Mouse Gastric Epithelial Cells Resist CagA Delivery by the Helicobacter pylori Type IV Secretion System
The initial step in bacterial infection is adherence of the bacterium to the target cell surface. Helicobacter pylori exploits the interaction of bacterial adhesin protein HopQ with human epithelial CEACAMs (CEACAM1, 5, and 6) to stably adhere to gastric epithelial cells, which is necessary for deli...
Saved in:
Published in | International journal of molecular sciences Vol. 23; no. 5; p. 2492 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
24.02.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The initial step in bacterial infection is adherence of the bacterium to the target cell surface. Helicobacter pylori exploits the interaction of bacterial adhesin protein HopQ with human epithelial CEACAMs (CEACAM1, 5, and 6) to stably adhere to gastric epithelial cells, which is necessary for delivery of the H. pylori CagA oncoprotein into the epithelial cells via a type IV secretion system. In contrast to human CEACAMs, however, HopQ does not interact with Ceacam1 (mouse CEACAM1) in vitro or in CHO cells ectopically expressing Ceacam1. Since the mouse genome lacks Ceacam5 and Ceacam6, no significant HopQ–Ceacam interaction may occur in mouse gastric epithelial cells. Here, we found that the mouse stomach has a much lower expression level of Ceacam1 than the expression level of CEACAM1 in the human stomach. Consistently, mouse gastric epithelial cells resist CagA delivery by cagA-positive H. pylori, and the delivery is restored by ectopic expression of human CEACAM1 or CEACAM5 in mouse gastric epithelial cells. Thus, despite the fact that mice are routinely used for H. pylori infection studies, a low expression level of Ceacam1 in the mouse stomach together with the loss or greatly reduced interaction of HopQ with Ceacams make the mouse an inappropriate model for studying the role of H. pylori-delivered CagA in gastric pathogenesis, including the development of gastric cancer. |
---|---|
AbstractList | The initial step in bacterial infection is adherence of the bacterium to the target cell surface.
Helicobacter pylori
exploits the interaction of bacterial adhesin protein HopQ with human epithelial CEACAMs (CEACAM1, 5, and 6) to stably adhere to gastric epithelial cells, which is necessary for delivery of the
H. pylori
CagA oncoprotein into the epithelial cells via a type IV secretion system. In contrast to human CEACAMs, however, HopQ does not interact with Ceacam1 (mouse CEACAM1) in vitro or in CHO cells ectopically expressing Ceacam1. Since the mouse genome lacks
Ceacam5
and
Ceacam6
, no significant HopQ–Ceacam interaction may occur in mouse gastric epithelial cells. Here, we found that the mouse stomach has a much lower expression level of Ceacam1 than the expression level of CEACAM1 in the human stomach. Consistently, mouse gastric epithelial cells resist CagA delivery by
cagA
-positive
H. pylori
, and the delivery is restored by ectopic expression of human CEACAM1 or CEACAM5 in mouse gastric epithelial cells. Thus, despite the fact that mice are routinely used for
H. pylori
infection studies, a low expression level of Ceacam1 in the mouse stomach together with the loss or greatly reduced interaction of HopQ with Ceacams make the mouse an inappropriate model for studying the role of
H. pylori
-delivered CagA in gastric pathogenesis, including the development of gastric cancer. The initial step in bacterial infection is adherence of the bacterium to the target cell surface. Helicobacter pylori exploits the interaction of bacterial adhesin protein HopQ with human epithelial CEACAMs (CEACAM1, 5, and 6) to stably adhere to gastric epithelial cells, which is necessary for delivery of the H. pylori CagA oncoprotein into the epithelial cells via a type IV secretion system. In contrast to human CEACAMs, however, HopQ does not interact with Ceacam1 (mouse CEACAM1) in vitro or in CHO cells