Synthetic switch to minimize CRISPR off-target effects by self-restricting Cas9 transcription and translation

Abstract CRISPR/Cas9 is a powerful genome editing system but uncontrolled Cas9 nuclease expression triggers off-target effects and even in vivo immune responses. Inspired by synthetic biology, here we built a synthetic switch that self-regulates Cas9 expression not only in the transcription step by...

Full description

Saved in:
Bibliographic Details
Published inNucleic acids research Vol. 47; no. 3; p. e13
Main Authors Shen, Chih-Che, Hsu, Mu-Nung, Chang, Chin-Wei, Lin, Mei-Wei, Hwu, Jih-Ru, Tu, Yi, Hu, Yu-Chen
Format Journal Article
LanguageEnglish
Published England Oxford University Press 20.02.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract CRISPR/Cas9 is a powerful genome editing system but uncontrolled Cas9 nuclease expression triggers off-target effects and even in vivo immune responses. Inspired by synthetic biology, here we built a synthetic switch that self-regulates Cas9 expression not only in the transcription step by guide RNA-aided self-cleavage of cas9 gene, but also in the translation step by L7Ae:K-turn repression system. We showed that the synthetic switch enabled simultaneous transcriptional and translational repression, hence stringently attenuating the Cas9 expression. The restricted Cas9 expression induced high efficiency on-target indel mutation while minimizing the off-target effects. Furthermore, we unveiled the correlation between Cas9 expression kinetics and on-target/off-target mutagenesis. The synthetic switch conferred detectable Cas9 expression and concomitant high frequency on-target mutagenesis at as early as 6 h, and restricted the Cas9 expression and off-target effects to minimal levels through 72 h. The synthetic switch is compact enough to be incorporated into viral vectors for self-regulation of Cas9 expression, thereby providing a novel ‘hit and run’ strategy for in vivo genome editing.
AbstractList CRISPR/Cas9 is a powerful genome editing system but uncontrolled Cas9 nuclease expression triggers off-target effects and even in vivo immune responses. Inspired by synthetic biology, here we built a synthetic switch that self-regulates Cas9 expression not only in the transcription step by guide RNA-aided self-cleavage of cas9 gene, but also in the translation step by L7Ae:K-turn repression system. We showed that the synthetic switch enabled simultaneous transcriptional and translational repression, hence stringently attenuating the Cas9 expression. The restricted Cas9 expression induced high efficiency on-target indel mutation while minimizing the off-target effects. Furthermore, we unveiled the correlation between Cas9 expression kinetics and on-target/off-target mutagenesis. The synthetic switch conferred detectable Cas9 expression and concomitant high frequency on-target mutagenesis at as early as 6 h, and restricted the Cas9 expression and off-target effects to minimal levels through 72 h. The synthetic switch is compact enough to be incorporated into viral vectors for self-regulation of Cas9 expression, thereby providing a novel ‘hit and run’ strategy for in vivo genome editing.
CRISPR/Cas9 is a powerful genome editing system but uncontrolled Cas9 nuclease expression triggers off-target effects and even in vivo immune responses. Inspired by synthetic biology, here we built a synthetic switch that self-regulates Cas9 expression not only in the transcription step by guide RNA-aided self-cleavage of cas9 gene, but also in the translation step by L7Ae:K-turn repression system. We showed that the synthetic switch enabled simultaneous transcriptional and translational repression, hence stringently attenuating the Cas9 expression. The restricted Cas9 expression induced high efficiency on-target indel mutation while minimizing the off-target effects. Furthermore, we unveiled the correlation between Cas9 expression kinetics and on-target/off-target mutagenesis. The synthetic switch conferred detectable Cas9 expression and concomitant high frequency on-target mutagenesis at as early as 6 h, and restricted the Cas9 expression and off-target effects to minimal levels through 72 h. The synthetic switch is compact enough to be incorporated into viral vectors for self-regulation of Cas9 expression, thereby providing a novel 'hit and run' strategy for in vivo genome editing.CRISPR/Cas9 is a powerful genome editing system but uncontrolled Cas9 nuclease expression triggers off-target effects and even in vivo immune responses. Inspired by synthetic biology, here we built a synthetic switch that self-regulates Cas9 expression not only in the transcription step by guide RNA-aided self-cleavage of cas9 gene, but also in the translation step by L7Ae:K-turn repression system. We showed that the synthetic switch enabled simultaneous transcriptional and translational repression, hence stringently attenuating the Cas9 expression. The restricted Cas9 expression induced high efficiency on-target indel mutation while minimizing the off-target effects. Furthermore, we unveiled the correlation between Cas9 expression kinetics and on-target/off-target mutagenesis. The synthetic switch conferred detectable Cas9 expression and concomitant high frequency on-target mutagenesis at as early as 6 h, and restricted the Cas9 expression and off-target effects to minimal levels through 72 h. The synthetic switch is compact enough to be incorporated into viral vectors for self-regulation of Cas9 expression, thereby providing a novel 'hit and run' strategy for in vivo genome editing.
