Real-time transient stability assessment in power system based on improved SVM
Due to the strict requirements of extremely high accuracy and fast computational speed, real-time transient stability assessment (TSA) has always been a tough problem in power system analysis. Fortunately, the development of artificial intelligence and big data technologies provide the new prospecti...
Saved in:
Published in | Journal of modern power systems and clean energy Vol. 7; no. 1; pp. 26 - 37 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Singapore
01.01.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) IEEE |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Due to the strict requirements of extremely high accuracy and fast computational speed, real-time transient stability assessment (TSA) has always been a tough problem in power system analysis. Fortunately, the development of artificial intelligence and big data technologies provide the new prospective methods to this issue, and there have been some successful trials on using intelligent method, such as support vector machine (SVM) method. However, the traditional SVM method cannot avoid false classification, and the interpretability of the results needs to be strengthened and clear. This paper proposes a new strategy to solve the shortcomings of traditional SVM, which can improve the interpretability of results, and avoid the problem of false alarms and missed alarms. In this strategy, two improved SVMs, which are called aggressive support vector machine (ASVM) and conservative support vector machine (CSVM), are proposed to improve the accuracy of the classification. And two improved SVMs can ensure the stability or instability of the power system in most cases. For the small amount of cases with undetermined stability, a new concept of grey region (GR) is built to measure the uncertainty of the results, and GR can assessment the instable probability of the power system. Cases studies on IEEE 39-bus system and realistic provincial power grid illustrate the effectiveness and practicability of the proposed strategy. |
---|---|
AbstractList | Due to the strict requirements of extremely high accuracy and fast computational speed, real-time transient stability assessment (TSA) has always been a tough problem in power system analysis. Fortunately, the development of artificial intelligence and big data technologies provide the new prospective methods to this issue, and there have been some successful trials on using intelligent method, such as support vector machine (SVM) method. However, the traditional SVM method cannot avoid false classification, and the interpretability of the results needs to be strengthened and clear. This paper proposes a new strategy to solve the shortcomings of traditional SVM, which can improve the interpretability of results, and avoid the problem of false alarms and missed alarms. In this strategy, two improved SVMs, which are called aggressive support vector machine (ASVM) and conservative support vector machine (CSVM), are proposed to improve the accuracy of the classification. And two improved SVMs can ensure the stability or instability of the power system in most cases. For the small amount of cases with undetermined stability, a new concept of grey region (GR) is built to measure the uncertainty of the results, and GR can assessment the instable probability of the power system. Cases studies on IEEE 39-bus system and realistic provincial power grid illustrate the effectiveness and practicability of the proposed