1016/j.tim.2010.03.008
10.1271/bbb.100494
10.1038/pr.2015.244
10.1073/pnas.0809584105
10.1007/s12263-010-0206-6
10.1111/j.1751-7915.2008.00072.x
10.1371/journal.pone.0036957
10.3389/fmicb.2015.01030
10.1128/AEM.72.5.3593-3599.2006
10.1002/mnfr.200700121
10.1093/jn/125.6.1401
10.1128/AEM.00675-10
10.1111/j.1365-313X.1993.tb00007.x
10.1016/S0168-1605(98)00156-1
10.1021/acs.jafc.5b00730
10.1016/j.ijfoodmicro.2015.03.008
10.3168/jds.2009-2126
10.1111/jam.12105
10.1002/mnfr.200700150
10.1021/jf0710480
10.1074/jbc.M110.193359
10.1086/383593
10.1128/AEM.70.4.1923-1930.2004
10.1093/mp/ssp061
10.1186/1471-2164-9-247
10.1371/journal.pbio.1001221
10.1111/j.1365-2672.1991.tb04457.x
10.1016/j.ab.2004.12.001
10.1128/AEM.02216-08
10.1016/S0168-1605(98)00044-0
10.1128/AEM.01488-08
10.1128/AEM.02308-14
10.1097/MCO.0000000000000025
10.1128/JB.01227-07
10.1073/pnas.1211002109
10.1128/AEM.71.10.6150-6158.2005
10.1016/j.jff.2015.05.016
ContentType Journal Article
Copyright Copyright © 2017 American Society for Microbiology.
Copyright American Society for Microbiology Sep 2017
Copyright © 2017 American Society for Microbiology. 2017 American Society for Microbiology
Copyright_xml – notice: Copyright © 2017 American Society for Microbiology.
– notice: Copyright American Society for Microbiology Sep 2017
– notice: Copyright © 2017 American Society for Microbiology. 2017 American Society for Microbiology
DBID NPM
AAYXX
CITATION
7QL
7QO
7SN
7SS
7ST
7T7
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
SOI
7X8
5PM
DOI 10.1128/aem.01097-17
DatabaseName PubMed
CrossRef
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Biotechnology Research Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

CrossRef
Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
Biology
DocumentTitleAlternate Bifidobacterial Metabolism of Cranberry Carbohydrates
EISSN 1098-5336
Editor Elkins, Christopher A.
Editor_xml – sequence: 1
  givenname: Christopher A.
  surname: Elkins
  fullname: Elkins, Christopher A.
ExternalDocumentID 10_1128_AEM_01097_17
28667113
Genre Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: P20 GM103430
– fundername: Ocean Spray Inc.
  grantid: Industry
– fundername: HHS | NIH | National Institute of General Medical Sciences (NIGMS)
  grantid: 2 P20 GM103430
– fundername: National Science Foundation (NSF)
  grantid: EPS-1004057
GroupedDBID ---
-~X
0R~
23M
2WC
39C
4.4
53G
5GY
5RE
5VS
6J9
85S
AAZTW
ABOGM
ABPPZ
ACBTR
ACGFO
ACIWK
ACNCT
ACPRK
ADBBV
ADUKH
AENEX
AFRAH
AGVNZ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
BTFSW
CS3
D0L
DIK
E.-
E3Z
EBS
EJD
F5P
GX1
H13
HYE
HZ~
K-O
KQ8
L7B
NPM
O9-
OK1
P2P
PQQKQ
RHF
RHI
RNS
RPM
RSF
RXW
TAE
TAF
TN5
TR2
TWZ
UCJ
UHB
W8F
WH7
WOQ
X6Y
~02
~KM
.55
.GJ
3O-
AAYXX
ABTAH
AFFNX
AGCDD
AI.
C1A
CITATION
F20
H~9
MVM
NEJ
OHT
VH1
WHG
X7M
XJT
YV5
ZCG
ZGI
ZXP
ZY4
7QL
7QO
7SN
7SS
7ST
7T7
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
SOI
7X8
5PM
ID FETCH-LOGICAL-c478t-e19a9c93e4ce0b69ed406eb44465fab9da9a09fb1a1aff12e7a37523ca1372353
IEDL.DBID RPM
ISSN 0099-2240
IngestDate Tue Sep 17 21:19:11 EDT 2024
Sat Oct 26 01:03:04 EDT 2024
Thu Oct 10 16:54:41 EDT 2024
Thu Sep 12 20:10:12 EDT 2024
Sat Sep 28 08:37:02 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords prebiotics
food microbiology
bifidobacteria
Language English
License Copyright © 2017 American Society for Microbiology.