ectopically expressing Ceacam1. Since the mouse genome lacks Ceacam5 and Ceacam6, no significant HopQ–Ceacam interaction may occur in mouse gastric epithelial cells. Here, we found that the mouse stomach has a much lower expression level of Ceacam1 than the expression level of CEACAM1 in the human stomach. Consistently, mouse gastric epithelial cells resist CagA delivery by cagA-positive H. pylori, and the delivery is restored by ectopic expression of human CEACAM1 or CEACAM5 in mouse gastric epithelial cells. Thus, despite the fact that mice are routinely used for H. pylori infection studies, a low expression level of Ceacam1 in the mouse stomach together with the loss or greatly reduced interaction of HopQ with Ceacams make the mouse an inappropriate model for studying the role of H. pylori-delivered CagA in gastric pathogenesis, including the development of gastric cancer. The initial step in bacterial infection is adherence of the bacterium to the target cell surface. exploits the interaction of bacterial adhesin protein HopQ with human epithelial CEACAMs (CEACAM1, 5, and 6) to stably adhere to gastric epithelial cells, which is necessary for delivery of the CagA oncoprotein into the epithelial cells via a type IV secretion system. In contrast to human CEACAMs, however, HopQ does not interact with Ceacam1 (mouse CEACAM1) in vitro or in CHO cells ectopically expressing Ceacam1. Since the mouse genome lacks and , no significant HopQ-Ceacam interaction may occur in mouse gastric epithelial cells. Here, we found that the mouse stomach has a much lower expression level of Ceacam1 than the expression level of CEACAM1 in the human stomach. Consistently, mouse gastric epithelial cells resist CagA delivery by -positive , and the delivery is restored by ectopic expression of human CEACAM1 or CEACAM5 in mouse gastric epithelial cells. Thus, despite the fact that mice are routinely used for infection studies, a low expression level of Ceacam1 in the mouse stomach together with the loss or greatly reduced interaction of HopQ with Ceacams make the mouse an inappropriate model for studying the role of -delivered CagA in gastric pathogenesis, including the development of gastric cancer. The initial step in bacterial infection is adherence of the bacterium to the target cell surface. Helicobacter pylori exploits the interaction of bacterial adhesin protein HopQ with human epithelial CEACAMs (CEACAM1, 5, and 6) to stably adhere to gastric epithelial cells, which is necessary for delivery of the H. pylori CagA oncoprotein into the epithelial cells via a type IV secretion system. In contrast to human CEACAMs, however, HopQ does not interact with Ceacam1 (mouse CEACAM1) in vitro or in CHO cells ectopically expressing Ceacam1. Since the mouse genome lacks Ceacam5 and Ceacam6, no significant HopQ-Ceacam interaction may occur in mouse gastric epithelial cells. Here, we found that the mouse stomach has a much lower expression level of Ceacam1 than the expression level of CEACAM1 in the human stomach. Consistently, mouse gastric epithelial cells resist CagA delivery by cagA-positive H. pylori, and the delivery is restored by ectopic expression of human CEACAM1 or CEACAM5 in mouse gastric epithelial cells. Thus, despite the fact that mice are routinely used for H. pylori infection studies, a low expression level of Ceacam1 in the mouse stomach together with the loss or greatly reduced interaction of HopQ with Ceacams make the mouse an inappropriate model for studying the role of H. pylori-delivered CagA in gastric pathogenesis, including the development of gastric cancer.The initial step in bacterial infection is adherence of the bacterium to the target cell surface. Helicobacter pylori exploits the interaction of bacterial adhesin protein HopQ with human epithelial CEACAMs (CEACAM1, 5, and 6) to stably adhere to gastric epithelial cells, which is necessary for delivery of the H. pylori CagA oncoprotein into