Real-time transient stability assessment in power system based on improved SVM

Due to the strict requirements of extremely high accuracy and fast computational speed, real-time transient stability assessment (TSA) has always been a tough problem in power system analysis. Fortunately, the development of artificial intelligence and big data technologies provide the new prospecti...

Full description

Saved in:
Bibliographic Details
Published inJournal of modern power systems and clean energy Vol. 7; no. 1; pp. 26 - 37
Main Authors HU, Wei, LU, Zongxiang, WU, Shuang, ZHANG, Weiling, DONG, Yu, YU, Rui, LIU, Baisi
Format Journal Article
LanguageEnglish
Published Singapore Springer Singapore 01.01.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
IEEE
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Due to the strict requirements of extremely high accuracy and fast computational speed, real-time transient stability assessment (TSA) has always been a tough problem in power system analysis. Fortunately, the development of artificial intelligence and big data technologies provide the new prospective methods to this issue, and there have been some successful trials on using intelligent method, such as support vector machine (SVM) method. However, the traditional SVM method cannot avoid false classification, and the interpretability of the results needs to be strengthened and clear. This paper proposes a new strategy to solve the shortcomings of traditional SVM, which can improve the interpretability of results, and avoid the problem of false alarms and missed alarms. In this strategy, two improved SVMs, which are called aggressive support vector machine (ASVM) and conservative support vector machine (CSVM), are proposed to improve the accuracy of the classification. And two improved SVMs can ensure the stability or instability of the power system in most cases. For the small amount of cases with undetermined stability, a new concept of grey region (GR) is built to measure the uncertainty of the results, and GR can assessment the instable probability of the power system. Cases studies on IEEE 39-bus system and realistic provincial power grid illustrate the effectiveness and practicability of the proposed strategy.
AbstractList Due to the strict requirements of extremely high accuracy and fast computational speed, real-time transient stability assessment (TSA) has always been a tough problem in power system analysis. Fortunately, the development of artificial intelligence and big data technologies provide the new prospective methods to this issue, and there have been some successful trials on using intelligent method, such as support vector machine (SVM) method. However, the traditional SVM method cannot avoid false classification, and the interpretability of the results needs to be strengthened and clear. This paper proposes a new strategy to solve the shortcomings of traditional SVM, which can improve the interpretability of results, and avoid the problem of false alarms and missed alarms. In this strategy, two improved SVMs, which are called aggressive support vector machine (ASVM) and conservative support vector machine (CSVM), are proposed to improve the accuracy of the classification. And two improved SVMs can ensure the stability or instability of the power system in most cases. For the small amount of cases with undetermined stability, a new concept of grey region (GR) is built to measure the uncertainty of the results, and GR can assessment the instable probability of the power system. Cases studies on IEEE 39-bus system and realistic provincial power grid illustrate the effectiveness and practicability of the proposed strategy.
Abstract Due to the strict requirements of extremely high accuracy and fast computational speed, real-time transient stability assessment (TSA) has always been a tough problem in power system analysis. Fortunately, the development of artificial intelligence and big data technologies provide the new prospective methods to this issue, and there have been some successful trials on using intelligent method, such as support vector machine (SVM) method. However, the traditional SVM method cannot avoid false classification, and the interpretability of the results needs to be strengthened and clear. This paper proposes a new strategy to solve the shortcomings of traditional SVM, which can improve the interpretability of results, and avoid the problem of false alarms and missed alarms. In this strategy, two improved SVMs, which are called aggressive support vector machine (ASVM) and conservative support vector machine (CSVM), are proposed to improve the accuracy of the classification. And two improved SVMs can ensure the stability or instability of the power system in most cases. For the small amount of cases with undetermined stability, a new concept of grey region (GR) is built to measure the uncertainty of the results, and GR can assessment the instable probability of the power system. Cases studies on IEEE 39-bus system and realistic provincial power grid illustrate the effectiveness and practicability of the proposed strategy.