All Rights Reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c478t-e19a9c93e4ce0b69ed406eb44465fab9da9a09fb1a1aff12e7a37523ca1372353
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Citation Özcan E, Sun J, Rowley DC, Sela DA. 2017. A human gut commensal ferments cranberry carbohydrates to produce formate. Appl Environ Microbiol 83:e01097-17. https://doi.org/10.1128/AEM.01097-17.
ORCID 0000-0002-3354-7470
OpenAccessLink https://aem.asm.org/content/aem/83/17/e01097-17.full.pdf
PMID 28667113
PQID 1957168227
PQPubID 42251
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5561279
proquest_miscellaneous_1915346431
proquest_journals_1957168227
crossref_primary_10_1128_AEM_01097_17
pubmed_primary_28667113
PublicationCentury 2000
PublicationDate 2017-09-01
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Applied and environmental microbiology
PublicationTitleAlternate Appl Environ Microbiol
PublicationYear 2017
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_3_50_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_58_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
Palframan RJ (e_1_3_3_40_2) 2003; 4
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_44_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
Coleman CM (e_1_3_3_24_2) 2010
e_1_3_3_51_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_59_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_57_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
e_1_3_3_60_2
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
References_xml – ident: e_1_3_3_45_2
  doi: 10.3945/an.113.004473
– ident: e_1_3_3_13_2
  doi: 10.1038/srep15782
– ident: e_1_3_3_50_2
  doi: 10.1128/AEM.00573-09
– volume-title: 2010 Joint Annual Meeting of the American Society of Pharmacognosy & The Phytochemical Society of North America Natural Solutions to 21st Century Problems—from Discovery to Commercialization
  year: 2010
  ident: e_1_3_3_24_2
  contributor:
    fullname: Coleman CM
– ident: e_1_3_3_18_2
  doi: 10.1128/AEM.06762-11
– ident: e_1_3_3_53_2
  doi: 10.1038/ismej.2015.236
– ident: e_1_3_3_37_2
  doi: 10.1021/jf901397b
– ident: e_1_3_3_41_2
  doi: 10.1128/AEM.72.2.1006-1012.2006
– ident: e_1_3_3_5_2
  doi: 10.1126/science.1109051
– ident: e_1_3_3_3_2
  doi: 10.1194/jlr.R036012
– ident: e_1_3_3_15_2
  doi: 10.1155/2015/567809
– ident: e_1_3_3_39_2
  doi: 10.1111/jam.12415
– ident: e_1_3_3_7_2
  doi: 10.3748/wjg.v17.i12.1519
– ident: e_1_3_3_26_2
  doi: 10.1006/anae.1996.0031
– ident: e_1_3_3_42_2
  doi: 10.1080/19490976.2015.1105425
– ident: e_1_3_3_22_2
  doi: 10.1093/mp/ssq067
– ident: e_1_3_3_59_2
  doi: 10.1111/j.1750-3841.2010.01772.x
– ident: e_1_3_3_32_2
  doi: 10.1128/AEM.00146-06
– ident: e_1_3_3_38_2
  doi: 10.1128/AEM.02853-13
– ident: e_1_3_3_60_2
  doi: 10.1371/journal.pone.0017315
– ident: e_1_3_3_57_2
  doi: 10.1016/S0167-7012(00)00133-0
– ident: e_1_3_3_14_2
  doi: 10.1016/j.tim.2010.03.008
– ident: e_1_3_3_10_2
  doi: 10.1271/bbb.100494
– ident: e_1_3_3_58_2
  doi: 10.1038/pr.2015.244
– ident: e_1_3_3_16_2
  doi: 10.1073/pnas.0809584105
– volume: 4
  start-page: 71
  year: 2003
  ident: e_1_3_3_40_2
  article-title: Carbohydrate preferences of Bifidobacterium species isolated from the human gut
  publication-title: Curr Issues Intest Microbiol
  contributor:
    fullname: Palframan RJ
– ident: e_1_3_3_9_2
  doi: 10.1007/s12263-010-0206-6
– ident: e_1_3_3_31_2
  doi: 10.1111/j.1751-7915.2008.00072.x
– ident: e_1_3_3_8_2
  doi: 10.1371/journal.pone.0036957
– ident: e_1_3_3_51_2
  doi: 10.3389/fmicb.2015.01030
– ident: e_1_3_3_6_2
  doi: 10.1128/AEM.72.5.3593-3599.2006
– ident: e_1_3_3_12_2
  doi: 10.1002/mnfr.200700121
– ident: e_1_3_3_47_2
  doi: 10.1093/jn/125.6.1401
– ident: e_1_3_3_17_2
  doi: 10.1128/AEM.00675-10
– ident: e_1_3_3_20_2
  doi: 10.1111/j.1365-313X.1993.tb00007.x
– ident: e_1_3_3_34_2
  doi: 10.1016/S0168-1605(98)00156-1
– ident: e_1_3_3_23_2
  doi: 10.1021/acs.jafc.5b00730
– ident: e_1_3_3_28_2
  doi: 10.1016/j.ijfoodmicro.2015.03.008
– ident: e_1_3_3_35_2
  doi: 10.3168/jds.2009-2126
– ident: e_1_3_3_48_2
  doi: 10.1111/jam.12105
– ident: e_1_3_3_29_2
  doi: 10.1002/mnfr.200700150
– ident: e_1_3_3_30_2
  doi: 10.1021/jf0710480
– ident: e_1_3_3_19_2
  doi: 10.1074/jbc.M110.193359
– ident: e_1_3_3_52_2
  doi: 10.1086/383593
– ident: e_1_3_3_43_2
  doi: 10.1128/AEM.70.4.1923-1930.2004
– ident: e_1_3_3_21_2
  doi: 10.1093/mp/ssp061
– ident: e_1_3_3_54_2
  doi: 10.1186/1471-2164-9-247
– ident: e_1_3_3_4_2
  doi: 10.1371/journal.pbio.1001221
– ident: e_1_3_3_33_2
  doi: 10.1111/j.1365-2672.1991.tb04457.x
– ident: e_1_3_3_55_2
  doi: 10.1016/j.ab.2004.12.001
– ident: e_1_3_3_56_2
  doi: 10.1128/AEM.02216-08
– ident: e_1_3_3_27_2
  doi: 10.1016/S0168-1605(98)00044-0
– ident: e_1_3_3_44_2
  doi: 10.1128/AEM.01488-08
– ident: e_1_3_3_36_2
  doi: 10.1128/AEM.02308-14
– ident: e_1_3_3_2_2
  doi: 10.1097/MCO.0000000000000025
– ident: e_1_3_3_49_2
  doi: 10.1128/JB.01227-07
– ident: e_1_3_3_11_2
  doi: 10.1073/pnas.1211002109
– ident: e_1_3_3_46_2
  doi: 10.1128/AEM.71.10.6150-6158.2005
– ident: e_1_3_3_25_2
  doi: 10.1016/j.jff.2015.05.016
SSID ssj0004068
Score 2.444607
Snippet Commensal bifidobacteria colonize the human gastrointestinal tract and catabolize glycans that are impervious to host digestion. Accordingly, typically...
ABSTRACT Commensal bifidobacteria colonize the human gastrointestinal tract and catabolize glycans that are impervious to host digestion. Accordingly,...
Commensal bifidobacteria colonize the human gastrointestinal tract and catabolize glycans that are impervious to host digestion. Accordingly, Bifidobacterium...
Commensal bifidobacteria colonize the human gastrointestinal tract and catabolize glycans that are impervious to host digestion. Accordingly, Bifidobacterium...
SourceID pubmedcentral
proquest
crossref
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
SubjectTerms ABC transporter
Acetic acid
Arabinofuranosidase
Bacteria
Berries
Bifidobacterium longum
Biodegradation
Carbohydrates
Digestive system
Fermentation
Food Microbiology
Gastrointestinal tract
Hexose
L-Arabinofuranosidase
Lactic acid
Membrane proteins
Metabolism
Organic chemicals
Polysaccharides
Protein folding
Protein transport
Proteins
