A Human Gut Commensal Ferments Cranberry Carbohydrates To Produce Formate
Commensal bifidobacteria colonize the human gastrointestinal tract and catabolize glycans that are impervious to host digestion. Accordingly, typically secretes acetate and lactate as fermentative end products. This study tested the hypothesis that utilizes cranberry-derived xyloglucans in a strain-...
Saved in:
Published in | Applied and environmental microbiology Vol. 83; no. 17 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
01.09.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Commensal bifidobacteria colonize the human gastrointestinal tract and catabolize glycans that are impervious to host digestion. Accordingly,
typically secretes acetate and lactate as fermentative end products. This study tested the hypothesis that
utilizes cranberry-derived xyloglucans in a strain-dependent manner. Interestingly, the
strain that efficiently utilizes cranberry xyloglucans secretes 2.0 to 2.5 mol of acetate-lactate. The 1.5 acetate:lactate ratio theoretical yield obtained in hexose fermentations shifts during xyloglucan metabolism. Accordingly, this metabolic shift is characterized by increased acetate and formate production at the expense of lactate. α-l-Arabinofuranosidase, an arabinan endo-1,5-α-l-arabinosidase, and a β-xylosidase with a carbohydrate substrate-binding protein and carbohydrate ABC transporter membrane proteins are upregulated (>2-fold change), which suggests carbon flux through this catabolic pathway. Finally, syntrophic interactions occurred with strains that utilize carbohydrate products derived from initial degradation from heterologous bacteria.
This was a study of bacterial metabolism of complex cranberry carbohydrates termed xyloglucans that are likely not digested prior to reaching the colon. This is significant, as bifidobacteria interact with this dietary compound to potentially impact human host health through energy and metabolite production by utilizing these substrates. Specific bacterial strains utilize cranberry xyloglucans as a nutritive source, indicating unknown mechanisms that are not universal in bifidobacteria. In addition, xyloglucan metabolism proceeds by using an alternative pathway that could lead to further research to investigate mechanisms underlying this interaction. Finally, we observed cross-feeding between bacteria in which one strain degrades the cranberry xyloglucan to make it available to a second strain. Similar nutritive strategies are known to occur within the gut. In aggregate, this study may lead to novel foods or supplements used to impact human health through rational manipulation of the human microbiome. |
---|---|
AbstractList | Commensal bifidobacteria colonize the human gastrointestinal tract and catabolize glycans that are impervious to host digestion. Accordingly, Bifidobacterium longum typically secretes acetate and lactate as fermentative end products. This study tested the hypothesis that B. longum utilizes cranberry-derived xyloglucans in a strain-dependent manner. Interestingly, the B. longum strain that efficiently utilizes cranberry xyloglucans secretes 2.0 to 2.5 mol of acetate-lactate. The 1.5 acetate:lactate ratio theoretical yield obtained in hexose fermentations shifts during xyloglucan metabolism. Accordingly, this metabolic shift is characterized by increased acetate and formate production at the expense of lactate. α-l-Arabinofuranosidase, an arabinan endo-1,5-α-l-arabinosidase, and a β-xylosidase with a carbohydrate substrate-binding protein and