the epithelial cells via a type IV secretion system. In contrast to human CEACAMs, however, HopQ does not interact with Ceacam1 (mouse CEACAM1) in vitro or in CHO cells ectopically expressing Ceacam1. Since the mouse genome lacks Ceacam5 and Ceacam6, no significant HopQ-Ceacam interaction may occur in mouse gastric epithelial cells. Here, we found that the mouse stomach has a much lower expression level of Ceacam1 than the expression level of CEACAM1 in the human stomach. Consistently, mouse gastric epithelial cells resist CagA delivery by cagA-positive H. pylori, and the delivery is restored by ectopic expression of human CEACAM1 or CEACAM5 in mouse gastric epithelial cells. Thus, despite the fact that mice are routinely used for H. pylori infection studies, a low expression level of Ceacam1 in the mouse stomach together with the loss or greatly reduced interaction of HopQ with Ceacams make the mouse an inappropriate model for studying the role of H. pylori-delivered CagA in gastric pathogenesis, including the development of gastric cancer. |
Author | Yamamoto, Masami Nomura, Sachiyo Murata-Kamiya, Naoko Shrestha, Rejina Tsukamoto, Tetsuya Imai, Satoshi Hatakeyama, Masanori |
AuthorAffiliation | 3 Department of Diagnostic Pathology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan; ttsukamt@fujita-hu.ac.jp 1 Division of Microbiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; rejinasth6@gmail.com (R.S.); naokokam@m.u-tokyo.ac.jp (N.M.-K.); isatoshi@m.u-tokyo.ac.jp (S.I.) 4 Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; snomura-gi@umin.ac.jp 2 Division of Physiological Pathology, Department of Applied Science, School of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 180-8602, Japan; masami@nvlu.ac.jp |
AuthorAffiliation_xml | – name: 3 Department of Diagnostic Pathology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan; ttsukamt@fujita-hu.ac.jp – name: 4 Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; snomura-gi@umin.ac.jp – name: 1 Division of Microbiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; rejinasth6@gmail.com (R.S.); naokokam@m.u-tokyo.ac.jp (N.M.-K.); isatoshi@m.u-tokyo.ac.jp (S.I.) – name: 2 Division of Physiological Pathology, Department of Applied Science, School of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 180-8602, Japan; masami@nvlu.ac.jp |
Author_xml | – sequence: 1 givenname: Rejina surname: Shrestha fullname: Shrestha, Rejina – sequence: 2 givenname: Naoko surname: Murata-Kamiya fullname: Murata-Kamiya, Naoko – sequence: 3 givenname: Satoshi orcidid: 0000-0002-6251-4387 surname: Imai fullname: Imai, Satoshi – sequence: 4 givenname: Masami surname: Yamamoto fullname: Yamamoto, Masami – sequence: 5 givenname: Tetsuya orcidid: 0000-0002-7502-8724 surname: Tsukamoto fullname: Tsukamoto, Tetsuya – sequence: 6 givenname: Sachiyo orcidid: 0000-0003-4293-6205 surname: Nomura fullname: Nomura, Sachiyo – sequence: 7 givenname: Masanori orcidid: 0000-0001-7517-2649 surname: Hatakeyama fullname: Hatakeyama, Masanori |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35269634$$D View this record in MEDLINE/PubMed |
BookMark | eNptkU1LJDEQhoMofox72_MS2IsHR9NJd9K5LAzj14CysOpeQyZdPWbo7rRJRuh_b4ZRGUUCSYV66qXqrSO027kOEPqZkTPGJDm3yzZQRgqaS7qDDrOc0jEhXOxuxQfoKIQlIZTRQu6jA1ZQLjnLD9Hizq0C4GsdorcGX_Y2PkFjdYOn0DQB_4NgQ8RTvZjgi5R4AT_g-YAThW_S37i5NhE87ofGeYsfhh7w7D--B-MhWtfh-yFEaI_RXq2bAD_e3hF6vLp8mN6Mb_9ez6aT27HJRRnHVbppyXTFC1NKSaEUFTdGU1YXPAeR1TLNwFNgCpYDN5WWTPBSQq1FXczZCP3Z6PareQuVgS563aje21b7QTlt1edMZ5_Uwr2oUmYknSRw8ibg3fMKQlStDSZ5oTtIVinKWSkyRpJ9I_T7C7p0K9-l8daUEDnlvEjUr-2OPlp530ECTjeA8S4ED_UHkhG1XrHaXnHC6Rfc2KjXVqd5bPN90StkjqpM |
CitedBy_id | crossref_primary_10_1126_scisignal_abp9020 crossref_primary_10_1128_spectrum_00311_24 crossref_primary_10_1016_j_micinf_2023_105246 crossref_primary_10_1016_j_jinorgbio_2023_112389 crossref_primary_10_1080_19490976_2024_2314201 crossref_primary_10_1016_j_bbrc_2022_06_010 crossref_primary_10_5306_wjco_v13_i11_866 |