strategy. Abstract Due to the strict requirements of extremely high accuracy and fast computational speed, real-time transient stability assessment (TSA) has always been a tough problem in power system analysis. Fortunately, the development of artificial intelligence and big data technologies provide the new prospective methods to this issue, and there have been some successful trials on using intelligent method, such as support vector machine (SVM) method. However, the traditional SVM method cannot avoid false classification, and the interpretability of the results needs to be strengthened and clear. This paper proposes a new strategy to solve the shortcomings of traditional SVM, which can improve the interpretability of results, and avoid the problem of false alarms and missed alarms. In this strategy, two improved SVMs, which are called aggressive support vector machine (ASVM) and conservative support vector machine (CSVM), are proposed to improve the accuracy of the classification. And two improved SVMs can ensure the stability or instability of the power system in most cases. For the small amount of cases with undetermined stability, a new concept of grey region (GR) is built to measure the uncertainty of the results, and GR can assessment the instable probability of the power system. Cases studies on IEEE 39-bus system and realistic provincial power grid illustrate the effectiveness and practicability of the proposed strategy. |
Author | HU, Wei LU, Zongxiang ZHANG, Weiling YU, Rui LIU, Baisi WU, Shuang DONG, Yu |
Author_xml | – sequence: 1 givenname: Wei orcidid: 0000-0002-9735-1012 surname: HU fullname: HU, Wei email: huwei@mail.tsinghua.edu.cn organization: State Key Laboratory of Power system, Department of Electrical Engineering, Tsinghua University – sequence: 2 givenname: Zongxiang surname: LU fullname: LU, Zongxiang organization: State Key Laboratory of Power system, Department of Electrical Engineering, Tsinghua University – sequence: 3 givenname: Shuang surname: WU fullname: WU, Shuang organization: State Key Laboratory of Power system, Department of Electrical Engineering, Tsinghua University – sequence: 4 givenname: Weiling surname: ZHANG fullname: ZHANG, Weiling organization: State Key Laboratory of Power system, Department of Electrical Engineering, Tsinghua University – sequence: 5 givenname: Yu surname: DONG fullname: DONG, Yu organization: State Grid Hunan Electric Power Company Limited – sequence: 6 givenname: Rui surname: YU fullname: YU, Rui organization: Southwest Branch, State Grid Corporation of China – sequence: 7 givenname: Baisi surname: LIU fullname: LIU, Baisi organization: Southwest Branch, State Grid Corporation of China |
BookMark | eNp9kV9rFTEQxYO0YK39AL4t-LyaySab7KMU_xSqgrZ9DclmUlJ2k2uSau-3N9e1CII-ZRjO73Am5xk5iikiIS-AvgJK5evCqRhFT0H1lIuhf3hCThhMYy84o0eP88jEU3JWSrB0mBTQaeAn5NMXNEtfw4pdzSaWgLF2pRobllD3nSkFS1kPyxC7XfqBuSv7UnHtrCnouhS7sO5y-t7mrzcfn5Njb5aCZ7_fU3L97u3V-Yf-8vP7i_M3l_3Mpaq9o9QzL4QHmGBSDJj3Xnpk4KRnaBGZZFy4cVCOW3TUzcKBA2Gd85Lb4ZRcbL4umTu9y2E1ea-TCfrXIuVbbXIN84J6VsZZbHbIDVfQHOUIzAEbptFSJZvXy82rnfHtHkvVd-k-xxZfMwDJhFJCNJXcVHNOpWT0eg7V1JBi-7ewaKD60IXeutCtC33oQj80Ev4iH_P-j2EbU5o23mL-k-nf0E-MrZ6H |
CitedBy_id | crossref_primary_10_1109_JESTIE_2023_3236885 crossref_primary_10_1016_j_egyr_2021_04_022 crossref_primary_10_1109_JPROC_2022_3192719 crossref_primary_10_21595_jme_2025_24547 crossref_primary_10_3389_fenrg_2022_1084295 crossref_primary_10_1049_iet_gtd_2020_0967 crossref_primary_10_23919_PCMP_2023_000032 crossref_primary_10_4018_IJeC_353871 crossref_primary_10_1007_s42835_022_01326_6 crossref_primary_10_3390_app10072255 crossref_primary_10_1007_s00202_020_01118_z crossref_primary_10_3390_en16052413 crossref_primary_10_1109_ACCESS_2023_3242557 crossref_primary_10_3390_smartcities4020029 crossref_primary_10_1109_TIM_2022_3212551 crossref_primary_10_3390_electronics14010057 crossref_primary_10_3389_fenrg_2022_932770 crossref_primary_10_1016_j_ijepes_2021_107574 crossref_primary_10_1016_j_seta_2022_102990 crossref_primary_10_1016_j_seta_2024_104011 crossref_primary_10_1016_j_suscom_2022_100826 crossref_primary_10_1007_s10586_022_03568_5 crossref_primary_10_1109_ACCESS_2020_3003568 crossref_primary_10_1109_ACCESS_2023_3263547 crossref_primary_10_32604_ee_2023_026816 crossref_primary_10_1109_ACCESS_2022_3172697 crossref_primary_10_1016_j_epsr_2022_108948 crossref_primary_10_1007_s10462_024_10993_y crossref_primary_10_1134_S1061934824030092 crossref_primary_10_3390_electronics11030446 crossref_primary_10_1109_ACCESS_2024_3435711 crossref_primary_10_1109_JPROC_2020_2988715 crossref_primary_10_1002_2050_7038_12872 crossref_primary_10_1016_j_ijepes_2020_106237 crossref_primary_10_1016_j_ijepes_2020_106513 crossref_primary_10_3390_app11125460 crossref_primary_10_3390_en14061531 crossref_primary_10_3390_en14248212 crossref_primary_10_1016_j_isatra_2022_10_039 crossref_primary_10_3390_en16237810 crossref_primary_10_3390_en14113148 crossref_primary_10_1109_OJCOMS_2023_3292050 crossref_primary_10_1016_j_gloei_2020_11_006 crossref_primary_10_1088_1742_6596_2729_1_012018 crossref_primary_10_3390_en14217238 crossref_primary_10_1109_TSG_2023_3237965 crossref_primary_10_1049_gtd2_13183 crossref_primary_10_3390_en15020507 crossref_primary_10_1109_TPWRD_2021_3054889 crossref_primary_10_1016_j_ijepes_2021_107156 crossref_primary_10_1109_TPWRS_2024_3367183 crossref_primary_10_1109_ACCESS_2022_3140595 crossref_primary_10_1016_j_bdr_2021_100285 crossref_primary_10_1177_1748006X211047308 crossref_primary_10_1109_ACCESS_2022_3205031 crossref_primary_10_1007_s00202_021_01281_x crossref_primary_10_1016_j_egyr_2022_05_212 crossref_primary_10_1109_TPWRS_2022_3220569 crossref_primary_10_1016_j_epsr_2021_107736 crossref_primary_10_1016_j_suscom_2024_100959 crossref_primary_10_32604_cmc_2022_020263 crossref_primary_10_1109_TPWRS_2023_3323025 |
Cites_doi | 10.1007/s40565-015-0110-6 10.1109/TKDE.2013.109 10.1109/TPWRS.2009.2037006 10.1109/TPWRS.2013.2246822 10.1109/59.32481 10.1109/TPWRS.2004.826018 10.1109/TPWRS.2009.2035507 10.1109/APPEEC.2016.7779579 10.1145/1102351.1102430 10.1109/APPEEC.2012.6307466 |
ContentType | Journal Article |
Copyright | The Author(s) 2018 Journal of Modern Power Systems and Clean Energy is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2018 – notice: Journal of Modern Power Systems and Clean Energy is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.1007/s40565-018-0453-x |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium ProQuest Engineering Collection Engineering Database (Proquest) ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ : directory of open access journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2196-5420 |
EndPage | 37 |
ExternalDocumentID | oai_doaj_org_article_c8adbe724e4a48138d7612d12396b087 10_1007_s40565_018_0453_x |
GrantInformation_xml | – fundername: Science and Technology Project of State Grid Corporation of China – fundername: National Natural Science Foundation of China grantid: 51777104 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: China State Key Lab. of Power System grantid: SKLD16Z08 |
GroupedDBID | -A0 -SC -S~ 4.4 5VR 5VS 8FE 8FG 9D9 9DC AAFWJ AAKKN AAXDM ABAZT ABEEZ ABJCF ACACY ACGFS ACULB ADINQ AFGXO AFKRA AFPKN AFUIB AHBYD AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP ASPBG AVWKF BENPR BGLVJ C24 C6C CAJEC CCPQU EBS EJD ESBDL GROUPED_DOAJ HCIFZ JAVBF KQ8 L6V M7S M~E OK1 PIMPY PROAC PTHSS Q-- RSV SOJ U1G U5M AAYXX ABVLG CITATION PHGZM PHGZT ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c478t-d00f2f55f119198212fff7fe21d7f2ebee27245d638d4bed0dc5d1d15bddf74b3 |
IEDL.DBID | BENPR |
ISSN | 2196-5625 |
IngestDate | Wed Aug 27 01:24:29 EDT 2025 Fri Jul 25 12:00:27 EDT 2025 Tue Jul 01 01:02:29 EDT 2025 Thu Apr 24 22:52:26 EDT 2025 Fri Feb 21 02:36:24 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Power system Grey region Support vector machine Transient stability assessment (TSA) Intelligent method |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c478t-d00f2f55f119198212fff7fe21d7f2ebee27245d638d4bed0dc5d1d15bddf74b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9735-1012 |
OpenAccessLink | https://www.proquest.com/docview/2117258855?pq-origsite=%requestingapplication% |
PQID | 2117258855 |
PQPubID | 2034712 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c8adbe724e4a48138d7612d12396b087 proquest_journals_2117258855 crossref_citationtrail_10_1007_s40565_018_0453_x crossref_primary_10_1007_s40565_018_0453_x springer_journals_10_1007_s40565_018_0453_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-01-01 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore – name: Piscataway |
PublicationTitle | Journal of modern power systems and clean energy |
PublicationTitleAbbrev | J. Mod. Power Syst. Clean Energy |
PublicationYear | 2019 |
Publisher | Springer Singapore The Institute of Electrical and Electronics Engineers, Inc. (IEEE) IEEE |
Publisher_xml | – name: Springer Singapore – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) – name: IEEE |
References | Moulin, Alves, El-Sharkawi (CR12) 2004; 19 Yao, Jia, Zhao (CR6) 2013; 37 CR4 Wu, Zhu, Wu (CR3) 2014; 26 Cortes, Vapnik (CR18) 1995; 20 CR19 Xie, Zhang, Yu (CR2) 2008; 28 Dai, Chen, Zhang (CR14) 2016; 36 CR11 Gu, Tso (CR8) 2003; 30 Yang, Lin, Zhu (CR16) 2015; 3 Platt (CR20) 1999 He, Vittal, Zhang (CR9) 2013; 28 Sobajic, Pao (CR5) 1989; 4 Tang, Deng, Liu (CR7) 2004; 28 Diao, Vittal, Logic (CR13) 2010; 25 Ma, Zhou (CR17) 2001 Wang (CR1) 1999; 19 Hu, Zhang, Min (CR15) 2017; 37 Genc, Diao, Vittal (CR10) 2010; 25 X Gu (453_CR8) 2003; 30 ZF Wang (453_CR1) 1999; 19 ZE Ma (453_CR17) 2001 YH Dai (453_CR14) 2016; 36 M He (453_CR9) 2013; 28 LS Moulin (453_CR12) 2004; 19 453_CR19 C Cortes (453_CR18) 1995; 20 R Diao (453_CR13) 2010; 25 453_CR11 W Hu (453_CR15) 2017; 37 I Genc (453_CR10) 2010; 25 JC Platt (453_CR20) 1999 H Xie (453_CR2) 2008; 28 453_CR4 X Wu (453_CR3) 2014; 26 B Tang (453_CR7) 2004; 28 DJ Sobajic (453_CR5) 1989; 4 D Yao (453_CR6) 2013; 37 M Yang (453_CR16) 2015; 3 |
References_xml | – ident: CR19 – volume: 19 start-page: 14 issue: 11 year: 1999 end-page: 17 ident: CR1 article-title: A parallel algorithm for real-time analysis and calculation of transient stability based on height parallel reduced newton method publication-title: J Chin Electr Eng Sci – volume: 3 start-page: 361 issue: 3 year: 2015 end-page: 370 ident: CR16 article-title: Multi-dimensional scenario forecast for generation of multiple wind farms publication-title: J Modern Power Syst Clean Energy doi: 10.1007/s40565-015-0110-6 – volume: 30 start-page: 11 issue: 4 year: 2003 end-page: 16 ident: CR8 article-title: Research overview of neural-network applications to transient stability assessment of power systems publication-title: J North China Electric Power Univ – volume: 28 start-page: 63 issue: 15 year: 2004 end-page: 66 ident: CR7 article-title: Application of compound neural network in power system transient stability assessment publication-title: Power Syst Technol – volume: 37 start-page: 4567 issue: 16 year: 2017 end-page: 4576 ident: CR15 article-title: Real-time emergency control decision in power system based on support vector machines publication-title: Proc CSEE – volume: 26 start-page: 97 issue: 1 year: 2014 end-page: 107 ident: CR3 article-title: Data mining with big data publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2013.109 – start-page: 61 year: 1999 end-page: 74 ident: CR20 publication-title: Probabilistic outputs for support vector machines and comparison to regularized likelihood methods – ident: CR4 – volume: 37 start-page: 41 issue: 20 year: 2013 end-page: 46 ident: CR6 article-title: Power system transient stability assessment and stability margin prediction based on compound neural network publication-title: Autom Electric Power Syst – volume: 25 start-page: 1611 issue: 3 year: 2010 end-page: 1619 ident: CR10 article-title: Decision tree-based preventive and corrective control applications for dynamic security enhancement in power systems publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2009.2037006 – volume: 20 start-page: 273 issue: 3 year: 1995 end-page: 297 ident: CR18 article-title: Support-vector networks publication-title: Mach Learn – volume: 28 start-page: 1969 issue: 2 year: 2013 end-page: 1977 ident: CR9 article-title: Online dynamic security assessment with missing PMU measurements: a data mining approach publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2013.2246822 – ident: CR11 – volume: 4 start-page: 220 issue: 1 year: 1989 end-page: 228 ident: CR5 article-title: Artificial neural-net based dynamic security assessment for electric power systems publication-title: IEEE Trans Power Syst doi: 10.1109/59.32481 – volume: 28 start-page: 16 issue: 4 year: 2008 end-page: 22 ident: CR2 article-title: Transient instability identification based on trajectory geometric characteristics publication-title: J Chin Electr Eng Sci – volume: 19 start-page: 818 issue: 2 year: 2004 end-page: 825 ident: CR12 article-title: Support vector machines for transient stability analysis of large-scale power systems publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2004.826018 – volume: 36 start-page: 1173 issue: 5 year: 2016 end-page: 1180 ident: CR14 article-title: Power system transient stability assessment based on multi-support vector machines publication-title: Proc CSEE – volume: 25 start-page: 957 issue: 2 year: 2010 end-page: 965 ident: CR13 article-title: Design of a real-time security assessment tool for situational awareness enhancement in modern power systems publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2009.2035507 – year: 2001 ident: CR17 publication-title: Qualitative stability method of ordinary differential equation – volume: 37 start-page: 4567 issue: 16 year: 2017 ident: 453_CR15 publication-title: Proc CSEE – volume-title: Qualitative stability method of ordinary differential equation year: 2001 ident: 453_CR17 – volume: 19 start-page: 818 issue: 2 year: 2004 ident: 453_CR12 publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2004.826018 – volume: 25 start-page: 1611 issue: 3 year: 2010 ident: 453_CR10 publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2009.2037006 – ident: 453_CR4 doi: 10.1109/APPEEC.2016.7779579 – volume: 25 start-page: 957 issue: 2 year: 2010 ident: 453_CR13 publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2009.2035507 – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 453_CR18 publication-title: Mach Learn – volume: 28 start-page: 63 issue: 15 year: 2004 ident: 453_CR7 publication-title: Power Syst Technol – volume: 19 start-page: 14 issue: 11 year: 1999 ident: 453_CR1 publication-title: J Chin Electr Eng Sci – volume: 28 start-page: 16 issue: 4 year: 2008 ident: 453_CR2 publication-title: J Chin Electr Eng Sci – ident: 453_CR19 doi: 10.1145/1102351.1102430 – volume: 37 start-page: 41 issue: 20 year: 2013 ident: 453_CR6 publication-title: Autom Electric Power Syst – volume: 36 start-page: 1173 issue: 5 year: 2016 ident: 453_CR14 publication-title: Proc CSEE – start-page: 61 volume-title: Probabilistic outputs for support vector machines and comparison to regularized likelihood methods year: 1999 ident: 453_CR20 – volume: 4 start-page: 220 issue: 1 year: 1989 ident: 453_CR5 publication-title: IEEE Trans Power Syst doi: 10.1109/59.32481 – volume: 30 start-page: 11 issue: 4 year: 2003 ident: 453_CR8 publication-title: J North China Electric Power Univ – volume: 3 start-page: 361 issue: 3 year: 2015 ident: 453_CR16 publication-title: J Modern Power Syst Clean Energy doi: 10.1007/s40565-015-0110-6 – volume: 26 start-page: 97 issue: 1 year: 2014 ident: 453_CR3 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2013.109 – ident: 453_CR11 doi: 10.1109/APPEEC.2012.6307466 – volume: 28 start-page: 1969 issue: 2 year: 2013 ident: 453_CR9 publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2013.2246822 |
SSID | ssib039810934 ssib038075167 ssib051367700 ssj0001925663 |
Score | 2.4021244 |
Snippet | Due to the strict requirements of extremely high accuracy and fast computational speed, real-time transient stability assessment (TSA) has always been a tough... Abstract Due to the strict requirements of extremely high accuracy and fast computational speed, real-time transient stability assessment (TSA) has always been... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 26 |
SubjectTerms | Alarms Classification Data management Electrical Machines and Networks Energy Energy Systems False alarms Grey region Intelligent method Power Electronics Power system Real time Renewable and Green Energy Stability Stability analysis Strategy Support vector machine Support vector machines Systems analysis Transient stability Transient stability assessment (TSA) |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSx4xEA7iyR6K2kpfayWHnirB3XxsskcrihT00Kp4C5udBCxlFX0L-u-dyX74KqgXb8tulk1mJjvPJJlnGPvexmR0aEEkFxuhkylFU6ogoqpLiRC6aHKS2PFJdXSmf12Yi4VSX3QmrKcH7gW327oGQrRSR91oVyoHGHhLwB9uXYXC5Txy9HkLwRRaErGom_LRsaraEW3SZHmGiMpGYrq_Pc5BXEPb0TiDK0FRwbgFSnl2iGoqOuPmBCIgJe6eOLHM9f8EoD7bU82u6nCVfRwwJt_rx7bGlmK3zj4sMA9-Yie_ESAKKizP5-StKCuSI1DMR2XveTPxdfLLjl9TJTXecz5zcnvArzp-mZcj8PrP-fFndnZ4cLp_JIbSCqLV1s0FFEWSyZhE_G61Q_-VUrIpyhJskqjYKFHkBnB2gg4RCmgNlFCaAJCsDmqDLXdXXfzC8LNtqBEISGymk1WNUrpySllIOoKNM1aMsvLtwDtO5S_--YkxOYvXo3g9idffzdiP6ZXrnnTjtcY_SQFTQ-LLzjfQivxgRf4tK5qxrVF9fpjEtx5jYyuNc8bM2M6o0sfHL_Zo8z169JWtIDar-9WeLbY8v_kfvyH-mYftbOoPIWj5OA priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6iFz2IT1xf5OBJCbRN0qRHXRQR1oMvvIWmSUSRrugK-u-dSR-rooK30k5JM5PpfMkk3xCyV_kgha0cC9qXTASZsjLllnlepBlA6KSMh8RG5_nptTi7lbftOe6Xbrd7l5KMf-r-sBtAixw3mmkGMIQzAI5zEqbuOKyHU8pxJFCX6TSm8kIjY1L_XCJHWcdJ99BAHIA0mIkG580ZTgi67OdPrX6JX5Hm_ws2_ZZOjVHqZIkstvCSHjbjYZnM-HqFLHwiHVwl5xeADRnWlKcTDFR4IJICRoy7ZN9p2VN10vuaPmERNdrQPVOMeI6Oa3ofVyLg-vJmtEauT46vhqesrarAKqH0hLkkCVmQMiC1W6EhdIUQVPBZ6lTIwKY-U5mQDhzTCetd4irpUpdK61xQwvJ1MluPa79BoNnKFoABMhATQfGSc5FrzpULwjvlByTpdGWqlnIcK188mp4sOarXgHoNqte8Dch-_8pTw7fxl_ARGqAXRKrseGP8fGdazzOVLp310CUvSqFT6JUCVOcgYhe5TbQakO3OfKb13xcD02KVSa2lHJCDzqTTx79-0ea_pLfIPOCvolnR2Sazk-dXvwMYZ2J345j-AJPo7i0 priority: 102 providerName: Springer Nature |
Title | Real-time transient stability assessment in power system based on improved SVM |
URI | https://link.springer.com/article/10.1007/s40565-018-0453-x https://www.proquest.com/docview/2117258855 https://doaj.org/article/c8adbe724e4a48138d7612d12396b087 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZoe4EDKi-xpax84ASySPyInRNqV91WlbpChaLerDi2URHKbttFKv-eGcfJUiR6ifJwXuOx5_OM_Q0h79oQlXStZ9GEhsmoStaUwrEg6pIDhC6atEjsbFGdXMjTS3WZHW63eVrl0CemjtovW_SRf4SBiubKGKU-ra4ZZo3C6GpOobFFdqALNjD42jk8Wnw-HzQK2dRVuTGwojZInzRqoELCsoGg7kePdwDfYFgaWnLFcHQwhEJxvR2gmwrnuhkGSEiwu3vGLHH-3wOq_8RWk8ma75KnGWvSg145npFHoXtOnvzFQPiCLM4BKDJMME_XaLVwdSQFwJimzP6mzcjbSa86usKMarTnfqZo_jxddvQquSVg_8u3s5fkYn70dXbCcooF1kpt1swXReRRqYg8b7UBIcYYdQy89DpyqODANZfKQyv10gVf-Fb50pfKeR-1dOIV2e6WXXhN4LWtqwEQcCgmoxaNELIyQmgfZfA6TEgxyMq2mX8c02D8tCNzchKvBfFaFK-9m5D34y2rnnzjocKHWAFjQeTNTieWN99tboa2NY13AX4pyEaaEv5KA8TzYL7ryhVGT8j-UH02N-Zbu1G9CfkwVOnm8n-_aO_hh70hjwF91b0_Z59sr29-hbeAcNZuSrbM_HialRmOZlzitppNk8_gD-qk9kc |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKfYUsAHuIAsEj9i54AQr2VLu3uAFvXmJrGNiqrs0i6i_VP8RmbyWopEb71FiePE4_HM58d8A_C0ClGrsvI82lBwFXXKi1SWPMg8FQihk6IJEpvOssme-rSv99fgdx8LQ8cqe5vYGGo_r2iN_CVOVIzQ1mr9evGDU9Yo2l3tU2i0arEdzn7hlO3k1dZ77N9nQow_7L6b8C6rAK-UsUvukySKqHUkarPcoumOMZoYROpNFNimIIxQ2qNielUGn_hK-9SnuvQ-GlVKrPcKXFVS5jSi7Phjr7_E3a7TlTuXuSWypkHfNdGj9XR431t0hWiKNsHRbmSc5iL9xitF9yGWyuhkneWIuyQ_Pec6mwwD52DxPzu5jYMc34KbHbJlb1pVvA1rob4DN_7iO7wLs88ISzmls2dL8pEUi8kQnjYHdM9YMbCEssOaLSh_G2uZphk5W8_mNTtsFkHw-svX6T3YuxTR34f1el6HB4Cfrcoc4YfAYioaWUipMiul8VEFb8IIkl5WrurYzinpxpEbeJob8ToUryPxutMRPB9eWbRUHxcVfksdMBQklu7mxvz4m-sGvats4cuATQqqUDbFVhkElB7BQp6ViTUj2Oy7z3Wm48StFH0EL_ouXT3-7x9tXFzZE7g22Z3uuJ2t2fZDuI64L29XkjZhfXn8MzxCbLUsHzcKzeDgskfQHykAMAQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggHiKhQI-wAVkNfEjdg4IUdpVS-mqKhT1ZpLYRkUou7SLaP8av46ZvJYi0VtvUeI48Xg8840f3wA8r0LUqqw8jzYUXEWd8iKVJQ8yTwVC6KRoDontTbPtQ_X-SB-twO_-LAxtq-xtYmOo_ayiOfJ1DFSM0NZqvR67bRH7m5M38x-cMkjRSmufTqNVkd1w_gvDt9PXO5vY1y-EmGx9erfNuwwDvFLGLrhPkiii1pFoznKLZjzGaGIQqTdRYPuCMEJpj0rqVRl84ivtU5_q0vtoVCmx3muwajAqSkawurE13T_otZmY3HW6dO4yt0TdNGi_JrK0nhzvW4u1EFvRkjhakYxTZNIvw9JZP0RWGe2zsxxRmORnFxxpk2_gAkj-Z123cZeT23Crw7nsbauYd2Al1Hfh5l_sh_dgeoAglVNye7Ygj0knMxmC1Wa77jkrBs5QdlyzOWVzYy3vNCPX69msZsfNlAhef_y8dx8Or0T4D2BUz-rwEPCzVZkjGBFYTEUjCylVZqU0PqrgTRhD0svKVR33OaXg-O4G1uZGvA7F60i87mwML4dX5i3xx2WFN6gDhoLE2d3cmJ18dZ0JcJUtfBmwSUEVyqbYKoPw0iN0yLMysWYMa333uc6QnLql2o_hVd-ly8f__aNHl1f2DK7j6HEfdqa7j-EGgsC8nVZag9Hi5Gd4gkBrUT7tNJrBl6seRH8Au6Y1lg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-time+transient+stability+assessment+in+power+system+based+on+improved+SVM&rft.jtitle=Journal+of+modern+power+systems+and+clean+energy&rft.au=HU%2C+Wei&rft.au=LU%2C+Zongxiang&rft.au=WU%2C+Shuang&rft.au=ZHANG%2C+Weiling&rft.date=2019-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2196-5625&rft.eissn=2196-5420&rft.volume=7&rft.issue=1&rft.spage=26&rft.epage=37&rft_id=info:doi/10.1007%2Fs40565-018-0453-x&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-5625&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-5625&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-5625&client=summon |