Author HU, Wei
LU, Zongxiang
ZHANG, Weiling
YU, Rui
LIU, Baisi
WU, Shuang
DONG, Yu
Author_xml – sequence: 1
  givenname: Wei
  orcidid: 0000-0002-9735-1012
  surname: HU
  fullname: HU, Wei
  email: huwei@mail.tsinghua.edu.cn
  organization: State Key Laboratory of Power system, Department of Electrical Engineering, Tsinghua University
– sequence: 2
  givenname: Zongxiang
  surname: LU
  fullname: LU, Zongxiang
  organization: State Key Laboratory of Power system, Department of Electrical Engineering, Tsinghua University
– sequence: 3
  givenname: Shuang
  surname: WU
  fullname: WU, Shuang
  organization: State Key Laboratory of Power system, Department of Electrical Engineering, Tsinghua University
– sequence: 4
  givenname: Weiling
  surname: ZHANG
  fullname: ZHANG, Weiling
  organization: State Key Laboratory of Power system, Department of Electrical Engineering, Tsinghua University
– sequence: 5
  givenname: Yu
  surname: DONG
  fullname: DONG, Yu
  organization: State Grid Hunan Electric Power Company Limited
– sequence: 6
  givenname: Rui
  surname: YU
  fullname: YU, Rui
  organization: Southwest Branch, State Grid Corporation of China
– sequence: 7
  givenname: Baisi
  surname: LIU
  fullname: LIU, Baisi
  organization: Southwest Branch, State Grid Corporation of China
BookMark eNp9kV9rFTEQxYO0YK39AL4t-LyaySab7KMU_xSqgrZ9DclmUlJ2k2uSau-3N9e1CII-ZRjO73Am5xk5iikiIS-AvgJK5evCqRhFT0H1lIuhf3hCThhMYy84o0eP88jEU3JWSrB0mBTQaeAn5NMXNEtfw4pdzSaWgLF2pRobllD3nSkFS1kPyxC7XfqBuSv7UnHtrCnouhS7sO5y-t7mrzcfn5Njb5aCZ7_fU3L97u3V-Yf-8vP7i_M3l_3Mpaq9o9QzL4QHmGBSDJj3Xnpk4KRnaBGZZFy4cVCOW3TUzcKBA2Gd85Lb4ZRcbL4umTu9y2E1ea-TCfrXIuVbbXIN84J6VsZZbHbIDVfQHOUIzAEbptFSJZvXy82rnfHtHkvVd-k-xxZfMwDJhFJCNJXcVHNOpWT0eg7V1JBi-7ewaKD60IXeutCtC33oQj80Ev4iH_P-j2EbU5o23mL-k-nf0E-MrZ6H
CitedBy_id crossref_primary_10_1109_JESTIE_2023_3236885
crossref_primary_10_1016_j_egyr_2021_04_022
crossref_primary_10_1109_JPROC_2022_3192719
crossref_primary_10_21595_jme_2025_24547
crossref_primary_10_3389_fenrg_2022_1084295
crossref_primary_10_1049_iet_gtd_2020_0967
crossref_primary_10_23919_PCMP_2023_000032
crossref_primary_10_4018_IJeC_353871
crossref_primary_10_1007_s42835_022_01326_6
crossref_primary_10_3390_app10072255
crossref_primary_10_1007_s00202_020_01118_z
crossref_primary_10_3390_en16052413
crossref_primary_10_1109_ACCESS_2023_3242557
crossref_primary_10_3390_smartcities4020029
crossref_primary_10_1109_TIM_2022_3212551
crossref_primary_10_3390_electronics14010057
crossref_primary_10_3389_fenrg_2022_932770
crossref_primary_10_1016_j_ijepes_2021_107574
crossref_primary_10_1016_j_seta_2022_102990
crossref_primary_10_1016_j_seta_2024_104011
crossref_primary_10_1016_j_suscom_2022_100826
crossref_primary_10_1007_s10586_022_03568_5
crossref_primary_10_1109_ACCESS_2020_3003568
crossref_primary_10_1109_ACCESS_2023_3263547
crossref_primary_10_32604_ee_2023_026816
crossref_primary_10_1109_ACCESS_2022_3172697
crossref_primary_10_1016_j_epsr_2022_108948
crossref_primary_10_1007_s10462_024_10993_y
crossref_primary_10_1134_S1061934824030092
crossref_primary_10_3390_electronics11030446
crossref_primary_10_1109_ACCESS_2024_3435711
crossref_primary_10_1109_JPROC_2020_2988715
crossref_primary_10_1002_2050_7038_12872
crossref_primary_10_1016_j_ijepes_2020_106237
crossref_primary_10_1016_j_ijepes_2020_106513
crossref_primary_10_3390_app11125460
crossref_primary_10_3390_en14061531
crossref_primary_10_3390_en14248212
crossref_primary_10_1016_j_isatra_2022_10_039
crossref_primary_10_3390_en16237810
crossref_primary_10_3390_en14113148
crossref_primary_10_1109_OJCOMS_2023_3292050
crossref_primary_10_1016_j_gloei_2020_11_006
crossref_primary_10_1088_1742_6596_2729_1_012018
crossref_primary_10_3390_en14217238
crossref_primary_10_1109_TSG_2023_3237965