Cites_doi | 10.1111/mmi.14123 10.1111/cas.13569 10.1016/j.chom.2009.03.004 10.1136/gut.39.5.639 10.1186/1471-2148-7-196 10.1111/cas.14391 10.1073/pnas.0504927102 10.1002/ijc.21731 10.1186/1478-811X-12-27 10.1016/j.ceb.2006.08.008 10.1023/A:1026627707103 10.1186/1741-7007-8-12 10.1016/S0378-1119(00)00595-3 10.1099/00222615-47-10-863 10.1038/nrc1433 10.1371/journal.pone.0061701 10.1111/j.1462-5822.2007.01084.x 10.1038/sj.gene.6364442 10.1126/science.1069076 10.1158/0008-5472.CAN-16-1680 10.1016/j.chom.2012.05.010 10.1186/1471-2148-5-39 10.1053/j.gastro.2007.01.050 10.1126/science.1067147 10.1242/dmm.000364 10.1073/pnas.0711183105 10.1136/gut.40.3.297 10.1073/pnas.93.25.14648 10.7554/eLife.47644 10.1046/j.1365-2958.2002.02781.x 10.1084/jem.20100602 10.1074/jbc.M309964200 10.1371/journal.ppat.1000684 10.1016/j.chom.2014.02.008 10.1038/nature05765 10.1074/mcp.M113.035600 10.1084/jem.191.4.587 10.1038/nature06187 10.1038/nmicrobiol.2016.189 10.1038/nature13992 10.1016/j.chom.2021.04.006 10.1038/nmicrobiol.2016.188 10.1002/ijc.24740 10.1126/science.279.5349.373 10.1016/j.mib.2006.02.008 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH K9. M0S M1P M2O MBDVC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI Q9U 7X8 5PM |
DOI | 10.3390/ijms23052492 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1422-0067 |
ExternalDocumentID | PMC8910101 35269634 10_3390_ijms23052492 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Japan Society for the Promotion of Science grantid: 16H06373 – fundername: Japan Society for the Promotion of Science grantid: 16K15273 – fundername: Japan Society for the Promotion of Science grantid: 21H04804 |
GroupedDBID | --- 29J 2WC 53G 5GY 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8G5 A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 DWQXO E3Z EBD EBS EJD ESX F5P FRP FYUFA GNUQQ GUQSH GX1 HH5 HMCUK HYE IAO IHR ITC KQ8 LK8 M1P M2O M48 MODMG O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TR2 TUS UKHRP ~8M 3V. ABJCF BBNVY BHPHI CGR CUY CVF ECM EIF GROUPED_DOAJ HCIFZ KB. M7P M~E NPM PDBOC 7XB 8FK K9. MBDVC PJZUB PKEHL PPXIY PQEST PQUKI Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c478t-d478283ad65c8992e87d6cca23f564e71f92326e71c534e6cda937689efa7f5b3 |
IEDL.DBID | M48 |
ISSN | 1422-0067 1661-6596 |
IngestDate | Thu Aug 21 14:11:10 EDT 2025 Fri Jul 11 02:13:23 EDT 2025 Fri Jul 25 20:05:53 EDT 2025 Wed Feb 19 02:27:03 EST 2025 Tue Jul 01 02:48:07 EDT 2025 Thu Apr 24 22:59:30 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | HopQ Helicobacter pylori mouse gastric epithelial cells CagA CEACAM |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c478t-d478283ad65c8992e87d6cca23f564e71f92326e71c534e6cda937689efa7f5b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7502-8724 0000-0003-4293-6205 0000-0002-6251-4387 0000-0001-7517-2649 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijms23052492 |
PMID | 35269634 |
PQID | 2637742665 |
PQPubID | 2032341 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8910101 proquest_miscellaneous_2638713096 proquest_journals_2637742665 pubmed_primary_35269634 crossref_primary_10_3390_ijms23052492 crossref_citationtrail_10_3390_ijms23052492 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220224 |
PublicationDateYYYYMMDD | 2022-02-24 |
PublicationDate_xml | – month: 2 year: 2022 text: 20220224 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | International journal of molecular sciences |
PublicationTitleAlternate | Int J Mol Sci |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Ohnishi (ref_17) 2008; 105 Parsonnet (ref_7) 1997; 40 Peek (ref_39) 2008; 1 Kuespert (ref_24) 2006; 18 Saito (ref_40) 2010; 207 McLellan (ref_42) 2005; 5 Tchoupa (ref_26) 2014; 12 Sakagami (ref_35) 1996; 39 Namavar (ref_34) 1998; 47 Backert (ref_5) 2006; 9 Kwok (ref_20) 2007; 449 Hatakeyama (ref_8) 2014; 15 Saadat (ref_13) 2007; 447 Ilver (ref_18) 1998; 279 Censini (ref_3) 1996; 93 Stein (ref_31) 2002; 43 Hayashi (ref_10) 2012; 12 Higashi (ref_45) 2004; 279 Dyer (ref_37) 2018; 110 Higashi (ref_11) 2002; 295 Fagerberg (ref_28) 2004; 13 Hatakeyama (ref_12) 2004; 4 Selbach (ref_15) 2009; 5 Parkin (ref_2) 2002; 118 Mahdavi (ref_19) 2002; 297 Zhou (ref_27) 2001; 264 Holsten (ref_22) 2016; 2 Chung (ref_6) 2019; 8 Yamamoto (ref_30) 2018; 109 Miura (ref_38) 2009; 125 Fujii (ref_46) 2020; 111 ref_21 ref_43 Yue (ref_29) 2014; 515 Tammer (ref_32) 2007; 132 Javaheri (ref_23) 2016; 2 Zeaiter (ref_14) 2008; 10 Blaser (ref_1) 1995; 55 Imai (ref_16) 2021; 29 Kammerer (ref_41) 2007; 7 Franco (ref_36) 2005; 102 Sheu (ref_33) 1999; 44 Covacci (ref_4) 2000; 191 Backert (ref_9) 2016; 76 Kammerer (ref_25) 2010; 8 Callaghan (ref_44) 2008; 9 |
References_xml | – volume: 110 start-page: 761 year: 2018 ident: ref_37 article-title: Genomic features of the Helicobacter pylori strain PMSS1 and its virulence attributes as deduced from its in vivo colonisation patterns publication-title: Mol. Microbiol. doi: 10.1111/mmi.14123 – volume: 109 start-page: 1480 year: 2018 ident: ref_30 article-title: Established gastric cancer cell lines transplantable into C57BL/6 mice show fibroblast growth factor receptor 4 promotion of tumor growth publication-title: Cancer Sci. doi: 10.1111/cas.13569 – volume: 5 start-page: 397 year: 2009 ident: ref_15 article-title: Host cell interactome of tyrosine-phosphorylated bacterial proteins publication-title: Cell Host Microbe doi: 10.1016/j.chom.2009.03.004 – volume: 39 start-page: 639 year: 1996 ident: ref_35 article-title: Atrophic gastric changes in both Helicobacter felis and Helicobacter pylori infected mice are host dependent and separate from antral gastritis publication-title: Gut doi: 10.1136/gut.39.5.639 – volume: 7 start-page: 196 year: 2007 ident: ref_41 article-title: Species-specific evolution of immune receptor tyrosine based activation motif-containing CEACAM1-related immune receptors in the dog publication-title: BMC Evol. Biol. doi: 10.1186/1471-2148-7-196 – volume: 111 start-page: 1596 year: 2020 ident: ref_46 article-title: Helicobacter pylori CagA oncoprotein interacts with SHIP2 to increase its delivery into gastric epithelial cells publication-title: Cancer Sci. doi: 10.1111/cas.14391 – volume: 102 start-page: 10646 year: 2005 ident: ref_36 article-title: Activation of β-catenin by carcinogenic Helicobacter pylori publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0504927102 – volume: 118 start-page: 3030 year: 2002 ident: ref_2 article-title: The global health burden of infection-associated cancers in the year publication-title: Int. J. Cancer doi: 10.1002/ijc.21731 – volume: 12 start-page: 27 year: 2014 ident: ref_26 article-title: Signaling by epithelial members of the CEACAM family—Mucosal docking sites for pathogenic bacteria publication-title: Cell. Commun. Signal. doi: 10.1186/1478-811X-12-27 – volume: 18 start-page: 565 year: 2006 ident: ref_24 article-title: CEACAMs: Their role in physiology and pathophysiology publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2006.08.008 – volume: 44 start-page: 868 year: 1999 ident: ref_33 article-title: Development of Helicobacter pylori infection model in BALB/c mice with domestic cagA-positive and -negative strains in Taiwan publication-title: Dig. Dis. Sci. doi: 10.1023/A:1026627707103 – volume: 8 start-page: 12 year: 2010 ident: ref_25 article-title: Coevolution of activating and inhibitory receptors within mammalian carcinoembryonic antigen families publication-title: BMC Biol. doi: 10.1186/1741-7007-8-12 – volume: 264 start-page: 105 year: 2001 ident: ref_27 article-title: The carcinoembryonic antigen (CEA) gene family in non-human primates publication-title: Gene doi: 10.1016/S0378-1119(00)00595-3 – volume: 47 start-page: 863 year: 1998 ident: ref_34 article-title: Local cellular immune response in the acute phase of gastritis in mice induced chemically and by Helicobacter pylori publication-title: Med. Microbiol. doi: 10.1099/00222615-47-10-863 – volume: 4 start-page: 688 year: 2004 ident: ref_12 article-title: Oncogenic mechanisms of the Helicobacter pylori CagA protein publication-title: Nat. Rev. Cancer doi: 10.1038/nrc1433 – ident: ref_43 doi: 10.1371/journal.pone.0061701 – volume: 10 start-page: 781 year: 2008 ident: ref_14 article-title: Analysis of detergent-resistant membranes of Helicobacter pylori infected gastric adenocarcinoma cells reveals a role for MARK2/Par1b in CagA-mediated disruption of cellular polarity publication-title: Cell. Microbiol. doi: 10.1111/j.1462-5822.2007.01084.x – volume: 9 start-page: 30 year: 2008 ident: ref_44 article-title: Haplotypic diversity in human CEACAM genes: Effects on susceptibility to meningococcal disease publication-title: Genes Immun. doi: 10.1038/sj.gene.6364442 – volume: 297 start-page: 573 year: 2002 ident: ref_19 article-title: Helicobacter pylori SabA adhesin in persistent infection and chronic inflammation publication-title: Science doi: 10.1126/science.1069076 – volume: 76 start-page: 4028 year: 2016 ident: ref_9 article-title: The role of CagA in the gastric biology of Helicobacter pylori publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-16-1680 – volume: 12 start-page: 20 year: 2012 ident: ref_10 article-title: Tertiary structure-function analysis reveals the pathogenic signaling potentiation mechanism of Helicobacter pylori oncogenic effector CagA publication-title: Cell Host Microbe doi: 10.1016/j.chom.2012.05.010 – volume: 5 start-page: 39 year: 2005 ident: ref_42 article-title: Conservation of pregnancy-specific glycoprotein (PSG) N domains following independent expansions of the gene families in rodents and primates publication-title: BMC Evol. Biol. doi: 10.1186/1471-2148-5-39 – volume: 132 start-page: 1309 year: 2007 ident: ref_32 article-title: Activation of Abl by Helicobacter pylori: A novel kinase for CagA and crucial mediator of host cell scattering publication-title: Gastroenterology doi: 10.1053/j.gastro.2007.01.050 – volume: 295 start-page: 683 year: 2002 ident: ref_11 article-title: SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein publication-title: Science doi: 10.1126/science.1067147 – volume: 1 start-page: 50 year: 2008 ident: ref_39 article-title: Helicobacter pylori infection and disease: From humans to animal models publication-title: Dis. Model Mech. doi: 10.1242/dmm.000364 – volume: 105 start-page: 1003 year: 2008 ident: ref_17 article-title: Transgenic expression of Helicobacter pylori CagA induces gastrointestinal and hematopoietic neoplasms in mouse publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0711183105 – volume: 55 start-page: 2111 year: 1995 ident: ref_1 article-title: Infection with Helicobacter pylori strains possessing cagA is associated with an increased risk of developing adenocarcinoma of the stomach publication-title: Cancer Res. – volume: 40 start-page: 297 year: 1997 ident: ref_7 article-title: Risk for gastric cancer in people with CagA positive or CagA negative Helicobacter pylori infection publication-title: Gut doi: 10.1136/gut.40.3.297 – volume: 93 start-page: 14648 year: 1996 ident: ref_3 article-title: cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.93.25.14648 – volume: 8 start-page: e47644 year: 2019 ident: ref_6 article-title: Structure of the Helicobacter pylori Cag type IV secretion system publication-title: eLife doi: 10.7554/eLife.47644 – volume: 43 start-page: 971 year: 2002 ident: ref_31 article-title: c-Src/Lyn kinases activate Helicobacter pylori CagA through tyrosine phosphorylation of the EPIYA motifs publication-title: Mol. Microbiol. doi: 10.1046/j.1365-2958.2002.02781.x – volume: 207 start-page: 2157 year: 2010 ident: ref_40 article-title: Conversion of Helicobacter pylori CagA from senescence inducer to oncogenic driver through polarity-dependent regulation of p21 publication-title: J. Exp. Med. doi: 