Decision Variants for the Automatic Determination of Optimal Feature Subset in RF-RFE

Feature selection, which identifies a set of most informative features from the original feature space, has been widely used to simplify the predictor. Recursive feature elimination (RFE), as one of the most popular feature selection approaches, is effective in data dimension reduction and efficienc...

Full description

Saved in:
Bibliographic Details
Published inGenes Vol. 9; no. 6; p. 301
Main Authors Chen, Qi, Meng, Zhaopeng, Liu, Xinyi, Jin, Qianguo, Su, Ran
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 15.06.2018
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Feature selection, which identifies a set of most informative features from the original feature space, has been widely used to simplify the predictor. Recursive feature elimination (RFE), as one of the most popular feature selection approaches, is effective in data dimension reduction and efficiency increase. A ranking of features, as well as candidate subsets with the corresponding accuracy, is produced through RFE. The subset with highest accuracy (HA) or a preset number of features (PreNum) are often used as the final subset. However, this may lead to a large number of features being selected, or if there is no prior knowledge about this preset number, it is often ambiguous and subjective regarding final subset selection. A proper decision variant is in high demand to automatically determine the optimal subset. In this study, we conduct pioneering work to explore the decision variant after obtaining a list of candidate subsets from RFE. We provide a detailed analysis and comparison of several decision variants to automatically select the optimal feature subset. Random forest (RF)-recursive feature elimination (RF-RFE) algorithm and a voting strategy are introduced. We validated the variants on two totally different molecular biology datasets, one for a toxicogenomic study and the other one for protein sequence analysis. The study provides an automated way to determine the optimal feature subset when using RF-RFE.
AbstractList Feature selection, which identifies a set of most informative features from the original feature space, has been widely used to simplify the predictor. Recursive feature elimination (RFE), as one of the most popular feature selection approaches, is effective in data dimension reduction and efficiency increase. A ranking of features, as well as candidate subsets with the corresponding accuracy, is produced through RFE. The subset with highest accuracy (HA) or a preset number of features (PreNum) are often used as the final subset. However, this may lead to a large number of features being selected, or if there is no prior knowledge about this preset number, it is often ambiguous and subjective regarding final subset selection. A proper decision variant is in high demand to automatically determine the optimal subset. In this study, we conduct pioneering work to explore the decision variant after obtaining a list of candidate subsets from RFE. We provide a detailed analysis and comparison of several decision variants to automatically select the optimal feature subset. Random forest (RF)-recursive feature elimination (RF-RFE) algorithm and a voting strategy are introduced. We validated the variants on two totally different molecular biology datasets, one for a toxicogenomic study and the other one for protein sequence analysis. The study provides an automated way to determine the optimal feature subset when using RF-RFE.
Feature selection, which identifies a set of most informative features from the original feature space, has been widely used to simplify the predictor. Recursive feature elimination (RFE), as one of the most popular feature selection approaches, is effective in data dimension reduction and efficiency increase. A ranking of features, as well as candidate subsets with the corresponding accuracy, is produced through RFE. The subset with highest accuracy (HA) or a preset number of features (PreNum) are often used as the final subset. However, this may lead to a large number of features being selected, or if there is no prior knowledge about this preset number, it is often ambiguous and subjective regarding final subset selection. A proper decision variant is in high demand to automatically determine the optimal subset. In this study, we conduct pioneering work to explore the decision variant after obtaining a list of candidate subsets from RFE. We provide a detailed analysis and comparison of several decision variants to automatically select the optimal feature subset. Random forest (RF)-recursive feature elimination (RF-RFE) algorithm and a voting strategy are introduced. We validated the variants on two totally different molecular biology datasets, one for a toxicogenomic study and the other one for protein sequence analysis. The study provides an automated way to determine the optimal feature subset when using RF-RFE.Feature selection, which identifies a set of most informative features from the original feature space, has been widely used to simplify the predictor. Recursive feature elimination (RFE), as one of the most popular feature selection approaches, is effective in data dimension reduction and efficiency increase. A ranking of features, as well as candidate subsets with the corresponding accuracy, is produced through RFE. The subset with highest accuracy (HA) or a preset number of features (PreNum) are often used as the final subset. However, this may lead to a large number of features being selected, or if there is no prior knowledge about this preset number, it is often ambiguous and subjective regarding final subset selection. A proper decision variant is in high demand to automatically determine the optimal subset. In this study, we conduct pioneering work to explore the decision variant after obtaining a list of candidate subsets from RFE. We provide a detailed analysis and comparison of several decision variants to automatically select the optimal feature subset. Random forest (RF)-recursive feature elimination (RF-RFE) algorithm and a voting strategy are introduced. We validated the variants on two totally different molecular biology datasets, one for a toxicogenomic study and the other one for protein sequence analysis. The study provides an automated way to determine the optimal feature subset when using RF-RFE.