CRISPR/Cas9 is a powerful genome editing system but uncontrolled Cas9 nuclease expression triggers off-target effects and even in vivo immune responses. Inspired by synthetic biology, here we built a synthetic switch that self-regulates Cas9 expression not only in the transcription step by guide RNA-aided self-cleavage of cas9 gene, but also in the translation step by L7Ae:K-turn repression system. We showed that the synthetic switch enabled simultaneous transcriptional and translational repression, hence stringently attenuating the Cas9 expression. The restricted Cas9 expression induced high efficiency on-target indel mutation while minimizing the off-target effects. Furthermore, we unveiled the correlation between Cas9 expression kinetics and on-target/off-target mutagenesis. The synthetic switch conferred detectable Cas9 expression and concomitant high frequency on-target mutagenesis at as early as 6 h, and restricted the Cas9 expression and off-target effects to minimal levels through 72 h. The synthetic switch is compact enough to be incorporated into viral vectors for self-regulation of Cas9 expression, thereby providing a novel 'hit and run' strategy for in vivo genome editing.
Abstract CRISPR/Cas9 is a powerful genome editing system but uncontrolled Cas9 nuclease expression triggers off-target effects and even in vivo immune responses. Inspired by synthetic biology, here we built a synthetic switch that self-regulates Cas9 expression not only in the transcription step by guide RNA-aided self-cleavage of cas9 gene, but also in the translation step by L7Ae:K-turn repression system. We showed that the synthetic switch enabled simultaneous transcriptional and translational repression, hence stringently attenuating the Cas9 expression. The restricted Cas9 expression induced high efficiency on-target indel mutation while minimizing the off-target effects. Furthermore, we unveiled the correlation between Cas9 expression kinetics and on-target/off-target mutagenesis. The synthetic switch conferred detectable Cas9 expression and concomitant high frequency on-target mutagenesis at as early as 6 h, and restricted the Cas9 expression and off-target effects to minimal levels through 72 h. The synthetic switch is compact enough to be incorporated into viral vectors for self-regulation of Cas9 expression, thereby providing a novel ‘hit and run’ strategy for in vivo genome editing.
Author Lin, Mei-Wei
Hwu, Jih-Ru
Hsu, Mu-Nung
Shen, Chih-Che
Tu, Yi
Hu, Yu-Chen
Chang, Chin-Wei
AuthorAffiliation 5 Department of Life Science, National Taiwan University, Taipei, Taiwan
3 Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
2 Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
1 Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
4 Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan
AuthorAffiliation_xml – name: 1 Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
– name: 3 Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
– name: 4 Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan
– name: 5 Department of Life Science, National Taiwan University, Taipei, Taiwan
– name: 2 Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
Author_xml – sequence: 1
  givenname: Chih-Che
  surname: Shen
  fullname: Shen, Chih-Che
  organization: Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
– sequence: 2
  givenname: Mu-Nung
  surname: Hsu
  fullname: Hsu, Mu-Nung
  organization: Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
– sequence: 3
  givenname: Chin-Wei
  surname: Chang
  fullname: Chang, Chin-Wei
  organization: Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
– sequence: 4
  givenname: Mei-Wei
  surname: Lin
  fullname: Lin, Mei-Wei
  organization: Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
– sequence: 5
  givenname: Jih-Ru
  surname: Hwu
  fullname: Hwu, Jih-Ru
  organization: Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
– sequence: 6
  givenname: Yi
  surname: Tu
  fullname: Tu, Yi
  organization: Department of Life Science, National Taiwan University, Taipei, Taiwan
– sequence: 7
  givenname: Yu-Chen
  orcidid: 0000-0002-9997-4467
  surname: Hu
  fullname: Hu, Yu-Chen
  email: ychu@mx.nthu.edu.tw
  organization: Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30462300$$D View this record in MEDLINE/PubMed