10.1084/jem.20100602 – volume: 279 start-page: 17205 year: 2004 ident: ref_45 article-title: Helicobacter pylori CagA induces Ras-independent morphogenetic response through SHP-2 recruitment and activation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M309964200 – ident: ref_21 doi: 10.1371/journal.ppat.1000684 – volume: 15 start-page: 306 year: 2014 ident: ref_8 article-title: Helicobacter pylori CagA and gastric cancer: A paradigm for hit-and-run carcinogenesis publication-title: Cell Host Microbe. doi: 10.1016/j.chom.2014.02.008 – volume: 447 start-page: 330 year: 2007 ident: ref_13 article-title: Helicobacter pylori CagA targets PAR1/MARK kinase to disrupt epithelial cell polarity publication-title: Nature doi: 10.1038/nature05765 – volume: 13 start-page: 397 year: 2004 ident: ref_28 article-title: Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics publication-title: Mol. Cell. Proteom. doi: 10.1074/mcp.M113.035600 – volume: 191 start-page: 587 year: 2000 ident: ref_4 article-title: Tyrosine-phosphorylated bacterial proteins: Trojan horses for the host cell publication-title: Exp. Med. doi: 10.1084/jem.191.4.587 – volume: 449 start-page: 862 year: 2007 ident: ref_20 article-title: Helicobacter exploits integrin for type IV secretion and kinase activation publication-title: Nature doi: 10.1038/nature06187 – volume: 2 start-page: 16189 year: 2016 ident: ref_23 article-title: Helicobacter pylori adhesin HopQ engages in a virulence-enhancing interaction with human CEACAMs publication-title: Nat. Microbiol. doi: 10.1038/nmicrobiol.2016.189 – volume: 515 start-page: 355 year: 2014 ident: ref_29 article-title: A comparative encyclopedia of DNA elements in the mouse genome publication-title: Nature doi: 10.1038/nature13992 – volume: 29 start-page: 941 year: 2021 ident: ref_16 article-title: Helicobacter pylori CagA elicits BRCAness to induce genome instability that may underlie bacterial gastric carcinogenesis publication-title: Cell Host Microbe doi: 10.1016/j.chom.2021.04.006 – volume: 2 start-page: 16188 year: 2016 ident: ref_22 article-title: Helicobacter pylori exploits human CEACAMs via HopQ for adherence and translocation of CagA publication-title: Nat. Microbiol. doi: 10.1038/nmicrobiol.2016.188 – volume: 125 start-page: 2497 year: 2009 ident: ref_38 article-title: Differential oncogenic potential of geographically distinct Helicobacter pylori CagA isoforms in mice publication-title: Int. J. Cancer. doi: 10.1002/ijc.24740 – volume: 279 start-page: 373 year: 1998 ident: ref_18 article-title: Helicobacter pylori adhesin binding fucosylated histo-blood group antigens revealed by retagging publication-title: Science doi: 10.1126/science.279.5349.373 – volume: 9 start-page: 207 year: 2006 ident: ref_5 article-title: Type IV secretion systems and their effectors in bacterial pathogenesis publication-title: Curr. Opin. Microbiol. doi: 10.1016/j.mib.2006.02.008 |
SSID | ssj0023259 |
Score | 2.3803027 |
Snippet | The initial step in bacterial infection is adherence of the bacterium to the target cell surface. Helicobacter pylori exploits the interaction of bacterial... The initial step in bacterial infection is adherence of the bacterium to the target cell surface. exploits the interaction of bacterial adhesin protein HopQ... The initial step in bacterial infection is adherence of the bacterium to the target cell surface. Helicobacter pylori exploits the interaction of bacterial... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2492 |