crossref_primary_10_1049_gtd2_13183
crossref_primary_10_3390_en15020507
crossref_primary_10_1109_TPWRD_2021_3054889
crossref_primary_10_1016_j_ijepes_2021_107156
crossref_primary_10_1109_TPWRS_2024_3367183
crossref_primary_10_1109_ACCESS_2022_3140595
crossref_primary_10_1016_j_bdr_2021_100285
crossref_primary_10_1177_1748006X211047308
crossref_primary_10_1109_ACCESS_2022_3205031
crossref_primary_10_1007_s00202_021_01281_x
crossref_primary_10_1016_j_egyr_2022_05_212
crossref_primary_10_1109_TPWRS_2022_3220569
crossref_primary_10_1016_j_epsr_2021_107736
crossref_primary_10_1016_j_suscom_2024_100959
crossref_primary_10_32604_cmc_2022_020263
crossref_primary_10_1109_TPWRS_2023_3323025
Cites_doi 10.1007/s40565-015-0110-6
10.1109/TKDE.2013.109
10.1109/TPWRS.2009.2037006
10.1109/TPWRS.2013.2246822
10.1109/59.32481
10.1109/TPWRS.2004.826018
10.1109/TPWRS.2009.2035507
10.1109/APPEEC.2016.7779579
10.1145/1102351.1102430
10.1109/APPEEC.2012.6307466
ContentType Journal Article
Copyright The Author(s) 2018
Journal of Modern Power Systems and Clean Energy is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2018
– notice: Journal of Modern Power Systems and Clean Energy is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.1007/s40565-018-0453-x
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium
ProQuest Engineering Collection
Engineering Database (Proquest)
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ : directory of open access journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2196-5420
EndPage 37
ExternalDocumentID oai_doaj_org_article_c8adbe724e4a48138d7612d12396b087
10_1007_s40565_018_0453_x
GrantInformation_xml – fundername: Science and Technology Project of State Grid Corporation of China
– fundername: National Natural Science Foundation of China
  grantid: 51777104
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: China State Key Lab. of Power System
  grantid: SKLD16Z08
GroupedDBID -A0
-SC
-S~
4.4
5VR
5VS
8FE
8FG
9D9
9DC
AAFWJ
AAKKN
AAXDM
ABAZT
ABEEZ
ABJCF
ACACY
ACGFS
ACULB
ADINQ
AFGXO
AFKRA
AFPKN
AFUIB
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ASPBG
AVWKF
BENPR
BGLVJ
C24
C6C
CAJEC
CCPQU
EBS
EJD
ESBDL
GROUPED_DOAJ
HCIFZ
JAVBF
KQ8
L6V
M7S
M~E
OK1
PIMPY
PROAC
PTHSS
Q--
RSV
SOJ
U1G
U5M
AAYXX
ABVLG
CITATION
PHGZM
PHGZT
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c478t-d00f2f55f119198212fff7fe21d7f2ebee27245d638d4bed0dc5d1d15bddf74b3
IEDL.DBID BENPR
ISSN 2196-5625
IngestDate Wed Aug 27 01:24:29 EDT 2025
Fri Jul 25 12:00:27 EDT 2025
Tue Jul 01 01:02:29 EDT 2025
Thu Apr 24 22:52:26 EDT 2025
Fri Feb 21 02:36:24 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Power system
Grey region
Support vector machine
Transient stability assessment (TSA)
Intelligent method
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c478t-d00f2f55f119198212fff7fe21d7f2ebee27245d638d4bed0dc5d1d15bddf74b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9735-1012
OpenAccessLink https://www.proquest.com/docview/2117258855?pq-origsite=%requestingapplication%
PQID 2117258855
PQPubID 2034712
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_c8adbe724e4a48138d7612d12396b087
proquest_journals_2117258855
crossref_citationtrail_10_1007_s40565_018_0453_x
crossref_primary_10_1007_s40565_018_0453_x
springer_journals_10_1007_s40565_018_0453_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Piscataway
PublicationTitle Journal of modern power systems and clean energy
PublicationTitleAbbrev J. Mod. Power Syst. Clean Energy
PublicationYear 2019
Publisher Springer Singapore
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
IEEE
Publisher_xml – name: Springer Singapore
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: IEEE