Author Chen, Qi
Su, Ran
Meng, Zhaopeng
Liu, Xinyi
Jin, Qianguo
AuthorAffiliation 1 School of Computer Software, Tianjin University, Tianjin 300350, China; joannaxiaoqi@163.com (Q.C.); mengzp@tju.edu.cn (Z.M.); xinyiliu@tju.edu.cn (X.L.); qgking@tju.edu.cn (Q.J.)
3 Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
4 State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300074, China
2 The Military Transportation Command Department, Army Military Transportation University, Tianjin 300361, China
AuthorAffiliation_xml – name: 3 Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
– name: 4 State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300074, China
– name: 1 School of Computer Software, Tianjin University, Tianjin 300350, China; joannaxiaoqi@163.com (Q.C.); mengzp@tju.edu.cn (Z.M.); xinyiliu@tju.edu.cn (X.L.); qgking@tju.edu.cn (Q.J.)
– name: 2 The Military Transportation Command Department, Army Military Transportation University, Tianjin 300361, China
Author_xml – sequence: 1
  givenname: Qi
  surname: Chen
  fullname: Chen, Qi
– sequence: 2
  givenname: Zhaopeng
  surname: Meng
  fullname: Meng, Zhaopeng
– sequence: 3
  givenname: Xinyi
  surname: Liu
  fullname: Liu, Xinyi
– sequence: 4
  givenname: Qianguo
  surname: Jin
  fullname: Jin, Qianguo
– sequence: 5
  givenname: Ran
  orcidid: 0000-0001-5922-0364
  surname: Su
  fullname: Su, Ran
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29914084$$D View this record in MEDLINE/PubMed
BookMark eNptkU1rFTEYhYNUbHvtzrUE3Ljo1TeZzEyyEUrbq0KhUK3bkMm8aVNmkmuSEfz3RlvLtZhFPsiTwzk5h2QvxICEvGLwrmkUvL_BgFlBBw2wZ-SAQ9-sheDt3s5-nxzlfAd1COAA7Quyz5ViAqQ4INdnaH32MdBvJnkTSqYuJlpukZ4sJc6meEvPsGCafaiHCkZHL7fFz2aiGzRlSUi_LEPGQn2gV5v11eb8JXnuzJTx6GFdkevN-dfTT-uLy4-fT08u1lb0stTZKtmDAzlAjw00FqU0go3dgMIw1-JguRstqNE4cEahsYPsbDeqXnXCNivy4V53uwwzjhZDSWbS21TdpZ86Gq__vQn-Vt_EH7oD3guhqsDbB4EUvy-Yi559tjhNJmBcsubQ9qxhspMVffMEvYtLCjWe5oy3jPWyJliR17uOHq38_fEKHN8DNsWcE7pHhIH-3ane7bTi_AluffnTQ83jp_8_-gX8vqXH
CitedBy_id crossref_primary_10_1016_j_ifacol_2022_07_355
crossref_primary_10_1002_ece3_71042
crossref_primary_10_1016_j_ebiom_2021_103800
crossref_primary_10_1016_j_eswa_2022_118025
crossref_primary_10_1038_s41598_022_14566_3
crossref_primary_10_3390_s21061994
crossref_primary_10_1007_s11063_021_10430_z
crossref_primary_10_1109_TCBB_2024_3421228
crossref_primary_10_3390_info14020063
crossref_primary_10_3390_plants11091210
crossref_primary_10_1007_s11356_021_13695_y
crossref_primary_10_7717_peerj_cs_1552
crossref_primary_10_1016_j_ocecoaman_2024_107518
crossref_primary_10_1109_TBCAS_2020_2967785
crossref_primary_10_3389_fmed_2023_1232496
crossref_primary_10_3390_rs17050797
crossref_primary_10_3390_rs12213652
crossref_primary_10_3390_s22051948
crossref_primary_10_1016_j_scitotenv_2024_174652
crossref_primary_10_1002_advs_202405596
crossref_primary_10_1109_TIE_2020_3032927
crossref_primary_10_32604_cmc_2021_017502
crossref_primary_10_1021_acsomega_2c02554
crossref_primary_10_1371_journal_pone_0302595
crossref_primary_10_3390_ijms241915011
crossref_primary_10_1186_s12911_022_02051_w
crossref_primary_10_3390_s21175984
crossref_primary_10_1017_S0950268822001960
crossref_primary_10_1007_s10479_025_06494_y
crossref_primary_10_1109_TCBB_2024_3425644
crossref_primary_10_1007_s11269_022_03341_8
crossref_primary_10_1016_j_ecolind_2023_110974
crossref_primary_10_3390_rs13050857
crossref_primary_10_1007_s10653_023_01512_z
crossref_primary_10_1038_s41598_023_32713_2
crossref_primary_10_3390_molecules26082188
crossref_primary_10_3390_rs17030553
crossref_primary_10_3389_fsurg_2022_891984
crossref_primary_10_7717_peerj_cs_2338
crossref_primary_10_1002_esp_5253
crossref_primary_10_1007_s10461_022_03874_4
crossref_primary_10_1109_JBHI_2023_3279340
crossref_primary_10_3390_w16071029
crossref_primary_10_1186_s12859_023_05450_6
crossref_primary_10_1038_s41467_021_24823_0
crossref_primary_10_3389_fpls_2024_1396183
crossref_primary_10_1016_j_ress_2024_110443
crossref_primary_10_1016_j_advwatres_2020_103562
crossref_primary_10_1016_j_eswa_2021_116040
crossref_primary_10_1080_08839514_2021_1995974
crossref_primary_10_3389_fbioe_2020_00496
crossref_primary_10_7717_peerj_cs_944
crossref_primary_10_1186_s12938_022_00980_1
crossref_primary_10_1186_s12874_024_02392_2
crossref_primary_10_1371_journal_pone_0249423
crossref_primary_10_3389_fdata_2021_734990
crossref_primary_10_3390_agriculture14071097
crossref_primary_10_1007_s00170_023_10811_9
crossref_primary_10_1016_j_knosys_2024_112088
crossref_primary_10_1063_5_0162312
crossref_primary_10_1016_j_atmosres_2020_105061
crossref_primary_10_1016_j_bspc_2023_104980
crossref_primary_10_3390_agriculture14030389
crossref_primary_10_1016_j_ecoinf_2024_102624
crossref_primary_10_1111_1440_1681_13907
crossref_primary_10_1016_j_surg_2020_04_064
crossref_primary_10_3390_genes14020421
crossref_primary_10_3389_fpsyt_2020_00416
crossref_primary_10_2139_ssrn_3992383
crossref_primary_10_1080_07853890_2025_2477294
crossref_primary_10_1007_s11036_023_02103_z
crossref_primary_10_1016_j_tfp_2023_100464
crossref_primary_10_1016_j_atmosres_2019_104720
crossref_primary_10_3390_s21186249
crossref_primary_10_1016_j_mcat_2023_113402
crossref_primary_10_1016_j_resourpol_2022_102737
crossref_primary_10_3390_genes10020087
crossref_primary_10_21121_eab_1027084
crossref_primary_10_3390_biom11121750
crossref_primary_10_1007_s00415_021_10789_y
crossref_primary_10_3934_mbe_2023402
crossref_primary_10_3389_fnhum_2022_911204
crossref_primary_10_1029_2023GH000839
crossref_primary_10_1016_j_compbiolchem_2022_107766
crossref_primary_10_1016_j_nexus_2025_100374
crossref_primary_10_1007_s41064_024_00329_4
crossref_primary_10_1016_j_measurement_2021_109484
crossref_primary_10_3389_fneur_2021_648092
crossref_primary_10_1016_j_eswa_2022_117104
crossref_primary_10_1016_j_jneumeth_2022_109671
crossref_primary_10_1016_j_apenergy_2025_125569
crossref_primary_10_1016_j_psj_2021_101394
crossref_primary_10_1021_acsomega_1c06337
crossref_primary_10_3389_fnins_2022_900330
crossref_primary_10_3390_rs12152397
crossref_primary_10_3390_ijms25158431
crossref_primary_10_1016_j_procs_2023_10_515
crossref_primary_10_1016_j_ecolind_2023_110524
Cites_doi 10.1109/TITS.2015.2506602
10.1093/bioinformatics/btt531
10.1109/TNB.2005.853657
10.1007/978-3-319-24571-3_72
10.1007/s00204-015-1638-y
10.3233/JAD-150440
10.1109/IJCNN.2015.7280463
10.1016/j.proeng.2015.08.401
10.1002/brb3.391
10.1371/journal.pone.0148977
10.1023/A:1012487302797
10.1007/11941439_21
10.1016/j.compbiolchem.2015.08.012
10.1016/j.clinbiomech.2016.02.008
10.1093/bioinformatics/btm344
10.1109/TKDE.2005.66
10.1016/j.gene.2015.10.060
10.1007/978-1-4614-7138-7
10.1007/978-81-322-2529-4_60
10.1177/0003702815620545
10.13053/rcs-102-1-9
10.1109/IJCNN.2015.7280417
10.1002/hbm.22956
10.4172/2169-0111.1000152
10.1093/nar/gku955
10.1016/j.eswa.2010.09.133
10.1023/A:1010933404324
10.1109/TCBB.2010.103
10.1109/IC3.2015.7346672
10.1016/S0004-3702(97)00043-X
10.1109/AIM.2015.7222756
10.1093/bioinformatics/btg405
10.1109/ICMLA.2007.35
10.1186/1479-5876-11-74
10.1016/j.chemolab.2006.01.007
10.1504/IJDMB.2014.064889
10.1016/j.nicl.2015.11.010
10.1109/DCAS.2015.7356592
10.1007/s11517-015-1393-5
10.1016/j.jtbi.2015.07.038
10.1016/j.jneumeth.2015.08.020
10.3390/ijms17020218
10.1016/j.kijoms.2015.10.002
10.1016/j.patrec.2015.12.007
ContentType Journal Article
Copyright 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2018 by the authors. 2018
Copyright_xml – notice: 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2018 by the authors. 2018
DBID AAYXX
CITATION
NPM
8FD
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M7P
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
DOI 10.3390/genes9060301
DatabaseName CrossRef
PubMed
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central (New)
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Genetics Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed

MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2073-4425
ExternalDocumentID PMC6027449
29914084
10_3390_genes9060301
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
53G
5VS
8FE
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ADBBV
ADRAZ
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
DIK
EBD
HCIFZ
HYE
IAO
IPNFZ
KQ8
LK8
M48
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RIG
RPM
GROUPED_DOAJ
NPM
8FD
ABUWG
AZQEC
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
ID FETCH-LOGICAL-c478t-c4c9870f08b07e303ce88a41d6be4a1f5ebc2fdc09daf0fa9eacb86c6d97964c3
IEDL.DBID M48
ISSN 2073-4425
IngestDate Thu Aug 21 14:12:20 EDT 2025
Fri Jul 11 13:32:48 EDT 2025
Fri Jul 25 12:17:42 EDT 2025
Wed Feb 19 02:41:21 EST 2025
Thu Apr 24 22:58:16 EDT 2025
Tue Jul 01 02:54:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords RFE
voting
decision variant
random forest
feature selection
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c478t-c4c9870f08b07e303ce88a41d6be4a1f5ebc2fdc09daf0fa9eacb86c6d97964c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5922-0364
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/genes9060301
PMID 29914084
PQID 2125117830
PQPubID 2032392
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6027449
proquest_miscellaneous_2057131868
proquest_journals_2125117830
pubmed_primary_29914084
crossref_primary_10_3390_genes9060301
crossref_citationtrail_10_3390_genes9060301
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-06-15
PublicationDateYYYYMMDD 2018-06-15
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-15
  day: 15
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Genes
PublicationTitleAlternate Genes (Basel)
PublicationYear 2018
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Saeys (ref_5) 2007; 23
Flores (ref_21) 2015; 102
Breiman (ref_18) 2001; 45
Devi (ref_39) 2015; 10
Duan (ref_8) 2005; 4
Tiwari (ref_32) 2016; 44
ref_35
ref_12
ref_33
Seoane (ref_40) 2015; 384
Mishra (ref_42) 2015; 1
Poona (ref_30) 2016; 70
Spetale (ref_36) 2016; 71
Yang (ref_13) 2011; 8
ref_16
Voyle (ref_19) 2016; 49
ref_38
ref_15
ref_37
Son (ref_44) 2015; 118
Kenichi (ref_41) 2015; 256
Tan (ref_31) 2015; 5
Kohavi (ref_9) 1997; 97
Zareapoor (ref_3) 2015; 2
Luukka (ref_2) 2011; 38
Guyon (ref_11) 2002; 46
Pereira (ref_26) 2016; 54
Liao (ref_34) 2016; 17
ref_24
Liu (ref_10) 2005; 17
Kim (ref_14) 2014; 10
Li (ref_25) 2015; 59
Yang (ref_27) 2016; 576
ref_43
ref_20
Gautam (ref_7) 2013; 11
Igarashi (ref_46) 2013; 29
ref_1
Su (ref_4) 2016; 90
Christian (ref_22) 2016; 33
Igarashi (ref_6) 2015; 43
Ding (ref_23) 2015; 36
ref_29
ref_28
ref_48
Chanel (ref_45) 2016; 10
Granitto (ref_17) 2006; 83
Gautier (ref_47) 2004; 20
24048354 - Bioinformatics. 2013 Dec 1;29(23):3080-6
23517638 - J Transl Med. 2013 Mar 22;11:74
26497657 - Hum Brain Mapp. 2015 Dec;36(12):4869-79
25946884 - Int J Data Min Bioinform. 2014;10(4):374-90
26793434 - Neuroimage Clin. 2015 Nov 17;10:78-88
17720704 - Bioinformatics. 2007 Oct 1;23(19):2507-17
26807332 - Brain Behav. 2015 Oct 12;5(12):e00391
26872146 - PLoS One. 2016 Feb 12;11(2):e0148977
26484910 - J Alzheimers Dis. 2015;49(3):659-69
26945722 - Clin Biomech (Bristol, Avon). 2016 Mar;33:55-60
16220686 - IEEE Trans Nanobioscience. 2005 Sep;4(3):228-34
21566255 - IEEE/ACM Trans Comput Biol Bioinform. 2011 Jul-Aug;8(4):1080-92
26460680 - Comput Biol Chem. 2015 Dec;59 Pt A:95-100
26297890 - J Theor Biol. 2015 Nov 7;384:50-8
26403299 - Med Biol Eng Comput. 2016 Jul;54(7):1049-59
26903567 - Appl Spectrosc. 2016 Feb;70(2):322-33
26612367 - Arch Toxicol. 2016 Nov;90(11):2793-2808
26318777 - J Neurosci Methods. 2015 Dec 30;256:168-83
26861308 - Int J Mol Sci. 2016 Feb 06;17(2):218
25313160 - Nucleic Acids Res. 2015 Jan;43(Database issue):D921-7
26518718 - Gene. 2016 Jan 15;576(1 Pt 3):451-7
14960456 - Bioinformatics. 2004 Feb 12;20(3):307-15
References_xml – volume: 17
  start-page: 1628
  year: 2016
  ident: ref_34
  article-title: Detection of driver cognitive distraction: A comparison study of stop-controlled intersection and speed-limited highway
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2015.2506602
– volume: 29
  start-page: 3080
  year: 2013
  ident: ref_46
  article-title: Toxygates: Interactive toxicity analysis on a hybrid microarray and linked data platform
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt531
– volume: 4
  start-page: 228
  year: 2005
  ident: ref_8
  article-title: Multiple SVM-RFE for gene selection in cancer classification with expression data
  publication-title: IEEE Trans. Nanobiosci.
  doi: 10.1109/TNB.2005.853657
– ident: ref_29
  doi: 10.1007/978-3-319-24571-3_72
– volume: 90
  start-page: 2793
  year: 2016
  ident: ref_4
  article-title: High-throughput imaging-based nephrotoxicity prediction for xenobiotics with diverse chemical structures
  publication-title: Arch. Toxicol.
  doi: 10.1007/s00204-015-1638-y
– volume: 49
  start-page: 659
  year: 2016
  ident: ref_19
  article-title: A pathway based classification method for analyzing gene expression for Alzheimer’s disease diagnosis
  publication-title: J. Alzheimer's Dis.
  doi: 10.3233/JAD-150440
– volume: 2
  start-page: 60
  year: 2015
  ident: ref_3
  article-title: Feature extraction or feature selection for text classification: A case study on phishing email detection
  publication-title: Int. J. Inf. Eng. Electron. Bus.
– ident: ref_38
  doi: 10.1109/IJCNN.2015.7280463
– volume: 118
  start-page: 37
  year: 2015
  ident: ref_44
  article-title: An empirical investigation of key pre-project planning practices affecting the cost performance of green building projects
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2015.08.401
– volume: 5
  start-page: e00391
  year: 2015
  ident: ref_31
  article-title: A semi-supervised Support Vector Machine model for predicting the language outcomes following cochlear implantation based on pre-implant brain fMRI imaging
  publication-title: Brain Behav.
  doi: 10.1002/brb3.391
– ident: ref_33
  doi: 10.1371/journal.pone.0148977
– volume: 46
  start-page: 389
  year: 2002
  ident: ref_11
  article-title: Gene selection for cancer classification using support vector machines
  publication-title: Mach. Learn.
  doi: 10.1023/A:1012487302797
– ident: ref_12
  doi: 10.1007/11941439_21
– volume: 59
  start-page: 95
  year: 2015
  ident: ref_25
  article-title: A highly accurate protein structural class prediction approach using auto cross covariance transformation and recursive feature elimination
  publication-title: Comput. Biol. Chem.
  doi: 10.1016/j.compbiolchem.2015.08.012
– volume: 33
  start-page: 55
  year: 2016
  ident: ref_22
  article-title: Computer aided analysis of gait patterns in patients with acute anterior cruciate ligament injury
  publication-title: Clin. Biomech.
  doi: 10.1016/j.clinbiomech.2016.02.008
– volume: 23
  start-page: 2507
  year: 2007
  ident: ref_5
  article-title: WLD: Review of feature selection techniques in bioinformatics
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm344
– volume: 17
  start-page: 491
  year: 2005
  ident: ref_10
  article-title: Toward integrating feature selection algorithms for classification and clustering
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2005.66
– volume: 576
  start-page: 451
  year: 2016
  ident: ref_27
  article-title: Identification of gene markers in the development of smoking-induced lung cancer
  publication-title: Gene
  doi: 10.1016/j.gene.2015.10.060
– ident: ref_1
  doi: 10.1007/978-1-4614-7138-7
– volume: 44
  start-page: 577
  year: 2016
  ident: ref_32
  article-title: An efficient approach for the prediction of G-protein coupled receptors and their subfamilies
  publication-title: Smart Innov. Syst. Technol.
  doi: 10.1007/978-81-322-2529-4_60
– volume: 70
  start-page: 322
  year: 2016
  ident: ref_30
  article-title: Random forest (RF) wrappers for waveband selection and classification of hyperspectral data
  publication-title: Appl. Spectrosc.
  doi: 10.1177/0003702815620545
– volume: 102
  start-page: 101
  year: 2015
  ident: ref_21
  article-title: Feature selection for improvement the performance of an electric arc furnace
  publication-title: Res. Comput. Sci.
  doi: 10.13053/rcs-102-1-9
– ident: ref_28
  doi: 10.1109/IJCNN.2015.7280417
– volume: 10
  start-page: 7909
  year: 2015
  ident: ref_39
  article-title: An empirical analysis of gene selection using machine learning algorithms for cancer classification
  publication-title: Int. J. Appl. Eng. Res.
– volume: 36
  start-page: 4869
  year: 2015
  ident: ref_23
  article-title: Multivariate classification of smokers and nonsmokers using SVM-RFE on structural MRI images
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22956
– ident: ref_43
  doi: 10.4172/2169-0111.1000152
– ident: ref_48
– volume: 43
  start-page: 921
  year: 2015
  ident: ref_6
  article-title: Open TG-GATEs: A large-scale toxicogenomics database
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku955
– volume: 38
  start-page: 4600
  year: 2011
  ident: ref_2
  article-title: Feature selection using fuzzy entropy measures with similarity classifier
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.09.133
– volume: 45
  start-page: 5
  year: 2001
  ident: ref_18
  article-title: Random Forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 8
  start-page: 1080
  year: 2011
  ident: ref_13
  article-title: Robust feature selection for microarray data based on multicriterion fusion
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
  doi: 10.1109/TCBB.2010.103
– ident: ref_15
– ident: ref_37
  doi: 10.1109/IC3.2015.7346672
– volume: 97
  start-page: 273
  year: 1997
  ident: ref_9
  article-title: Wrappers for feature subset selection
  publication-title: Artificial Intelligence.
  doi: 10.1016/S0004-3702(97)00043-X
– ident: ref_35
  doi: 10.1109/AIM.2015.7222756
– volume: 20
  start-page: 307
  year: 2004
  ident: ref_47
  article-title: Affy-Analysis of Affymetrix GeneChip data at the probe level
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg405
– ident: ref_20
  doi: 10.1109/ICMLA.2007.35
– volume: 11
  start-page: 74
  year: 2013
  ident: ref_7
  article-title: In silico approaches for designing highly effective cell penetrating peptides
  publication-title: J. Transl. Med.
  doi: 10.1186/1479-5876-11-74
– volume: 83
  start-page: 83
  year: 2006
  ident: ref_17
  article-title: Recursive feature elimination with random forest for PTR-MS analysis of agroindustrial products
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2006.01.007
– volume: 10
  start-page: 374
  year: 2014
  ident: ref_14
  article-title: Margin-maximised redundancy-minimised SVM-RFE for diagnostic classification of mammograms
  publication-title: Int. J. Data Min. Bioinform.
  doi: 10.1504/IJDMB.2014.064889
– volume: 10
  start-page: 78
  year: 2016
  ident: ref_45
  article-title: Classification of autistic individuals and controls using cross-task characterization of fMRI activity
  publication-title: Neuroimage Clin.
  doi: 10.1016/j.nicl.2015.11.010
– ident: ref_24
  doi: 10.1109/DCAS.2015.7356592
– volume: 54
  start-page: 1049
  year: 2016
  ident: ref_26
  article-title: An automatic method for arterial pulse waveform recognition using KNN and SVM classifiers
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-015-1393-5
– volume: 384
  start-page: 50
  year: 2015
  ident: ref_40
  article-title: Classification of signaling proteins based on molecular star graph descriptors using Machine Learning models
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2015.07.038
– volume: 256
  start-page: 168
  year: 2015
  ident: ref_41
  article-title: Effects of imaging modalities, brain atlases and feature selection on prediction of Alzheimer’s disease
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2015.08.020
– ident: ref_16
  doi: 10.3390/ijms17020218
– volume: 1
  start-page: 86
  year: 2015
  ident: ref_42
  article-title: SVM-BT-RFE: An improved gene selection framework using Bayesian t-test embedded in support vector machine (recursive feature elimination) algorithm
  publication-title: Karbala Int. J. Mod. Sci.
  doi: 10.1016/j.kijoms.2015.10.002
– volume: 71
  start-page: 59
  year: 2016
  ident: ref_36
  article-title: A spectral envelope approach towards effective SVM-RFE on infrared data
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2015.12.007
– reference: 26497657 - Hum Brain Mapp. 2015 Dec;36(12):4869-79
– reference: 26460680 - Comput Biol Chem. 2015 Dec;59 Pt A:95-100
– reference: 26793434 - Neuroimage Clin. 2015 Nov 17;10:78-88
– reference: 26518718 - Gene. 2016 Jan 15;576(1 Pt 3):451-7
– reference: 16220686 - IEEE Trans Nanobioscience. 2005 Sep;4(3):228-34
– reference: 23517638 - J Transl Med. 2013 Mar 22;11:74
– reference: 17720704 - Bioinformatics. 2007 Oct 1;23(19):2507-17
– reference: 26403299 - Med Biol Eng Comput. 2016 Jul;54(7):1049-59
– reference: 26318777 - J Neurosci Methods. 2015 Dec 30;256:168-83
– reference: 26872146 - PLoS One. 2016 Feb 12;11(2):e0148977
– reference: 26807332 - Brain Behav. 2015 Oct 12;5(12):e00391
– reference: 24048354 - Bioinformatics. 2013 Dec 1;29(23):3080-6
– reference: 26484910 - J Alzheimers Dis. 2015;49(3):659-69
– reference: 26612367 - Arch Toxicol. 2016 Nov;90(11):2793-2808
– reference: 26945722 - Clin Biomech (Bristol, Avon). 2016 Mar;33:55-60
– reference: 26903567 - Appl Spectrosc. 2016 Feb;70(2):322-33
– reference: 26297890 - J Theor Biol. 2015 Nov 7;384:50-8
– reference: 26861308 - Int J Mol Sci. 2016 Feb 06;17(2):218
– reference: 25313160 - Nucleic Acids Res. 2015 Jan;43(Database issue):D921-7
– reference: 25946884 - Int J Data Min Bioinform. 2014;10(4):374-90
– reference: 21566255 - IEEE/ACM Trans Comput Biol Bioinform. 2011 Jul-Aug;8(4):1080-92
– reference: 14960456 - Bioinformatics. 2004 Feb 12;20(3):307-15
SSID ssj0000402005
Score 2.4719648
Snippet Feature selection, which identifies a set of most informative features from the original feature space, has been widely used to simplify the predictor....
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 301
SubjectTerms Accuracy
Algorithms
Amino acid sequence
Artificial intelligence
Bioinformatics
Cancer
Classification
Data analysis
Gene expression
International conferences
Methods
Principal components analysis
Studies
SummonAdditionalLinks – databaseName: ProQuest Central (New)
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1RT9wwDLa2Q0h7mdgGrINNmQRPqCK9pk3yhGDcCU0aoBOHeKuSNIWTtpZB72H_fvY113FM20tfYrVVXNufHfczwJ7XXCsh0lggFohFlejYDEUVSy1NZq3MrKeC_rfz_Gwqvt5kN6Hg9hjaKpc-ceGoy8ZRjfxwSJE4kSrlR_c_Y5oaRaerYYTGS1jDdaUGsHYyOr-c9FUWTukRz7qO9xTz-8NbciGa55QKrMaivwDm8z7JJ4FnvAGvA2Jkx52K38ALX7-F9W6G5K93MD0NU3LYNaa91NXCEIcyxHXseN42C0ZWdrpseiE1sKZiF-gpfuBdCQHOHzwj_-FbNqvZZBxPxqNNmI5HV1_O4jArIXZCqhavTqPpVVxZLj3GJeeVMiIpc-uFSarMWzesSsd1aSpeGY0O16rc5aWmn1FdugWDuqn9e2A0CcOVzgrpEF45bjwmVYlJlHcmS4cygoPlrhUuEInTPIvvBSYUtMfF0z2OYL-Xvu8INP4ht7tUQBHM6LH4o_QIPvfLaAB0qmFq38xRBhFnkhLrfwTbnb76B2GsxQRSiQjkiiZ7ASLXXl2pZ3cLku18wZ2oP_z_tXbgFSIoRb1jSbYLg_Zh7j8iSmntp_Ap_gbZ2uoj
  priority: 102
  providerName: ProQuest
Title Decision Variants for the Automatic Determination of Optimal Feature Subset in RF-RFE
URI https://www.ncbi.nlm.nih.gov/pubmed/29914084
https://www.proquest.com/docview/2125117830
https://www.proquest.com/docview/2057131868
https://pubmed.ncbi.nlm.nih.gov/PMC6027449
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS9xAEB-sUuiLqG1trB4r1KeSmo9NdvehiNY7RFDL4YlvYXezaQ9sTq850P--M_k4vKrgS1522IWZ2ZnfJJP5AXxxKlCS89jniAV8XoTK1xEvfKGETowRiXH0Qv_sPD0Z8dPr5HoJOrbRVoF_ny3tiE9qNL35dn_3cIAX_jtVnFiy7_-iqKCClND9G1jBnCSIy-CsBfp1TKYyqe5njNCnfY6e2nTBP9lgMT89AZ3_904-SkaDNVhtUSQ7bMy-Dkuu3IC3Da_kw3sYHbfMOewKS2HqdGGITRliPXY4qyb1lFZ23DXCkGnYpGAXGD3-4K6ECmdTxyimuIqNSzYc-MNB_wOMBv3LHyd-y5_gWy5khU-r8DoWgTSBcJirrJNS8zBPjeM6LBJnbFTkNlC5LoJCKwzCRqY2zRX9oGrjj7BcTkr3CRixY9jcGi4sQi4baIeFVqhD6axO4kh48LXTWmbb4eLEcXGTYZFBOs4e69iDvbn0bTNU4wW57c4AWecZWUSQLBQyDjzYnS_jpaAvHbp0kxnKIAoNY2IC8GCzsdf8IMy_WFRK7oFYsORcgAZuL66U49_14O20nqeotl5x7md4h9BKUlNZmGzDcjWduR2EL5XpwcpR__znsFd7aK9-v_QPupryMg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG8CBYxETyiqkziJfUCosLva0nZBqy7qLbUdh1YqSWmzQv1T_EZmNg-6ILj1kktGTuQZz3xjj-cDeO0UV1KIyBeIBXxRBMrXoSj8VKU6NiaNjaMN_f1pMpmLj4fx4Rr87O7CUFll5xOXjjqvLO2Rb4UUiYNURvzd2XefWKPodLWj0GjMYtdd_sCU7eLtzhD1uxmG49HBh4nfsgr4VqSyxqfFPJsXXBqeOvTg1kmpRZAnxgkdFLEzNixyy1WuC15oha7JyMQmuaJrmzbCcW_AuogSHg5g_f1o-nnW7-pwSsd43FTYR5HiW1_JZSmeUOqxGvv-ArR_1mVeCXTju3CnRahsuzGpe7Dmyvtws-GsvHwA82HLysO-YJpNVTQMcS9DHMm2F3W17ADLhl2RDamdVQX7hJ7pG45KiHNx7hj5K1ezk5LNxv5sPHoI82uZxUcwKKvSPQFGzBs2t0akFuGc5dphEhfoQDqr4yhMPXjTzVpm28blxJ9xmmECQ3OcXZ1jDzZ76bOmYcc_5DY6BWTtsr3IfhuZB6_617jg6BRFl65aoAwi3CAilgEPHjf66j-EsR0TVik8SFc02QtQM-_VN-XJ8bKpd7Ls1aie_v-3XsKtycH-Xra3M919BrcRvUmqWwviDRjU5wv3HBFSbV60Zsng6LpXwi-2bCmT
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEG8CBYxETyhaJ3Fi-4BQYTdqKSzVikW9pY7jQCVISpsV6l_j1zGzedAFwa2XXGI5kef1ffZ4BuC501wrISJfIBbwRRlo34Si9KWWJs5zGeeONvTfz5LdhXh7GB9uwM_-LgylVfY-ceWoi9rSHvk4pEgcSBXxcdmlRRxM0lcn333qIEUnrX07jVZF9t35D6RvZy_3Jijr7TBMpx_f7PpdhwHfCqkafFrk3LzkKufSoTe3TikjgiLJnTBBGbvchmVhuS5MyUuj0U3lKrFJoekKp41w3iuwKYkVjWDz9XR2MB92eDhRMx632fZRpPn4M7kvzROiIetx8C9w-2eO5oWgl96EGx1aZTutet2CDVfdhqtt_8rzO7CYdB162Cek3JRRwxADM8SUbGfZ1KtqsGzSJ9yQCrC6ZB_QS33DWQl9Lk8dI9_lGnZcsXnqz9PpXVhcyireg1FVV-4BMOrCYQubC2kR2lluHBK6wATKWRNHofTgRb9qme2KmFMvja8Zkhla4-ziGnuwPYw-aYt3_GPcVi-ArDPhs-y3wnnwbHiNxkcnKqZy9RLHINoNIuo44MH9Vl7DhzDOI3lVwgO5JslhABX2Xn9THX9ZFfhOVnUb9cP__9ZTuIYWkL3bm-0_gusI5BSlsAXxFoya06V7jGCpyZ90Wsng6LIN4RcXzC3I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decision+Variants+for+the+Automatic+Determination+of+Optimal+Feature+Subset+in+RF-RFE&rft.jtitle=Genes&rft.au=Chen%2C+Qi&rft.au=Meng%2C+Zhaopeng&rft.au=Liu%2C+Xinyi&rft.au=Jin%2C+Qianguo&rft.date=2018-06-15&rft.issn=2073-4425&rft.eissn=2073-4425&rft.volume=9&rft.issue=6&rft_id=info:doi/10.3390%2Fgenes9060301&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4425&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4425&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4425&client=summon