SubjectTerms | Adhesins, Bacterial - genetics Adhesins, Bacterial - metabolism Animals Antibodies Antigens, Bacterial - genetics Antigens, Bacterial - metabolism Bacterial infections Bacterial Proteins - genetics Bacterial Proteins - metabolism Cell adhesion & migration Cricetinae Cricetulus Epithelial Cells - metabolism Experiments Gastric cancer Genomes Helicobacter Infections Helicobacter pylori - metabolism Hematology Immunoglobulins Infections Kinases Mice Protein Transport Proteins Stomach Type IV Secretion Systems - genetics Type IV Secretion Systems - metabolism |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS9xAEB-qRfBFav1oWltW0CdZNNmv5Enk6mkFffAL30KyuzmvnPE014f7751JctGrtARCYCYk7Mzu_H77MQOwE7kw8UY5bpS2XEqT88SGlgtZSJpPDl09D3l-oU9v5Nmdumsn3Kp2W-VsTKwHavdoaY58P9ICkQqGE3U4fuJUNYpWV9sSGgvwMUQRbemK-ycd4RJRXSwtxBjEtUp0s_FdIM3fH_5-qBB9K0qYNx-S3uHMv7dLvok__U-w0gJHdtRYehU--PIzLDWlJKdrMDhHCu_ZSUZ1OCw7HtNZixE6F-v50ahil75Cg7JeNjhiP1GAHjxl-ZShFsPQg_6Q13mb2ZgY_JARP2W_btkVwUoyHmtym6_DTf_4unfK2yIK3EoTT7jDO0KIzGllkVtFPjZOo9kiUSgtvQkLhHiRxgerhPTaugwRi44TX2SmULnYgMXysfRfgOUqUT62iU9cIc2BzEIn4sLlBl86EMIHsDdrx9S2Gcap0MUoRaZBrZ6-bfUAdjvtcZNZ4x96WzOTpG3_qtJXbwhguxNjz6Dljqz02OSkg2xQIEcLYLOxYPchqgqAQ48MwMzZtlOgrNvzknJ4X2ffjhFg4fX1_7_1DZYjOihBh9_lFixOnv_47whfJvmP2kdfAIwI76w priority: 102 providerName: ProQuest |
Title | Mouse Gastric Epithelial Cells Resist CagA Delivery by the Helicobacter pylori Type IV Secretion System |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35269634 https://www.proquest.com/docview/2637742665 https://www.proquest.com/docview/2638713096 https://pubmed.ncbi.nlm.nih.gov/PMC8910101 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3battAEB1yodCXkiZtoyQ1W0ifippIe5MeQkkdOxdwKGld_Cak3VXioqhu7ED895mRbBHnUgRCsCMkZkaac1baOQC7oQ1ip6X1tVTGF0JnfmwC43ORC5pPDmw1D9k7Vyd9cTaQgyWYq43OHDh-ltqRnlT_pvh692_6DR_4A2KcSNn3hn-ux4ikJTW_W4ZVrEmatAx6ovmegLChkk0LsBr5Ssaq_gX-ydmLxekJ4nz84-SDStRdgzczCMkO65i_hSVXrsOrWlRyugGXPSTzjh2npMhhWGdEqy4KTDPWdkUxZhdujKFl7fTykB3hAObylGVThlYMixBmRlZ1cGYj4vJDRkyVnf5mPwlgUhhZ3eX8HfS7nV_tE38mp-AboaOJb3GPYCK1ShpkWaGLtFUYwJDnUgmngxzBXqjwwEgunDI2Reyiotjlqc5lxt_DSvm3dJvAMhlLF5nYxTYXel-kgeVRbjONJ-1z7jz4MvdjYma9xknyokiQc5DXk4de9-BzYz2qe2y8YLczD0kyT5QkVBwRLMIM6cGnZhifEfrwkZYOXU42yAs5sjUPPtQRbC5E-gD4EhIe6IXYNgbUf3txpBxeVX24I4RauG39_7a24XVISyZoGbzYgZXJza37iEBmkrVgWQ807qPucQtWv3fOf1y0qLTIVpW99zqC9p4 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtNAcFSKEFwQbwwFFomekNV4n_YBoSptmtCmB2hRb8beXZeg4AScCuWn-EZm7Ng0ILhVlixLO37NY-exOzMAr7iLEm-UC43SNpTS5GFiIxsKWUiKJ0eujkOOj_XwVL47U2cb8LPNhaFtle2cWE_UbmYpRr7DtUBLBdWJejv_FlLXKFpdbVtoNGxx6Jc_0GWr3oz2kL7bnA_2T_rDcNVVILTSxIvQ4Rl1aua0suhscB8bp_E_uCiUlt5EBdo8XOOFVUJ6bV2GKlzHiS8yU6hc4HOvwXUpUJNTZvrgoHPwBK-bs0Wo80KtEt1stEfA3s7ky9cKrX1FBfrWVeBfdu2f2zMv6bvBHbi9MlTZbsNZd2HDl_fgRtO6cnkfzsezi8qzg4z6fli2P6fcjikyM-v76bRi732FDMT62fku28MBlJgly5cMoRiqOuS_vK4TzeYUMZgw8ofZ6CP7QGYsMQtraqk_gNMrQe9D2CxnpX8MLFeJ8rFNfOIKaXoyi5yIC5cbvKknhA_gdYvH1K4qmlNjjWmKng1hPb2M9QC2O-h5U8njH3BbLUnSlTxX6W_uC-BlN4ySSMsrWekR5QSD3qdAnzCARw0FuxdRFwKc6mQAZo22HQBV-V4fKSef62rfMRp0eDz5_2e9gJvDk_FRejQ6PnwKtzglaVDivdyCzcX3C_8MTadF_rzmVwafrlpAfgFP5ixz |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3ZbtNAcFRSgXhB3AQKLBJ9QlZi72U_IFRy0FAaVYWivhl7d12CghNwKpRf4-uY8UUDgrfKkmVpx9fszM6xcwA8D6wfOS2tp6UynhA69SLjG4-LTJA_2belH_JwqvZPxNtTeboFP5tcGAqrbNbEcqG2C0M-8l6gOGoqKE5kL6vDIo6G41fLbx51kKKd1qadRkUiB279A8234uVkiHO9GwTj0YfBvld3GPCM0OHKs3hG-ZpYJQ0aHoELtVX4TwHPpBJO-xnqP4HCCyO5cMrYBMW5CiOXJTqTKcfnXoFtTVZRB7Zfj6ZHx625x4OyVZuPEtBTMlJV2D3nUb83-_K1QN1fUrm-TYH4l5b7Z7DmBek3vgk3arWV7VV0dgu2XH4brlaNLNd34OxwcV449iahLiCGjZaU6TFH0mYDN58X7NgVSE5skJztsSEOIP-sWbpmCMVQ8CE1pmXVaLYk_8GMkXXMJh_Ze1JqiXRYVVn9LpxcCoLvQSdf5O4BsFRG0oUmcpHNhO6LxLc8zGyq8aY-564LLxo8xqaub05tNuYx2jmE9fgi1ruw20Ivq7oe_4DbaaYkrrm7iH_TYheetcPIl7TZkuQOUU4waItytBC7cL-awfZF1JMAFz7RBb0xty0A1fzeHMlnn8va3yGqd3g8_P9nPYVryBzxu8n04BFcDyhjg7LwxQ50Vt_P3WPUo1bpk5pgGXy6bB75BSTIMgU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mouse+Gastric+Epithelial+Cells+Resist+CagA+Delivery+by+the+Helicobacter+pylori+Type+IV+Secretion+System&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Shrestha%2C+Rejina&rft.au=Murata-Kamiya%2C+Naoko&rft.au=Imai%2C+Satoshi&rft.au=Yamamoto%2C+Masami&rft.date=2022-02-24&rft.pub=MDPI+AG&rft.issn=1661-6596&rft.eissn=1422-0067&rft.volume=23&rft.issue=5&rft.spage=2492&rft_id=info:doi/10.3390%2Fijms23052492&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon |