Chemical Pretreatment-Independent Saccharifications of Xylan and Cellulose of Rice Straw by Bacterial Weak Lignin-Binding Xylanolytic and Cellulolytic Enzymes

Complete utilization of carbohydrate fractions is one of the prerequisites for obtaining economically favorable lignocellulosic biomass conversion. This study shows that xylan in untreated rice straw was saccharified to xylose in one step without chemical pretreatment, yielding 58.2% of the theoreti...

Full description

Saved in:
Bibliographic Details
Published inApplied and environmental microbiology Vol. 83; no. 22; p. 1
Main Authors Teeravivattanakit, Thitiporn, Baramee, Sirilak, Phitsuwan, Paripok, Sornyotha, Somphit, Waeonukul, Rattiya, Pason, Patthra, Tachaapaikoon, Chakrit, Poomputsa, Kanokwan, Kosugi, Akihiko, Sakka, Kazuo, Ratanakhanokchai, Khanok
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 15.11.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Complete utilization of carbohydrate fractions is one of the prerequisites for obtaining economically favorable lignocellulosic biomass conversion. This study shows that xylan in untreated rice straw was saccharified to xylose in one step without chemical pretreatment, yielding 58.2% of the theoretically maximum value by Paenibacillus curdlanolyticus B-6 PcAxy43A, a weak lignin-binding trifunctional xylanolytic enzyme, endoxylanase/β-xylosidase/arabinoxylan arabinofuranohydrolase. Moreover, xylose yield from untreated rice straw was enhanced to 78.9% by adding endoxylanases PcXyn10C and PcXyn11A from the same bacterium, resulting in improvement of cellulose accessibility to cellulolytic enzyme. After autoclaving the xylanolytic enzyme-treated rice straw, it was subjected to subsequent saccharification by a combination of the Clostridium thermocellum endoglucanase CtCel9R and Thermoanaerobacter brockii β-glucosidase TbCglT, yielding 88.5% of the maximum glucose yield, which was higher than the glucose yield obtained from ammonia-treated rice straw saccharification (59.6%). Moreover, this work presents a new environment-friendly xylanolytic enzyme pretreatment for beneficial hydrolysis of xylan in various agricultural residues, such as rice straw and corn hull. It not only could improve cellulose saccharification but also produced xylose, leading to an improvement of the overall fermentable sugar yields without chemical pretreatment. IMPORTANCE Ongoing research is focused on improving “green” pretreatment technologies in order to reduce energy demands and environmental impact and to develop an economically feasible biorefinery. The present study showed that PcAxy43A, a weak lignin-binding trifunctional xylanolytic enzyme, endoxylanase/β-xylosidase/arabinoxylan arabinofuranohydrolase from P. curdlanolyticus B-6, was capable of conversion of xylan in lignocellulosic biomass such as untreated rice straw to xylose in one step without chemical pretreatment. It demonstrates efficient synergism with endoxylanases PcXyn10C and PcXyn11A to depolymerize xylan in untreated rice straw and enhanced the xylose production and improved cellulose hydrolysis. Therefore, it can be considered an enzymatic pretreatment. Furthermore, the studies here show that glucose yield released from steam- and xylanolytic enzyme-treated rice straw by the combination of CtCel9R and TbCglT was higher than the glucose yield obtained from ammonia-treated rice straw saccharification. This work presents a novel environment-friendly xylanolytic enzyme pretreatment not only as a green pretreatment but also as an economically feasible biorefinery method.
AbstractList Complete utilization of carbohydrate fractions is one of the prerequisites for obtaining economically favorable lignocellulosic biomass conversion. This study shows that xylan in untreated rice straw was saccharified to xylose in one step without chemical pretreatment, yielding 58.2% of the theoretically maximum value by Paenibacillus curdlanolyticus B-6 PcAxy43A, a weak lignin-binding trifunctional xylanolytic enzyme, endoxylanase/β-xylosidase/arabinoxylan arabinofuranohydrolase. Moreover, xylose yield from untreated rice straw was enhanced to 78.9% by adding endoxylanases PcXyn10C and PcXyn11A from the same bacterium, resulting in improvement of cellulose accessibility to cellulolytic enzyme. After autoclaving the xylanolytic enzyme-treated rice straw, it was subjected to subsequent saccharification by a combination of the Clostridium thermocellum endoglucanase CtCel9R and Thermoanaerobacter brockii β-glucosidase TbCglT, yielding 88.5% of the maximum glucose yield, which was higher than the glucose yield obtained from ammonia-treated rice straw saccharification (59.6%). Moreover, this work presents a new environment-friendly xylanolytic enzyme pretreatment for beneficial hydrolysis of xylan in various agricultural residues, such as rice straw and corn hull. It not only could improve cellulose saccharification but also produced xylose, leading to an improvement of the overall fermentable sugar yields without chemical pretreatment. IMPORTANCE Ongoing research is focused on improving “green” pretreatment technologies in order to reduce energy demands and environmental impact and to develop an economically feasible biorefinery. The present study showed that PcAxy43A, a weak lignin-binding trifunctional xylanolytic enzyme, endoxylanase/β-xylosidase/arabinoxylan arabinofuranohydrolase from P. curdlanolyticus B-6, was capable of conversion of xylan in lignocellulosic biomass such as untreated rice straw to xylose in one step without chemical pretreatment. It demonstrates efficient synergism with endoxylanases PcXyn10C and PcXyn11A to depolymerize xylan in untreated rice straw and enhanced the xylose production and improved cellulose hydrolysis. Therefore, it can be considered an enzymatic pretreatment. Furthermore, the studies here show that glucose yield released from steam- and xylanolytic enzyme-treated rice straw by the combination of CtCel9R and TbCglT was higher than the glucose yield obtained from ammonia-treated rice straw saccharification. This work presents a novel environment-friendly xylanolytic enzyme pretreatment not only as a green pretreatment but also as an economically feasible biorefinery method.