BookMark eNp9kd1rFDEUxYNU7Lb61HfJkxRkbDL5mnkRymK1UFBafQ5JJtlNO5Nsk2xl-9ebumupBX0Kyf3dc2_OOQB7IQYLwBFGHzDqyUlQ6WRxs8GYsxdghglvG9rzdg_MEEGswYh2--Ag52uEMMWMvgL7BFHeEoRmYLrahLK0xRuYf_pilrBEOPngJ39v4fzy_OrbJYzONUWlhS3QOmdNyVBvYLaja5LNJXlTfFjAuco9LEmFbJJfFR8DVGHYvozq4f4avHRqzPbN7jwEP84-fZ9_aS6-fj6fn140hoquNMZYLTqmrCaauM6Ibhg41RgpIpxjjuuhVbp1TJGB84EooakRlvaKd0L0hhyCj1vd1VpPdjA21CVGuUp-Umkjo_Ly70rwS7mId5IT0XPKq8DxTiDF23X9o5x8NnYcVbBxnWVbbWasZZhU9O3TWY9D_nhcgfdbwKSYc7LuEcFIPiQoa4Jyl2Cl8TPa-PLbvLqoH__R827bE9er_4r_Agf8sOo
CitedBy_id crossref_primary_10_1002_bit_28344
crossref_primary_10_1038_s42003_024_06988_8
crossref_primary_10_1038_s41598_021_96510_5
crossref_primary_10_3389_fcell_2021_718466
crossref_primary_10_1007_s12265_020_10085_6
crossref_primary_10_1128_jvi_01813_22
crossref_primary_10_3390_jof8050467
crossref_primary_10_7717_peerj_18422
crossref_primary_10_1016_j_omtm_2020_06_012
crossref_primary_10_1016_j_gene_2020_144813
crossref_primary_10_3390_bioengineering9090477
crossref_primary_10_1016_j_jtice_2021_104175
crossref_primary_10_1002_biot_202100507
crossref_primary_10_1186_s13568_021_01231_7
crossref_primary_10_1038_s41598_020_74960_7
crossref_primary_10_1007_s10142_023_01036_w
crossref_primary_10_2217_epi_2020_0110
crossref_primary_10_1016_j_bcp_2021_114492
crossref_primary_10_1111_jcmm_14470
crossref_primary_10_1186_s12943_023_01925_5
crossref_primary_10_3390_ijms21030733
crossref_primary_10_1038_s41467_020_18853_3
crossref_primary_10_1002_EXP_20230171
crossref_primary_10_1016_j_phrs_2020_105359
crossref_primary_10_1007_s10734_021_00695_7
crossref_primary_10_3389_fpls_2024_1279738
crossref_primary_10_59786_bmtj_221
crossref_primary_10_1016_j_addr_2020_09_004
crossref_primary_10_1016_j_biotechadv_2019_107447
crossref_primary_10_1007_s13205_024_03998_5
crossref_primary_10_1016_j_tibtech_2023_11_005
crossref_primary_10_1093_narcan_zcab048
crossref_primary_10_3389_fimmu_2022_848327
crossref_primary_10_3390_life11111192
crossref_primary_10_1016_j_pharmthera_2020_107501
crossref_primary_10_30895_2221_996X_2023_23_3_247_261
crossref_primary_10_1016_j_canlet_2019_01_017
crossref_primary_10_1093_femsle_fnz085
crossref_primary_10_1080_14737159_2024_2388777
crossref_primary_10_1093_nar_gkab527
crossref_primary_10_3390_biom9100584
crossref_primary_10_3390_life11101021
crossref_primary_10_1007_s11274_020_02872_9
crossref_primary_10_1016_j_biotechadv_2025_108561
crossref_primary_10_1002_jcb_30329
crossref_primary_10_1007_s11033_022_07713_6
crossref_primary_10_1021_acscentsci_9b01093
crossref_primary_10_1186_s13046_023_02901_z
crossref_primary_10_15283_ijsc23030
crossref_primary_10_1016_j_bcp_2023_115449
crossref_primary_10_1039_D3CP04704K
crossref_primary_10_1016_j_csbj_2021_11_010
crossref_primary_10_1016_j_ymthe_2020_11_009
Cites_doi 10.1126/science.1231143
10.1038/nbt.2909
10.1038/nbt.3245
10.1093/nar/gkx1222
10.1038/mt.2016.10
10.1093/nar/gku402
10.1038/nbt.3471
10.1038/nbt.2908
10.1038/mtna.2015.37
10.1038/nchembio.273
10.1093/nar/gku936
10.1016/j.copbio.2017.03.011
10.1021/acschembio.7b00603
10.1038/nbt.3155
10.1038/ncomms13274
10.1038/mt.2016.172
10.1016/j.ymthe.2016.10.005
10.1038/ncomms14370
10.1038/nbt.2623
10.1093/nar/gkv601
10.1038/s41467-017-01875-9
10.1016/j.cell.2013.08.021
10.1038/ncomms1157
10.1038/nature16526
10.1002/wsbm.1408
10.1002/bit.26056
10.1016/j.omtn.2017.04.001
10.1038/nbt.3301
10.12688/f1000research.11243.1
10.1016/j.ymthe.2016.12.006
10.1016/j.cell.2015.12.035
10.1038/nchembio.1793
10.1016/j.ymben.2016.09.006
10.1038/nbt.2507
10.1038/ncomms12617
10.1016/j.cell.2014.05.010
10.1038/mt.2015.218
10.1126/science.1232033
10.1038/mtna.2014.64
10.1038/nmeth.3136
10.1038/nrg.2016.28
10.1038/mt.2015.164
10.1186/s13073-017-0450-0
10.1126/science.1225829
10.1038/nbt.3142
10.1016/j.omtm.2017.04.002
10.1038/s41551-017-0137-2
10.1021/sb200005w
10.1038/mt.2009.255
10.1038/nbt.3081
10.1038/ncomms14500
10.1038/ncomms15334
10.1016/j.cell.2016.10.044
10.1021/acs.bioconjchem.7b00057
10.1126/science.aad5227
10.1038/nmeth.3993
10.1093/nar/gkt347
10.1093/nar/gkx1199
10.1038/nmeth.3075
10.1101/gr.171322.113
10.1038/nature14592
10.1038/nbt.2808
10.1038/nature14299
10.1038/nchembio.2179
10.1038/nbt.3806
ContentType Journal Article
Copyright The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research. 2019
The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research.