carbohydrate ABC transporter membrane proteins are upregulated (>2-fold change), which suggests carbon flux through this catabolic pathway. Finally, syntrophic interactions occurred with strains that utilize carbohydrate products derived from initial degradation from heterologous bacteria.IMPORTANCE This was a study of bacterial metabolism of complex cranberry carbohydrates termed xyloglucans that are likely not digested prior to reaching the colon. This is significant, as bifidobacteria interact with this dietary compound to potentially impact human host health through energy and metabolite production by utilizing these substrates. Specific bacterial strains utilize cranberry xyloglucans as a nutritive source, indicating unknown mechanisms that are not universal in bifidobacteria. In addition, xyloglucan metabolism proceeds by using an alternative pathway that could lead to further research to investigate mechanisms underlying this interaction. Finally, we observed cross-feeding between bacteria in which one strain degrades the cranberry xyloglucan to make it available to a second strain. Similar nutritive strategies are known to occur within the gut. In aggregate, this study may lead to novel foods or supplements used to impact human health through rational manipulation of the human microbiome. Commensal bifidobacteria colonize the human gastrointestinal tract and catabolize glycans that are impervious to host digestion. Accordingly, typically secretes acetate and lactate as fermentative end products. This study tested the hypothesis that utilizes cranberry-derived xyloglucans in a strain-dependent manner. Interestingly, the strain that efficiently utilizes cranberry xyloglucans secretes 2.0 to 2.5 mol of acetate-lactate. The 1.5 acetate:lactate ratio theoretical yield obtained in hexose fermentations shifts during xyloglucan metabolism. Accordingly, this metabolic shift is characterized by increased acetate and formate production at the expense of lactate. α-l-Arabinofuranosidase, an arabinan endo-1,5-α-l-arabinosidase, and a β-xylosidase with a carbohydrate substrate-binding protein and carbohydrate ABC transporter membrane proteins are upregulated (>2-fold change), which suggests carbon flux through this catabolic pathway. Finally, syntrophic interactions occurred with strains that utilize carbohydrate products derived from initial degradation from heterologous bacteria. This was a study of bacterial metabolism of complex cranberry carbohydrates termed xyloglucans that are likely not digested prior to reaching the colon. This is significant, as bifidobacteria interact with this dietary compound to potentially impact human host health through energy and metabolite production by utilizing these substrates. Specific bacterial strains utilize cranberry xyloglucans as a nutritive source, indicating unknown mechanisms that are not universal in bifidobacteria. In addition, xyloglucan metabolism proceeds by using an alternative pathway that could lead to further research to investigate mechanisms underlying this interaction. Finally, we observed cross-feeding between bacteria in which one strain degrades the cranberry xyloglucan to make it available to a second strain. Similar nutritive strategies are known to occur within the gut. In aggregate, this study may lead to novel foods or supplements used to impact human health through rational manipulation of the human microbiome. Commensal bifidobacteria colonize the human gastrointestinal tract and catabolize glycans that are impervious to host