Decision Variants for the Automatic Determination of Optimal Feature Subset in RF-RFE
Feature selection, which identifies a set of most informative features from the original feature space, has been widely used to simplify the predictor. Recursive feature elimination (RFE), as one of the most popular feature selection approaches, is effective in data dimension reduction and efficienc...
Saved in:
Published in | Genes Vol. 9; no. 6; p. 301 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
15.06.2018
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Feature selection, which identifies a set of most informative features from the original feature space, has been widely used to simplify the predictor. Recursive feature elimination (RFE), as one of the most popular feature selection approaches, is effective in data dimension reduction and efficiency increase. A ranking of features, as well as candidate subsets with the corresponding accuracy, is produced through RFE. The subset with highest accuracy (HA) or a preset number of features (PreNum) are often used as the final subset. However, this may lead to a large number of features being selected, or if there is no prior knowledge about this preset number, it is often ambiguous and subjective regarding final subset selection. A proper decision variant is in high demand to automatically determine the optimal subset. In this study, we conduct pioneering work to explore the decision variant after obtaining a list of candidate subsets from RFE. We provide a detailed analysis and comparison of several decision variants to automatically select the optimal feature subset. Random forest (RF)-recursive feature elimination (RF-RFE) algorithm and a voting strategy are introduced. We validated the variants on two totally different molecular biology datasets, one for a toxicogenomic study and the other one for protein sequence analysis. The study provides an automated way to determine the optimal feature subset when using RF-RFE. |
---|---|
AbstractList | Feature selection, which identifies a set of most informative features from the original feature space, has been widely used to simplify the predictor. Recursive feature elimination (RFE), as one of the most popular feature selection approaches, is effective in data dimension reduction and efficiency increase. A ranking of features, as well as candidate subsets with the corresponding accuracy, is produced through RFE. The subset with highest accuracy (HA) or a preset number of features (PreNum) are often used as the final subset. However, this may lead to a large number of features being selected, or if there is no prior knowledge about this preset number, it is often ambiguous and subjective regarding final subset selection. A proper decision variant is in high demand to automatically determine the optimal subset. In this study, we conduct pioneering work to explore the decision variant after obtaining a list of candidate subsets from RFE. We provide a detailed analysis and comparison of several decision variants to automatically select the optimal feature subset. Random forest (RF)-recursive feature elimination (RF-RFE) algorithm and a voting strategy are introduced. We validated the variants on two totally different molecular biology datasets, one for a toxicogenomic study and the other one for protein sequence analysis. The study provides an automated way to determine the optimal feature subset when using RF-RFE. Feature selection, which identifies a set of most informative features from the original feature space, has been widely used to simplify the predictor. Recursive feature elimination (RFE), as one of the most popular feature selection approaches, is effective in data dimension reduction and efficiency increase. A ranking of features, as well as candidate subsets with the corresponding accuracy, is produced through RFE. The subset with highest accuracy (HA) or a preset number of features (PreNum) are often used as the final subset. However, this may lead to a large number of features being selected, or if there is no prior knowledge about this preset number, it is often ambiguous and subjective regarding final subset selection. A proper decision variant is in high demand to automatically determine the optimal subset. In this study, we conduct pioneering work to explore the decision variant after obtaining a list of candidate subsets from RFE. We provide a detailed analysis and comparison of several decision variants to automatically select the optimal feature subset. Random forest (RF)-recursive feature elimination (RF-RFE) algorithm and a voting strategy are introduced. We validated the variants on two totally different molecular biology datasets, one for a toxicogenomic study and the other one for protein sequence analysis. The study provides an automated way to determine the optimal feature subset when using RF-RFE.Feature selection, which identifies a set of most informative features from the original feature space, has been widely used to simplify the predictor. Recursive feature elimination (RFE), as one of the most popular feature selection approaches, is effective in data dimension reduction and efficiency increase. A ranking of features, as well as candidate subsets with the corresponding accuracy, is produced through RFE. The subset with highest accuracy (HA) or a preset number of features (PreNum) are often used as the final subset. However, this may lead to a large number of features being selected, or if there is no prior knowledge about this preset number, it is often ambiguous and subjective regarding final subset selection. A proper decision variant is in high demand to automatically determine the optimal subset. In this study, we conduct pioneering work to explore the decision variant after obtaining a list of candidate subsets from RFE. We provide a detailed analysis and comparison of several decision variants to automatically select the optimal feature subset. Random forest (RF)-recursive feature elimination (RF-RFE) algorithm and a voting strategy are introduced. We validated the variants on two totally different molecular biology datasets, one for a toxicogenomic study and the other one for protein sequence analysis. The study provides an automated way to determine the optimal feature subset when using RF-RFE. |
Author | Chen, Qi Su, Ran Meng, Zhaopeng Liu, Xinyi Jin, Qianguo |
AuthorAffiliation | 1 School of Computer Software, Tianjin University, Tianjin 300350, China; joannaxiaoqi@163.com (Q.C.); mengzp@tju.edu.cn (Z.M.); xinyiliu@tju.edu.cn (X.L.); qgking@tju.edu.cn (Q.J.) 3 Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China 4 State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300074, China 2 The Military Transportation Command Department, Army Military Transportation University, Tianjin 300361, China |
AuthorAffiliation_xml | – name: 3 Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China – name: 4 State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300074, China – name: 1 School of Computer Software, Tianjin University, Tianjin 300350, China; joannaxiaoqi@163.com (Q.C.); mengzp@tju.edu.cn (Z.M.); xinyiliu@tju.edu.cn (X.L.); qgking@tju.edu.cn (Q.J.) – name: 2 The Military Transportation Command Department, Army Military Transportation University, Tianjin 300361, China |
Author_xml | – sequence: 1 givenname: Qi surname: Chen fullname: Chen, Qi – sequence: 2 givenname: Zhaopeng surname: Meng fullname: Meng, Zhaopeng – sequence: 3 givenname: Xinyi surname: Liu fullname: Liu, Xinyi – sequence: 4 givenname: Qianguo surname: Jin fullname: Jin, Qianguo – sequence: 5 givenname: Ran orcidid: 0000-0001-5922-0364 surname: Su fullname: Su, Ran |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29914084$$D View this record in MEDLINE/PubMed |
BookMark | eNptkU1rFTEYhYNUbHvtzrUE3Ljo1TeZzEyyEUrbq0KhUK3bkMm8aVNmkmuSEfz3RlvLtZhFPsiTwzk5h2QvxICEvGLwrmkUvL_BgFlBBw2wZ-SAQ9-sheDt3s5-nxzlfAd1COAA7Quyz5ViAqQ4INdnaH32MdBvJnkTSqYuJlpukZ4sJc6meEvPsGCafaiHCkZHL7fFz2aiGzRlSUi_LEPGQn2gV5v11eb8JXnuzJTx6GFdkevN-dfTT-uLy4-fT08u1lb0stTZKtmDAzlAjw00FqU0go3dgMIw1-JguRstqNE4cEahsYPsbDeqXnXCNivy4V53uwwzjhZDSWbS21TdpZ86Gq__vQn-Vt_EH7oD3guhqsDbB4EUvy-Yi559tjhNJmBcsubQ9qxhspMVffMEvYtLCjWe5oy3jPWyJliR17uOHq38_fEKHN8DNsWcE7pHhIH-3ane7bTi_AluffnTQ83jp_8_-gX8vqXH |
CitedBy_id | crossref_primary_10_1016_j_ifacol_2022_07_355 crossref_primary_10_1002_ece3_71042 crossref_primary_10_1016_j_ebiom_2021_103800 crossref_primary_10_1016_j_eswa_2022_118025 crossref_primary_10_1038_s41598_022_14566_3 crossref_primary_10_3390_s21061994 crossref_primary_10_1007_s11063_021_10430_z crossref_primary_10_1109_TCBB_2024_3421228 crossref_primary_10_3390_info14020063 crossref_primary_10_3390_plants11091210 crossref_primary_10_1007_s11356_021_13695_y crossref_primary_10_7717_peerj_cs_1552 crossref_primary_10_1016_j_ocecoaman_2024_107518 crossref_primary_10_1109_TBCAS_2020_2967785 crossref_primary_10_3389_fmed_2023_1232496 crossref_primary_10_3390_rs17050797 crossref_primary_10_3390_rs12213652 crossref_primary_10_3390_s22051948 crossref_primary_10_1016_j_scitotenv_2024_174652 crossref_primary_10_1002_advs_202405596 crossref_primary_10_1109_TIE_2020_3032927 crossref_primary_10_32604_cmc_2021_017502 crossref_primary_10_1021_acsomega_2c02554 crossref_primary_10_1371_journal_pone_0302595 crossref_primary_10_3390_ijms241915011 crossref_primary_10_1186_s12911_022_02051_w crossref_primary_10_3390_s21175984 crossref_primary_10_1017_S0950268822001960 crossref_primary_10_1007_s10479_025_06494_y crossref_primary_10_1109_TCBB_2024_3425644 crossref_primary_10_1007_s11269_022_03341_8 crossref_primary_10_1016_j_ecolind_2023_110974 crossref_primary_10_3390_rs13050857 crossref_primary_10_1007_s10653_023_01512_z crossref_primary_10_1038_s41598_023_32713_2 crossref_primary_10_3390_molecules26082188 crossref_primary_10_3390_rs17030553 crossref_primary_10_3389_fsurg_2022_891984 crossref_primary_10_7717_peerj_cs_2338 crossref_primary_10_1002_esp_5253 crossref_primary_10_1007_s10461_022_03874_4 crossref_primary_10_1109_JBHI_2023_3279340 crossref_primary_10_3390_w16071029 crossref_primary_10_1186_s12859_023_05450_6 crossref_primary_10_1038_s41467_021_24823_0 crossref_primary_10_3389_fpls_2024_1396183 crossref_primary_10_1016_j_ress_2024_110443 crossref_primary_10_1016_j_advwatres_2020_103562 crossref_primary_10_1016_j_eswa_2021_116040 crossref_primary_10_1080_08839514_2021_1995974 crossref_primary_10_3389_fbioe_2020_00496 crossref_primary_10_7717_peerj_cs_944 crossref_primary_10_1186_s12938_022_00980_1 crossref_primary_10_1186_s12874_024_02392_2 crossref_primary_10_1371_journal_pone_0249423 crossref_primary_10_3389_fdata_2021_734990 crossref_primary_10_3390_agriculture14071097 crossref_primary_10_1007_s00170_023_10811_9 crossref_primary_10_1016_j_knosys_2024_112088 crossref_primary_10_1063_5_0162312 crossref_primary_10_1016_j_atmosres_2020_105061 crossref_primary_10_1016_j_bspc_2023_104980 crossref_primary_10_3390_agriculture14030389 crossref_primary_10_1016_j_ecoinf_2024_102624 crossref_primary_10_1111_1440_1681_13907 crossref_primary_10_1016_j_surg_2020_04_064 crossref_primary_10_3390_genes14020421 crossref_primary_10_3389_fpsyt_2020_00416 crossref_primary_10_2139_ssrn_3992383 crossref_primary_10_1080_07853890_2025_2477294 crossref_primary_10_1007_s11036_023_02103_z crossref_primary_10_1016_j_tfp_2023_100464 crossref_primary_10_1016_j_atmosres_2019_104720 crossref_primary_10_3390_s21186249 crossref_primary_10_1016_j_mcat_2023_113402 crossref_primary_10_1016_j_resourpol_2022_102737 crossref_primary_10_3390_genes10020087 crossref_primary_10_21121_eab_1027084 crossref_primary_10_3390_biom11121750 crossref_primary_10_1007_s00415_021_10789_y crossref_primary_10_3934_mbe_2023402 crossref_primary_10_3389_fnhum_2022_911204 crossref_primary_10_1029_2023GH000839 crossref_primary_10_1016_j_compbiolchem_2022_107766 crossref_primary_10_1016_j_nexus_2025_100374 crossref_primary_10_1007_s41064_024_00329_4 crossref_primary_10_1016_j_measurement_2021_109484 crossref_primary_10_3389_fneur_2021_648092 crossref_primary_10_1016_j_eswa_2022_117104 crossref_primary_10_1016_j_jneumeth_2022_109671 crossref_primary_10_1016_j_apenergy_2025_125569 crossref_primary_10_1016_j_psj_2021_101394 crossref_primary_10_1021_acsomega_1c06337 crossref_primary_10_3389_fnins_2022_900330 crossref_primary_10_3390_rs12152397 crossref_primary_10_3390_ijms25158431 crossref_primary_10_1016_j_procs_2023_10_515 crossref_primary_10_1016_j_ecolind_2023_110524 |
Cites_doi | 10.1109/TITS.2015.2506602 10.1093/bioinformatics/btt531 10.1109/TNB.2005.853657 10.1007/978-3-319-24571-3_72 10.1007/s00204-015-1638-y 10.3233/JAD-150440 10.1109/IJCNN.2015.7280463 10.1016/j.proeng.2015.08.401 10.1002/brb3.391 10.1371/journal.pone.0148977 10.1023/A:1012487302797 10.1007/11941439_21 10.1016/j.compbiolchem.2015.08.012 10.1016/j.clinbiomech.2016.02.008 10.1093/bioinformatics/btm344 10.1109/TKDE.2005.66 10.1016/j.gene.2015.10.060 10.1007/978-1-4614-7138-7 10.1007/978-81-322-2529-4_60 10.1177/0003702815620545 10.13053/rcs-102-1-9 10.1109/IJCNN.2015.7280417 10.1002/hbm.22956 10.4172/2169-0111.1000152 10.1093/nar/gku955 10.1016/j.eswa.2010.09.133 10.1023/A:1010933404324 10.1109/TCBB.2010.103 10.1109/IC3.2015.7346672 10.1016/S0004-3702(97)00043-X 10.1109/AIM.2015.7222756 10.1093/bioinformatics/btg405 10.1109/ICMLA.2007.35 10.1186/1479-5876-11-74 10.1016/j.chemolab.2006.01.007 10.1504/IJDMB.2014.064889 10.1016/j.nicl.2015.11.010 10.1109/DCAS.2015.7356592 10.1007/s11517-015-1393-5 10.1016/j.jtbi.2015.07.038 10.1016/j.jneumeth.2015.08.020 10.3390/ijms17020218 10.1016/j.kijoms.2015.10.002 10.1016/j.patrec.2015.12.007 |
ContentType | Journal Article |
Copyright | 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2018 by the authors. 2018 |
Copyright_xml | – notice: 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2018 by the authors. 2018 |
DBID | AAYXX CITATION NPM 8FD 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M7P P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 5PM |
DOI | 10.3390/genes9060301 |
DatabaseName | CrossRef PubMed Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central (New) Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Genetics Abstracts Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2073-4425 |
ExternalDocumentID | PMC6027449 29914084 10_3390_genes9060301 |
Genre | Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --- 53G 5VS 8FE 8FH AADQD AAFWJ AAHBH AAYXX ADBBV ADRAZ AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BBNVY BCNDV BENPR BHPHI CCPQU CITATION DIK EBD HCIFZ HYE IAO IPNFZ KQ8 LK8 M48 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PROAC RIG RPM GROUPED_DOAJ NPM 8FD ABUWG AZQEC DWQXO FR3 GNUQQ P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 5PM |
ID | FETCH-LOGICAL-c478t-c4c9870f08b07e303ce88a41d6be4a1f5ebc2fdc09daf0fa9eacb86c6d97964c3 |
IEDL.DBID | M48 |
ISSN | 2073-4425 |
IngestDate | Thu Aug 21 14:12:20 EDT 2025 Fri Jul 11 13:32:48 EDT 2025 Fri Jul 25 12:17:42 EDT 2025 Wed Feb 19 02:41:21 EST 2025 Thu Apr 24 22:58:16 EDT 2025 Tue Jul 01 02:54:45 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | RFE voting decision variant random forest feature selection |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c478t-c4c9870f08b07e303ce88a41d6be4a1f5ebc2fdc09daf0fa9eacb86c6d97964c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5922-0364 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/genes9060301 |
PMID | 29914084 |
PQID | 2125117830 |
PQPubID | 2032392 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6027449 proquest_miscellaneous_2057131868 proquest_journals_2125117830 pubmed_primary_29914084 crossref_primary_10_3390_genes9060301 crossref_citationtrail_10_3390_genes9060301 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-06-15 |
PublicationDateYYYYMMDD | 2018-06-15 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Genes |
PublicationTitleAlternate | Genes (Basel) |
PublicationYear | 2018 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Saeys (ref_5) 2007; 23 Flores (ref_21) 2015; 102 Breiman (ref_18) 2001; 45 Devi (ref_39) 2015; 10 Duan (ref_8) 2005; 4 Tiwari (ref_32) 2016; 44 ref_35 ref_12 ref_33 Seoane (ref_40) 2015; 384 Mishra (ref_42) 2015; 1 Poona (ref_30) 2016; 70 Spetale (ref_36) 2016; 71 Yang (ref_13) 2011; 8 ref_16 Voyle (ref_19) 2016; 49 ref_38 ref_15 ref_37 Son (ref_44) 2015; 118 Kenichi (ref_41) 2015; 256 Tan (ref_31) 2015; 5 Kohavi (ref_9) 1997; 97 Zareapoor (ref_3) 2015; 2 Luukka (ref_2) 2011; 38 Guyon (ref_11) 2002; 46 Pereira (ref_26) 2016; 54 Liao (ref_34) 2016; 17 ref_24 Liu (ref_10) 2005; 17 Kim (ref_14) 2014; 10 Li (ref_25) 2015; 59 Yang (ref_27) 2016; 576 ref_43 ref_20 Gautam (ref_7) 2013; 11 Igarashi (ref_46) 2013; 29 ref_1 Su (ref_4) 2016; 90 Christian (ref_22) 2016; 33 Igarashi (ref_6) 2015; 43 Ding (ref_23) 2015; 36 ref_29 ref_28 ref_48 Chanel (ref_45) 2016; 10 Granitto (ref_17) 2006; 83 Gautier (ref_47) 2004; 20 24048354 - Bioinformatics. 2013 Dec 1;29(23):3080-6 23517638 - J Transl Med. 2013 Mar 22;11:74 26497657 - Hum Brain Mapp. 2015 Dec;36(12):4869-79 25946884 - Int J Data Min Bioinform. 2014;10(4):374-90 26793434 - Neuroimage Clin. 2015 Nov 17;10:78-88 17720704 - Bioinformatics. 2007 Oct 1;23(19):2507-17 26807332 - Brain Behav. 2015 Oct 12;5(12):e00391 26872146 - PLoS One. 2016 Feb 12;11(2):e0148977 26484910 - J Alzheimers Dis. 2015;49(3):659-69 26945722 - Clin Biomech (Bristol, Avon). 2016 Mar;33:55-60 16220686 - IEEE Trans Nanobioscience. 2005 Sep;4(3):228-34 21566255 - IEEE/ACM Trans Comput Biol Bioinform. 2011 Jul-Aug;8(4):1080-92 26460680 - Comput Biol Chem. 2015 Dec;59 Pt A:95-100 26297890 - J Theor Biol. 2015 Nov 7;384:50-8 26403299 - Med Biol Eng Comput. 2016 Jul;54(7):1049-59 26903567 - Appl Spectrosc. 2016 Feb;70(2):322-33 26612367 - Arch Toxicol. 2016 Nov;90(11):2793-2808 26318777 - J Neurosci Methods. 2015 Dec 30;256:168-83 26861308 - Int J Mol Sci. 2016 Feb 06;17(2):218 25313160 - Nucleic Acids Res. 2015 Jan;43(Database issue):D921-7 26518718 - Gene. 2016 Jan 15;576(1 Pt 3):451-7 14960456 - Bioinformatics. 2004 Feb 12;20(3):307-15 |
References_xml | – volume: 17 start-page: 1628 year: 2016 ident: ref_34 article-title: Detection of driver cognitive distraction: A comparison study of stop-controlled intersection and speed-limited highway publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2015.2506602 – volume: 29 start-page: 3080 year: 2013 ident: ref_46 article-title: Toxygates: Interactive toxicity analysis on a hybrid microarray and linked data platform publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt531 – volume: 4 start-page: 228 year: 2005 ident: ref_8 article-title: Multiple SVM-RFE for gene selection in cancer classification with expression data publication-title: IEEE Trans. Nanobiosci. doi: 10.1109/TNB.2005.853657 – ident: ref_29 doi: 10.1007/978-3-319-24571-3_72 – volume: 90 start-page: 2793 year: 2016 ident: ref_4 article-title: High-throughput imaging-based nephrotoxicity prediction for xenobiotics with diverse chemical structures publication-title: Arch. Toxicol. doi: 10.1007/s00204-015-1638-y – volume: 49 start-page: 659 year: 2016 ident: ref_19 article-title: A pathway based classification method for analyzing gene expression for Alzheimer’s disease diagnosis publication-title: J. Alzheimer's Dis. doi: 10.3233/JAD-150440 – volume: 2 start-page: 60 year: 2015 ident: ref_3 article-title: Feature extraction or feature selection for text classification: A case study on phishing email detection publication-title: Int. J. Inf. Eng. Electron. Bus. – ident: ref_38 doi: 10.1109/IJCNN.2015.7280463 – volume: 118 start-page: 37 year: 2015 ident: ref_44 article-title: An empirical investigation of key pre-project planning practices affecting the cost performance of green building projects publication-title: Procedia Eng. doi: 10.1016/j.proeng.2015.08.401 – volume: 5 start-page: e00391 year: 2015 ident: ref_31 article-title: A semi-supervised Support Vector Machine model for predicting the language outcomes following cochlear implantation based on pre-implant brain fMRI imaging publication-title: Brain Behav. doi: 10.1002/brb3.391 – ident: ref_33 doi: 10.1371/journal.pone.0148977 – volume: 46 start-page: 389 year: 2002 ident: ref_11 article-title: Gene selection for cancer classification using support vector machines publication-title: Mach. Learn. doi: 10.1023/A:1012487302797 – ident: ref_12 doi: 10.1007/11941439_21 – volume: 59 start-page: 95 year: 2015 ident: ref_25 article-title: A highly accurate protein structural class prediction approach using auto cross covariance transformation and recursive feature elimination publication-title: Comput. Biol. Chem. doi: 10.1016/j.compbiolchem.2015.08.012 – volume: 33 start-page: 55 year: 2016 ident: ref_22 article-title: Computer aided analysis of gait patterns in patients with acute anterior cruciate ligament injury publication-title: Clin. Biomech. doi: 10.1016/j.clinbiomech.2016.02.008 – volume: 23 start-page: 2507 year: 2007 ident: ref_5 article-title: WLD: Review of feature selection techniques in bioinformatics publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm344 – volume: 17 start-page: 491 year: 2005 ident: ref_10 article-title: Toward integrating feature selection algorithms for classification and clustering publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2005.66 – volume: 576 start-page: 451 year: 2016 ident: ref_27 article-title: Identification of gene markers in the development of smoking-induced lung cancer publication-title: Gene doi: 10.1016/j.gene.2015.10.060 – ident: ref_1 doi: 10.1007/978-1-4614-7138-7 – volume: 44 start-page: 577 year: 2016 ident: ref_32 article-title: An efficient approach for the prediction of G-protein coupled receptors and their subfamilies publication-title: Smart Innov. Syst. Technol. doi: 10.1007/978-81-322-2529-4_60 – volume: 70 start-page: 322 year: 2016 ident: ref_30 article-title: Random forest (RF) wrappers for waveband selection and classification of hyperspectral data publication-title: Appl. Spectrosc. doi: 10.1177/0003702815620545 – volume: 102 start-page: 101 year: 2015 ident: ref_21 article-title: Feature selection for improvement the performance of an electric arc furnace publication-title: Res. Comput. Sci. doi: 10.13053/rcs-102-1-9 – ident: ref_28 doi: 10.1109/IJCNN.2015.7280417 – volume: 10 start-page: 7909 year: 2015 ident: ref_39 article-title: An empirical analysis of gene selection using machine learning algorithms for cancer classification publication-title: Int. J. Appl. Eng. Res. – volume: 36 start-page: 4869 year: 2015 ident: ref_23 article-title: Multivariate classification of smokers and nonsmokers using SVM-RFE on structural MRI images publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22956 – ident: ref_43 doi: 10.4172/2169-0111.1000152 – ident: ref_48 – volume: 43 start-page: 921 year: 2015 ident: ref_6 article-title: Open TG-GATEs: A large-scale toxicogenomics database publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku955 – volume: 38 start-page: 4600 year: 2011 ident: ref_2 article-title: Feature selection using fuzzy entropy measures with similarity classifier publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.09.133 – volume: 45 start-page: 5 year: 2001 ident: ref_18 article-title: Random Forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 8 start-page: 1080 year: 2011 ident: ref_13 article-title: Robust feature selection for microarray data based on multicriterion fusion publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform. doi: 10.1109/TCBB.2010.103 – ident: ref_15 – ident: ref_37 doi: 10.1109/IC3.2015.7346672 – volume: 97 start-page: 273 year: 1997 ident: ref_9 article-title: Wrappers for feature subset selection publication-title: Artificial Intelligence. doi: 10.1016/S0004-3702(97)00043-X – ident: ref_35 doi: 10.1109/AIM.2015.7222756 – volume: 20 start-page: 307 year: 2004 ident: ref_47 article-title: Affy-Analysis of Affymetrix GeneChip data at the probe level publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg405 – ident: ref_20 doi: 10.1109/ICMLA.2007.35 – volume: 11 start-page: 74 year: 2013 ident: ref_7 article-title: In silico approaches for designing highly effective cell penetrating peptides publication-title: J. Transl. Med. doi: 10.1186/1479-5876-11-74 – volume: 83 start-page: 83 year: 2006 ident: ref_17 article-title: Recursive feature elimination with random forest for PTR-MS analysis of agroindustrial products publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2006.01.007 – volume: 10 start-page: 374 year: 2014 ident: ref_14 article-title: Margin-maximised redundancy-minimised SVM-RFE for diagnostic classification of mammograms publication-title: Int. J. Data Min. Bioinform. doi: 10.1504/IJDMB.2014.064889 – volume: 10 start-page: 78 year: 2016 ident: ref_45 article-title: Classification of autistic individuals and controls using cross-task characterization of fMRI activity publication-title: Neuroimage Clin. doi: 10.1016/j.nicl.2015.11.010 – ident: ref_24 doi: 10.1109/DCAS.2015.7356592 – volume: 54 start-page: 1049 year: 2016 ident: ref_26 article-title: An automatic method for arterial pulse waveform recognition using KNN and SVM classifiers publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-015-1393-5 – volume: 384 start-page: 50 year: 2015 ident: ref_40 article-title: Classification of signaling proteins based on molecular star graph descriptors using Machine Learning models publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2015.07.038 – volume: 256 start-page: 168 year: 2015 ident: ref_41 article-title: Effects of imaging modalities, brain atlases and feature selection on prediction of Alzheimer’s disease publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2015.08.020 – ident: ref_16 doi: 10.3390/ijms17020218 – volume: 1 start-page: 86 year: 2015 ident: ref_42 article-title: SVM-BT-RFE: An improved gene selection framework using Bayesian t-test embedded in support vector machine (recursive feature elimination) algorithm publication-title: Karbala Int. J. Mod. Sci. doi: 10.1016/j.kijoms.2015.10.002 – volume: 71 start-page: 59 year: 2016 ident: ref_36 article-title: A spectral envelope approach towards effective SVM-RFE on infrared data publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2015.12.007 – reference: 26497657 - Hum Brain Mapp. 2015 Dec;36(12):4869-79 – reference: 26460680 - Comput Biol Chem. 2015 Dec;59 Pt A:95-100 – reference: 26793434 - Neuroimage Clin. 2015 Nov 17;10:78-88 – reference: 26518718 - Gene. 2016 Jan 15;576(1 Pt 3):451-7 – reference: 16220686 - IEEE Trans Nanobioscience. 2005 Sep;4(3):228-34 – reference: 23517638 - J Transl Med. 2013 Mar 22;11:74 – reference: 17720704 - Bioinformatics. 2007 Oct 1;23(19):2507-17 – reference: 26403299 - Med Biol Eng Comput. 2016 Jul;54(7):1049-59 – reference: 26318777 - J Neurosci Methods. 2015 Dec 30;256:168-83 – reference: 26872146 - PLoS One. 2016 Feb 12;11(2):e0148977 – reference: 26807332 - Brain Behav. 2015 Oct 12;5(12):e00391 – reference: 24048354 - Bioinformatics. 2013 Dec 1;29(23):3080-6 – reference: 26484910 - J Alzheimers Dis. 2015;49(3):659-69 – reference: 26612367 - Arch Toxicol. 2016 Nov;90(11):2793-2808 – reference: 26945722 - Clin Biomech (Bristol, Avon). 2016 Mar;33:55-60 – reference: 26903567 - Appl Spectrosc. 2016 Feb;70(2):322-33 – reference: 26297890 - J Theor Biol. 2015 Nov 7;384:50-8 – reference: 26861308 - Int J Mol Sci. 2016 Feb 06;17(2):218 – reference: 25313160 - Nucleic Acids Res. 2015 Jan;43(Database issue):D921-7 – reference: 25946884 - Int J Data Min Bioinform. 2014;10(4):374-90 – reference: 21566255 - IEEE/ACM Trans Comput Biol Bioinform. 2011 Jul-Aug;8(4):1080-92 – reference: 14960456 - Bioinformatics. 2004 Feb 12;20(3):307-15 |
SSID | ssj0000402005 |
Score | 2.4719648 |
Snippet | Feature selection, which identifies a set of most informative features from the original feature space, has been widely used to simplify the predictor.... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 301 |
SubjectTerms | Accuracy Algorithms Amino acid sequence Artificial intelligence Bioinformatics Cancer Classification Data analysis Gene expression International conferences Methods Principal components analysis Studies |
SummonAdditionalLinks | – databaseName: ProQuest Central (New) dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1RT9wwDLa2Q0h7mdgGrINNmQRPqCK9pk3yhGDcCU0aoBOHeKuSNIWTtpZB72H_fvY113FM20tfYrVVXNufHfczwJ7XXCsh0lggFohFlejYDEUVSy1NZq3MrKeC_rfz_Gwqvt5kN6Hg9hjaKpc-ceGoy8ZRjfxwSJE4kSrlR_c_Y5oaRaerYYTGS1jDdaUGsHYyOr-c9FUWTukRz7qO9xTz-8NbciGa55QKrMaivwDm8z7JJ4FnvAGvA2Jkx52K38ALX7-F9W6G5K93MD0NU3LYNaa91NXCEIcyxHXseN42C0ZWdrpseiE1sKZiF-gpfuBdCQHOHzwj_-FbNqvZZBxPxqNNmI5HV1_O4jArIXZCqhavTqPpVVxZLj3GJeeVMiIpc-uFSarMWzesSsd1aSpeGY0O16rc5aWmn1FdugWDuqn9e2A0CcOVzgrpEF45bjwmVYlJlHcmS4cygoPlrhUuEInTPIvvBSYUtMfF0z2OYL-Xvu8INP4ht7tUQBHM6LH4o_QIPvfLaAB0qmFq38xRBhFnkhLrfwTbnb76B2GsxQRSiQjkiiZ7ASLXXl2pZ3cLku18wZ2oP_z_tXbgFSIoRb1jSbYLg_Zh7j8iSmntp_Ap_gbZ2uoj priority: 102 providerName: ProQuest |
Title | Decision Variants for the Automatic Determination of Optimal Feature Subset in RF-RFE |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29914084 https://www.proquest.com/docview/2125117830 https://www.proquest.com/docview/2057131868 https://pubmed.ncbi.nlm.nih.gov/PMC6027449 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS9xAEB-sUuiLqG1trB4r1KeSmo9NdvehiNY7RFDL4YlvYXezaQ9sTq850P--M_k4vKrgS1522IWZ2ZnfJJP5AXxxKlCS89jniAV8XoTK1xEvfKGETowRiXH0Qv_sPD0Z8dPr5HoJOrbRVoF_ny3tiE9qNL35dn_3cIAX_jtVnFiy7_-iqKCClND9G1jBnCSIy-CsBfp1TKYyqe5njNCnfY6e2nTBP9lgMT89AZ3_904-SkaDNVhtUSQ7bMy-Dkuu3IC3Da_kw3sYHbfMOewKS2HqdGGITRliPXY4qyb1lFZ23DXCkGnYpGAXGD3-4K6ECmdTxyimuIqNSzYc-MNB_wOMBv3LHyd-y5_gWy5khU-r8DoWgTSBcJirrJNS8zBPjeM6LBJnbFTkNlC5LoJCKwzCRqY2zRX9oGrjj7BcTkr3CRixY9jcGi4sQi4baIeFVqhD6axO4kh48LXTWmbb4eLEcXGTYZFBOs4e69iDvbn0bTNU4wW57c4AWecZWUSQLBQyDjzYnS_jpaAvHbp0kxnKIAoNY2IC8GCzsdf8IMy_WFRK7oFYsORcgAZuL66U49_14O20nqeotl5x7md4h9BKUlNZmGzDcjWduR2EL5XpwcpR__znsFd7aK9-v_QPupryMg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG8CBYxETyiqkziJfUCosLva0nZBqy7qLbUdh1YqSWmzQv1T_EZmNg-6ILj1kktGTuQZz3xjj-cDeO0UV1KIyBeIBXxRBMrXoSj8VKU6NiaNjaMN_f1pMpmLj4fx4Rr87O7CUFll5xOXjjqvLO2Rb4UUiYNURvzd2XefWKPodLWj0GjMYtdd_sCU7eLtzhD1uxmG49HBh4nfsgr4VqSyxqfFPJsXXBqeOvTg1kmpRZAnxgkdFLEzNixyy1WuC15oha7JyMQmuaJrmzbCcW_AuogSHg5g_f1o-nnW7-pwSsd43FTYR5HiW1_JZSmeUOqxGvv-ArR_1mVeCXTju3CnRahsuzGpe7Dmyvtws-GsvHwA82HLysO-YJpNVTQMcS9DHMm2F3W17ADLhl2RDamdVQX7hJ7pG45KiHNx7hj5K1ezk5LNxv5sPHoI82uZxUcwKKvSPQFGzBs2t0akFuGc5dphEhfoQDqr4yhMPXjTzVpm28blxJ9xmmECQ3OcXZ1jDzZ76bOmYcc_5DY6BWTtsr3IfhuZB6_617jg6BRFl65aoAwi3CAilgEPHjf66j-EsR0TVik8SFc02QtQM-_VN-XJ8bKpd7Ls1aie_v-3XsKtycH-Xra3M919BrcRvUmqWwviDRjU5wv3HBFSbV60Zsng6LpXwi-2bCmT |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEG8CBYxETyhaJ3Fi-4BQYTdqKSzVikW9pY7jQCVISpsV6l_j1zGzedAFwa2XXGI5kef1ffZ4BuC501wrISJfIBbwRRlo34Si9KWWJs5zGeeONvTfz5LdhXh7GB9uwM_-LgylVfY-ceWoi9rSHvk4pEgcSBXxcdmlRRxM0lcn333qIEUnrX07jVZF9t35D6RvZy_3Jijr7TBMpx_f7PpdhwHfCqkafFrk3LzkKufSoTe3TikjgiLJnTBBGbvchmVhuS5MyUuj0U3lKrFJoekKp41w3iuwKYkVjWDz9XR2MB92eDhRMx632fZRpPn4M7kvzROiIetx8C9w-2eO5oWgl96EGx1aZTutet2CDVfdhqtt_8rzO7CYdB162Cek3JRRwxADM8SUbGfZ1KtqsGzSJ9yQCrC6ZB_QS33DWQl9Lk8dI9_lGnZcsXnqz9PpXVhcyireg1FVV-4BMOrCYQubC2kR2lluHBK6wATKWRNHofTgRb9qme2KmFMvja8Zkhla4-ziGnuwPYw-aYt3_GPcVi-ArDPhs-y3wnnwbHiNxkcnKqZy9RLHINoNIuo44MH9Vl7DhzDOI3lVwgO5JslhABX2Xn9THX9ZFfhOVnUb9cP__9ZTuIYWkL3bm-0_gusI5BSlsAXxFoya06V7jGCpyZ90Wsng6LIN4RcXzC3I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decision+Variants+for+the+Automatic+Determination+of+Optimal+Feature+Subset+in+RF-RFE&rft.jtitle=Genes&rft.au=Chen%2C+Qi&rft.au=Meng%2C+Zhaopeng&rft.au=Liu%2C+Xinyi&rft.au=Jin%2C+Qianguo&rft.date=2018-06-15&rft.issn=2073-4425&rft.eissn=2073-4425&rft.volume=9&rft.issue=6&rft_id=info:doi/10.3390%2Fgenes9060301&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4425&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4425&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4425&client=summon |