A comparison of directed functional connectivity among fist-related brain activities during movement imagery, movement execution, and movement observation
[Display omitted] •In three different motor conditions (movement observation, movement imagery, movement execution), the participation degree of task-related brain regions is different.•Movement observation, movement imagery, and movement execution did not recruit shared brain connectivity networks....
Saved in:
Published in | Brain research Vol. 1777; p. 147769 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
15.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•In three different motor conditions (movement observation, movement imagery, movement execution), the participation degree of task-related brain regions is different.•Movement observation, movement imagery, and movement execution did not recruit shared brain connectivity networks.•Handedness may have an impact on brain activities.
Brain-computer interface (BCI) has been widely used in sports training and rehabilitation training. It is primarily based on action simulation, including movement imagery (MI) and movement observation (MO). However, the development of BCI technology is limited due to the challenge of getting an in-depth understanding of brain networks involved in MI, MO, and movement execution (ME). To better understand the brain activity changes and the communications across various brain regions under MO, ME, and MI, this study conducted the fist experiment under MO, ME, and MI. We recorded 64-channel electroencephalography (EEG) from 39 healthy subjects (25 males, 14 females, all right-handed) during fist tasks, obtained intensities and locations of sources using EEG source imaging (ESI), computed source activation modes, and finally investigated the brain networks using spectral Granger causality (GC). The brain regions involved in the three motor conditions are similar, but the degree of participation of each brain region and the network connections among the brain regions are different. MO, ME, and MI did not recruit shared brain connectivity networks. In addition, both source activation modes and brain network connectivity had lateralization advantages. |
---|---|
AbstractList | [Display omitted]
•In three different motor conditions (movement observation, movement imagery, movement execution), the participation degree of task-related brain regions is different.•Movement observation, movement imagery, and movement execution did not recruit shared brain connectivity networks.•Handedness may have an impact on brain activities.
Brain-computer interface (BCI) has been widely used in sports training and rehabilitation training. It is primarily based on action simulation, including movement imagery (MI) and movement observation (MO). However, the development of BCI technology is limited due to the challenge of getting an in-depth understanding of brain networks involved in MI, MO, and movement execution (ME). To better understand the brain activity changes and the communications across various brain regions under MO, ME, and MI, this study conducted the fist experiment under MO, ME, and MI. We recorded 64-channel electroencephalography (EEG) from 39 healthy subjects (25 males, 14 females, all right-handed) during fist tasks, obtained intensities and locations of sources using EEG source imaging (ESI), computed source activation modes, and finally investigated the brain networks using spectral Granger causality (GC). The brain regions involved in the three motor conditions are similar, but the degree of participation of each brain region and the network connections among the brain regions are different. MO, ME, and MI did not recruit shared brain connectivity networks. In addition, both source activation modes and brain network connectivity had lateralization advantages. Brain-computer interface (BCI) has been widely used in sports training and rehabilitation training. It is primarily based on action simulation, including movement imagery (MI) and movement observation (MO). However, the development of BCI technology is limited due to the challenge of getting an in-depth understanding of brain networks involved in MI, MO, and movement execution (ME). To better understand the brain activity changes and the communications across various brain regions under MO, ME, and MI, this study conducted the fist experiment under MO, ME, and MI. We recorded 64-channel electroencephalography (EEG) from 39 healthy subjects (25 males, 14 females, all right-handed) during fist tasks, obtained intensities and locations of sources using EEG source imaging (ESI), computed source activation modes, and finally investigated the brain networks using spectral Granger causality (GC). The brain regions involved in the three motor conditions are similar, but the degree of participation of each brain region and the network connections among the brain regions are different. MO, ME, and MI did not recruit shared brain connectivity networks. In addition, both source activation modes and brain network connectivity had lateralization advantages.Brain-computer interface (BCI) has been widely used in sports training and rehabilitation training. It is primarily based on action simulation, including movement imagery (MI) and movement observation (MO). However, the development of BCI technology is limited due to the challenge of getting an in-depth understanding of brain networks involved in MI, MO, and movement execution (ME). To better understand the brain activity changes and the communications across various brain regions under MO, ME, and MI, this study conducted the fist experiment under MO, ME, and MI. We recorded 64-channel electroencephalography (EEG) from 39 healthy subjects (25 males, 14 females, all right-handed) during fist tasks, obtained intensities and locations of sources using EEG source imaging (ESI), computed source activation modes, and finally investigated the brain networks using spectral Granger causality (GC). The brain regions involved in the three motor conditions are similar, but the degree of participation of each brain region and the network connections among the brain regions are different. MO, ME, and MI did not recruit shared brain connectivity networks. In addition, both source activation modes and brain network connectivity had lateralization advantages. Brain-computer interface (BCI) has been widely used in sports training and rehabilitation training. It is primarily based on action simulation, including movement imagery (MI) and movement observation (MO). However, the development of BCI technology is limited due to the challenge of getting an in-depth understanding of brain networks involved in MI, MO, and movement execution (ME). To better understand the brain activity changes and the communications across various brain regions under MO, ME, and MI, this study conducted the fist experiment under MO, ME, and MI. We recorded 64-channel electroencephalography (EEG) from 39 healthy subjects (25 males, 14 females, all right-handed) during fist tasks, obtained intensities and locations of sources using EEG source imaging (ESI), computed source activation modes, and finally investigated the brain networks using spectral Granger causality (GC). The brain regions involved in the three motor conditions are similar, but the degree of participation of each brain region and the network connections among the brain regions are different. MO, ME, and MI did not recruit shared brain connectivity networks. In addition, both source activation modes and brain network connectivity had lateralization advantages. Graphical abstract |
ArticleNumber | 147769 |
Author | Zhou, Lu Wu, Biao Qian, Zhiyu Zhu, Qiaoqiao Qin, Bing Hu, Haixu |
Author_xml | – sequence: 1 givenname: Lu surname: Zhou fullname: Zhou, Lu organization: Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China – sequence: 2 givenname: Qiaoqiao surname: Zhu fullname: Zhu, Qiaoqiao organization: Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China – sequence: 3 givenname: Biao surname: Wu fullname: Wu, Biao organization: Electronic Information Department, Nanjing University of Aeronautics and Astronautics, Nanjing, China – sequence: 4 givenname: Bing surname: Qin fullname: Qin, Bing organization: Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China – sequence: 5 givenname: Haixu surname: Hu fullname: Hu, Haixu organization: Sports Training Academy, Nanjing Sport Institute, Nanjing, China – sequence: 6 givenname: Zhiyu surname: Qian fullname: Qian, Zhiyu email: zhiyu_q@163.com organization: Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34971597$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks9OHSEUxkljU6-2r2BYunBugRmHITGmxvgvMemi7ZowcMZwOwNXYG68r9KnLeNoTVxoV8Dhd77A9509tOO8A4QOKFlSQuuvq2UblHUB4pIRRpe04rwWH9CCNpwVNavIDloQQuqiEaLcRXsxrvKxLAX5hHbLSnB6LPgC_TnD2g9rFWz0DvsOGxtAJzC4G51O1jvVZ8K5XLQbm7ZYDd7d4c7GVATo1YQ-PgWrmbAQsRmDzdDgNzCAS9gO6g7C9uilAg-gx0n-CCtnXuq-jRA2arr5jD52qo_w5WndR78uL36eXxe3369uzs9uC13xJhWm1Y0ipeKiAc5pSyvdUUV1rgA39XFVAWfMAAhQLB8zlS2phTas5Kxl5T46nHXXwd-PEJMcbNTQ98qBH6NkdbaKlYRM6METOrYDGLkO-WdhK5_9zEA9Azr4GAN0_xBK5BScXMnn4OQUnJyDy40nrxq1TY82pIz377d_m9shG7WxEGTUFpyGOU5pvH1f4vSVhO6ts1r1v2ELceXHkGchSiojk0T-mIZrmi1G84Y11dsC__OCv4lc5vM |
CitedBy_id | crossref_primary_10_1016_j_brainres_2023_148673 crossref_primary_10_3389_fnagi_2022_911513 crossref_primary_10_1016_j_foodres_2023_113311 crossref_primary_10_23736_S1973_9087_24_08471_5 crossref_primary_10_3390_bioengineering10030281 crossref_primary_10_3389_fnins_2022_935827 crossref_primary_10_3390_s22072537 |
Cites_doi | 10.1007/s00221-019-05665-1 10.1109/TMAG.2003.810528 10.1109/TBME.2014.2300636 10.1155/2011/879716 10.1109/JSEN.2019.2962874 10.1038/s41598-021-92467-7 10.1109/JSEN.2020.3005968 10.1016/j.neuroimage.2006.11.004 10.1109/NER.2015.7146802 10.1371/journal.pone.0162546 10.1109/TBME.2019.2921198 10.1016/j.neuroimage.2021.118209 10.1523/JNEUROSCI.2519-18.2019 10.1589/jpts.29.702 10.1109/42.712135 10.1016/j.neulet.2021.135866 10.1016/j.eswa.2020.113285 10.1038/s41598-021-82241-0 10.1038/s41598-019-56628-z 10.1016/j.neulet.2021.135907 10.1523/JNEUROSCI.1586-20.2020 10.1016/j.neuroimage.2021.117806 10.1016/j.cortex.2020.01.012 10.1038/s41598-018-32606-9 10.1016/j.ijpsycho.2021.02.020 10.1016/j.neuroimage.2020.116981 10.1016/j.neuroimage.2005.07.045 10.4103/1673-5374.295333 10.3389/fnsys.2011.00008 10.1109/TNSRE.2020.2998123 10.1016/j.neuroimage.2020.117486 10.1006/nimg.2001.0832 10.1016/j.neuroscience.2018.10.005 10.1109/TBME.2020.3001981 10.1152/jn.00132.2002 10.1016/j.pneurobio.2019.01.007 10.1166/jmihi.2021.3348 10.1523/JNEUROSCI.0628-20.2021 10.1016/j.neuron.2018.08.034 10.1088/1741-2552/abe39b 10.1016/j.brainres.2018.04.013 10.1016/S0013-4694(97)87916-7 10.1016/j.neurobiolaging.2019.05.022 10.1038/35090055 10.1016/j.neuroimage.2018.09.007 10.1523/JNEUROSCI.1739-16.2016 10.1371/journal.pone.0190715 10.1016/0028-3932(71)90059-5 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. Elsevier B.V. Copyright © 2021 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Elsevier B.V. – notice: Copyright © 2021 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.brainres.2021.147769 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1872-6240 |
EndPage | 147769 |
ExternalDocumentID | 34971597 10_1016_j_brainres_2021_147769 S0006899321006284 1_s2_0_S0006899321006284 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -DZ -~X .1- .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 5GY 5RE 6J9 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABCQJ ABFNM ABFRF ABIVO ABJNI ABLJU ABMAC ABTEW ACDAQ ACGFO ACGFS ACIUM ACNCT ACRLP ACVFH ADBBV ADCNI ADEZE AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM L7B M2V M41 MO0 MOBAO N9A O-L O9- OAUVE OP~ OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCC SDF SDG SES SPCBC SSN SSZ T5K Z5R ZGI ~G- .55 .GJ 41~ 53G 5VS AACTN AAQXK AAYJJ ABWVN ABXDB ACRPL ADIYS ADMUD ADNMO AFCTW AFJKZ AFKWA AGHFR AHHHB AI. AJOXV AMFUW ASPBG AVWKF AZFZN EJD FEDTE FGOYB G-2 HMQ HVGLF HZ~ MVM PKN R2- RIG SEW SNS VH1 WUQ X7M XPP AADPK AAIAV ABYKQ EFLBG AAYXX AGQPQ AGRNS BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c478t-dbc8a03a798e771b14cf1a1c3a7e7d6544e722dee9ea26548e789969cd2372b23 |
IEDL.DBID | .~1 |
ISSN | 0006-8993 1872-6240 |
IngestDate | Fri Jul 11 04:41:05 EDT 2025 Thu Apr 03 07:09:13 EDT 2025 Tue Jul 01 04:35:01 EDT 2025 Thu Apr 24 22:55:58 EDT 2025 Fri Feb 23 02:41:16 EST 2024 Tue Feb 25 20:01:15 EST 2025 Tue Aug 26 16:34:57 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Movement imagery (MI) EEG source imaging (ESI) Movement observation (MO) Movement execution (ME) Granger causality (GC) |
Language | English |
License | Copyright © 2021 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c478t-dbc8a03a798e771b14cf1a1c3a7e7d6544e722dee9ea26548e789969cd2372b23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 34971597 |
PQID | 2615923002 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | proquest_miscellaneous_2615923002 pubmed_primary_34971597 crossref_primary_10_1016_j_brainres_2021_147769 crossref_citationtrail_10_1016_j_brainres_2021_147769 elsevier_sciencedirect_doi_10_1016_j_brainres_2021_147769 elsevier_clinicalkeyesjournals_1_s2_0_S0006899321006284 elsevier_clinicalkey_doi_10_1016_j_brainres_2021_147769 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-15 |
PublicationDateYYYYMMDD | 2022-02-15 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Brain research |
PublicationTitleAlternate | Brain Res |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Luppino, Rizzolatti (b0115) 2000; 15 Filgueiras, Conde, Hall (b0050) 2017 Monaco, Malfatti, Culham, Cattaneo, Turella (b0135) 2020; 218 Bencivenga, Sulpizio, Tullo, Galati (b0015) 2021; 230 Tadel, Baillet, Mosher, Pantazis, Leahy (b0205) 2011; 2011 Tsubasa, Daisuke, Takamichi, Hitoshi (b0220) 2017; 29 Tang, Li, Li, Ma, Dang (b0210) 2020; 149 Rizzolatti, Adrian Lecture (b0155) 1997; 103 Meers, Nuttall, Vogt (b0125) 2020; 126 Yang, Jeon, Kim, Chung (b0240) 2021; 11 Orset, Lee, Chavarriaga, Millan (b0145) 2021; 68 Kosslyn, Ganis, Thompson (b0100) 2001; 2 Zapała, Iwanowicz, Francuz, Augustynowicz (b0260) 2021; 11 Hanakawa, Immisch, Toma, Dimyan, Van Gelderen, Hallett (b0070) 2002; 89 Damsma, Schlichting, van Rijn (b0035) 2021; 41 Giacomo, Gongora, Silva, Nicoliche, Bittencourt, Marinho, Gupta, Orsini, Teixeira, Cagy, Bastos, Budde, Basile, Velasques, Ribeiro (b0065) 2021; 753 Yu, Gu (b0250) 2018; 100 Chaisaen, Autthasan, Mingchinda, Leelaarporn, Kunaseth, Tammajarung, Manoonpong, Mukhopadhyay, Wilaiprasitporn (b0020) 2020; 20 Choi, Kim, Huh, Jo (b0025) 2020; 28 Yun, Park, Lee, Im, Kim (b0255) 2018; 13 Seka, Bauernfeind, Gwa (b0180) 2019; 81 Delorme, Sejnowski, Makeig (b0040) 2007; 34 Wu, Yan, Shen, Li, He, Xu (b0230) 2003; 39 He, Wei, Billings, Sarrigiannis (b0075) 2014; 61 Wyke (b0235) 1971; 9 Nijhuis, Keller, Nozaradan, Varlet (b0140) 2021; 238 Seeber, Scherer, Müller-Putz (b0175) 2016; 36 Kaneko, Yokoyama, Masugi, Watanabe, Nakazawa (b0090) 2021; 225 Jeannerod (b0085) 2001; 14 Itthipuripat, Sprague, Serences (b0080) 2019; 39 Collins, Zijdenbos, Kollokian, Sled, Kabani, Holmes, Evans (b0030) 1998; 17 Mehler, Williams, Krause, Lührs, Wise, Turner, Linden, Whittaker (b0130) 2019; 184 Frauscher, von Ellenrieder, Dolezalova, Bouhadoun, Gotman, Peter-Derex (b0060) 2020; 40 Savaki, Raos (b0165) 2019; 175 Duann, Chiou, Yao (b0045) 2016; 11 Parmigiani, Cattaneo (b0150) 2018; 394 Knyazeva, Fornari, Meuli, Innocenti, Maeder (b0095) 2006; 29 Aridan, Ossmy, Buaron, Reznik, Mukamel (b0010) 2018; 1691 Suzuki, Kaneko, Sasaki, Tanaka, Nakazawa, Nomura, Milosevic (b0200) 2021; 755 Shibata, Kaneko (b0190) 2019; 237 Foong, Ang, Quek, Guan, Phua, Kuah, Deshmukh, Yam, Rajeswaran, Tang, Chew, Chua (b0055) 2020; 67 Taya, F., Sun, Y., Borghini, G., Arico, P., Babiloni, F., Bezerianos, A., Thakor, N.V., 2015. Training-induced changes in information transfer efficiency of the brain network: A functional connectome approach. 2015 7th International Ieee/Embs Conference on Neural Engineering (Ner). 1028-1031. Stolbkov, Gerasimenko (b0195) 2021; 47 Sheahan, Ingram, Žalalytė, Wolpert (b0185) 2018; 8 Westlake, Nagarajan (b0225) 2011; 5 Lubbe, Sobierajewicz, Jongsma, Verwey, Przekoracka-Krawczyk (b0110) 2021; 164 Matsuo, Iso, Fujiwara, Moriuchi, Matsuda, Mitsunaga, Nakashima, Higashi (b0120) 2021; 16 Yang, Song, Ma, Su, Xie (b0245) 2021; 18 Li, Xu, Belkacem, Zhang, Xu, Guo, Wang, Wu, Tan, Shin, Liang, Chen (b0105) 2021; 11 Ruffino, Gaveau, Papaxanthis, Lebon (b0160) 2019; 9 Sawangjai, Hompoonsup, Leelaarporn, Kongwudhikunakorn, Wilaiprasitporn (b0170) 2020; 20 Itthipuripat (10.1016/j.brainres.2021.147769_b0080) 2019; 39 He (10.1016/j.brainres.2021.147769_b0075) 2014; 61 Aridan (10.1016/j.brainres.2021.147769_b0010) 2018; 1691 Kosslyn (10.1016/j.brainres.2021.147769_b0100) 2001; 2 Foong (10.1016/j.brainres.2021.147769_b0055) 2020; 67 Choi (10.1016/j.brainres.2021.147769_b0025) 2020; 28 Rizzolatti (10.1016/j.brainres.2021.147769_b0155) 1997; 103 Yu (10.1016/j.brainres.2021.147769_b0250) 2018; 100 Orset (10.1016/j.brainres.2021.147769_b0145) 2021; 68 Yang (10.1016/j.brainres.2021.147769_b0240) 2021; 11 Wu (10.1016/j.brainres.2021.147769_b0230) 2003; 39 Yang (10.1016/j.brainres.2021.147769_b0245) 2021; 18 Delorme (10.1016/j.brainres.2021.147769_b0040) 2007; 34 Tadel (10.1016/j.brainres.2021.147769_b0205) 2011; 2011 Frauscher (10.1016/j.brainres.2021.147769_b0060) 2020; 40 Yun (10.1016/j.brainres.2021.147769_b0255) 2018; 13 Seeber (10.1016/j.brainres.2021.147769_b0175) 2016; 36 Tang (10.1016/j.brainres.2021.147769_b0210) 2020; 149 Collins (10.1016/j.brainres.2021.147769_b0030) 1998; 17 Shibata (10.1016/j.brainres.2021.147769_b0190) 2019; 237 10.1016/j.brainres.2021.147769_b0215 Knyazeva (10.1016/j.brainres.2021.147769_b0095) 2006; 29 Stolbkov (10.1016/j.brainres.2021.147769_b0195) 2021; 47 Duann (10.1016/j.brainres.2021.147769_b0045) 2016; 11 Tsubasa (10.1016/j.brainres.2021.147769_b0220) 2017; 29 Nijhuis (10.1016/j.brainres.2021.147769_b0140) 2021; 238 Suzuki (10.1016/j.brainres.2021.147769_b0200) 2021; 755 Sawangjai (10.1016/j.brainres.2021.147769_b0170) 2020; 20 Luppino (10.1016/j.brainres.2021.147769_b0115) 2000; 15 Zapała (10.1016/j.brainres.2021.147769_b0260) 2021; 11 Mehler (10.1016/j.brainres.2021.147769_b0130) 2019; 184 Damsma (10.1016/j.brainres.2021.147769_b0035) 2021; 41 Parmigiani (10.1016/j.brainres.2021.147769_b0150) 2018; 394 Filgueiras (10.1016/j.brainres.2021.147769_b0050) 2017 Monaco (10.1016/j.brainres.2021.147769_b0135) 2020; 218 Hanakawa (10.1016/j.brainres.2021.147769_b0070) 2002; 89 Jeannerod (10.1016/j.brainres.2021.147769_b0085) 2001; 14 Seka (10.1016/j.brainres.2021.147769_b0180) 2019; 81 Bencivenga (10.1016/j.brainres.2021.147769_b0015) 2021; 230 Ruffino (10.1016/j.brainres.2021.147769_b0160) 2019; 9 Giacomo (10.1016/j.brainres.2021.147769_b0065) 2021; 753 Matsuo (10.1016/j.brainres.2021.147769_b0120) 2021; 16 Meers (10.1016/j.brainres.2021.147769_b0125) 2020; 126 Li (10.1016/j.brainres.2021.147769_b0105) 2021; 11 Savaki (10.1016/j.brainres.2021.147769_b0165) 2019; 175 Wyke (10.1016/j.brainres.2021.147769_b0235) 1971; 9 Westlake (10.1016/j.brainres.2021.147769_b0225) 2011; 5 Chaisaen (10.1016/j.brainres.2021.147769_b0020) 2020; 20 Lubbe (10.1016/j.brainres.2021.147769_b0110) 2021; 164 Kaneko (10.1016/j.brainres.2021.147769_b0090) 2021; 225 Sheahan (10.1016/j.brainres.2021.147769_b0185) 2018; 8 |
References_xml | – volume: 67 start-page: 786 year: 2020 end-page: 795 ident: b0055 article-title: Assessment of the efficacy of EEG-based MI-BCI with visual feedback and EEG correlates of mental fatigue for upper-limb stroke rehabilitation publication-title: IEEE Trans. Biomed. Eng. – volume: 9 year: 2019 ident: b0160 article-title: An acute session of motor imagery training induces use-dependent plasticity publication-title: Sci. Rep. – volume: 8 year: 2018 ident: b0185 article-title: Imagery of movements immediately following performance allows learning of motor skills that interfere publication-title: Sci. Rep. – volume: 34 start-page: 1443 year: 2007 end-page: 1449 ident: b0040 article-title: Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis publication-title: Neuroimage – volume: 2 start-page: 635 year: 2001 end-page: 642 ident: b0100 article-title: Neural foundations of imagery publication-title: Nat. Rev. Neurosci. – volume: 15 start-page: 219 year: 2000 end-page: 224 ident: b0115 article-title: The organization of the frontal motor cortex publication-title: News Physiol. Sci. – volume: 41 start-page: 4514 year: 2021 end-page: 4523 ident: b0035 article-title: Temporal context actively shapes EEG signatures of time perception publication-title: J. Neurosci. – volume: 126 start-page: 322 year: 2020 end-page: 333 ident: b0125 article-title: Motor imagery alone drives corticospinal excitability during concurrent action observation and motor imagery publication-title: Cortex. – volume: 230 year: 2021 ident: b0015 article-title: Assessing the effective connectivity of premotor areas during real vs imagined grasping: a DCM-PEB approach publication-title: Neuroimage. – volume: 17 start-page: 463 year: 1998 end-page: 468 ident: b0030 article-title: Design and construction of a realistic digital brain phantom publication-title: IEEE Trans. Med. Imaging – volume: 394 start-page: 14 year: 2018 end-page: 22 ident: b0150 article-title: Stimulation of the dorsal premotor cortex, but not of the supplementary motor area proper, impairs the stop function in a STOP signal task publication-title: Neuroscience – volume: 225 start-page: 117486 year: 2021 ident: b0090 article-title: Phase dependent modulation of cortical activity during action observation and motor imagery of walking: an EEG study publication-title: Neuroimage. – volume: 18 start-page: 036022 year: 2021 ident: b0245 article-title: A novel motor imagery EEG decoding method based on feature separation publication-title: J. Neural Eng. – volume: 36 start-page: 11671 year: 2016 end-page: 11681 ident: b0175 article-title: EEG oscillations are modulated in different behavior-related networks during rhythmic finger movements publication-title: J. Neurosci. – year: 2017 ident: b0050 article-title: The neural basis of kinesthetic and visual imagery in sports: an ALE metaanalysis publication-title: Brain Imag. Behav. – volume: 40 start-page: 8900 year: 2020 end-page: 8912 ident: b0060 article-title: Rapid eye movement sleep sawtooth waves are associated with widespread cortical activations publication-title: J. Neurosci. – volume: 218 start-page: 116981 year: 2020 ident: b0135 article-title: Decoding motor imagery and action planning in the early visual cortex: overlapping but distinct neural mechanisms publication-title: NeuroImage. – volume: 39 start-page: 1547 year: 2003 end-page: 1550 ident: b0230 article-title: EEG source reconstruction based on the boundary-element method and weighted minimum norm approaches publication-title: IEEE Trans. Magn. – volume: 11 year: 2021 ident: b0260 article-title: Handedness effects on motor imagery during kinesthetic and visual-motor conditions publication-title: Sci. Rep. – volume: 238 start-page: 118209 year: 2021 ident: b0140 article-title: Dynamic modulation of cortico-muscular coupling during real and imagined sensorimotor synchronisation publication-title: Neuroimage. – volume: 149 start-page: 113285 year: 2020 ident: b0210 article-title: Motor imagery EEG recognition based on conditional optimization empirical mode decomposition and multi-scale convolutional neural network publication-title: Expert Syst. Appl. – volume: 5 year: 2011 ident: b0225 article-title: Functional connectivity in relation to motor performance and recovery after stroke publication-title: Front. Syst. Neurosci. – volume: 68 start-page: 3 year: 2021 end-page: 10 ident: b0145 article-title: User adaptation to closed-loop decoding of motor imagery termination publication-title: IEEE Trans. Biomed. Eng. – volume: 11 start-page: e0162546 year: 2016 ident: b0045 article-title: A comparison of independent event-related desynchronization responses in motor-related brain areas to movement execution, movement imagery, and movement observation publication-title: PLoS ONE – volume: 29 start-page: 593 year: 2006 end-page: 604 ident: b0095 article-title: Imaging of a synchronous neuronal assembly in the human visual brain publication-title: Neuroimage. – volume: 164 start-page: 71 year: 2021 end-page: 86 ident: b0110 article-title: Frontal brain areas are more involved during motor imagery than during motor execution/preparation of a response sequence publication-title: Int. J. Psychophysiol. – volume: 9 start-page: 33 year: 1971 end-page: 42 ident: b0235 article-title: The effects of brain lesions on the performance of bilateral arm movements publication-title: Neuropsychologia. – reference: Taya, F., Sun, Y., Borghini, G., Arico, P., Babiloni, F., Bezerianos, A., Thakor, N.V., 2015. Training-induced changes in information transfer efficiency of the brain network: A functional connectome approach. 2015 7th International Ieee/Embs Conference on Neural Engineering (Ner). 1028-1031. – volume: 11 start-page: 3751 year: 2021 ident: b0240 article-title: Characterization of kinesthetic motor imagery compared with visual motor imageries publication-title: Sci. Rep. – volume: 237 start-page: 3233 year: 2019 end-page: 3240 ident: b0190 article-title: Event-related desynchronization possibly discriminates the kinesthetic illusion induced by visual stimulation from movement observation publication-title: Exp. Brain Res. – volume: 2011 start-page: 879716 year: 2011 ident: b0205 article-title: Brainstorm: A user-friendly application for MEG/EEG analysis publication-title: Computational Intelligence and Neuroscience – volume: 16 start-page: 778 year: 2021 ident: b0120 article-title: Comparison of cerebral activation between motor execution and motor imagery of self-feeding activity publication-title: Neural Regener. Res. – volume: 753 year: 2021 ident: b0065 article-title: Repetitive transcranial magnetic stimulation changes cognitive/motor tasks performance: an absolute alpha and beta power study publication-title: Neurosci. Lett. – volume: 29 start-page: 702 year: 2017 end-page: 706 ident: b0220 article-title: The effects of tool holding on body schema during motor imagery: a near-infrared spectroscopy study publication-title: J. Phys. Therapy Sci. – volume: 81 start-page: 127 year: 2019 end-page: 137 ident: b0180 article-title: Age-related differences in the within-session trainability of hemodynamic parameters: a near-infrared spectroscopy based neurofeedback study publication-title: Neurobiol. Aging – volume: 20 start-page: 13776 year: 2020 end-page: 13786 ident: b0020 article-title: Decoding EEG Rhythms During Action Observation, Motor Imagery, and Execution for Standing and Sitting publication-title: Ieee Sensors Journal – volume: 47 start-page: 104 year: 2021 end-page: 112 ident: b0195 article-title: Cognitive motor rehabilitation: imagination and observation of motor actions publication-title: Fiziologiya cheloveka. – volume: 39 start-page: 6162 year: 2019 end-page: 6179 ident: b0080 article-title: Functional MRI and EEG index complementary attentional modulations publication-title: J. Neurosci. – volume: 1691 start-page: 55 year: 2018 end-page: 63 ident: b0010 article-title: Suppression of EEG mu rhythm during action observation corresponds with subsequent changes in behavior publication-title: Brain Res. – volume: 20 start-page: 3996 year: 2020 end-page: 4024 ident: b0170 article-title: Consumer grade EEG measuring sensors as research tools: a review publication-title: IEEE Sens. J. – volume: 61 start-page: 1693 year: 2014 end-page: 1701 ident: b0075 article-title: A nonlinear generalization of spectral granger causality publication-title: IEEE Trans. Biomed. Eng. – volume: 28 start-page: 1614 year: 2020 end-page: 1622 ident: b0025 article-title: Observing actions through immersive virtual reality enhances motor imagery training publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 13 start-page: e0190715 year: 2018 ident: b0255 article-title: Changes in network connectivity during motor imagery and execution publication-title: PLoS ONE – volume: 89 start-page: 989 year: 2002 end-page: 1002 ident: b0070 article-title: Functional properties of brain areas associated with motor execution and imagery publication-title: J. Neurophysiol. – volume: 184 start-page: 36 year: 2019 end-page: 44 ident: b0130 article-title: The BOLD response in primary motor cortex and supplementary motor area during kinesthetic motor imagery based graded fMRI neurofeedback publication-title: Neuroimage. – volume: 103 start-page: 1 year: 1997 ident: b0155 article-title: Organization of cortical motor system: New concepts publication-title: Electroencephalography & Clinical Neurophysiology – volume: 100 start-page: 715 year: 2018 end-page: 727.e5 ident: b0250 article-title: Probing sensory readout via combined choice-correlation measures and microstimulation perturbation publication-title: Neuron – volume: 11 start-page: 781 year: 2021 end-page: 788 ident: b0105 article-title: Brain patterns during single- and dual-task leg movements publication-title: J. Med. Imag. Health Inform. – volume: 14 start-page: S103 year: 2001 end-page: S109 ident: b0085 article-title: Neural simulation of action: a unifying mechanism for motor cognition publication-title: Neuroimage. – volume: 175 start-page: 107 year: 2019 end-page: 125 ident: b0165 article-title: Action perception and motor imagery: mental practice of action publication-title: Prog. Neurobiol. – volume: 755 start-page: 135907 year: 2021 ident: b0200 article-title: Muscle-specific movement-phase-dependent modulation of corticospinal excitability during upper-limb motor execution and motor imagery combined with virtual action observation publication-title: Neurosci. Lett. – volume: 237 start-page: 3233 issue: 12 year: 2019 ident: 10.1016/j.brainres.2021.147769_b0190 article-title: Event-related desynchronization possibly discriminates the kinesthetic illusion induced by visual stimulation from movement observation publication-title: Exp. Brain Res. doi: 10.1007/s00221-019-05665-1 – volume: 39 start-page: 1547 year: 2003 ident: 10.1016/j.brainres.2021.147769_b0230 article-title: EEG source reconstruction based on the boundary-element method and weighted minimum norm approaches publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2003.810528 – volume: 61 start-page: 1693 issue: 6 year: 2014 ident: 10.1016/j.brainres.2021.147769_b0075 article-title: A nonlinear generalization of spectral granger causality publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2014.2300636 – volume: 2011 start-page: 879716 year: 2011 ident: 10.1016/j.brainres.2021.147769_b0205 article-title: Brainstorm: A user-friendly application for MEG/EEG analysis publication-title: Computational Intelligence and Neuroscience doi: 10.1155/2011/879716 – volume: 20 start-page: 3996 issue: 8 year: 2020 ident: 10.1016/j.brainres.2021.147769_b0170 article-title: Consumer grade EEG measuring sensors as research tools: a review publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2019.2962874 – volume: 11 year: 2021 ident: 10.1016/j.brainres.2021.147769_b0260 article-title: Handedness effects on motor imagery during kinesthetic and visual-motor conditions publication-title: Sci. Rep. doi: 10.1038/s41598-021-92467-7 – volume: 20 start-page: 13776 year: 2020 ident: 10.1016/j.brainres.2021.147769_b0020 article-title: Decoding EEG Rhythms During Action Observation, Motor Imagery, and Execution for Standing and Sitting publication-title: Ieee Sensors Journal doi: 10.1109/JSEN.2020.3005968 – volume: 34 start-page: 1443 issue: 4 year: 2007 ident: 10.1016/j.brainres.2021.147769_b0040 article-title: Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.11.004 – ident: 10.1016/j.brainres.2021.147769_b0215 doi: 10.1109/NER.2015.7146802 – volume: 11 start-page: e0162546 issue: 9 year: 2016 ident: 10.1016/j.brainres.2021.147769_b0045 article-title: A comparison of independent event-related desynchronization responses in motor-related brain areas to movement execution, movement imagery, and movement observation publication-title: PLoS ONE doi: 10.1371/journal.pone.0162546 – volume: 67 start-page: 786 issue: 3 year: 2020 ident: 10.1016/j.brainres.2021.147769_b0055 article-title: Assessment of the efficacy of EEG-based MI-BCI with visual feedback and EEG correlates of mental fatigue for upper-limb stroke rehabilitation publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2019.2921198 – volume: 238 start-page: 118209 year: 2021 ident: 10.1016/j.brainres.2021.147769_b0140 article-title: Dynamic modulation of cortico-muscular coupling during real and imagined sensorimotor synchronisation publication-title: Neuroimage. doi: 10.1016/j.neuroimage.2021.118209 – volume: 39 start-page: 6162 issue: 31 year: 2019 ident: 10.1016/j.brainres.2021.147769_b0080 article-title: Functional MRI and EEG index complementary attentional modulations publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2519-18.2019 – volume: 29 start-page: 702 issue: 4 year: 2017 ident: 10.1016/j.brainres.2021.147769_b0220 article-title: The effects of tool holding on body schema during motor imagery: a near-infrared spectroscopy study publication-title: J. Phys. Therapy Sci. doi: 10.1589/jpts.29.702 – volume: 47 start-page: 104 issue: 1 year: 2021 ident: 10.1016/j.brainres.2021.147769_b0195 article-title: Cognitive motor rehabilitation: imagination and observation of motor actions publication-title: Fiziologiya cheloveka. – year: 2017 ident: 10.1016/j.brainres.2021.147769_b0050 article-title: The neural basis of kinesthetic and visual imagery in sports: an ALE metaanalysis publication-title: Brain Imag. Behav. – volume: 17 start-page: 463 issue: 3 year: 1998 ident: 10.1016/j.brainres.2021.147769_b0030 article-title: Design and construction of a realistic digital brain phantom publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.712135 – volume: 753 year: 2021 ident: 10.1016/j.brainres.2021.147769_b0065 article-title: Repetitive transcranial magnetic stimulation changes cognitive/motor tasks performance: an absolute alpha and beta power study publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2021.135866 – volume: 149 start-page: 113285 year: 2020 ident: 10.1016/j.brainres.2021.147769_b0210 article-title: Motor imagery EEG recognition based on conditional optimization empirical mode decomposition and multi-scale convolutional neural network publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113285 – volume: 11 start-page: 3751 year: 2021 ident: 10.1016/j.brainres.2021.147769_b0240 article-title: Characterization of kinesthetic motor imagery compared with visual motor imageries publication-title: Sci. Rep. doi: 10.1038/s41598-021-82241-0 – volume: 9 issue: 1 year: 2019 ident: 10.1016/j.brainres.2021.147769_b0160 article-title: An acute session of motor imagery training induces use-dependent plasticity publication-title: Sci. Rep. doi: 10.1038/s41598-019-56628-z – volume: 755 start-page: 135907 year: 2021 ident: 10.1016/j.brainres.2021.147769_b0200 article-title: Muscle-specific movement-phase-dependent modulation of corticospinal excitability during upper-limb motor execution and motor imagery combined with virtual action observation publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2021.135907 – volume: 40 start-page: 8900 issue: 46 year: 2020 ident: 10.1016/j.brainres.2021.147769_b0060 article-title: Rapid eye movement sleep sawtooth waves are associated with widespread cortical activations publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1586-20.2020 – volume: 230 year: 2021 ident: 10.1016/j.brainres.2021.147769_b0015 article-title: Assessing the effective connectivity of premotor areas during real vs imagined grasping: a DCM-PEB approach publication-title: Neuroimage. doi: 10.1016/j.neuroimage.2021.117806 – volume: 126 start-page: 322 year: 2020 ident: 10.1016/j.brainres.2021.147769_b0125 article-title: Motor imagery alone drives corticospinal excitability during concurrent action observation and motor imagery publication-title: Cortex. doi: 10.1016/j.cortex.2020.01.012 – volume: 8 issue: 1 year: 2018 ident: 10.1016/j.brainres.2021.147769_b0185 article-title: Imagery of movements immediately following performance allows learning of motor skills that interfere publication-title: Sci. Rep. doi: 10.1038/s41598-018-32606-9 – volume: 164 start-page: 71 year: 2021 ident: 10.1016/j.brainres.2021.147769_b0110 article-title: Frontal brain areas are more involved during motor imagery than during motor execution/preparation of a response sequence publication-title: Int. J. Psychophysiol. doi: 10.1016/j.ijpsycho.2021.02.020 – volume: 218 start-page: 116981 year: 2020 ident: 10.1016/j.brainres.2021.147769_b0135 article-title: Decoding motor imagery and action planning in the early visual cortex: overlapping but distinct neural mechanisms publication-title: NeuroImage. doi: 10.1016/j.neuroimage.2020.116981 – volume: 29 start-page: 593 issue: 2 year: 2006 ident: 10.1016/j.brainres.2021.147769_b0095 article-title: Imaging of a synchronous neuronal assembly in the human visual brain publication-title: Neuroimage. doi: 10.1016/j.neuroimage.2005.07.045 – volume: 16 start-page: 778 issue: 4 year: 2021 ident: 10.1016/j.brainres.2021.147769_b0120 article-title: Comparison of cerebral activation between motor execution and motor imagery of self-feeding activity publication-title: Neural Regener. Res. doi: 10.4103/1673-5374.295333 – volume: 5 year: 2011 ident: 10.1016/j.brainres.2021.147769_b0225 article-title: Functional connectivity in relation to motor performance and recovery after stroke publication-title: Front. Syst. Neurosci. doi: 10.3389/fnsys.2011.00008 – volume: 28 start-page: 1614 issue: 7 year: 2020 ident: 10.1016/j.brainres.2021.147769_b0025 article-title: Observing actions through immersive virtual reality enhances motor imagery training publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2020.2998123 – volume: 225 start-page: 117486 year: 2021 ident: 10.1016/j.brainres.2021.147769_b0090 article-title: Phase dependent modulation of cortical activity during action observation and motor imagery of walking: an EEG study publication-title: Neuroimage. doi: 10.1016/j.neuroimage.2020.117486 – volume: 14 start-page: S103 issue: 1 year: 2001 ident: 10.1016/j.brainres.2021.147769_b0085 article-title: Neural simulation of action: a unifying mechanism for motor cognition publication-title: Neuroimage. doi: 10.1006/nimg.2001.0832 – volume: 394 start-page: 14 year: 2018 ident: 10.1016/j.brainres.2021.147769_b0150 article-title: Stimulation of the dorsal premotor cortex, but not of the supplementary motor area proper, impairs the stop function in a STOP signal task publication-title: Neuroscience doi: 10.1016/j.neuroscience.2018.10.005 – volume: 68 start-page: 3 issue: 1 year: 2021 ident: 10.1016/j.brainres.2021.147769_b0145 article-title: User adaptation to closed-loop decoding of motor imagery termination publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2020.3001981 – volume: 89 start-page: 989 issue: 2 year: 2002 ident: 10.1016/j.brainres.2021.147769_b0070 article-title: Functional properties of brain areas associated with motor execution and imagery publication-title: J. Neurophysiol. doi: 10.1152/jn.00132.2002 – volume: 175 start-page: 107 year: 2019 ident: 10.1016/j.brainres.2021.147769_b0165 article-title: Action perception and motor imagery: mental practice of action publication-title: Prog. Neurobiol. doi: 10.1016/j.pneurobio.2019.01.007 – volume: 11 start-page: 781 issue: 3 year: 2021 ident: 10.1016/j.brainres.2021.147769_b0105 article-title: Brain patterns during single- and dual-task leg movements publication-title: J. Med. Imag. Health Inform. doi: 10.1166/jmihi.2021.3348 – volume: 41 start-page: 4514 issue: 20 year: 2021 ident: 10.1016/j.brainres.2021.147769_b0035 article-title: Temporal context actively shapes EEG signatures of time perception publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0628-20.2021 – volume: 100 start-page: 715 issue: 3 year: 2018 ident: 10.1016/j.brainres.2021.147769_b0250 article-title: Probing sensory readout via combined choice-correlation measures and microstimulation perturbation publication-title: Neuron doi: 10.1016/j.neuron.2018.08.034 – volume: 18 start-page: 036022 issue: 3 year: 2021 ident: 10.1016/j.brainres.2021.147769_b0245 article-title: A novel motor imagery EEG decoding method based on feature separation publication-title: J. Neural Eng. doi: 10.1088/1741-2552/abe39b – volume: 1691 start-page: 55 year: 2018 ident: 10.1016/j.brainres.2021.147769_b0010 article-title: Suppression of EEG mu rhythm during action observation corresponds with subsequent changes in behavior publication-title: Brain Res. doi: 10.1016/j.brainres.2018.04.013 – volume: 103 start-page: 1 year: 1997 ident: 10.1016/j.brainres.2021.147769_b0155 article-title: Organization of cortical motor system: New concepts publication-title: Electroencephalography & Clinical Neurophysiology doi: 10.1016/S0013-4694(97)87916-7 – volume: 81 start-page: 127 year: 2019 ident: 10.1016/j.brainres.2021.147769_b0180 article-title: Age-related differences in the within-session trainability of hemodynamic parameters: a near-infrared spectroscopy based neurofeedback study publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2019.05.022 – volume: 2 start-page: 635 issue: 9 year: 2001 ident: 10.1016/j.brainres.2021.147769_b0100 article-title: Neural foundations of imagery publication-title: Nat. Rev. Neurosci. doi: 10.1038/35090055 – volume: 184 start-page: 36 year: 2019 ident: 10.1016/j.brainres.2021.147769_b0130 article-title: The BOLD response in primary motor cortex and supplementary motor area during kinesthetic motor imagery based graded fMRI neurofeedback publication-title: Neuroimage. doi: 10.1016/j.neuroimage.2018.09.007 – volume: 36 start-page: 11671 issue: 46 year: 2016 ident: 10.1016/j.brainres.2021.147769_b0175 article-title: EEG oscillations are modulated in different behavior-related networks during rhythmic finger movements publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1739-16.2016 – volume: 13 start-page: e0190715 issue: 1 year: 2018 ident: 10.1016/j.brainres.2021.147769_b0255 article-title: Changes in network connectivity during motor imagery and execution publication-title: PLoS ONE doi: 10.1371/journal.pone.0190715 – volume: 9 start-page: 33 issue: 1 year: 1971 ident: 10.1016/j.brainres.2021.147769_b0235 article-title: The effects of brain lesions on the performance of bilateral arm movements publication-title: Neuropsychologia. doi: 10.1016/0028-3932(71)90059-5 – volume: 15 start-page: 219 issue: 5 year: 2000 ident: 10.1016/j.brainres.2021.147769_b0115 article-title: The organization of the frontal motor cortex publication-title: News Physiol. Sci. |
SSID | ssj0003390 |
Score | 2.426111 |
Snippet | [Display omitted]
•In three different motor conditions (movement observation, movement imagery, movement execution), the participation degree of task-related... Graphical abstract Brain-computer interface (BCI) has been widely used in sports training and rehabilitation training. It is primarily based on action simulation, including... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 147769 |
SubjectTerms | Adult Brain - physiology Brain-Computer Interfaces Connectome EEG source imaging (ESI) Electroencephalography Female Functional Laterality - physiology Granger causality (GC) Hand - physiology Humans Imagery, Psychotherapy Imagination - physiology Male Motor Cortex Movement - physiology Movement execution (ME) Movement imagery (MI) Movement observation (MO) Nervous System Physiological Phenomena Neurology |
Title | A comparison of directed functional connectivity among fist-related brain activities during movement imagery, movement execution, and movement observation |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0006899321006284 https://www.clinicalkey.es/playcontent/1-s2.0-S0006899321006284 https://dx.doi.org/10.1016/j.brainres.2021.147769 https://www.ncbi.nlm.nih.gov/pubmed/34971597 https://www.proquest.com/docview/2615923002 |
Volume | 1777 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEBUhvfRSmqYf26RBhZBTnLVl2bKPy9KwbZNQSgO5CVkaw4asHbobSC75Ifm1nZFsb0tbWtqTQR5hr2Y8mqedN8PYPuKz2sRKIDZJ40iWBvCbK-uoQmeYCalc4ojgfHqWz87lh4vsYoNNey4MpVV2vj_4dO-tu5Fxt5rj6_mcOL5xjmiBSChEBKSaoFIqsvKj-3WaR5qGcxZCziT9HUv48qiiNgwIaxEnigSdhlKU-PzrDep3AajfiI6fsiddBMkn4SW32AY0z9j2pEH0vLjjB9zndPrD8m32MOF2aDTI25qHXwuO034WjgFRAn2tDV0kuG8-xGtUfuRpLijqX5-bIIHAmgdqI1-0vtb4is8XVAjj7nA9ArdgvUUfctO49XhbDYfAz9n58bsv01nUdWOIrFTFKnKVLUycGlUWoFRSJdLWiUksjoByeSYlKCEcQAlGUDd6ULjeeWmdSJWoRPqCbTZtA68Yj7NCYWCGElDIFBEmosy8Ehk4KV1iYMSyXgXadqXKqWPGle5z0i51rzpNqtNBdSM2HuZdh2Idf5yheg3rnoqKzlPjfvJvM2HZ-YClTvRS6Fj_ZKcjVg4zfzD1v3rq294MNfoB-nPHNNDeoBCGphis4wY3Yi-DfQ5rkMpS4V31-j-evMMeC2J-UC-cbJdtrr7ewBuMx1bVnv_g9tijyfTzySe6vv84O_sGIMM56g |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7R5dBeUFv6WOjDlaqeSDdxnDg5rlDRUmBPIHGzHHsiLWIT1F0k-Cv8WsZ2Elq1Vav26niUxDP5Zj7HMwPwkfhZrWPJiZukcSRKjfTNlXVUERhmXEibWJfgfDLPZ2fi63l2vgH7fS6MO1bZYX_AdI_W3cikW83J1WLhcnzjnNiCS0JxiYDiEWy66lTZCDanh0ez-QDIaRq2Whx5dgLfJQpffK5cJwZitkQVeUK4IaU7-_xrH_W7GNT7ooOnsNUFkWwanvMZbGDzHLanDRHo5S37xPyxTr9fvg13U2aGXoOsrVl4YbTMubSwE0gzCG5NaCTBfP8hVpP-I5_pQlP94zMdZhC3ZiG7kS1bX258zRZLVwvjdu9hBG_QeKPeY7qxD-NtNewDv4Czgy-n-7Ooa8gQGSGLdWQrU-g41bIsUMqkSoSpE50YGkFp80wIlJxbxBI1dw3pUdJ656WxPJW84ulLGDVtg6-BxVkhKTajGViIlEgmEc284hlaIWyicQxZrwJlumrlrmnGpeqPpV2oXnXKqU4F1Y1hMshdhXodf5SQvYZVn41K-KnIpfybJK46GFipRK24itVPpjqGcpD8wdr_6q4fejNUBAXu_45usL2mSRSdUrxOPm4Mr4J9DmuQilLSVbnzH3d-D49npyfH6vhwfrQLT7jrhOxa42RvYLT-do1vKTxbV--6z-8e5Hw7CQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparison+of+directed+functional+connectivity+among+fist-related+brain+activities+during+movement+imagery%2C+movement+execution%2C+and+movement+observation&rft.jtitle=Brain+research&rft.au=Zhou%2C+Lu&rft.au=Zhu%2C+Qiaoqiao&rft.au=Wu%2C+Biao&rft.au=Qin%2C+Bing&rft.date=2022-02-15&rft.pub=Elsevier+B.V&rft.issn=0006-8993&rft.volume=1777&rft_id=info:doi/10.1016%2Fj.brainres.2021.147769&rft.externalDocID=S0006899321006284 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00068993%2Fcov200h.gif |