Spotlight
Xyloglucan
Xylosidase
Title A Human Gut Commensal Ferments Cranberry Carbohydrates To Produce Formate
URI https://www.ncbi.nlm.nih.gov/pubmed/28667113
https://www.proquest.com/docview/1957168227
https://search.proquest.com/docview/1915346431
https://pubmed.ncbi.nlm.nih.gov/PMC5561279
Volume 83
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEB7iQGl7KK37cpsEFdrj2pZWj9XRmLh54JJCArktklYigWQd_Dj433ckWyZubz1Lq11GI803q28-AXwPTlYNIo2CSfRgHowvLOLwglbGWREayUUscJ7-kmc3_OJW3B6AyLUwibTv7H2_fXjst_d3iVv59OgGmSc2uJqO05WOSg860EEHzSl6LoYcyipLT8Z4ldnurBqMTqf9eBQUZRGjCnAlpaK03A9J_-DMv-mSz-LP5C282QJHMtp84Ds48G0XXmyuklx34WWuMF504fUzkcH3cD4i6U89-blaklgPgokrDjTBLTmSKMgYo5X18_majM3czu7WTVSPWJDrGblKcrCeTBKw9R_gZnJ6PT4rthcoFI6rall4qo12uvTc-aGV2jdoHG95FEkLxurGaDPUwVJDTQiUeWVKhZmpM7RUrBTlRzhsZ63_DCQg7AtaCxaXuRPCcsWkZ9JYyg0Lqgc_sg3rp41ORp3yC1bVaPY6mb2m2O8oG7jerpZFTbXAtA2hCjZ_2zWjn8fDC9P62Sr2wb2ZI36iPfi0mY_di_JE9kDtzdSuQ9TQ3m9B10pa2ltX-vLfT36FVyxG-kQ7O4LD5XzljxGnLO0JdC5_VyfJO_8ALXDnTA
link.rule.ids 230,315,730,783,787,888,27938,27939,53806,53808
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NbxMxEB2VIlQ4FAgFQgsYCY67ib273vUxihpSaKoeUtTbyvbaagXdVMnmEH49Y28cNe2pnMf7OWPPG_nNM8BXq3lRIdKIGMcITq00kUIcHtFCapXZiqeZa3CenPHxRfrjMrvcgSz0wnjSvlbXcf3nJq6vrzy38vZG9wJPrHc-GfojHXPRewJPcb72eSjSQztknxdBfNJlrMB3Z0VvcDyJ3WaQE0Z0OsAF5zmlyXZSeoA07xMm72Sg0Uv4Fd69JZ78jpeNivXfe7KOj_64V7C_xqRk0Jpfw46pO_CsPaVy1YG90Ly86MCLO_qFb-BkQPwmAPm-bIhrNcGaGG80wtXe8TPIEBOhMvP5igzlXM2uVpUTpliQ6Yyce6VZQ0YeM5sDuBgdT4fjaH02Q6TTvGgiQ4UUWiQm1aavuDAV_nWjUqe_ZqUSlRSyL6yikkprKTO5THIserWkSc6SLHkLu_WsNu-BWESUVoiMuRVEZ5lKc8YN41LRVDKbd-FbcE5520pwlL50YUWJ_iy9P0uK446C58r1RFyUVGRYESIKQvOXjRmnkNsXkbWZLd0YXPZThGa0C-9aR28eFCKkC_lWCGwGOHnubQs61st0rx354b-v_Ax74-nktDw9Oft5CM-ZAxSe3XYEu818aT4iHGrUJx_8_wANaQhh
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB7BIl4HHuVVWMBIcExSO4kTH6uyYRfoqoddacUlsh1bu4JNqzY9lF_P2K2rdrnt2ZPnjO1v5G--AfhsNS8bRBoR4xjBmZUmUojDI1pKrXLb8Cx3Bc7jU358nn2_yC92Wn150r5WV3H75zpury49t3J2rZPAE0sm45Fv6ViIZNbY5C7cwzk7KEOiHkoiB7wMApRu1wqcd1Ymw6Nx7A6EnDii0wIuOS8oTfc3pv_Q5k3S5M4uVD2FX-H91-ST3_GyU7H-e0Pa8VYf-AyebLApGa5NnsMd0_bg_rpb5aoHD0MR86IHj3d0DF_AyZD4wwDybdkRV3KCuTHeqMJV3_E0yAg3RGXm8xUZybmaXq4aJ1CxIGdTMvGKs4ZUHjubl3BeHZ2NjqNNj4ZIZ0XZRYYKKbRITabNQHFhGvzzRmVOh81KJRop5EBYRSWV1lJmCpkWmPxqSdOCpXn6Cg7aaWveALGILK0QOXMric5zlRWMG8aloplktujDl-CgeraW4qh9CsPKGn1ae5_WFO0Og_fqzYRc1FTkmBkiGsLhT9thnErufES2Zrp0Nrj8ZwjRaB9er529fVCIkj4Ue2GwNXAy3fsj6Fwv171x5ttbX_kRHky-VvXPk9Mf7-ARc7jCk9wO4aCbL817REWd-uDj_x9pMgrh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Human+Gut+Commensal+Ferments+Cranberry+Carbohydrates+To+Produce+Formate&rft.jtitle=Applied+and+environmental+microbiology&rft.au=%C3%96zcan%2C+Ezgi&rft.au=Sun%2C+Jiadong&rft.au=Rowley%2C+David+C&rft.au=Sela%2C+David+A&rft.date=2017-09-01&rft.eissn=1098-5336&rft.volume=83&rft.issue=17&rft_id=info:doi/10.1128%2Faem.01097-17&rft_id=info%3Apmid%2F28667113&rft.externalDocID=28667113
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0099-2240&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0099-2240&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0099-2240&client=summon