References Moulin, Alves, El-Sharkawi (CR12) 2004; 19
Yao, Jia, Zhao (CR6) 2013; 37
CR4
Wu, Zhu, Wu (CR3) 2014; 26
Cortes, Vapnik (CR18) 1995; 20
CR19
Xie, Zhang, Yu (CR2) 2008; 28
Dai, Chen, Zhang (CR14) 2016; 36
CR11
Gu, Tso (CR8) 2003; 30
Yang, Lin, Zhu (CR16) 2015; 3
Platt (CR20) 1999
He, Vittal, Zhang (CR9) 2013; 28
Sobajic, Pao (CR5) 1989; 4
Tang, Deng, Liu (CR7) 2004; 28
Diao, Vittal, Logic (CR13) 2010; 25
Ma, Zhou (CR17) 2001
Wang (CR1) 1999; 19
Hu, Zhang, Min (CR15) 2017; 37
Genc, Diao, Vittal (CR10) 2010; 25
X Gu (453_CR8) 2003; 30
ZF Wang (453_CR1) 1999; 19
ZE Ma (453_CR17) 2001
YH Dai (453_CR14) 2016; 36
M He (453_CR9) 2013; 28
LS Moulin (453_CR12) 2004; 19
453_CR19
C Cortes (453_CR18) 1995; 20
R Diao (453_CR13) 2010; 25
453_CR11
W Hu (453_CR15) 2017; 37
I Genc (453_CR10) 2010; 25
JC Platt (453_CR20) 1999
H Xie (453_CR2) 2008; 28
453_CR4
X Wu (453_CR3) 2014; 26
B Tang (453_CR7) 2004; 28
DJ Sobajic (453_CR5) 1989; 4
D Yao (453_CR6) 2013; 37
M Yang (453_CR16) 2015; 3
References_xml – ident: CR19
– volume: 19
  start-page: 14
  issue: 11
  year: 1999
  end-page: 17
  ident: CR1
  article-title: A parallel algorithm for real-time analysis and calculation of transient stability based on height parallel reduced newton method
  publication-title: J Chin Electr Eng Sci
– volume: 3
  start-page: 361
  issue: 3
  year: 2015
  end-page: 370
  ident: CR16
  article-title: Multi-dimensional scenario forecast for generation of multiple wind farms
  publication-title: J Modern Power Syst Clean Energy
  doi: 10.1007/s40565-015-0110-6
– volume: 30
  start-page: 11
  issue: 4
  year: 2003
  end-page: 16
  ident: CR8
  article-title: Research overview of neural-network applications to transient stability assessment of power systems
  publication-title: J North China Electric Power Univ
– volume: 28
  start-page: 63
  issue: 15
  year: 2004
  end-page: 66
  ident: CR7
  article-title: Application of compound neural network in power system transient stability assessment
  publication-title: Power Syst Technol
– volume: 37
  start-page: 4567
  issue: 16
  year: 2017
  end-page: 4576
  ident: CR15
  article-title: Real-time emergency control decision in power system based on support vector machines
  publication-title: Proc CSEE
– volume: 26
  start-page: 97
  issue: 1
  year: 2014
  end-page: 107
  ident: CR3
  article-title: Data mining with big data
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2013.109
– start-page: 61
  year: 1999
  end-page: 74
  ident: CR20
  publication-title: Probabilistic outputs for support vector machines and comparison to regularized likelihood methods
– ident: CR4
– volume: 37
  start-page: 41
  issue: 20
  year: 2013
  end-page: 46
  ident: CR6
  article-title: Power system transient stability assessment and stability margin prediction based on compound neural network
  publication-title: Autom Electric Power Syst
– volume: 25
  start-page: 1611
  issue: 3
  year: 2010
  end-page: 1619
  ident: CR10
  article-title: Decision tree-based preventive and corrective control applications for dynamic security enhancement in power systems
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2009.2037006
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  end-page: 297
  ident: CR18
  article-title: Support-vector networks
  publication-title: Mach Learn
– volume: 28
  start-page: 1969
  issue: 2
  year: 2013
  end-page: 1977
  ident: CR9
  article-title: Online dynamic security assessment with missing PMU measurements: a data mining approach
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2013.2246822
– ident: CR11
– volume: 4
  start-page: 220
  issue: 1
  year: 1989
  end-page: 228
  ident: CR5
  article-title: Artificial neural-net based dynamic security assessment for electric power systems
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/59.32481
– volume: 28
  start-page: 16
  issue: 4
  year: 2008
  end-page: 22
  ident: CR2
  article-title: Transient instability identification based on trajectory geometric characteristics
  publication-title: J Chin Electr Eng Sci
– volume: 19
  start-page: 818
  issue: 2
  year: 2004
  end-page: 825
  ident: CR12
  article-title: Support vector machines for transient stability analysis of large-scale power systems
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2004.826018
– volume: 36
  start-page: 1173
  issue: 5
  year: 2016
  end-page: 1180
  ident: CR14
  article-title: Power system transient stability assessment based on multi-support vector machines
  publication-title: Proc CSEE
– volume: 25
  start-page: 957
  issue: 2
  year: 2010
  end-page: 965
  ident: CR13
  article-title: Design of a real-time security assessment tool for situational awareness enhancement in modern power systems
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2009.2035507
– year: 2001
  ident: CR17
  publication-title: Qualitative stability method of ordinary differential equation
– volume: 37
  start-page: 4567
  issue: 16
  year: 2017
  ident: 453_CR15
  publication-title: Proc CSEE
– volume-title: Qualitative stability method of ordinary differential equation
  year: 2001
  ident: 453_CR17
– volume: 19
  start-page: 818
  issue: 2
  year: 2004
  ident: 453_CR12
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2004.826018
– volume: 25
  start-page: 1611
  issue: 3
  year: 2010
  ident: 453_CR10
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2009.2037006
– ident: 453_CR4
  doi: 10.1109/APPEEC.2016.7779579
– volume: 25
  start-page: 957
  issue: 2
  year: 2010
  ident: 453_CR13
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2009.2035507
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 453_CR18
  publication-title: Mach Learn
– volume: 28
  start-page: 63
  issue: 15
  year: 2004
  ident: 453_CR7
  publication-title: Power Syst Technol
– volume: 19
  start-page: 14
  issue: 11
  year: 1999
  ident: 453_CR1
  publication-title: J Chin Electr Eng Sci
– volume: 28
  start-page: 16
  issue: 4
  year: 2008
  ident: 453_CR2
  publication-title: J Chin Electr Eng Sci
– ident: 453_CR19
  doi: 10.1145/1102351.1102430
– volume: 37
  start-page: 41
  issue: 20
  year: 2013
  ident: 453_CR6
  publication-title: Autom Electric Power Syst
– volume: 36
  start-page: 1173
  issue: 5
  year: 2016
  ident: 453_CR14
  publication-title: Proc CSEE
– start-page: 61
  volume-title: Probabilistic outputs for support vector machines and comparison to regularized likelihood methods
  year: 1999
  ident: 453_CR20
– volume: 4
  start-page: 220
  issue: 1
  year: 1989
  ident: 453_CR5
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/59.32481
– volume: 30
  start-page: 11
  issue: 4
  year: 2003
  ident: 453_CR8
  publication-title: J North China Electric Power Univ
– volume: 3
  start-page: 361
  issue: 3
  year: 2015
  ident: 453_CR16
  publication-title: J Modern Power Syst Clean Energy
  doi: 10.1007/s40565-015-0110-6
– volume: 26
  start-page: 97
  issue: 1
  year: 2014
  ident: 453_CR3
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2013.109
– ident: 453_CR11
  doi: 10.1109/APPEEC.2012.6307466
– volume: 28
  start-page: 1969
  issue: 2
  year: 2013
  ident: 453_CR9
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2013.2246822
SSID ssib039810934
ssib038075167
ssib051367700
ssj0001925663
Score 2.4021244
Snippet Due to the strict requirements of extremely high accuracy and fast computational speed, real-time transient stability assessment (TSA) has always been a tough...
Abstract Due to the strict requirements of extremely high accuracy and fast computational speed, real-time transient stability assessment (TSA) has always been...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 26
SubjectTerms Alarms
Classification
Data management
Electrical Machines and Networks
Energy
Energy Systems
False alarms
Grey region
Intelligent method
Power Electronics
Power system
Real time
Renewable and Green Energy
Stability
Stability analysis
Strategy
Support vector machine
Support vector machines
Systems analysis
Transient stability
Transient stability assessment (TSA)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSx4xEA7iyR6K2kpfayWHnirB3XxsskcrihT00Kp4C5udBCxlFX0L-u-dyX74KqgXb8tulk1mJjvPJJlnGPvexmR0aEEkFxuhkylFU6ogoqpLiRC6aHKS2PFJdXSmf12Yi4VSX3QmrKcH7gW327oGQrRSR91oVyoHGHhLwB9uXYXC5Txy9HkLwRRaErGom_LRsaraEW3SZHmGiMpGYrq_Pc5BXEPb0TiDK0FRwbgFSnl2iGoqOuPmBCIgJe6eOLHM9f8EoD7bU82u6nCVfRwwJt_rx7bGlmK3zj4sMA9-Yie_ESAKKizP5-StKCuSI1DMR2XveTPxdfLLjl9TJTXecz5zcnvArzp-mZcj8PrP-fFndnZ4cLp_JIbSCqLV1s0FFEWSyZhE_G61Q_-VUrIpyhJskqjYKFHkBnB2gg4RCmgNlFCaAJCsDmqDLXdXXfzC8LNtqBEISGymk1WNUrpySllIOoKNM1aMsvLtwDtO5S_--YkxOYvXo3g9idffzdiP6ZXrnnTjtcY_SQFTQ-LLzjfQivxgRf4tK5qxrVF9fpjEtx5jYyuNc8bM2M6o0sfHL_Zo8z169JWtIDar-9WeLbY8v_kfvyH-mYftbOoPIWj5OA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6iFz2IT1xf5OBJCbRN0qRHXRQR1oMvvIWmSUSRrugK-u-dSR-rooK30k5JM5PpfMkk3xCyV_kgha0cC9qXTASZsjLllnlepBlA6KSMh8RG5_nptTi7lbftOe6Xbrd7l5KMf-r-sBtAixw3mmkGMIQzAI5zEqbuOKyHU8pxJFCX6TSm8kIjY1L_XCJHWcdJ99BAHIA0mIkG580ZTgi67OdPrX6JX5Hm_ws2_ZZOjVHqZIkstvCSHjbjYZnM-HqFLHwiHVwl5xeADRnWlKcTDFR4IJICRoy7ZN9p2VN10vuaPmERNdrQPVOMeI6Oa3ofVyLg-vJmtEauT46vhqesrarAKqH0hLkkCVmQMiC1W6EhdIUQVPBZ6lTIwKY-U5mQDhzTCetd4irpUpdK61xQwvJ1MluPa79BoNnKFoABMhATQfGSc5FrzpULwjvlByTpdGWqlnIcK188mp4sOarXgHoNqte8Dch-_8pTw7fxl_ARGqAXRKrseGP8fGdazzOVLp310CUvSqFT6JUCVOcgYhe5TbQakO3OfKb13xcD02KVSa2lHJCDzqTTx79-0ea_pLfIPOCvolnR2Sazk-dXvwMYZ2J345j-AJPo7i0
  priority: 102
  providerName: Springer Nature
Title Real-time transient stability assessment in power system based on improved SVM
URI https://link.springer.com/article/10.1007/s40565-018-0453-x
https://www.proquest.com/docview/2117258855
https://doaj.org/article/c8adbe724e4a48138d7612d12396b087
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZoe4EDKi-xpax84ASySPyInRNqV91WlbpChaLerDi2URHKbttFKv-eGcfJUiR6ifJwXuOx5_OM_Q0h79oQlXStZ9GEhsmoStaUwrEg6pIDhC6atEjsbFGdXMjTS3WZHW63eVrl0CemjtovW_SRf4SBiubKGKU-ra4ZZo3C6GpOobFFdqALNjD42jk8Wnw-HzQK2dRVuTGwojZInzRqoELCsoGg7kePdwDfYFgaWnLFcHQwhEJxvR2gmwrnuhkGSEiwu3vGLHH-3wOq_8RWk8ma75KnGWvSg145npFHoXtOnvzFQPiCLM4BKDJMME_XaLVwdSQFwJimzP6mzcjbSa86usKMarTnfqZo_jxddvQquSVg_8u3s5fkYn70dXbCcooF1kpt1swXReRRqYg8b7UBIcYYdQy89DpyqODANZfKQyv10gVf-Fb50pfKeR-1dOIV2e6WXXhN4LWtqwEQcCgmoxaNELIyQmgfZfA6TEgxyMq2mX8c02D8tCNzchKvBfFaFK-9m5D34y2rnnzjocKHWAFjQeTNTieWN99tboa2NY13AX4pyEaaEv5KA8TzYL7ryhVGT8j-UH02N-Zbu1G9CfkwVOnm8n-_aO_hh70hjwF91b0_Z59sr29-hbeAcNZuSrbM_HialRmOZlzitppNk8_gD-qk9kc
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKfYUsAHuIAsEj9i54AQr2VLu3uAFvXmJrGNiqrs0i6i_VP8RmbyWopEb71FiePE4_HM58d8A_C0ClGrsvI82lBwFXXKi1SWPMg8FQihk6IJEpvOssme-rSv99fgdx8LQ8cqe5vYGGo_r2iN_CVOVIzQ1mr9evGDU9Yo2l3tU2i0arEdzn7hlO3k1dZ77N9nQow_7L6b8C6rAK-UsUvukySKqHUkarPcoumOMZoYROpNFNimIIxQ2qNielUGn_hK-9SnuvQ-GlVKrPcKXFVS5jSi7Phjr7_E3a7TlTuXuSWypkHfNdGj9XR431t0hWiKNsHRbmSc5iL9xitF9yGWyuhkneWIuyQ_Pec6mwwD52DxPzu5jYMc34KbHbJlb1pVvA1rob4DN_7iO7wLs88ISzmls2dL8pEUi8kQnjYHdM9YMbCEssOaLSh_G2uZphk5W8_mNTtsFkHw-svX6T3YuxTR34f1el6HB4Cfrcoc4YfAYioaWUipMiul8VEFb8IIkl5WrurYzinpxpEbeJob8ToUryPxutMRPB9eWbRUHxcVfksdMBQklu7mxvz4m-sGvats4cuATQqqUDbFVhkElB7BQp6ViTUj2Oy7z3Wm48StFH0EL_ouXT3-7x9tXFzZE7g22Z3uuJ2t2fZDuI64L29XkjZhfXn8MzxCbLUsHzcKzeDgskfQHykAMAQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggHiKhQI-wAVkNfEjdg4IUdpVS-mqKhT1ZpLYRkUou7SLaP8av46ZvJYi0VtvUeI48Xg8840f3wA8r0LUqqw8jzYUXEWd8iKVJQ8yTwVC6KRoDontTbPtQ_X-SB-twO_-LAxtq-xtYmOo_ayiOfJ1DFSM0NZqvR67bRH7m5M38x-cMkjRSmufTqNVkd1w_gvDt9PXO5vY1y-EmGx9erfNuwwDvFLGLrhPkiii1pFoznKLZjzGaGIQqTdRYPuCMEJpj0rqVRl84ivtU5_q0vtoVCmx3muwajAqSkawurE13T_otZmY3HW6dO4yt0TdNGi_JrK0nhzvW4u1EFvRkjhakYxTZNIvw9JZP0RWGe2zsxxRmORnFxxpk2_gAkj-Z123cZeT23Crw7nsbauYd2Al1Hfh5l_sh_dgeoAglVNye7Ygj0knMxmC1Wa77jkrBs5QdlyzOWVzYy3vNCPX69msZsfNlAhef_y8dx8Or0T4D2BUz-rwEPCzVZkjGBFYTEUjCylVZqU0PqrgTRhD0svKVR33OaXg-O4G1uZGvA7F60i87mwML4dX5i3xx2WFN6gDhoLE2d3cmJ18dZ0JcJUtfBmwSUEVyqbYKoPw0iN0yLMysWYMa333uc6QnLql2o_hVd-ly8f__aNHl1f2DK7j6HEfdqa7j-EGgsC8nVZag9Hi5Gd4gkBrUT7tNJrBl6seRH8Au6Y1lg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-time+transient+stability+assessment+in+power+system+based+on+improved+SVM&rft.jtitle=Journal+of+modern+power+systems+and+clean+energy&rft.au=HU%2C+Wei&rft.au=LU%2C+Zongxiang&rft.au=WU%2C+Shuang&rft.au=ZHANG%2C+Weiling&rft.date=2019-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2196-5625&rft.eissn=2196-5420&rft.volume=7&rft.issue=1&rft.spage=26&rft.epage=37&rft_id=info:doi/10.1007%2Fs40565-018-0453-x&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-5625&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-5625&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-5625&client=summon