digestion. Accordingly, Bifidobacterium longum typically secretes acetate and lactate as fermentative end products. This study tested the hypothesis that B. longum utilizes cranberry-derived xyloglucans in a strain-dependent manner. Interestingly, the B. longum strain that efficiently utilizes cranberry xyloglucans secretes 2.0 to 2.5 mol of acetate-lactate. The 1.5 acetate:lactate ratio theoretical yield obtained in hexose fermentations shifts during xyloglucan metabolism. Accordingly, this metabolic shift is characterized by increased acetate and formate production at the expense of lactate. α- l -Arabinofuranosidase, an arabinan endo-1,5-α- l -arabinosidase, and a β-xylosidase with a carbohydrate substrate-binding protein and carbohydrate ABC transporter membrane proteins are upregulated (>2-fold change), which suggests carbon flux through this catabolic pathway. Finally, syntrophic interactions occurred with strains that utilize carbohydrate products derived from initial degradation from heterologous bacteria. IMPORTANCE This was a study of bacterial metabolism of complex cranberry carbohydrates termed xyloglucans that are likely not digested prior to reaching the colon. This is significant, as bifidobacteria interact with this dietary compound to potentially impact human host health through energy and metabolite production by utilizing these substrates. Specific bacterial strains utilize cranberry xyloglucans as a nutritive source, indicating unknown mechanisms that are not universal in bifidobacteria. In addition, xyloglucan metabolism proceeds by using an alternative pathway that could lead to further research to investigate mechanisms underlying this interaction. Finally, we observed cross-feeding between bacteria in which one strain degrades the cranberry xyloglucan to make it available to a second strain. Similar nutritive strategies are known to occur within the gut. In aggregate, this study may lead to novel foods or supplements used to impact human health through rational manipulation of the human microbiome. ABSTRACT Commensal bifidobacteria colonize the human gastrointestinal tract and catabolize glycans that are impervious to host digestion. Accordingly, Bifidobacterium longum typically secretes acetate and lactate as fermentative end products. This study tested the hypothesis that B. longum utilizes cranberry-derived xyloglucans in a strain-dependent manner. Interestingly, the B. longum strain that efficiently utilizes cranberry xyloglucans secretes 2.0 to 2.5 mol of acetate-lactate. The 1.5 acetate:lactate ratio theoretical yield obtained in hexose fermentations shifts during xyloglucan metabolism. Accordingly, this metabolic shift is characterized by increased acetate and formate production at the expense of lactate. α- l -Arabinofuranosidase, an arabinan endo-1,5-α- l -arabinosidase, and a β-xylosidase with a carbohydrate substrate-binding protein and carbohydrate ABC transporter membrane proteins are upregulated (>2-fold change), which suggests carbon flux through this catabolic pathway. Finally, syntrophic interactions occurred with strains that utilize carbohydrate products derived from initial degradation from heterologous bacteria. IMPORTANCE This was a study of bacterial metabolism of complex cranberry carbohydrates termed xyloglucans that are likely not digested prior to reaching the colon. This is significant, as bifidobacteria interact with this dietary compound to potentially impact human host health through energy and metabolite production by utilizing these substrates. Specific bacterial