Complete utilization of carbohydrate fractions is one of the prerequisites for obtaining economically favorable lignocellulosic biomass conversion. This study shows that xylan in untreated rice straw was saccharified to xylose in one step without chemical pretreatment, yielding 58.2% of the theoretically maximum value by Paenibacillus curdlanolyticus B-6 PcAxy43A, a weak lignin-binding trifunctional xylanolytic enzyme, endoxylanase/β-xylosidase/arabinoxylan arabinofuranohydrolase. Moreover, xylose yield from untreated rice straw was enhanced to 78.9% by adding endoxylanases PcXyn10C and PcXyn11A from the same bacterium, resulting in improvement of cellulose accessibility to cellulolytic enzyme. After autoclaving the xylanolytic enzyme-treated rice straw, it was subjected to subsequent saccharification by a combination of the Clostridium thermocellum endoglucanase CtCel9R and Thermoanaerobacter brockii β-glucosidase TbCglT, yielding 88.5% of the maximum glucose yield, which was higher than the glucose yield obtained from ammonia-treated rice straw saccharification (59.6%). Moreover, this work presents a new environment-friendly xylanolytic enzyme pretreatment for beneficial hydrolysis of xylan in various agricultural residues, such as rice straw and corn hull. It not only could improve cellulose saccharification but also produced xylose, leading to an improvement of the overall fermentable sugar yields without chemical pretreatment.
Complete utilization of carbohydrate fractions is one of the prerequisites for obtaining economically favorable lignocellulosic biomass conversion. This study shows that xylan in untreated rice straw was saccharified to xylose in one step without chemical pretreatment, yielding 58.2% of the theoretically maximum value by Paenibacillus curdlanolyticus B-6 PcAxy43A, a weak lignin-binding trifunctional xylanolytic enzyme, endoxylanase/β-xylosidase/arabinoxylan arabinofuranohydrolase. Moreover, xylose yield from untreated rice straw was enhanced to 78.9% by adding endoxylanases PcXyn10C and PcXyn11A from the same bacterium, resulting in improvement of cellulose accessibility to cellulolytic enzyme. After autoclaving the xylanolytic enzyme-treated rice straw, it was subjected to subsequent saccharification by a combination of the Clostridium thermocellum endoglucanase CtCel9R and Thermoanaerobacter brockii β-glucosidase TbCglT, yielding 88.5% of the maximum glucose yield, which was higher than the glucose yield obtained from ammonia-treated rice straw saccharification (59.6%). Moreover, this work presents a new environment-friendly xylanolytic enzyme pretreatment for beneficial hydrolysis of xylan in various agricultural residues, such as rice straw and corn hull. It not only could improve cellulose saccharification but also produced xylose, leading to an improvement of the overall fermentable sugar yields without chemical pretreatment.IMPORTANCE Ongoing research is focused on improving "green" pretreatment technologies in order to reduce energy demands and environmental impact and to develop an economically feasible biorefinery. The present study showed that PcAxy43A, a weak lignin-binding trifunctional xylanolytic enzyme, endoxylanase/β-xylosidase/arabinoxylan arabinofuranohydrolase from P. curdlanolyticus B-6, was capable of conversion of xylan in lignocellulosic biomass such as untreated rice straw to xylose in one step without chemical pretreatment. It demonstrates efficient synergism with endoxylanases PcXyn10C and PcXyn11A to depolymerize xylan in untreated rice straw and enhanced the xylose production and improved cellulose hydrolysis. Therefore, it can be considered an enzymatic pretreatment. Furthermore, the studies here show that glucose yield released from steam- and xylanolytic enzyme-treated rice straw by the combination of CtCel9R and TbCglT was higher than the glucose yield obtained from ammonia-treated rice straw saccharification. This work presents a novel environment-friendly xylanolytic enzyme pretreatment not only as a green pretreatment but also as an economically feasible biorefinery method.Complete utilization of carbohydrate fractions is one of the prerequisites for obtaining economically favorable lignocellulosic biomass conversion. This study shows that xylan in untreated rice straw was saccharified to xylose in one step without chemical pretreatment, yielding 58.2% of the theoretically maximum value by Paenibacillus curdlanolyticus B-6 PcAxy43A, a weak lignin-binding trifunctional xylanolytic enzyme, endoxylanase/β-xylosidase/arabinoxylan arabinofuranohydrolase. Moreover, xylose yield from untreated rice straw was enhanced to 78.9% by adding endoxylanases PcXyn10C and PcXyn11A from the same bacterium, resulting in improvement of cellulose accessibility to cellulolytic enzyme. After autoclaving the xylanolytic enzyme-treated rice straw, it was subjected to subsequent saccharification by a combination of the Clostridium thermocellum endoglucanase CtCel9R and Thermoanaerobacter brockii β-glucosidase TbCglT, yielding 88.5% of the maximum glucose yield, which was higher than the glucose yield obtained from ammonia-treated rice straw saccharification (59.6%). Moreover, this work presents a new environment-friendly xylanolytic enzyme pretreatment for beneficial hydrolysis of xylan in various agricultural residues, such as rice straw and corn hull. It not only could improve cellulose saccharification but also produced xylose, leading to an improvement of the overall fermentable sugar yields without chemical pretreatment.IMPORTANCE Ongoing research is focused on improving "green" pretreatment technologies in order to reduce energy demands and environmental impact and to develop an economically feasible biorefinery. The present study showed that PcAxy43A, a weak lignin-binding trifunctional xylanolytic enzyme, endoxylanase/β-xylosidase/arabinoxylan arabinofuranohydrolase from P. curdlanolyticus B-6, was capable of conversion of xylan in lignocellulosic biomass such as untreated rice straw to xylose in one step without chemical pretreatment. It demonstrates efficient synergism with endoxylanases PcXyn10C and PcXyn11A to depolymerize xylan in untreated rice straw and enhanced the xylose production and improved cellulose hydrolysis. Therefore, it can be considered an enzymatic pretreatment. Furthermore, the studies here show that glucose yield released from steam- and xylanolytic enzyme-treated rice straw by the combination of CtCel9R and TbCglT was higher than the glucose yield obtained from ammonia-treated rice straw saccharification. This work presents a novel environment-friendly xylanolytic enzyme pretreatment not only as a green pretreatment but also as an economically feasible biorefinery method.
Complete utilization of carbohydrate fractions is one of the prerequisites for obtaining economically favorable lignocellulosic biomass conversion. This study shows that xylan in untreated rice straw was saccharified to xylose in one step without chemical pretreatment, yielding 58.2% of the theoretically maximum value by B-6 PcAxy43A, a weak lignin-binding trifunctional xylanolytic enzyme, endoxylanase/β-xylosidase/arabinoxylan arabinofuranohydrolase. Moreover, xylose yield from untreated rice straw was enhanced to 78.9% by adding endoxylanases PcXyn10C and PcXyn11A from the same bacterium, resulting in improvement of cellulose accessibility to cellulolytic enzyme. After autoclaving the xylanolytic enzyme-treated rice straw, it was subjected to subsequent saccharification by a combination of the endoglucanase CtCel9R and β-glucosidase TbCglT, yielding 88.5% of the maximum glucose yield, which was higher than the glucose yield obtained from ammonia-treated rice straw saccharification (59.6%). Moreover, this work presents a new environment-friendly xylanolytic enzyme pretreatment for beneficial hydrolysis of xylan in various agricultural residues, such as rice straw and corn hull. It not only could improve cellulose saccharification but also produced xylose, leading to an improvement of the overall fermentable sugar yields without chemical pretreatment. Ongoing research is focused on improving "green" pretreatment technologies in order to reduce energy demands and environmental impact and to develop an economically feasible biorefinery. The present study showed that PcAxy43A, a weak lignin-binding trifunctional xylanolytic enzyme, endoxylanase/β-xylosidase/arabinoxylan arabinofuranohydrolase from B-6, was capable of conversion of xylan in lignocellulosic biomass such as untreated rice straw to xylose in one step without chemical pretreatment. It demonstrates efficient synergism with endoxylanases PcXyn10C and PcXyn11A to depolymerize xylan in untreated rice straw and enhanced the xylose production and improved cellulose hydrolysis. Therefore, it can be considered an enzymatic pretreatment. Furthermore, the studies here show that glucose yield released from steam- and xylanolytic enzyme-treated rice straw by the combination of CtCel9R and TbCglT was higher than the glucose yield obtained from ammonia-treated rice straw saccharification. This work presents a novel environment-friendly xylanolytic enzyme pretreatment not only as a green pretreatment but also as an economically feasible biorefinery method.
Author Waeonukul, Rattiya
Tachaapaikoon, Chakrit
Poomputsa, Kanokwan
Pason, Patthra
Baramee, Sirilak
Kosugi, Akihiko
Teeravivattanakit, Thitiporn
Sornyotha, Somphit
Ratanakhanokchai, Khanok
Sakka, Kazuo
Phitsuwan, Paripok
Author_xml – sequence: 1
  givenname: Thitiporn
  surname: Teeravivattanakit
  fullname: Teeravivattanakit, Thitiporn
  organization: Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
– sequence: 2
  givenname: Sirilak
  surname: Baramee
  fullname: Baramee, Sirilak
  organization: Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
– sequence: 3
  givenname: Paripok
  surname: Phitsuwan
  fullname: Phitsuwan, Paripok
  organization: Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
– sequence: 4
  givenname: Somphit
  surname: Sornyotha
  fullname: Sornyotha, Somphit
  organization: Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
– sequence: 5
  givenname: Rattiya
  surname: Waeonukul
  fullname: Waeonukul, Rattiya
  organization: Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
– sequence: 6
  givenname: Patthra
  surname: Pason
  fullname: Pason, Patthra
  organization: Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
– sequence: 7
  givenname: Chakrit
  surname: Tachaapaikoon
  fullname: Tachaapaikoon, Chakrit
  organization: Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
– sequence: 8
  givenname: Kanokwan
  surname: Poomputsa
  fullname: Poomputsa, Kanokwan
  organization: Division of Biotechnology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
– sequence: 9
  givenname: Akihiko
  surname: Kosugi
  fullname: Kosugi, Akihiko
  organization: Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences, Ibaraki, Japan
– sequence: 10
  givenname: Kazuo
  surname: Sakka
  fullname: Sakka, Kazuo
  organization: Graduate School of Bioresources, Mie University, Tsu, Japan
– sequence: 11
  givenname: Khanok
  surname: Ratanakhanokchai
  fullname: Ratanakhanokchai, Khanok
  organization: Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28864653$$D View this record in MEDLINE/PubMed
BookMark eNptkk9v1DAQxS1URLeFG2dkiQsHUvwvTnJBalcLVFoEoiC4WY4z2XVJ7K3tBYUPw2fF2y1VqbjY0vjnN_M07wgdOO8AoaeUnFDK6leni_cnhJaMFbR6gGaUNHVRci4P0IyQpikYE-QQHcV4SQgRRNaP0CGraylkyWfo93wNozV6wB8DpAA6jeBSce462EA-XMIX2pi1DrbPWLLeRex7_G0atMPadXgOw7AdfIRd-ZM1gC9S0D9xO-EzbRIEm8W_gv6Ol3blrCvOrOusW-0l_DAla-4K7QsL92saIT5GD3s9RHhycx-jL28Wn-fviuWHt-fz02VhRFWnoqOGtbwVLQPQpZFtZ7QGIWgJ3BjCRC-k4Vp0Fa9EV0MvS6JZw2lTSSJB82P0eq-72bYjdCb7DnpQm2BHHSbltVX_vji7Viv_Q5VSSiqaLPDiRiD4qy3EpEYbTXakHfhtVLThkuZeTZXR5_fQS78NLtvLVC05b6goM_Xs7kS3o_xdXQZe7gETfIwB-luEErVLhsrJUNfJUHTXld3DjU3X-8x-7PD_T38AwN2_CA
CitedBy_id crossref_primary_10_1016_j_ijbiomac_2023_127412
crossref_primary_10_4014_jmb_2105_05044
crossref_primary_10_1016_j_psep_2024_01_105
crossref_primary_10_1128_AEM_01730_21
crossref_primary_10_1007_s13399_020_01257_0
crossref_primary_10_1007_s00253_021_11308_9
crossref_primary_10_1186_s13068_023_02319_x
crossref_primary_10_1007_s00253_020_10758_x
crossref_primary_10_1016_j_bcab_2024_103142
crossref_primary_10_7717_peerj_10343
crossref_primary_10_1007_s00253_020_10388_3
crossref_primary_10_3389_fnut_2022_933193
crossref_primary_10_1007_s00253_021_11521_6
crossref_primary_10_1016_j_enzmictec_2021_109762
crossref_primary_10_1016_j_procbio_2019_06_019
crossref_primary_10_1186_s13068_019_1588_3
crossref_primary_10_7717_peerj_10968
crossref_primary_10_1038_s41598_024_76469_9
crossref_primary_10_1016_j_renene_2020_06_061
crossref_primary_10_1002_jsfa_13680
crossref_primary_10_1007_s12649_025_02987_w
crossref_primary_10_3390_cells9020401
crossref_primary_10_3389_fbioe_2022_810542
crossref_primary_10_1039_D2CP05611A
Cites_doi 10.1007/s11274-016-2145-x
10.1016/j.enzmictec.2015.01.007
10.1016/j.jbiotec.2003.09.011
10.1007/BF00504744
10.1128/AEM.02302-06
10.1385/ABAB:105:1-3:27
10.1016/j.biortech.2009.10.079
10.1186/1754-6834-2-24
10.1016/j.proche.2016.01.011
10.1016/0008-6215(95)00036-S
10.1016/j.jbiotec.2016.08.011
10.1186/s13068-015-0373-1
10.1007/s00253-014-5748-x
10.1016/j.biortech.2011.12.126
10.1016/j.procbio.2015.01.019
10.1186/s13068-014-0176-9
10.1016/j.renene.2011.06.045
10.5772/54194
10.1016/j.enzmictec.2007.11.006
10.1002/biot.201000301
10.1016/S0021-9258(18)71980-7
10.1016/j.biortech.2011.08.065
10.1016/j.foodchem.2006.10.071
10.1016/j.enzmictec.2015.02.002
10.1016/j.biortech.2004.06.025
10.1016/j.biortech.2011.01.008
10.1021/ie801542g
10.1016/j.biortech.2010.03.115
10.1016/j.biortech.2004.05.023
10.1016/B978-0-12-385099-7.00007-3
10.1016/S0021-9258(19)52451-6
10.1016/j.biombioe.2016.07.012
10.1007/s00253-016-7895-8
10.1016/j.jbiotec.2006.02.021
10.1016/j.biortech.2015.09.091
10.1007/s00253-016-7562-0
10.1128/AEM.02797-12
10.4172/2155-9821.1000188
10.1263/jbb.100.637
10.1007/BF00269069
10.1128/AEM.02181-08
10.1016/j.biotechadv.2012.03.002
10.1016/j.femsre.2004.06.005
10.1038/227680a0
10.1128/AEM.02256-16
10.1016/j.biortech.2015.10.009
10.1016/j.biortech.2011.09.091
10.1016/j.biortech.2012.10.145
ContentType Journal Article
Copyright Copyright © 2017 American Society for Microbiology.
Copyright American Society for Microbiology Nov 2017
Copyright © 2017 American Society for Microbiology. 2017 American Society for Microbiology
Copyright_xml – notice: Copyright © 2017 American Society for Microbiology.
– notice: Copyright American Society for Microbiology Nov 2017
– notice: Copyright © 2017 American Society for Microbiology. 2017 American Society for Microbiology
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7SN
7SS
7ST
7T7
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
SOI
7X8
5PM
DOI 10.1128/AEM.01522-17
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Biotechnology Research Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef

Virology and AIDS Abstracts
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
Biology
DocumentTitleAlternate Pretreatment of Rice Straw by Xylanolytic Enzyme
EISSN 1098-5336
ExternalDocumentID PMC5666149
28864653
10_1128_AEM_01522_17
Genre Journal Article
GrantInformation_xml – fundername: Thailand Research Fund (TRF)
GroupedDBID ---
-~X
0R~
23M
2WC
39C
4.4
53G
5GY
5RE
5VS
6J9
85S
AAGFI
AAYXX
AAZTW
ABOGM
ABPPZ
ACBTR
ACGFO
ACIWK
ACNCT
ACPRK
ADBBV
ADUKH
AENEX
AFRAH
AGVNZ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
BTFSW
CITATION
CS3
D0L
DIK
E.-
E3Z
EBS
EJD
F5P
GX1
H13
HYE
HZ~
K-O
KQ8
L7B
O9-
P2P
PQQKQ
RHI
RNS
RPM
RSF
RXW
TAE
TAF
TN5
TR2
TWZ
UHB
W8F
WH7
WOQ
X6Y
~02
~KM
CGR
CUY
CVF
ECM
EIF
NPM
OK1
RHF
UCJ
Z5M
7QL
7QO
7SN
7SS
7ST
7T7
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
SOI
7X8
5PM
ID FETCH-LOGICAL-c478t-d1c2b3b4b2eea5c6bdcaae4415e3cc024f46c3a4d7374d8ef650a293197606ea3
ISSN 0099-2240
1098-5336
IngestDate Thu Aug 21 18:45:41 EDT 2025
Fri Jul 11 08:02:16 EDT 2025
Mon Jun 30 10:43:38 EDT 2025
Wed Feb 19 02:40:49 EST 2025
Tue Jul 01 02:20:10 EDT 2025
Thu Apr 24 23:11:27 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords glucose
xylanolytic enzyme
rice straw
saccharification
pretreatment
xylose
cellulolytic enzyme
lignocellulosic biomass
Language English
License Copyright © 2017 American Society for Microbiology.
All Rights Reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c478t-d1c2b3b4b2eea5c6bdcaae4415e3cc024f46c3a4d7374d8ef650a293197606ea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Citation Teeravivattanakit T, Baramee S, Phitsuwan P, Sornyotha S, Waeonukul R, Pason P, Tachaapaikoon C, Poomputsa K, Kosugi A, Sakka K, Ratanakhanokchai K. 2017. Chemical pretreatment-independent saccharifications of xylan and cellulose of rice straw by bacterial weak lignin-binding xylanolytic and cellulolytic enzymes. Appl Environ Microbiol 83:e01522-17. https://doi.org/10.1128/AEM.01522-17.
OpenAccessLink https://aem.asm.org/content/aem/83/22/e01522-17.full.pdf
PMID 28864653
PQID 1986339145
PQPubID 42251
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5666149
proquest_miscellaneous_1936160697
proquest_journals_1986339145
pubmed_primary_28864653
crossref_primary_10_1128_AEM_01522_17
crossref_citationtrail_10_1128_AEM_01522_17
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-Nov-15
PublicationDateYYYYMMDD 2017-11-15
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-Nov-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Applied and environmental microbiology
PublicationTitleAlternate Appl Environ Microbiol
PublicationYear 2017
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_2_26_2
e_1_3_2_28_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_50_2
e_1_3_2_27_2
e_1_3_2_48_2
Sluiter A (e_1_3_2_49_2) 2008
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
Matthews S (e_1_3_2_41_2) 2016; 5
26452179 - Bioresour Technol. 2015 Dec;198:725-31
27743043 - Appl Microbiol Biotechnol. 2017 Feb;101(3):1175-1188
19944601 - Bioresour Technol. 2010 Jul;101(13):4767-74
24788327 - Appl Microbiol Biotechnol. 2014 Oct;98(19):8223-33
19151180 - Appl Environ Microbiol. 2009 Mar;75(6):1754-7
17308178 - Appl Environ Microbiol. 2007 Apr;73(8):2592-9
21277772 - Bioresour Technol. 2011 Apr;102(7):4779-86
22257861 - Bioresour Technol. 2012 Mar;107:352-7
16473773 - J Biosci Bioeng. 2005 Dec;100(6):637-43
14907713 - J Biol Chem. 1951 Nov;193(1):265-75
27142296 - Appl Microbiol Biotechnol. 2016 Sep;100(17 ):7577-90
21305697 - Biotechnol J. 2011 Mar;6(3):286-99
22047660 - Bioresour Technol. 2012 Jan;103(1):201-8
23275506 - Appl Environ Microbiol. 2013 Mar;79(5):1661-7
16621087 - J Biotechnol. 2006 Sep 1;125(2):198-209
27544286 - J Biotechnol. 2016 Oct 20;236:110-9
27655529 - World J Microbiol Biotechnol. 2016 Nov;32(11):186
15652973 - FEMS Microbiol Rev. 2005 Jan;29(1):3-23
26664502 - Biotechnol Biofuels. 2015 Dec 09;8:209
26482946 - Bioresour Technol. 2016 Jan;199:103-112
5432063 - Nature. 1970 Aug 15;227(5259):680-5
20399643 - Bioresour Technol. 2010 Sep;101(17):6712-7
22445788 - Biotechnol Adv. 2012 Nov-Dec;30(6):1458-80
15491828 - Bioresour Technol. 2005 Mar;96(4):465-70
12721473 - Appl Biochem Biotechnol. 2003 Spring;105 -108:27-41
25837503 - Enzyme Microb Technol. 2015 May;72:16-24
25598840 - Biotechnol Biofuels. 2014 Dec 31;7(1):496
27663030 - Appl Environ Microbiol. 2016 Sep 23
19796378 - Biotechnol Biofuels. 2009 Oct 01;2(1):24
14687972 - J Biotechnol. 2004 Jan 8;107(1):65-72
21917451 - Bioresour Technol. 2012 Jul;115:244-8
25837501 - Enzyme Microb Technol. 2015 May;72:1-9
23246299 - Bioresour Technol. 2013 Jan;128:751-9
15588770 - Bioresour Technol. 2005 Apr;96(6):673-86
References_xml – ident: e_1_3_2_34_2
  doi: 10.1007/s11274-016-2145-x
– ident: e_1_3_2_42_2
  doi: 10.1016/j.enzmictec.2015.01.007
– ident: e_1_3_2_28_2
  doi: 10.1016/j.jbiotec.2003.09.011
– ident: e_1_3_2_25_2
  doi: 10.1007/BF00504744
– ident: e_1_3_2_15_2
  doi: 10.1128/AEM.02302-06
– ident: e_1_3_2_13_2
  doi: 10.1385/ABAB:105:1-3:27
– ident: e_1_3_2_5_2
  doi: 10.1016/j.biortech.2009.10.079
– ident: e_1_3_2_35_2
  doi: 10.1186/1754-6834-2-24
– ident: e_1_3_2_40_2
  doi: 10.1016/j.proche.2016.01.011
– ident: e_1_3_2_29_2
  doi: 10.1016/0008-6215(95)00036-S
– volume: 5
  start-page: 1
  year: 2016
  ident: e_1_3_2_41_2
  article-title: Structural changes of rice straw pre-treated with Paenibacillus and Aspergillus fumigatus
  publication-title: Int J Argric Food Res
– ident: e_1_3_2_30_2
  doi: 10.1016/j.jbiotec.2016.08.011
– ident: e_1_3_2_43_2
  doi: 10.1186/s13068-015-0373-1
– ident: e_1_3_2_19_2
  doi: 10.1007/s00253-014-5748-x
– ident: e_1_3_2_50_2
  doi: 10.1016/j.biortech.2011.12.126
– ident: e_1_3_2_21_2
  doi: 10.1016/j.procbio.2015.01.019
– ident: e_1_3_2_32_2
  doi: 10.1186/s13068-014-0176-9
– ident: e_1_3_2_3_2
  doi: 10.1016/j.renene.2011.06.045
– ident: e_1_3_2_22_2
  doi: 10.5772/54194
– ident: e_1_3_2_31_2
  doi: 10.1016/j.enzmictec.2007.11.006
– ident: e_1_3_2_14_2
  doi: 10.1002/biot.201000301
– ident: e_1_3_2_45_2
  doi: 10.1016/S0021-9258(18)71980-7
– ident: e_1_3_2_16_2
  doi: 10.1016/j.biortech.2011.08.065
– ident: e_1_3_2_47_2
  doi: 10.1016/j.foodchem.2006.10.071
– ident: e_1_3_2_17_2
  doi: 10.1016/j.enzmictec.2015.02.002
– ident: e_1_3_2_8_2
  doi: 10.1016/j.biortech.2004.06.025
– ident: e_1_3_2_51_2
  doi: 10.1016/j.biortech.2011.01.008
– ident: e_1_3_2_11_2
  doi: 10.1021/ie801542g
– ident: e_1_3_2_23_2
  doi: 10.1016/j.biortech.2010.03.115
– ident: e_1_3_2_48_2
  doi: 10.1016/j.biortech.2004.05.023
– ident: e_1_3_2_10_2
  doi: 10.1016/B978-0-12-385099-7.00007-3
– ident: e_1_3_2_46_2
  doi: 10.1016/S0021-9258(19)52451-6
– ident: e_1_3_2_4_2
  doi: 10.1016/j.biombioe.2016.07.012
– ident: e_1_3_2_20_2
  doi: 10.1007/s00253-016-7895-8
– ident: e_1_3_2_9_2
  doi: 10.1016/j.jbiotec.2006.02.021
– ident: e_1_3_2_36_2
  doi: 10.1016/j.biortech.2015.09.091
– ident: e_1_3_2_26_2
  doi: 10.1007/s00253-016-7562-0
– ident: e_1_3_2_12_2
  doi: 10.1128/AEM.02797-12
– ident: e_1_3_2_38_2
  doi: 10.4172/2155-9821.1000188
– ident: e_1_3_2_37_2
  doi: 10.1263/jbb.100.637
– ident: e_1_3_2_39_2
  doi: 10.1007/BF00269069
– ident: e_1_3_2_7_2
  doi: 10.1128/AEM.02181-08
– ident: e_1_3_2_6_2
  doi: 10.1016/j.biotechadv.2012.03.002
– ident: e_1_3_2_33_2
  doi: 10.1016/j.femsre.2004.06.005
– ident: e_1_3_2_44_2
  doi: 10.1038/227680a0
– ident: e_1_3_2_18_2
  doi: 10.1128/AEM.02256-16
– ident: e_1_3_2_24_2
  doi: 10.1016/j.biortech.2015.10.009
– volume-title: Determination of structural carbohydrates and lignin in biomass
  year: 2008
  ident: e_1_3_2_49_2
– ident: e_1_3_2_27_2
  doi: 10.1016/j.biortech.2011.09.091
– ident: e_1_3_2_2_2
  doi: 10.1016/j.biortech.2012.10.145
– reference: 27655529 - World J Microbiol Biotechnol. 2016 Nov;32(11):186
– reference: 15652973 - FEMS Microbiol Rev. 2005 Jan;29(1):3-23
– reference: 26664502 - Biotechnol Biofuels. 2015 Dec 09;8:209
– reference: 15588770 - Bioresour Technol. 2005 Apr;96(6):673-86
– reference: 26482946 - Bioresour Technol. 2016 Jan;199:103-112
– reference: 5432063 - Nature. 1970 Aug 15;227(5259):680-5
– reference: 21277772 - Bioresour Technol. 2011 Apr;102(7):4779-86
– reference: 17308178 - Appl Environ Microbiol. 2007 Apr;73(8):2592-9
– reference: 24788327 - Appl Microbiol Biotechnol. 2014 Oct;98(19):8223-33
– reference: 27544286 - J Biotechnol. 2016 Oct 20;236:110-9
– reference: 27142296 - Appl Microbiol Biotechnol. 2016 Sep;100(17 ):7577-90
– reference: 22257861 - Bioresour Technol. 2012 Mar;107:352-7
– reference: 14687972 - J Biotechnol. 2004 Jan 8;107(1):65-72
– reference: 25598840 - Biotechnol Biofuels. 2014 Dec 31;7(1):496
– reference: 23275506 - Appl Environ Microbiol. 2013 Mar;79(5):1661-7
– reference: 20399643 - Bioresour Technol. 2010 Sep;101(17):6712-7
– reference: 23246299 - Bioresour Technol. 2013 Jan;128:751-9
– reference: 19944601 - Bioresour Technol. 2010 Jul;101(13):4767-74
– reference: 25837501 - Enzyme Microb Technol. 2015 May;72:1-9
– reference: 14907713 - J Biol Chem. 1951 Nov;193(1):265-75
– reference: 16473773 - J Biosci Bioeng. 2005 Dec;100(6):637-43
– reference: 27743043 - Appl Microbiol Biotechnol. 2017 Feb;101(3):1175-1188
– reference: 22445788 - Biotechnol Adv. 2012 Nov-Dec;30(6):1458-80
– reference: 16621087 - J Biotechnol. 2006 Sep 1;125(2):198-209
– reference: 22047660 - Bioresour Technol. 2012 Jan;103(1):201-8
– reference: 27663030 - Appl Environ Microbiol. 2016 Sep 23;:
– reference: 25837503 - Enzyme Microb Technol. 2015 May;72:16-24
– reference: 21917451 - Bioresour Technol. 2012 Jul;115:244-8
– reference: 19796378 - Biotechnol Biofuels. 2009 Oct 01;2(1):24
– reference: 21305697 - Biotechnol J. 2011 Mar;6(3):286-99
– reference: 12721473 - Appl Biochem Biotechnol. 2003 Spring;105 -108:27-41
– reference: 15491828 - Bioresour Technol. 2005 Mar;96(4):465-70
– reference: 26452179 - Bioresour Technol. 2015 Dec;198:725-31
– reference: 19151180 - Appl Environ Microbiol. 2009 Mar;75(6):1754-7
SSID ssj0004068
Score 2.3825905
Snippet Complete utilization of carbohydrate fractions is one of the prerequisites for obtaining economically favorable lignocellulosic biomass conversion. This study...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1
SubjectTerms Ammonia
Autoclaving
Bacteria
Bacterial Proteins - chemistry
Binding
Biocatalysis
Biomass
Carbohydrates
Cellulase - chemistry
Cellulolytic enzymes
Cellulose
Cellulose - chemistry
Clostridium thermocellum - enzymology
Corn
Crop residues
Endo-1,4-beta Xylanases - chemistry
Endoglucanase
Enzymology and Protein Engineering
Glucose
Glucose - chemistry
Glucosidase
Hydrolysis
Lignin
Lignin - chemistry
Lignocellulose
Oryza - chemistry
Paenibacillus - enzymology
Plant Stems - chemistry
Pretreatment
Rice
Rice straw
Saccharification
Straw
Sugar
Thermoanaerobacter - enzymology
Xylan
Xylans - chemistry
Xylose
Xylosidase
Xylosidases - chemistry
Title Chemical Pretreatment-Independent Saccharifications of Xylan and Cellulose of Rice Straw by Bacterial Weak Lignin-Binding Xylanolytic and Cellulolytic Enzymes
URI https://www.ncbi.nlm.nih.gov/pubmed/28864653
https://www.proquest.com/docview/1986339145
https://www.proquest.com/docview/1936160697
https://pubmed.ncbi.nlm.nih.gov/PMC5666149
Volume 83
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXKEAIeEJSvwkBGgqcpo4nz4TyuU9EADRW6SX2LHMeBiCid2pQp-zH8KH4R98aJm66bNHiJKsdxEt3T63Ode48JecvjmKlAMGBuQ2W5oRtYoQqGlufFoXBkzOJap_v4i3906n6aebNe708na2lVxvvy4sq6kv-xKrSBXbFK9h8sawaFBvgN9oUjWBiON7KxqfafLJTJGLc-mp1ty72pkFhXhflA65y3WZULnYN8qPJ8lc_1ev63DFU5y4U4R0460jLOuJ6uxE-I3b8XWWGNMl0FUw8xz6tW7rUZSDeMi4uqLSxpBW4bsot9O7V1WLqSraWgzDKCUgvxC_ddA-oKFLfUqUxZmUG0YNA8EphYppfQs0WWC1N0NIGuy9W5XtudwOufzc25KYxQATxr0jwFbwh9u0sfMJ1i-p3XdedhaCEn0ZOZ9uAokAoc1u-6eL1XTgNlXQe9PXU4WA5xMD7eB4YEEbouKd1U6L40c5p8xjqScngEV0f11ZEd3CK3HQhd0Pd-_tpRsB_6vFVGxUdvizEc_r57702atBX7XE7h7XCik4fkQRPM0AONzEekp4o-uaO3N6365G5b9b7sk_sd4cvH5HeLXHodcukWcuk8pTXsKICIGuRiMyKX1silcUUNcikil24il3aQ2x1INzTIfUJOP4xPDo-sZqcQS7oBL63Elg64FTd2lBKe9ONECqFwqUAxKYGGpq4vmXCTgAVuwlUKcYkAomsDGR_6SrCnZKeYF-o5oUmaiKEM7Ji7iWsHgqeKiZThzgsuYzwYkL3WMJFsZPRxN5c8ugoEA_LO9D7T8jHX9NttbRw1DmYZ2SH3GQtt1xuQN-Y0uH_8picKNV9hH-bb8A4hDPFMQ8LcyOHcR_nEAQk2wGI6oLT85pki-1FLzEOQB7w9fHHDx39J7q3_n7tkp1ys1Csg62X8ukb_Xyid9E0
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chemical+Pretreatment-Independent+Saccharifications+of+Xylan+and+Cellulose+of+Rice+Straw+by+Bacterial+Weak+Lignin-Binding+Xylanolytic+and+Cellulolytic+Enzymes&rft.jtitle=Applied+and+environmental+microbiology&rft.au=Teeravivattanakit%2C+Thitiporn&rft.au=Baramee%2C+Sirilak&rft.au=Phitsuwan%2C+Paripok&rft.au=Sornyotha%2C+Somphit&rft.date=2017-11-15&rft.issn=0099-2240&rft.eissn=1098-5336&rft.volume=83&rft.issue=22&rft_id=info:doi/10.1128%2FAEM.01522-17&rft.externalDBID=n%2Fa&rft.externalDocID=10_1128_AEM_01522_17
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0099-2240&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0099-2240&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0099-2240&client=summon