Copyright_xml – notice: The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research. 2019
– notice: The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research.
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/nar/gky1165
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1362-4962
EndPage e13
ExternalDocumentID PMC6379646
30462300
10_1093_nar_gky1165
10.1093/nar/gky1165
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Ministry of Education
  grantid: 107QR001I5; 107Q2529E1
  funderid: 10.13039/501100004567
– fundername: Ministry of Science and Technology
  grantid: 106-2622-E-007-014-CC1; 105-2923-E-007-002-MY3; 106-2221-E-007-085-MY3; 107-3017-F-007-002; 107-2622-E-007-003-CC1
  funderid: 10.13039/100007225
– fundername: ; ;
  grantid: 106-2622-E-007-014-CC1; 105-2923-E-007-002-MY3; 106-2221-E-007-085-MY3; 107-3017-F-007-002; 107-2622-E-007-003-CC1
– fundername: ; ;
  grantid: 107QR001I5; 107Q2529E1
GroupedDBID ---
-DZ
-~X
.I3
0R~
123
18M
1TH
29N
2WC
4.4
482
53G
5VS
5WA
70E
85S
A8Z
AAFWJ
AAHBH
AAMVS
AAOGV
AAPPN
AAPXW
AAUQX
AAVAP
ABPTD
ABQLI
ABXVV
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ADBBV
ADHZD
AEGXH
AENEX
AENZO
AFFNX
AFPKN
AFRAH
AFULF
AHMBA
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AOIJS
BAWUL
BAYMD
BCNDV
BTTYL
CAG
CIDKT
CS3
CZ4
DIK
DU5
D~K
E3Z
EBD
EBS
EMOBN
ESTFP
F5P
GROUPED_DOAJ
GX1
H13
HH5
HYE
HZ~
IH2
KAQDR
KQ8
KSI
M49
M~E
NU-
OAWHX
OBC
OBS
OEB
OES
OJQWA
P2P
PEELM
PQQKQ
R44
RD5
RNS
ROL
ROX
ROZ
RPM
RXO
SV3
TN5
TOX
TR2
WG7
WOQ
X7H
XSB
YSK
ZKX
~91
~D7
~KM
AAYXX
ABEJV
ABGNP
ACUTJ
AFYAG
AMNDL
CITATION
OVT
ADIXU
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c478t-cceb785aeb3b3f8c78dd64b10a37ff5f6bd2ab2f5a3d66d3a7b4c7e49a68779c3
IEDL.DBID TOX
ISSN 0305-1048
1362-4962
IngestDate Thu Aug 21 14:05:00 EDT 2025
Fri Jul 11 08:19:33 EDT 2025
Wed Feb 19 02:30:35 EST 2025
Thu Apr 24 23:11:06 EDT 2025
Tue Jul 01 02:07:17 EDT 2025
Wed Aug 28 03:19:18 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
http://creativecommons.org/licenses/by-nc/4.0
The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c478t-cceb785aeb3b3f8c78dd64b10a37ff5f6bd2ab2f5a3d66d3a7b4c7e49a68779c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9997-4467
OpenAccessLink https://dx.doi.org/10.1093/nar/gky1165
PMID 30462300
PQID 2136552513
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6379646
proquest_miscellaneous_2136552513
pubmed_primary_30462300
crossref_primary_10_1093_nar_gky1165
crossref_citationtrail_10_1093_nar_gky1165
oup_primary_10_1093_nar_gky1165
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-02-20
PublicationDateYYYYMMDD 2019-02-20
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-20
  day: 20
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nucleic acids research
PublicationTitleAlternate Nucleic Acids Res
PublicationYear 2019
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Ausländer ( key 2019021902001142100_B30) 2017; 48
Fu ( key 2019021902001142100_B57) 2014; 32
Auslander ( key 2019021902001142100_B35) 2014; 11
Mout ( key 2019021902001142100_B23) 2017; 28
Chew ( key 2019021902001142100_B48) 2016; 13
Ruan ( key 2019021902001142100_B28) 2017; 25
Senturk ( key 2019021902001142100_B56) 2017; 8
Zhang ( key 2019021902001142100_B14) 2016; 7
Slaymaker ( key 2019021902001142100_B37) 2016; 351
Zuris ( key 2019021902001142100_B20) 2014; 33
Ran ( key 2019021902001142100_B59) 2013; 154
Komor ( key 2019021902001142100_B8) 2017; 168
Nihongaki ( key 2019021902001142100_B51) 2015; 33
Yin ( key 2019021902001142100_B64) 2016; 34
Li ( key 2019021902001142100_B6) 2016; 38
Jinek ( key 2019021902001142100_B1) 2012; 337
Saito ( key 2019021902001142100_B31) 2010; 6
Zhang ( key 2019021902001142100_B42) 2015; 4
Chung ( key 2019021902001142100_B5) 2017; 114
Kleinstiver ( key 2019021902001142100_B39) 2015; 523
Svitashev ( key 2019021902001142100_B18) 2016; 7
Staahl ( key 2019021902001142100_B19) 2017; 35
Chen ( key 2019021902001142100_B62) 2016; 24
Kim ( key 2019021902001142100_B67) 2017; 8
Gabriel ( key 2019021902001142100_B41) 2015; 33
Zhou ( key 2019021902001142100_B54) 2018; 13
Wroblewska ( key 2019021902001142100_B36) 2015; 33
Brinkman ( key 2019021902001142100_B43) 2014; 42
Hsu ( key 2019021902001142100_B4) 2014; 157
Ran ( key 2019021902001142100_B40) 2015; 520
Kim ( key 2019021902001142100_B17) 2014; 24