strains utilize cranberry xyloglucans as a nutritive source, indicating unknown mechanisms that are not universal in bifidobacteria. In addition, xyloglucan metabolism proceeds by using an alternative pathway that could lead to further research to investigate mechanisms underlying this interaction. Finally, we observed cross-feeding between bacteria in which one strain degrades the cranberry xyloglucan to make it available to a second strain. Similar nutritive strategies are known to occur within the gut. In aggregate, this study may lead to novel foods or supplements used to impact human health through rational manipulation of the human microbiome. Commensal bifidobacteria colonize the human gastrointestinal tract and catabolize glycans that are impervious to host digestion. Accordingly, Bifidobacterium longum typically secretes acetate and lactate as fermentative end products. This study tested the hypothesis that B. longum utilizes cranberry-derived xyloglucans in a strain-dependent manner. Interestingly, the B. longum strain that efficiently utilizes cranberry xyloglucans secretes 2.0 to 2.5 mol of acetate-lactate. The 1.5 acetate:lactate ratio theoretical yield obtained in hexose fermentations shifts during xyloglucan metabolism. Accordingly, this metabolic shift is characterized by increased acetate and formate production at the expense of lactate. α-l-Arabinofuranosidase, an arabinan endo-1,5-α-l-arabinosidase, and a β-xylosidase with a carbohydrate substrate-binding protein and carbohydrate ABC transporter membrane proteins are upregulated (>2-fold change), which suggests carbon flux through this catabolic pathway. Finally, syntrophic interactions occurred with strains that utilize carbohydrate products derived from initial degradation from heterologous bacteria. |
Author | Özcan, Ezgi Sun, Jiadong Sela, David A Rowley, David C |
Author_xml | – sequence: 1 givenname: Ezgi surname: Özcan fullname: Özcan, Ezgi organization: Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA – sequence: 2 givenname: Jiadong surname: Sun fullname: Sun, Jiadong organization: College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA – sequence: 3 givenname: David C surname: Rowley fullname: Rowley, David C organization: College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA – sequence: 4 givenname: David A orcidid: 0000-0002-3354-7470 surname: Sela fullname: Sela, David A email: davidsela@umass.edu organization: Center for Microbiome Research, University of Massachusetts Medical School, Worcester, Massachusetts, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28667113$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkc1P3DAQxa2KqiyUW8-VpV44NNRjO3Z8qbSKWECiag9wtibJpCxKYmonSPvfY8qHaE8zmvnp6T29A7Y3hYkY-wTiBEBW35DGEwHC2QLsO7bKW1WUSpk9thLCuUJKLfbZQUq3QggtTPWB7cvKGAugVuxizc-XESd-tsy8DuNIU8KBbyjmbU68jjg1FOOO1xibcLPrIs6U-FXgv2Lolpb4JsQx3z6y9z0OiY6e5yG73pxe1efF5c-zi3p9WbTaVnNB4NC1TpFuSTTGUZc9UaO1NmWPjevQoXB9AwjY9yDJorKlVC2CslKV6pB9f9K9W5qRujbbjDj4u7gdMe58wK3_9zNtb_zvcO_L0oC0LgscPwvE8GehNPtxm1oaBpwoLMmDg1JpoxVk9Mt_6G1Y4pTjZaq0YCopbaa-PlFtDClF6l_NgPCPHfn16Q__tyMPj_jntwFe4ZdS1AM8hI5u |
CitedBy_id | crossref_primary_10_1007_s13668_023_00449_0 crossref_primary_10_1016_j_lwt_2019_108452 crossref_primary_10_3389_fvets_2020_00150 crossref_primary_10_3389_fnut_2018_00046 crossref_primary_10_1016_j_fbio_2024_104380 crossref_primary_10_1016_j_copbio_2021_07_012 crossref_primary_10_1016_j_heliyon_2024_e29787 crossref_primary_10_1021_acschembio_1c00563 crossref_primary_10_3390_microorganisms8040481 crossref_primary_10_1038_s41598_019_54696_9 crossref_primary_10_3390_nu12082181 crossref_primary_10_3389_fpsyt_2019_00034 crossref_primary_10_3390_microorganisms9030656 crossref_primary_10_1016_j_cofs_2021_06_003 crossref_primary_10_3390_microorganisms10071346 crossref_primary_10_1093_bfgp_elaa029 crossref_primary_10_1146_annurev_food_111519_014337 crossref_primary_10_3390_ijms25126655 crossref_primary_10_1186_s12866_021_02106_4 crossref_primary_10_1038_s41522_024_00493_w crossref_primary_10_1016_j_jafr_2020_100025 crossref_primary_10_1021_acs_jnatprod_8b01044 crossref_primary_10_1039_C9FO01274E crossref_primary_10_3389_fmicb_2018_02690 crossref_primary_10_1016_j_carbpol_2024_121869 crossref_primary_10_3390_antibiotics11020218 crossref_primary_10_1021_acs_jnatprod_8b01043 crossref_primary_10_1080_19490976_2023_2192546 crossref_primary_10_1093_af_vfy002 crossref_primary_10_1128_msystems_01248_21 |
Cites_doi | 10.3945/an.113.004473 10.1038/srep15782 10.1128/AEM.00573-09 10.1128/AEM.06762-11 10.1038/ismej.2015.236 10.1021/jf901397b 10.1128/AEM.72.2.1006-1012.2006 10.1126/science.1109051 10.1194/jlr.R036012 10.1155/2015/567809 10.1111/jam.12415 10.3748/wjg.v17.i12.1519 10.1006/anae.1996.0031 10.1080/19490976.2015.1105425 10.1093/mp/ssq067 10.1111/j.1750-3841.2010.01772.x 10.1128/AEM.00146-06 10.1128/AEM.02853-13 10.1371/journal.pone.0017315 10.1016/S0167-7012(00)00133-0 10.1016/j.tim.2010.03.008 10.1271/bbb.100494 10.1038/pr.2015.244 10.1073/pnas.0809584105 10.1007/s12263-010-0206-6 10.1111/j.1751-7915.2008.00072.x 10.1371/journal.pone.0036957 10.3389/fmicb.2015.01030 10.1128/AEM.72.5.3593-3599.2006 10.1002/mnfr.200700121 10.1093/jn/125.6.1401 10.1128/AEM.00675-10 10.1111/j.1365-313X.1993.tb00007.x 10.1016/S0168-1605(98)00156-1 10.1021/acs.jafc.5b00730 10.1016/j.ijfoodmicro.2015.03.008 10.3168/jds.2009-2126 10.1111/jam.12105 10.1002/mnfr.200700150 10.1021/jf0710480 10.1074/jbc.M110.193359 10.1086/383593 10.1128/AEM.70.4.1923-1930.2004 10.1093/mp/ssp061 10.1186/1471-2164-9-247 10.1371/journal.pbio.1001221 10.1111/j.1365-2672.1991.tb04457.x 10.1016/j.ab.2004.12.001 10.1128/AEM.02216-08 10.1016/S0168-1605(98)00044-0 10.1128/AEM.01488-08 10.1128/AEM.02308-14 10.1097/MCO.0000000000000025 10.1128/JB.01227-07 10.1073/pnas.1211002109 10.1128/AEM.71.10.6150-6158.2005 10.1016/j.jff.2015.05.016 |
ContentType | Journal Article |
Copyright | Copyright © 2017 American Society for Microbiology. Copyright American Society for Microbiology Sep 2017 Copyright © 2017 American Society for Microbiology. 2017 American Society for Microbiology |
Copyright_xml | – notice: Copyright © 2017 American Society for Microbiology. – notice: Copyright American Society for Microbiology Sep 2017 – notice: Copyright © 2017 American Society for Microbiology. 2017 American Society for Microbiology |
DBID | NPM AAYXX CITATION 7QL 7QO 7SN 7SS 7ST 7T7 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 SOI 7X8 5PM |
DOI | 10.1128/aem.01097-17 |
DatabaseName | PubMed CrossRef Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Biotechnology Research Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Engineering Biology |
DocumentTitleAlternate | Bifidobacterial Metabolism of Cranberry Carbohydrates |
EISSN | 1098-5336 |
Editor | Elkins, Christopher A. |
Editor_xml | – sequence: 1 givenname: Christopher A. surname: Elkins fullname: Elkins, Christopher A. |
ExternalDocumentID | 10_1128_AEM_01097_17 28667113 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: P20 GM103430 – fundername: Ocean Spray Inc. grantid: Industry – fundername: HHS | NIH | National Institute of General Medical Sciences (NIGMS) grantid: 2 P20 GM103430 – fundername: National Science Foundation (NSF) grantid: EPS-1004057 |
GroupedDBID | --- -~X 0R~ 23M 2WC 39C 4.4 53G 5GY 5RE 5VS 6J9 85S AAZTW ABOGM ABPPZ ACBTR ACGFO ACIWK ACNCT ACPRK ADBBV ADUKH AENEX AFRAH AGVNZ ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BKOMP BTFSW CS3 D0L DIK E.- E3Z EBS EJD F5P GX1 H13 HYE HZ~ K-O KQ8 L7B NPM O9- OK1 P2P PQQKQ RHF RHI RNS RPM RSF RXW TAE TAF TN5 TR2 TWZ UCJ UHB W8F WH7 WOQ X6Y ~02 ~KM .55 .GJ 3O- AAYXX ABTAH AFFNX AGCDD AI. C1A CITATION F20 H~9 MVM NEJ OHT VH1 WHG X7M XJT YV5 ZCG ZGI ZXP ZY4 7QL 7QO 7SN 7SS 7ST 7T7 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 SOI 7X8 5PM |
ID | FETCH-LOGICAL-c478t-e19a9c93e4ce0b69ed406eb44465fab9da9a09fb1a1aff12e7a37523ca1372353 |
IEDL.DBID | RPM |
ISSN | 0099-2240 |
IngestDate | Tue Sep 17 21:19:11 EDT 2024 Sat Oct 26 01:03:04 EDT 2024 Thu Oct 10 16:54:41 EDT 2024 Thu Sep 12 20:10:12 EDT 2024 Sat Sep 28 08:37:02 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Keywords | prebiotics food microbiology bifidobacteria |
Language | English |
License | Copyright © 2017 American Society for Microbiology. All Rights Reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c478t-e19a9c93e4ce0b69ed406eb44465fab9da9a09fb1a1aff12e7a37523ca1372353 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Citation Özcan E, Sun J, Rowley DC, Sela DA. 2017. A human gut commensal ferments cranberry carbohydrates to produce formate. Appl Environ Microbiol 83:e01097-17. https://doi.org/10.1128/AEM.01097-17. |
ORCID | 0000-0002-3354-7470 |
OpenAccessLink | https://aem.asm.org/content/aem/83/17/e01097-17.full.pdf |
PMID | 28667113 |
PQID | 1957168227 |
PQPubID | 42251 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5561279 proquest_miscellaneous_1915346431 proquest_journals_1957168227 crossref_primary_10_1128_AEM_01097_17 pubmed_primary_28667113 |
PublicationCentury | 2000 |
PublicationDate | 2017-09-01 |
PublicationDateYYYYMMDD | 2017-09-01 |
PublicationDate_xml | – month: 09 year: 2017 text: 2017-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | Applied and environmental microbiology |
PublicationTitleAlternate | Appl Environ Microbiol |
PublicationYear | 2017 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_3_50_2 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_58_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_56_2 e_1_3_3_33_2 e_1_3_3_54_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 Palframan RJ (e_1_3_3_40_2) 2003; 4 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_44_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 Coleman CM (e_1_3_3_24_2) 2010 e_1_3_3_51_2 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_59_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_57_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_53_2 e_1_3_3_60_2 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 |
References_xml | – ident: e_1_3_3_45_2 doi: 10.3945/an.113.004473 – ident: e_1_3_3_13_2 doi: 10.1038/srep15782 – ident: e_1_3_3_50_2 doi: 10.1128/AEM.00573-09 – volume-title: 2010 Joint Annual Meeting of the American Society of Pharmacognosy & The Phytochemical Society of North America Natural Solutions to 21st Century Problems—from Discovery to Commercialization year: 2010 ident: e_1_3_3_24_2 contributor: fullname: Coleman CM – ident: e_1_3_3_18_2 doi: 10.1128/AEM.06762-11 – ident: e_1_3_3_53_2 doi: 10.1038/ismej.2015.236 – ident: e_1_3_3_37_2 doi: 10.1021/jf901397b – ident: e_1_3_3_41_2 doi: 10.1128/AEM.72.2.1006-1012.2006 – ident: e_1_3_3_5_2 doi: 10.1126/science.1109051 – ident: e_1_3_3_3_2 doi: 10.1194/jlr.R036012 – ident: e_1_3_3_15_2 doi: 10.1155/2015/567809 – ident: e_1_3_3_39_2 doi: 10.1111/jam.12415 – ident: e_1_3_3_7_2 doi: 10.3748/wjg.v17.i12.1519 – ident: e_1_3_3_26_2 doi: 10.1006/anae.1996.0031 – ident: e_1_3_3_42_2 doi: 10.1080/19490976.2015.1105425 – ident: e_1_3_3_22_2 doi: 10.1093/mp/ssq067 – ident: e_1_3_3_59_2 doi: 10.1111/j.1750-3841.2010.01772.x – ident: e_1_3_3_32_2 doi: 10.1128/AEM.00146-06 – ident: e_1_3_3_38_2 doi: 10.1128/AEM.02853-13 – ident: e_1_3_3_60_2 doi: 10.1371/journal.pone.0017315 – ident: e_1_3_3_57_2 doi: 10.1016/S0167-7012(00)00133-0 – ident: e_1_3_3_14_2 doi: 10.1016/j.tim.2010.03.008 – ident: e_1_3_3_10_2 doi: 10.1271/bbb.100494 – ident: e_1_3_3_58_2 doi: 10.1038/pr.2015.244 – ident: e_1_3_3_16_2 doi: 10.1073/pnas.0809584105 – volume: 4 start-page: 71 year: 2003 ident: e_1_3_3_40_2 article-title: Carbohydrate preferences of Bifidobacterium species isolated from the human gut publication-title: Curr Issues Intest Microbiol contributor: fullname: Palframan RJ – ident: e_1_3_3_9_2 doi: 10.1007/s12263-010-0206-6 – ident: e_1_3_3_31_2 doi: 10.1111/j.1751-7915.2008.00072.x – ident: e_1_3_3_8_2 doi: 10.1371/journal.pone.0036957 – ident: e_1_3_3_51_2 doi: 10.3389/fmicb.2015.01030 – ident: e_1_3_3_6_2 doi: 10.1128/AEM.72.5.3593-3599.2006 – ident: e_1_3_3_12_2 doi: 10.1002/mnfr.200700121 – ident: e_1_3_3_47_2 doi: 10.1093/jn/125.6.1401 – ident: e_1_3_3_17_2 doi: 10.1128/AEM.00675-10 – ident: e_1_3_3_20_2 doi: 10.1111/j.1365-313X.1993.tb00007.x – ident: e_1_3_3_34_2 doi: 10.1016/S0168-1605(98)00156-1 – ident: e_1_3_3_23_2 doi: 10.1021/acs.jafc.5b00730 – ident: e_1_3_3_28_2 doi: 10.1016/j.ijfoodmicro.2015.03.008 – ident: e_1_3_3_35_2 doi: 10.3168/jds.2009-2126 – ident: e_1_3_3_48_2 doi: 10.1111/jam.12105 – ident: e_1_3_3_29_2 doi: 10.1002/mnfr.200700150 – ident: e_1_3_3_30_2 doi: 10.1021/jf0710480 – ident: e_1_3_3_19_2 doi: 10.1074/jbc.M110.193359 – ident: e_1_3_3_52_2 doi: 10.1086/383593 – ident: e_1_3_3_43_2 doi: 10.1128/AEM.70.4.1923-1930.2004 – ident: e_1_3_3_21_2 doi: 10.1093/mp/ssp061 – ident: e_1_3_3_54_2 doi: 10.1186/1471-2164-9-247 – ident: e_1_3_3_4_2 doi: 10.1371/journal.pbio.1001221 – ident: e_1_3_3_33_2 doi: 10.1111/j.1365-2672.1991.tb04457.x – ident: e_1_3_3_55_2 doi: 10.1016/j.ab.2004.12.001 – ident: e_1_3_3_56_2 doi: 10.1128/AEM.02216-08 – ident: e_1_3_3_27_2 doi: 10.1016/S0168-1605(98)00044-0 – ident: e_1_3_3_44_2 doi: 10.1128/AEM.01488-08 – ident: e_1_3_3_36_2 doi: 10.1128/AEM.02308-14 – ident: e_1_3_3_2_2 doi: 10.1097/MCO.0000000000000025 – ident: e_1_3_3_49_2 doi: 10.1128/JB.01227-07 – ident: e_1_3_3_11_2 doi: 10.1073/pnas.1211002109 – ident: e_1_3_3_46_2 doi: 10.1128/AEM.71.10.6150-6158.2005 – ident: e_1_3_3_25_2 doi: 10.1016/j.jff.2015.05.016 |
SSID | ssj0004068 |
Score | 2.444607 |
Snippet | Commensal bifidobacteria colonize the human gastrointestinal tract and catabolize glycans that are impervious to host digestion. Accordingly,
typically... ABSTRACT Commensal bifidobacteria colonize the human gastrointestinal tract and catabolize glycans that are impervious to host digestion. Accordingly,... Commensal bifidobacteria colonize the human gastrointestinal tract and catabolize glycans that are impervious to host digestion. Accordingly, Bifidobacterium... Commensal bifidobacteria colonize the human gastrointestinal tract and catabolize glycans that are impervious to host digestion. Accordingly, Bifidobacterium... |
SourceID | pubmedcentral proquest crossref pubmed |
SourceType | Open Access Repository Aggregation Database Index Database |
SubjectTerms | ABC transporter Acetic acid Arabinofuranosidase Bacteria Berries Bifidobacterium longum Biodegradation Carbohydrates Digestive system Fermentation Food Microbiology Gastrointestinal tract Hexose L-Arabinofuranosidase Lactic acid Membrane proteins Metabolism Organic chemicals Polysaccharides Protein folding Protein transport Proteins Spotlight Xyloglucan Xylosidase |
Title | A Human Gut Commensal Ferments Cranberry Carbohydrates To Produce Formate |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28667113 https://www.proquest.com/docview/1957168227 https://search.proquest.com/docview/1915346431 https://pubmed.ncbi.nlm.nih.gov/PMC5561279 |
Volume | 83 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEB7iQGl7KK37cpsEFdrj2pZWj9XRmLh54JJCArktklYigWQd_Dj433ckWyZubz1Lq11GI803q28-AXwPTlYNIo2CSfRgHowvLOLwglbGWREayUUscJ7-kmc3_OJW3B6AyLUwibTv7H2_fXjst_d3iVv59OgGmSc2uJqO05WOSg860EEHzSl6LoYcyipLT8Z4ldnurBqMTqf9eBQUZRGjCnAlpaK03A9J_-DMv-mSz-LP5C282QJHMtp84Ds48G0XXmyuklx34WWuMF504fUzkcH3cD4i6U89-blaklgPgokrDjTBLTmSKMgYo5X18_majM3czu7WTVSPWJDrGblKcrCeTBKw9R_gZnJ6PT4rthcoFI6rall4qo12uvTc-aGV2jdoHG95FEkLxurGaDPUwVJDTQiUeWVKhZmpM7RUrBTlRzhsZ63_DCQg7AtaCxaXuRPCcsWkZ9JYyg0Lqgc_sg3rp41ORp3yC1bVaPY6mb2m2O8oG7jerpZFTbXAtA2hCjZ_2zWjn8fDC9P62Sr2wb2ZI36iPfi0mY_di_JE9kDtzdSuQ9TQ3m9B10pa2ltX-vLfT36FVyxG-kQ7O4LD5XzljxGnLO0JdC5_VyfJO_8ALXDnTA |
link.rule.ids | 230,315,730,783,787,888,27938,27939,53806,53808 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NbxMxEB2VIlQ4FAgFQgsYCY67ib273vUxihpSaKoeUtTbyvbaagXdVMnmEH49Y28cNe2pnMf7OWPPG_nNM8BXq3lRIdKIGMcITq00kUIcHtFCapXZiqeZa3CenPHxRfrjMrvcgSz0wnjSvlbXcf3nJq6vrzy38vZG9wJPrHc-GfojHXPRewJPcb72eSjSQztknxdBfNJlrMB3Z0VvcDyJ3WaQE0Z0OsAF5zmlyXZSeoA07xMm72Sg0Uv4Fd69JZ78jpeNivXfe7KOj_64V7C_xqRk0Jpfw46pO_CsPaVy1YG90Ly86MCLO_qFb-BkQPwmAPm-bIhrNcGaGG80wtXe8TPIEBOhMvP5igzlXM2uVpUTpliQ6Yyce6VZQ0YeM5sDuBgdT4fjaH02Q6TTvGgiQ4UUWiQm1aavuDAV_nWjUqe_ZqUSlRSyL6yikkprKTO5THIserWkSc6SLHkLu_WsNu-BWESUVoiMuRVEZ5lKc8YN41LRVDKbd-FbcE5520pwlL50YUWJ_iy9P0uK446C58r1RFyUVGRYESIKQvOXjRmnkNsXkbWZLd0YXPZThGa0C-9aR28eFCKkC_lWCGwGOHnubQs61st0rx354b-v_Ax74-nktDw9Oft5CM-ZAxSe3XYEu818aT4iHGrUJx_8_wANaQhh |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB7BIl4HHuVVWMBIcExSO4kTH6uyYRfoqoddacUlsh1bu4JNqzY9lF_P2K2rdrnt2ZPnjO1v5G--AfhsNS8bRBoR4xjBmZUmUojDI1pKrXLb8Cx3Bc7jU358nn2_yC92Wn150r5WV3H75zpury49t3J2rZPAE0sm45Fv6ViIZNbY5C7cwzk7KEOiHkoiB7wMApRu1wqcd1Ymw6Nx7A6EnDii0wIuOS8oTfc3pv_Q5k3S5M4uVD2FX-H91-ST3_GyU7H-e0Pa8VYf-AyebLApGa5NnsMd0_bg_rpb5aoHD0MR86IHj3d0DF_AyZD4wwDybdkRV3KCuTHeqMJV3_E0yAg3RGXm8xUZybmaXq4aJ1CxIGdTMvGKs4ZUHjubl3BeHZ2NjqNNj4ZIZ0XZRYYKKbRITabNQHFhGvzzRmVOh81KJRop5EBYRSWV1lJmCpkWmPxqSdOCpXn6Cg7aaWveALGILK0QOXMric5zlRWMG8aloplktujDl-CgeraW4qh9CsPKGn1ae5_WFO0Og_fqzYRc1FTkmBkiGsLhT9thnErufES2Zrp0Nrj8ZwjRaB9er529fVCIkj4Ue2GwNXAy3fsj6Fwv171x5ttbX_kRHky-VvXPk9Mf7-ARc7jCk9wO4aCbL817REWd-uDj_x9pMgrh |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Human+Gut+Commensal+Ferments+Cranberry+Carbohydrates+To+Produce+Formate&rft.jtitle=Applied+and+environmental+microbiology&rft.au=%C3%96zcan%2C+Ezgi&rft.au=Sun%2C+Jiadong&rft.au=Rowley%2C+David+C&rft.au=Sela%2C+David+A&rft.date=2017-09-01&rft.eissn=1098-5336&rft.volume=83&rft.issue=17&rft_id=info:doi/10.1128%2Faem.01097-17&rft_id=info%3Apmid%2F28667113&rft.externalDocID=28667113 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0099-2240&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0099-2240&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0099-2240&client=summon |