Lee ( key 2019021902001142100_B21) 2017; 1
Holkers ( key 2019021902001142100_B61) 2014; 11
Ortinski ( key 2019021902001142100_B60) 2017; 5
Cong ( key 2019021902001142100_B2) 2013; 339
Saito ( key 2019021902001142100_B32) 2011; 2
Maeder ( key 2019021902001142100_B9) 2016; 24
Kaczmarek ( key 2019021902001142100_B22) 2017; 9
Davis ( key 2019021902001142100_B47) 2015; 11
Mali ( key 2019021902001142100_B3) 2013; 339
Truong ( key 2019021902001142100_B46) 2015; 43
Guilinger ( key 2019021902001142100_B50) 2014; 32
Wright ( key 2019021902001142100_B7) 2016; 164
Chen ( key 2019021902001142100_B26) 2016; 24
Endo ( key 2019021902001142100_B33) 2013; 41
Chira ( key 2019021902001142100_B25) 2017; 7
Petris ( key 2019021902001142100_B27) 2017; 8
Smole ( key 2019021902001142100_B29) 2017; 25
Lin ( key 2019021902001142100_B12) 2014; 42
Tsai ( key 2019021902001142100_B49) 2014; 32
Cradick ( key 2019021902001142100_B55) 2014; 3
Lu ( key 2019021902001142100_B53) 2017; 46
Wu ( key 2019021902001142100_B65) 2010; 18
Ryan ( key 2019021902001142100_B58) 2018; 46
Muller ( key 2019021902001142100_B10) 2016; 24
Cho ( key 2019021902001142100_B13) 2013; 31
Kleinstiver ( key 2019021902001142100_B38) 2016; 529
Carlson-Stevermer ( key 2019021902001142100_B16) 2017; 8
Lau ( key 2019021902001142100_B63) 2017; 6
Cao ( key 2019021902001142100_B44) 2016; 44
Liu ( key 2019021902001142100_B52) 2016; 12
Tsai ( key 2019021902001142100_B24) 2016; 17
Stapleton ( key 2019021902001142100_B34) 2012; 1
Leong ( key 2019021902001142100_B66) 2018; 10
Dow ( key 2019021902001142100_B45) 2015; 33
Fu ( key 2019021902001142100_B11) 2013; 31
Yin ( key 2019021902001142100_B15) 2016; 34
References_xml – volume: 339
  start-page: 819
  year: 2013
  ident: key 2019021902001142100_B2
  article-title: Multiplex genome engineering using CRISPR/Cas systems
  publication-title: Science
  doi: 10.1126/science.1231143
– volume: 32
  start-page: 577
  year: 2014
  ident: key 2019021902001142100_B50
  article-title: Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2909
– volume: 33
  start-page: 755
  year: 2015
  ident: key 2019021902001142100_B51
  article-title: Photoactivatable CRISPR-Cas9 for optogenetic genome editing
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3245
– volume: 46
  start-page: e25
  year: 2017
  ident: key 2019021902001142100_B53
  article-title: Multimode drug inducible CRISPR/Cas9 devices for transcriptional activation and genome editing
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx1222
– volume: 24
  start-page: 430
  year: 2016
  ident: key 2019021902001142100_B9
  article-title: Genome-editing technologies for gene and cell therapy
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2016.10
– volume: 42
  start-page: 7473
  year: 2014
  ident: key 2019021902001142100_B12
  article-title: CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku402
– volume: 34
  start-page: 328
  year: 2016
  ident: key 2019021902001142100_B15
  article-title: Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3471
– volume: 32
  start-page: 569
  year: 2014
  ident: key 2019021902001142100_B49
  article-title: Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2908
– volume: 4
  start-page: e264
  year: 2015
  ident: key 2019021902001142100_B42
  article-title: Off-target effects in CRISPR/Cas9-mediated genome engineering
  publication-title: Mol. Ther. Nucleic Acids
  doi: 10.1038/mtna.2015.37
– volume: 6
  start-page: 71
  year: 2010
  ident: key 2019021902001142100_B31
  article-title: Synthetic translational regulation by an L7Ae–kink-turn RNP switch
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.273
– volume: 42
  start-page: e168
  year: 2014
  ident: key 2019021902001142100_B43
  article-title: Easy quantitative assessment of genome editing by sequence trace decomposition
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku936
– volume: 48
  start-page: 54
  year: 2017
  ident: key 2019021902001142100_B30
  article-title: Synthetic RNA-based switches for mammalian gene expression control
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2017.03.011
– volume: 13
  start-page: 443
  year: 2018
  ident: key 2019021902001142100_B54
  article-title: A single-chain photoswitchable CRISPR-Cas9 architecture for light-inducible gene editing and transcription
  publication-title: ACS Chem. Biol.
  doi: 10.1021/acschembio.7b00603
– volume: 33
  start-page: 390
  year: 2015
  ident: key 2019021902001142100_B45
  article-title: Inducible in vivo genome editing with CRISPR-Cas9
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3155
– volume: 7
  start-page: 13274
  year: 2016
  ident: key 2019021902001142100_B18
  article-title: Genome editing in maize directed by CRISPR–Cas9 ribonucleoprotein complexes
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13274
– volume: 24
  start-page: 1508
  year: 2016
  ident: key 2019021902001142100_B26
  article-title: A self-restricted CRISPR system to reduce off-target effects
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2016.172
– volume: 25
  start-page: 102
  year: 2017
  ident: key 2019021902001142100_B29
  article-title: A synthetic mammalian therapeutic gene circuit for sensing and suppressing inflammation
  publication-title: Mol. Ther.
  doi: 10.1016/j.ymthe.2016.10.005
– volume: 8
  start-page: 14370
  year: 2017
  ident: key 2019021902001142100_B56
  article-title: Rapid and tunable method to temporally control gene editing based on conditional Cas9 stabilization
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14370
– volume: 31
  start-page: 822
  year: 2013
  ident: key 2019021902001142100_B11
  article-title: High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2623
– volume: 43
  start-page: 6450
  year: 2015
  ident: key 2019021902001142100_B46
  article-title: Development of an intein-mediated split–Cas9 system for gene therapy
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv601
– volume: 8
  start-page: 1711
  year: 2017
  ident: key 2019021902001142100_B16
  article-title: Assembly of CRISPR ribonucleoproteins with biotinylated oligonucleotides via an RNA aptamer for precise gene editing
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01875-9
– volume: 154
  start-page: 1380
  year: 2013
  ident: key 2019021902001142100_B59
  article-title: Double nicking by RNA-Guided CRISPR Cas9 for enhanced genome editing specificity
  publication-title: Cell
  doi: 10.1016/j.cell.2013.08.021
– volume: 2
  start-page: 160
  year: 2011
  ident: key 2019021902001142100_B32
  article-title: Synthetic human cell fate regulation by protein-driven RNA switches
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1157
– volume: 529
  start-page: 490
  year: 2016
  ident: key 2019021902001142100_B38
  article-title: High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects
  publication-title: Nature
  doi: 10.1038/nature16526
– volume: 10
  start-page: e1408
  year: 2018
  ident: key 2019021902001142100_B66
  article-title: Immunity to CRISPR Cas9 and Cas12a therapeutics
  publication-title: Wiley Interdiscip. Rev. Syst. Biol. Med.
  doi: 10.1002/wsbm.1408
– volume: 114
  start-page: 172
  year: 2017
  ident: key 2019021902001142100_B5
  article-title: Enhanced integration of large DNA into E. coli chromosome by CRISPR/Cas9
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.26056
– volume: 7
  start-page: 211
  year: 2017
  ident: key 2019021902001142100_B25
  article-title: CRISPR/Cas9: Transcending the reality of genome editing
  publication-title: Mol. Ther. Nucleic Acids
  doi: 10.1016/j.omtn.2017.04.001
– volume: 33
  start-page: 839
  year: 2015
  ident: key 2019021902001142100_B36
  article-title: Mammalian synthetic circuits with RNA binding proteins for RNA-only delivery
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3301
– volume: 6
  start-page: 2153
  year: 2017
  ident: key 2019021902001142100_B63
  article-title: In vivo genome editing in animals using AAV-CRISPR system: applications to translational research of human disease [version 1; referees: 2 approved]
  publication-title: F1000Res.
  doi: 10.12688/f1000research.11243.1
– volume: 25
  start-page: 331
  year: 2017
  ident: key 2019021902001142100_B28
  article-title: CRISPR/Cas9-mediated genome editing as a therapeutic approach for Leber Congenital Amaurosis 10
  publication-title: Mol. Ther.
  doi: 10.1016/j.ymthe.2016.12.006
– volume: 164
  start-page: 29
  year: 2016
  ident: key 2019021902001142100_B7
  article-title: Biology and applications of CRISPR systems: harnessing nature's toolbox for genome engineering
  publication-title: Cell
  doi: 10.1016/j.cell.2015.12.035
– volume: 11
  start-page: 316
  year: 2015
  ident: key 2019021902001142100_B47
  article-title: Small molecule–triggered Cas9 protein with improved genome-editing specificity
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.1793
– volume: 38
  start-page: 293
  year: 2016
  ident: key 2019021902001142100_B6
  article-title: CRISPR-Cas9 for the genome engineering of cyanobacteria and succinate production
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2016.09.006
– volume: 31
  start-page: 230
  year: 2013
  ident: key 2019021902001142100_B13
  article-title: Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2507
– volume: 7
  start-page: 12617
  year: 2016
  ident: key 2019021902001142100_B14
  article-title: Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12617
– volume: 157
  start-page: 1262
  year: 2014
  ident: key 2019021902001142100_B4
  article-title: Development and applications of CRISPR-Cas9 for genome engineering
  publication-title: Cell
  doi: 10.1016/j.cell.2014.05.010
– volume: 24
  start-page: 636
  year: 2016
  ident: key 2019021902001142100_B10
  article-title: Streptococcus thermophilus CRISPR-Cas9 systems enable specific editing of the human genome
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2015.218
– volume: 339
  start-page: 823
  year: 2013
  ident: key 2019021902001142100_B3
  article-title: RNA-guided human genome engineering via Cas9
  publication-title: Science
  doi: 10.1126/science.1232033
– volume: 3
  start-page: e214
  year: 2014
  ident: key 2019021902001142100_B55
  article-title: COSMID: A web-based tool for identifying and validating CRISPR/Cas off-target sites
  publication-title: Mol. Ther.-Nucleic Acids
  doi: 10.1038/mtna.2014.64
– volume: 11
  start-page: 1154
  year: 2014
  ident: key 2019021902001142100_B35
  article-title: A general design strategy for protein-responsive riboswitches in mammalian cells
  publication-title: Nat. Meth.
  doi: 10.1038/nmeth.3136
– volume: 17
  start-page: 300
  year: 2016
  ident: key 2019021902001142100_B24
  article-title: Defining and improving the genome-wide specificities of CRISPR-Cas9 nucleases
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg.2016.28
– volume: 24
  start-page: 447
  year: 2016
  ident: key 2019021902001142100_B62
  article-title: Engineered viruses as genome editing devices
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2015.164
– volume: 9
  start-page: 60
  year: 2017
  ident: key 2019021902001142100_B22
  article-title: Advances in the delivery of RNA therapeutics: from concept to clinical reality
  publication-title: Genome Med.
  doi: 10.1186/s13073-017-0450-0
– volume: 337
  start-page: 816
  year: 2012
  ident: key 2019021902001142100_B1
  article-title: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
  publication-title: Science
  doi: 10.1126/science.1225829
– volume: 33
  start-page: 150
  year: 2015
  ident: key 2019021902001142100_B41
  article-title: Mapping the precision of genome editing
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3142
– volume: 5
  start-page: 153
  year: 2017
  ident: key 2019021902001142100_B60
  article-title: Integrase-deficient lentiviral vector as an all-in-one platform for highly efficient CRISPR/Cas9-mediated gene editing
  publication-title: Mol. Ther.-Meth. Clin. Dev.
  doi: 10.1016/j.omtm.2017.04.002
– volume: 1
  start-page: 889
  year: 2017
  ident: key 2019021902001142100_B21
  article-title: Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-017-0137-2
– volume: 1
  start-page: 83
  year: 2012
  ident: key 2019021902001142100_B34
  article-title: Feedback control of protein expression in mammalian cells by tunable synthetic translational inhibition
  publication-title: ACS Syn. Biol.
  doi: 10.1021/sb200005w
– volume: 18
  start-page: 80
  year: 2010
  ident: key 2019021902001142100_B65
  article-title: Effect of genome size on AAV vector packaging
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2009.255
– volume: 33
  start-page: 73
  year: 2014
  ident: key 2019021902001142100_B20
  article-title: Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3081
– volume: 44
  start-page: e149
  year: 2016
  ident: key 2019021902001142100_B44
  article-title: An easy and efficient inducible CRISPR/Cas9 platform with improved specificity for multiple gene targeting
  publication-title: Nucleic Acids Res.
– volume: 8
  start-page: 14500
  year: 2017
  ident: key 2019021902001142100_B67
  article-title: In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14500
– volume: 8
  start-page: 15334
  year: 2017
  ident: key 2019021902001142100_B27
  article-title: Hit and go Cas9 delivered through a lentiviral based self-limiting circuit
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15334
– volume: 168
  start-page: 20
  year: 2017
  ident: key 2019021902001142100_B8
  article-title: CRISPR-based technologies for the manipulation of eukaryotic genomes
  publication-title: Cell
  doi: 10.1016/j.cell.2016.10.044
– volume: 28
  start-page: 880
  year: 2017
  ident: key 2019021902001142100_B23
  article-title: In vivo delivery of CRISPR/Cas9 for therapeutic gene editing: Progress and challenges
  publication-title: Bioconj. Chem.
  doi: 10.1021/acs.bioconjchem.7b00057
– volume: 351
  start-page: 84
  year: 2016
  ident: key 2019021902001142100_B37
  article-title: Rationally engineered Cas9 nucleases with improved specificity
  publication-title: Science
  doi: 10.1126/science.aad5227
– volume: 13
  start-page: 868
  year: 2016
  ident: key 2019021902001142100_B48
  article-title: A multifunctional AAV–CRISPR–Cas9 and its host response
  publication-title: Nat. Meth.
  doi: 10.1038/nmeth.3993
– volume: 41
  start-page: e135
  year: 2013
  ident: key 2019021902001142100_B33
  article-title: Quantitative and simultaneous translational control of distinct mammalian mRNAs
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt347
– volume: 46
  start-page: 792
  year: 2018
  ident: key 2019021902001142100_B58
  article-title: Improving CRISPR–Cas specificity with chemical modifications in single-guide RNAs
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx1199
– volume: 11
  start-page: 1051
  year: 2014
  ident: key 2019021902001142100_B61
  article-title: Adenoviral vector DNA for accurate genome editing with engineered nucleases
  publication-title: Nat. Meth.
  doi: 10.1038/nmeth.3075
– volume: 24
  start-page: 1012
  year: 2014
  ident: key 2019021902001142100_B17
  article-title: Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins
  publication-title: Genome Res.
  doi: 10.1101/gr.171322.113
– volume: 523
  start-page: 481
  year: 2015
  ident: key 2019021902001142100_B39
  article-title: Engineered CRISPR-Cas9 nucleases with altered PAM specificities
  publication-title: Nature
  doi: 10.1038/nature14592
– volume: 32
  start-page: 279
  year: 2014
  ident: key 2019021902001142100_B57
  article-title: Improving CRISPR-Cas nuclease specificity using truncated guide RNAs
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2808
– volume: 520
  start-page: 186
  year: 2015
  ident: key 2019021902001142100_B40
  article-title: In vivo genome editing using Staphylococcus aureus Cas9
  publication-title: Nature
  doi: 10.1038/nature14299
– volume: 12
  start-page: 980
  year: 2016
  ident: key 2019021902001142100_B52
  article-title: A chemical-inducible CRISPR–Cas9 system for rapid control of genome editing
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.2179
– volume: 35
  start-page: 431
  year: 2017
  ident: key 2019021902001142100_B19
  article-title: Efficient genome editing in the mouse brain by local delivery of engineered Cas9 ribonucleoprotein complexes
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3806
– volume: 34
  start-page: 328
  year: 2016
  ident: key 2019021902001142100_B64
  article-title: Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3471
SSID ssj0014154
Score 2.4948626
Snippet Abstract CRISPR/Cas9 is a powerful genome editing system but uncontrolled Cas9 nuclease expression triggers off-target effects and even in vivo immune...
CRISPR/Cas9 is a powerful genome editing system but uncontrolled Cas9 nuclease expression triggers off-target effects and even in vivo immune responses....
CRISPR/Cas9 is a powerful genome editing system but uncontrolled Cas9 nuclease expression triggers off-target effects and even in vivo immune responses....
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e13
SubjectTerms Cell Line
CRISPR-Associated Protein 9 - biosynthesis
CRISPR-Associated Protein 9 - genetics
CRISPR-Cas Systems
Gene Editing
Gene Expression Regulation
Humans
Kinetics
Methods Online
Mutagenesis
Mutation
Protein Biosynthesis
Transcription, Genetic
Title Synthetic switch to minimize CRISPR off-target effects by self-restricting Cas9 transcription and translation
URI https://www.ncbi.nlm.nih.gov/pubmed/30462300
https://www.proquest.com/docview/2136552513
https://pubmed.ncbi.nlm.nih.gov/PMC6379646
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3dS-NAEB_UF32R8_N6p3UPxAchmHY3u5tHKYoK6uEH9C1s9kOLditN5Kh_vbNJWqzI-ZrMhpBf2PnNzsxvAPaTWAmeMhFxloc0Y8dFSksbUS6Z6eogihX6nS-v-Nk9u-gn_aZAtvgihZ_SI6_GRw9Pk6ATg1stut8gkX933Z8lC9AH1SpRlagmk00b3qe1c45nrpntA6f8XBr5wdec_oDVhiSS4xrVNViwfh02jj0GyMMJOSBV2WZ1Hr4Oy73pyLYNGN5OPBI6XEWKfwPEg5QjEsRDhoM3S3o357d_b8jIuaiu_yZNMQfJJ6Swzy4KczrGoUfEP5CeKlJSBk823VeI8qa-UtfPbcL96cld7yxq5ilEmglZRlrbXMhEYfycUye1kMYgRJ1YUeFc4nhuuirvukRRw7mhSuRMC8tSxaUQqaZbsORH3v4EopDGOWnQlgeQjeQsxdCjI5AvmY52LTicfuxMN2LjYebFc1YnvWmGyGQNMi3Ynxm_1BobX5vtIWr_t_gzRTTDLx9SH8rb0WuRdUM1X4JcjrZgu0Z49qCQG8ZALG6BmMN-ZhAUuOfv-MFjpcTNaejk5b--fbPfsIJMK6164eMdWCrHr3YX2UyZt2FRxCft6iygXf3X7xID97c
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthetic+switch+to+minimize+CRISPR+off-target+effects+by+self-restricting+Cas9+transcription+and+translation&rft.jtitle=Nucleic+acids+research&rft.au=Shen%2C+Chih-Che&rft.au=Hsu%2C+Mu-Nung&rft.au=Chang%2C+Chin-Wei&rft.au=Lin%2C+Mei-Wei&rft.date=2019-02-20&rft.issn=1362-4962&rft.eissn=1362-4962&rft.volume=47&rft.issue=3&rft.spage=e13&rft_id=info:doi/10.1093%2Fnar%2Fgky1165&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon