Angiogenic response to passive movement and active exercise in individuals with peripheral arterial disease
Peripheral arterial disease (PAD) is caused by atherosclerosis and is associated with microcirculatory impairments in skeletal muscle. The present study evaluated the angiogenic response to exercise and passive movement in skeletal muscle of PAD patients compared with healthy control subjects. Twent...
Saved in:
Published in | Journal of applied physiology (1985) Vol. 115; no. 12; pp. 1777 - 1787 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Physiological Society
01.12.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 8750-7587 1522-1601 1522-1601 |
DOI | 10.1152/japplphysiol.00979.2013 |
Cover
Loading…
Abstract | Peripheral arterial disease (PAD) is caused by atherosclerosis and is associated with microcirculatory impairments in skeletal muscle. The present study evaluated the angiogenic response to exercise and passive movement in skeletal muscle of PAD patients compared with healthy control subjects. Twenty-one PAD patients and 17 aged control subjects were randomly assigned to either a passive movement or an active exercise study. Interstitial fluid microdialysate and tissue samples were obtained from the thigh skeletal muscle. Muscle dialysate vascular endothelial growth factor (VEGF) levels were modestly increased in response to either passive movement or active exercise in both subject groups. The basal muscle dialysate level of the angiostatic factor thrombospondin-1 protein was markedly higher ( P < 0.05) in PAD patients compared with the control subjects, whereas soluble VEGF receptor-1 dialysate levels were similar in the two groups. The basal VEGF protein content in the muscle tissue samples was ∼27% lower ( P < 0.05) in the PAD patients compared with the control subjects. Analysis of mRNA expression for a range of angiogenic and angiostatic factors revealed a modest change with active exercise and passive movement in both groups, except for an increase ( P < 0.05) in the ratio of angiopoietin-2 to angiopoietin-1 mRNA in the PAD group with both interventions. PAD patients and aged individuals showed a similar limited angiogenic response to active exercise and passive movement. The limited increase in muscle extracellular VEGF combined with an elevated basal level of thrombospondin-1 in muscle extracellular fluid of PAD patients may restrict capillary growth in these patients. |
---|---|
AbstractList | Peripheral arterial disease (PAD) is caused by atherosclerosis and is associated with microcirculatory impairments in skeletal muscle. The present study evaluated the angiogenic response to exercise and passive movement in skeletal muscle of PAD patients compared with healthy control subjects. Twenty-one PAD patients and 17 aged control subjects were randomly assigned to either a passive movement or an active exercise study. Interstitial fluid microdialysate and tissue samples were obtained from the thigh skeletal muscle. Muscle dialysate vascular endothelial growth factor (VEGF) levels were modestly increased in response to either passive movement or active exercise in both subject groups. The basal muscle dialysate level of the angiostatic factor thrombospondin-1 protein was markedly higher (P < 0.05) in PAD patients compared with the control subjects, whereas soluble VEGF receptor-1 dialysate levels were similar in the two groups. The basal VEGF protein content in the muscle tissue samples was ∼27% lower (P < 0.05) in the PAD patients compared with the control subjects. Analysis of mRNA expression for a range of angiogenic and angiostatic factors revealed a modest change with active exercise and passive movement in both groups, except for an increase (P < 0.05) in the ratio of angiopoietin-2 to angiopoietin-1 mRNA in the PAD group with both interventions. PAD patients and aged individuals showed a similar limited angiogenic response to active exercise and passive movement. The limited increase in muscle extracellular VEGF combined with an elevated basal level of thrombospondin-1 in muscle extracellular fluid of PAD patients may restrict capillary growth in these patients.Peripheral arterial disease (PAD) is caused by atherosclerosis and is associated with microcirculatory impairments in skeletal muscle. The present study evaluated the angiogenic response to exercise and passive movement in skeletal muscle of PAD patients compared with healthy control subjects. Twenty-one PAD patients and 17 aged control subjects were randomly assigned to either a passive movement or an active exercise study. Interstitial fluid microdialysate and tissue samples were obtained from the thigh skeletal muscle. Muscle dialysate vascular endothelial growth factor (VEGF) levels were modestly increased in response to either passive movement or active exercise in both subject groups. The basal muscle dialysate level of the angiostatic factor thrombospondin-1 protein was markedly higher (P < 0.05) in PAD patients compared with the control subjects, whereas soluble VEGF receptor-1 dialysate levels were similar in the two groups. The basal VEGF protein content in the muscle tissue samples was ∼27% lower (P < 0.05) in the PAD patients compared with the control subjects. Analysis of mRNA expression for a range of angiogenic and angiostatic factors revealed a modest change with active exercise and passive movement in both groups, except for an increase (P < 0.05) in the ratio of angiopoietin-2 to angiopoietin-1 mRNA in the PAD group with both interventions. PAD patients and aged individuals showed a similar limited angiogenic response to active exercise and passive movement. The limited increase in muscle extracellular VEGF combined with an elevated basal level of thrombospondin-1 in muscle extracellular fluid of PAD patients may restrict capillary growth in these patients. Peripheral arterial disease (PAD) is caused by atherosclerosis and is associated with microcirculatory impairments in skeletal muscle. The present study evaluated the angiogenic response to exercise and passive movement in skeletal muscle of PAD patients compared with healthy control subjects. Twenty-one PAD patients and 17 aged control subjects were randomly assigned to either a passive movement or an active exercise study. Interstitial fluid microdialysate and tissue samples were obtained from the thigh skeletal muscle. Muscle dialysate vascular endothelial growth factor (VEGF) levels were modestly increased in response to either passive movement or active exercise in both subject groups. The basal muscle dialysate level of the angiostatic factor thrombospondin-1 protein was markedly higher ( P < 0.05) in PAD patients compared with the control subjects, whereas soluble VEGF receptor-1 dialysate levels were similar in the two groups. The basal VEGF protein content in the muscle tissue samples was ∼27% lower ( P < 0.05) in the PAD patients compared with the control subjects. Analysis of mRNA expression for a range of angiogenic and angiostatic factors revealed a modest change with active exercise and passive movement in both groups, except for an increase ( P < 0.05) in the ratio of angiopoietin-2 to angiopoietin-1 mRNA in the PAD group with both interventions. PAD patients and aged individuals showed a similar limited angiogenic response to active exercise and passive movement. The limited increase in muscle extracellular VEGF combined with an elevated basal level of thrombospondin-1 in muscle extracellular fluid of PAD patients may restrict capillary growth in these patients. Peripheral arterial disease (PAD) is caused by atherosclerosis and is associated with microcirculatory impairments in skeletal muscle. The present study evaluated the angiogenic response to exercise and passive movement in skeletal muscle of PAD patients compared with healthy control subjects. Twenty-one PAD patients and 17 aged control subjects were randomly assigned to either a passive movement or an active exercise study. Interstitial fluid microdialysate and tissue samples were obtained from the thigh skeletal muscle. Muscle dialysate vascular endothelial growth factor (VEGF) levels were modestly increased in response to either passive movement or active exercise in both subject groups. The basal muscle dialysate level of the angiostatic factor thrombospondin-1 protein was markedly higher (P < 0.05) in PAD patients compared with the control subjects, whereas soluble VEGF receptor-1 dialysate levels were similar in the two groups. The basal VEGF protein content in the muscle tissue samples was similar to 27% lower (P < 0.05) in the PAD patients compared with the control subjects. Analysis of mRNA expression for a range of angiogenic and angiostatic factors revealed a modest change with active exercise and passive movement in both groups, except for an increase (P < 0.05) in the ratio of angiopoietin-2 to angiopoietin-1 mRNA in the PAD group with both interventions. PAD patients and aged individuals showed a similar limited angiogenic response to active exercise and passive movement. The limited increase in muscle extracellular VEGF combined with an elevated basal level of thrombospondin-1 in muscle extracellular fluid of PAD patients may restrict capillary growth in these patients. Peripheral arterial disease (PAD) is caused by atherosclerosis and is associated with microcirculatory impairments in skeletal muscle. The present study evaluated the angiogenic response to exercise and passive movement in skeletal muscle of PAD patients compared with healthy control subjects. Twenty-one PAD patients and 17 aged control subjects were randomly assigned to either a passive movement or an active exercise study. Interstitial fluid microdialysate and tissue samples were obtained from the thigh skeletal muscle. Muscle dialysate vascular endothelial growth factor (VEGF) levels were modestly increased in response to either passive movement or active exercise in both subject groups. The basal muscle dialysate level of the angiostatic factor thrombospondin-1 protein was markedly higher (P < 0.05) in PAD patients compared with the control subjects, whereas soluble VEGF receptor-1 dialysate levels were similar in the two groups. The basal VEGF protein content in the muscle tissue samples was ∼27% lower (P < 0.05) in the PAD patients compared with the control subjects. Analysis of mRNA expression for a range of angiogenic and angiostatic factors revealed a modest change with active exercise and passive movement in both groups, except for an increase (P < 0.05) in the ratio of angiopoietin-2 to angiopoietin-1 mRNA in the PAD group with both interventions. PAD patients and aged individuals showed a similar limited angiogenic response to active exercise and passive movement. The limited increase in muscle extracellular VEGF combined with an elevated basal level of thrombospondin-1 in muscle extracellular fluid of PAD patients may restrict capillary growth in these patients. Peripheral arterial disease (PAD) is caused by atherosclerosis and is associated with microcirculatory impairments in skeletal muscle. The present study evaluated the angiogenic response to exercise and passive movement in skeletal muscle of PAD patients compared with healthy control subjects. Twenty-one PAD patients and 17 aged control subjects were randomly assigned to either a passive movement or an active exercise study. Interstitial fluid microdialysate and tissue samples were obtained from the thigh skeletal muscle. Muscle dialysate vascular endothelial growth factor (VEGF) levels were modestly increased in response to either passive movement or active exercise in both subject groups. The basal muscle dialysate level of the angiostatic factor thrombospondin-1 protein was markedly higher (P < 0.05) in PAD patients compared with the control subjects, whereas soluble VEGF receptor-1 dialysate levels were similar in the two groups. The basal VEGF protein content in the muscle tissue samples was ~27% lower (P < 0.05) in the PAD patients compared with the control subjects. Analysis of mRNA expression for a range of angiogenic and angiostatic factors revealed a modest change with active exercise and passive movement in both groups, except for an increase (P < 0.05) in the ratio of angiopoietin-2 to angiopoietin-1 mRNA in the PAD group with both interventions. PAD patients and aged individuals showed a similar limited angiogenic response to active exercise and passive movement. The limited increase in muscle extracellular VEGF combined with an elevated basal level of thrombospondin-1 in muscle extracellular fluid of PAD patients may restrict capillary growth in these patients. [PUBLICATION ABSTRACT] |
Author | Hellsten, Y. Passos, M. Bangsbo, J. Green, A. Walker, P. J. Askew, C. D. Walker, M. Hoier, B. |
Author_xml | – sequence: 1 givenname: B. surname: Hoier fullname: Hoier, B. organization: Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark – sequence: 2 givenname: M. surname: Walker fullname: Walker, M. organization: School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, Queensland, Australia – sequence: 3 givenname: M. surname: Passos fullname: Passos, M. organization: Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark;, Department of Biochemistry and Immunology, University of São Paulo, Ribeirão Preto, Brazil – sequence: 4 givenname: P. J. surname: Walker fullname: Walker, P. J. organization: School of Medicine and Centre for Clinical Research, University of Queensland, Brisbane, Queensland, Australia; and, Department of Vascular Surgery, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia – sequence: 5 givenname: A. surname: Green fullname: Green, A. organization: School of Medicine and Centre for Clinical Research, University of Queensland, Brisbane, Queensland, Australia; and – sequence: 6 givenname: J. surname: Bangsbo fullname: Bangsbo, J. organization: Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark – sequence: 7 givenname: C. D. surname: Askew fullname: Askew, C. D. organization: School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, Queensland, Australia – sequence: 8 givenname: Y. surname: Hellsten fullname: Hellsten, Y. organization: Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24157526$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkktv1DAUhS1URKcDfwEiselmBj9jZwFSVbWAVKmbsrYc52bGQ2IH2xnov6-Hlqp0U8ny8ztXR9fnBB354AGhDwSvCRH0085M0zBtb5MLwxrjRjZrigl7hRblla5IjckRWigp8EoKJY_RSUo7jAnngrxBx5QTIQWtF-jnmd-4sAHvbBUhTcEnqHKoJpOS20M1hj2M4HNlfFcZmw938AeidYVzvozO7V03myFVv13eVhNEN20hmqEyMZdD2XQFNgneotd94eDdw7pEPy4vbs6_ra6uv34_P7taWS5VLnPLW2b7zja856pvVIul6pllrCaEC9oAl21HrBUNxm1b29oorHopjLAgKVuiL_d1p7kdobPFfrGjp-hGE291ME7__-LdVm_CXjOlaMNUKXD6UCCGXzOkrEeXLAyD8RDmpIlgXFHOBH8Z5XVDicJFskQfn6G7MEdfOlEoyRmvhZCFev_U_KPrf19WAHkP2BhSitA_IgTrQzj003Dov-HQh3AU5ednSuuyyS4cuuCGF_V3sZXIcw |
CitedBy_id | crossref_primary_10_1186_s12877_021_02636_6 crossref_primary_10_1016_j_neurobiolaging_2023_12_004 crossref_primary_10_1042_BST20140197 crossref_primary_10_1152_ajpheart_00048_2016 crossref_primary_10_3389_fphys_2017_00523 crossref_primary_10_1152_physiolgenomics_00125_2014 crossref_primary_10_1161_CIRCRESAHA_121_318242 crossref_primary_10_1249_MSS_0000000000002665 crossref_primary_10_1371_journal_pcbi_1005272 crossref_primary_10_1038_srep37030 crossref_primary_10_1155_2017_2390174 crossref_primary_10_3389_fphar_2015_00179 crossref_primary_10_1152_ajpregu_00480_2015 crossref_primary_10_1152_japplphysiol_01110_2016 crossref_primary_10_1186_s12929_017_0346_8 crossref_primary_10_1111_apha_12857 crossref_primary_10_1089_ars_2017_7140 crossref_primary_10_1039_C7IB00218A crossref_primary_10_1111_apha_12709 crossref_primary_10_1016_j_cophys_2019_06_005 crossref_primary_10_1016_j_heliyon_2023_e22905 crossref_primary_10_1016_j_atherosclerosis_2015_12_029 crossref_primary_10_1016_j_vph_2016_09_003 crossref_primary_10_1002_psp4_12261 crossref_primary_10_1111_apha_12501 crossref_primary_10_1016_j_stem_2022_10_009 crossref_primary_10_1016_j_ahjo_2023_100291 crossref_primary_10_3389_fmolb_2024_1363384 crossref_primary_10_1113_JP280684 crossref_primary_10_1152_ajpheart_00784_2020 crossref_primary_10_1111_micc_12117 crossref_primary_10_1139_apnm_2015_0336 crossref_primary_10_3389_fphys_2018_01807 crossref_primary_10_1152_japplphysiol_00799_2021 crossref_primary_10_1038_s41536_021_00127_1 crossref_primary_10_1177_1074248417735399 crossref_primary_10_1007_s40279_019_01146_1 crossref_primary_10_1152_ajpheart_00168_2014 crossref_primary_10_7759_cureus_73925 crossref_primary_10_1038_natrevmats_2015_6 crossref_primary_10_1515_med_2017_0022 crossref_primary_10_1152_ajpcell_00089_2020 crossref_primary_10_1111_jcmm_13565 crossref_primary_10_1113_EP091134 crossref_primary_10_1007_s40279_020_01290_z crossref_primary_10_3389_fphys_2020_00028 crossref_primary_10_1152_ajpregu_00320_2021 crossref_primary_10_14814_phy2_12721 crossref_primary_10_15857_ksep_2018_27_1_1 |
Cites_doi | 10.1152/ajpheart.00082.2010 10.1161/ATVBAHA.111.230441 10.1016/j.freeradbiomed.2007.02.029 10.1016/j.atherosclerosis.2011.03.018 10.1152/ajpheart.00082.2002 10.1042/CS20060151 10.1152/ajpendo.2000.279.4.E806 10.1113/jphysiol.2012.239053 10.1016/S0002-9440(10)62566-7 10.1111/j.1365-2362.1980.tb00037.x 10.1038/nm0897-879 10.1152/ajpregu.00029.2003 10.1007/s10456-004-4184-4 10.1152/ajpheart.00150.2003 10.1161/01.CIR.94.7.1647 10.1152/japplphysiol.00141.2011 10.1096/fj.12-224618 10.1113/jphysiol.2002.037051 10.1152/jappl.1996.81.1.355 10.1016/j.jvs.2005.01.037 10.1113/jphysiol.2005.095596 10.1016/j.atherosclerosis.2004.01.015 10.1152/ajpregu.00677.2007 10.1096/fasebj.13.1.9 10.1161/01.CIR.100.13.1423 10.1016/j.ejvs.2004.09.001 10.1152/ajpregu.00347.2010 10.1097/01.hjh.0000378840.37740.21 10.1161/01.CIR.99.20.2682 10.1152/ajpheart.1999.276.2.H679 10.1080/08977190601000111 10.1113/expphysiol.2008.045989 10.1042/CS20050185 10.1113/jphysiol.2007.143198 10.1007/s00424-008-0563-9 10.1152/ajpheart.1999.277.6.H2247 10.1152/japplphysiol.01402.2004 10.1113/expphysiol.2012.067967 10.1113/jphysiol.2012.235952 10.1016/j.jvs.2003.07.006 10.1126/science.277.5322.55 10.1016/j.ejvs.2009.08.005 10.1113/jphysiol.2010.190439 10.1152/japplphysiol.00827.2005 10.1177/205873920601900104 10.1042/BST20110646 10.1152/japplphysiol.01103.2006 10.1073/pnas.90.22.10705 10.1177/1358863X11436334 10.1113/jphysiol.2011.216135 10.1023/A:1009018702832 10.1152/japplphysiol.00822.2006 10.1093/cvr/23.11.913 10.1152/ajpheart.00743.2002 |
ContentType | Journal Article |
Copyright | Copyright American Physiological Society Dec 15, 2013 Copyright © 2013 the American Physiological Society 2013 American Physiological Society |
Copyright_xml | – notice: Copyright American Physiological Society Dec 15, 2013 – notice: Copyright © 2013 the American Physiological Society 2013 American Physiological Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TS 7U7 8FD C1K FR3 P64 7X8 5PM |
DOI | 10.1152/japplphysiol.00979.2013 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Physical Education Index Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Toxicology Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Physical Education Index Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Physical Education Index MEDLINE CrossRef Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1522-1601 |
EndPage | 1787 |
ExternalDocumentID | PMC3882938 3173693641 24157526 10_1152_japplphysiol_00979_2013 |
Genre | Randomized Controlled Trial Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -~X .55 18M 29J 2WC 4.4 53G 5VS 85S AAFWJ AAYXX ABCQX ABDNZ ABHWK ABJNI ABKWE ABOCM ACBEA ACGFO ACGFS ACIWK ACPRK ADBBV ADFNX AEILP AENEX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS BAWUL BKKCC BTFSW CITATION CS3 DIK DU5 E3Z EBS EJD EMOBN F5P FRP GX1 H13 H~9 ITBOX KQ8 L7B OK1 P-O P2P P6G PQQKQ RAP RHI RPL RPRKH SJN TR2 UHB UKR UPT W8F WH7 WOQ X7M XSW YBH YQT YWH ~02 .GJ 1CY 39C 3O- 8M5 ACKIV ACYGS ADXHL AETEA AGCDD AGNAY AI. AIDAL AJUXI C1A C2- CGR CUY CVF ECM EIF J5H MVM NEJ NPM OHT VH1 XOL YQJ ZXP 7QP 7QR 7TK 7TS 7U7 8FD C1K FR3 P64 7X8 5PM |
ID | FETCH-LOGICAL-c478t-c4b4b3cfdc94f48f98b078f3c336114529e47bd1cc5900bb6c6a808f75a5ce723 |
ISSN | 8750-7587 1522-1601 |
IngestDate | Thu Aug 21 18:05:16 EDT 2025 Fri Sep 05 09:12:25 EDT 2025 Thu Sep 04 19:55:57 EDT 2025 Mon Jun 30 08:41:18 EDT 2025 Mon Jul 21 05:55:44 EDT 2025 Tue Jul 01 01:13:40 EDT 2025 Thu Apr 24 22:52:14 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | microdialysis skeletal muscle capillary vascular endothelial growth factor intermittent claudication |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c478t-c4b4b3cfdc94f48f98b078f3c336114529e47bd1cc5900bb6c6a808f75a5ce723 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 ObjectType-Article-2 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3882938 |
PMID | 24157526 |
PQID | 1474346557 |
PQPubID | 40905 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3882938 proquest_miscellaneous_1534824354 proquest_miscellaneous_1469218015 proquest_journals_1474346557 pubmed_primary_24157526 crossref_primary_10_1152_japplphysiol_00979_2013 crossref_citationtrail_10_1152_japplphysiol_00979_2013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-12-01 |
PublicationDateYYYYMMDD | 2013-12-01 |
PublicationDate_xml | – month: 12 year: 2013 text: 2013-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Bethesda – name: Bethesda, MD |
PublicationTitle | Journal of applied physiology (1985) |
PublicationTitleAlternate | J Appl Physiol (1985) |
PublicationYear | 2013 |
Publisher | American Physiological Society |
Publisher_xml | – name: American Physiological Society |
References | B20 B21 B22 B23 B24 B25 B26 B27 B28 B29 Hansen AH (B15) 2010; 28 B30 B31 B33 B34 B35 B36 B37 B38 B39 B1 B2 B3 B4 B5 B6 B7 B9 Folkman J (B8) 1992; 3 B40 B41 B42 B43 B44 B45 B46 B47 B48 B49 B50 B51 B52 B53 B10 B54 B11 B55 B12 B56 B13 B14 Makitie J (B32) 1977; 101 B16 B17 B18 B19 21512146 - J Appl Physiol (1985). 2011 Jul;111(1):81-6 17602951 - Free Radic Biol Med. 2007 Aug 1;43(3):353-61 17381066 - Growth Factors. 2006 Dec;24(4):253-9 14517432 - Angiogenesis. 1999;3(2):147-58 22402934 - Vasc Med. 2012 Apr;17(2):94-100 15135259 - Atherosclerosis. 2004 May;174(1):111-20 17255365 - J Appl Physiol (1985). 2007 Jun;102(6):2346-51 17884919 - J Physiol. 2007 Nov 15;585(Pt 1):231-9 8840857 - Circulation. 1996 Oct 1;94(7):1647-54 10338463 - Circulation. 1999 May 25;99(20):2682-7 8248162 - Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10705-9 15609080 - Angiogenesis. 2004;7(3):255-67 15886664 - J Vasc Surg. 2005 May;41(5):802-7 9256279 - Nat Med. 1997 Aug;3(8):879-86 9204896 - Science. 1997 Jul 4;277(5322):55-60 9872925 - FASEB J. 1999 Jan;13(1):9-22 6775957 - Eur J Clin Invest. 1980 Aug;10(4):301-5 2611800 - Cardiovasc Res. 1989 Nov;23(11):913-20 22733658 - J Physiol. 2012 Sep 1;590(Pt 17):4391-400 18094062 - Am J Physiol Regul Integr Comp Physiol. 2008 Mar;294(3):R975-82 1378311 - Semin Cancer Biol. 1992 Apr;3(2):65-71 10500044 - Circulation. 1999 Sep 28;100(13):1423-31 16402918 - Clin Sci (Lond). 2006 May;110(5):587-95 17569764 - J Appl Physiol (1985). 2007 Sep;103(3):1012-20 12754306 - J Physiol. 2003 Jul 1;550(Pt 1):217-25 11943724 - Am J Pathol. 2002 Apr;160(4):1393-403 578111 - Arch Pathol Lab Med. 1977 Sep;101(9):500-3 16928196 - Clin Sci (Lond). 2006 Dec;111(6):401-9 21481871 - Atherosclerosis. 2011 Jul;217(1):240-8 22890714 - J Physiol. 2012 Nov 1;590(Pt 21):5361-70 19297388 - Exp Physiol. 2009 Jun;94(6):749-60 20693292 - J Physiol. 2010 Oct 1;588(Pt 19):3833-45 22103486 - Biochem Soc Trans. 2011 Dec;39(6):1556-9 12663256 - Am J Physiol Regul Integr Comp Physiol. 2003 Jul;285(1):R143-8 19775917 - Eur J Vasc Endovasc Surg. 2009 Dec;38(6):689-96 9950871 - Am J Physiol. 1999 Feb;276(2 Pt 2):H679-85 10600843 - Am J Physiol. 1999 Dec;277(6 Pt 2):H2247-52 14981457 - J Vasc Surg. 2004 Mar;39(3):621-8 8828685 - J Appl Physiol (1985). 1996 Jul;81(1):355-61 20179634 - J Hypertens. 2010 Jun;28(6):1176-85 11001762 - Am J Physiol Endocrinol Metab. 2000 Oct;279(4):E806-14 12543634 - Am J Physiol Heart Circ Physiol. 2003 May;284(5):H1668-78 20543089 - Am J Physiol Heart Circ Physiol. 2010 Sep;299(3):H857-62 22962287 - Exp Physiol. 2013 Feb;98(2):585-97 12234794 - Am J Physiol Heart Circ Physiol. 2002 Oct;283(4):H1430-8 18704490 - Pflugers Arch. 2009 Mar;457(5):963-77 16569344 - Int J Immunopathol Pharmacol. 2006 Jan-Mar;19(1):35-48 21868709 - Arterioscler Thromb Vasc Biol. 2011 Nov;31(11):2742-8 15661835 - J Appl Physiol (1985). 2005 Jun;98(6):2137-46 22155930 - J Physiol. 2012 Feb 1;590(Pt 3):595-606 15531204 - Eur J Vasc Endovasc Surg. 2004 Dec;28(6):660-9 12763746 - Am J Physiol Heart Circ Physiol. 2003 Oct;285(4):H1759-63 16166239 - J Appl Physiol (1985). 2006 Jan;100(1):178-85 23709615 - FASEB J. 2013 Sep;27(9):3496-504 16293647 - J Physiol. 2006 Feb 1;570(Pt 3):445-54 20686173 - Am J Physiol Regul Integr Comp Physiol. 2010 Oct;299(4):R1059-67 |
References_xml | – ident: B21 doi: 10.1152/ajpheart.00082.2010 – ident: B6 doi: 10.1161/ATVBAHA.111.230441 – ident: B16 doi: 10.1016/j.freeradbiomed.2007.02.029 – ident: B49 doi: 10.1016/j.atherosclerosis.2011.03.018 – ident: B45 doi: 10.1152/ajpheart.00082.2002 – ident: B56 doi: 10.1042/CS20060151 – ident: B42 doi: 10.1152/ajpendo.2000.279.4.E806 – ident: B37 doi: 10.1113/jphysiol.2012.239053 – ident: B44 doi: 10.1016/S0002-9440(10)62566-7 – ident: B14 doi: 10.1111/j.1365-2362.1980.tb00037.x – ident: B50 doi: 10.1038/nm0897-879 – ident: B36 doi: 10.1152/ajpregu.00029.2003 – ident: B26 doi: 10.1007/s10456-004-4184-4 – ident: B18 doi: 10.1152/ajpheart.00150.2003 – ident: B53 doi: 10.1161/01.CIR.94.7.1647 – ident: B46 doi: 10.1152/japplphysiol.00141.2011 – ident: B23 doi: 10.1096/fj.12-224618 – ident: B19 doi: 10.1113/jphysiol.2002.037051 – ident: B3 doi: 10.1152/jappl.1996.81.1.355 – ident: B1 doi: 10.1016/j.jvs.2005.01.037 – ident: B54 doi: 10.1113/jphysiol.2005.095596 – volume: 3 start-page: 65 year: 1992 ident: B8 publication-title: Semin Cancer Biol – ident: B51 doi: 10.1016/j.atherosclerosis.2004.01.015 – ident: B17 doi: 10.1152/ajpregu.00677.2007 – ident: B35 doi: 10.1096/fasebj.13.1.9 – ident: B25 doi: 10.1161/01.CIR.100.13.1423 – ident: B4 doi: 10.1016/j.ejvs.2004.09.001 – ident: B39 doi: 10.1152/ajpregu.00347.2010 – volume: 28 start-page: 1176 year: 2010 ident: B15 publication-title: J Hypertens doi: 10.1097/01.hjh.0000378840.37740.21 – ident: B28 doi: 10.1161/01.CIR.99.20.2682 – ident: B12 doi: 10.1152/ajpheart.1999.276.2.H679 – ident: B38 doi: 10.1080/08977190601000111 – ident: B33 doi: 10.1113/expphysiol.2008.045989 – ident: B55 doi: 10.1042/CS20050185 – ident: B9 doi: 10.1113/jphysiol.2007.143198 – ident: B7 doi: 10.1007/s00424-008-0563-9 – ident: B43 doi: 10.1152/ajpheart.1999.277.6.H2247 – ident: B11 doi: 10.1152/japplphysiol.01402.2004 – ident: B22 doi: 10.1113/expphysiol.2012.067967 – ident: B34 doi: 10.1113/jphysiol.2012.235952 – ident: B41 doi: 10.1016/j.jvs.2003.07.006 – ident: B31 doi: 10.1126/science.277.5322.55 – ident: B40 doi: 10.1016/j.ejvs.2009.08.005 – ident: B24 doi: 10.1113/jphysiol.2010.190439 – volume: 101 start-page: 500 year: 1977 ident: B32 publication-title: Arch Pathol Lab Med – ident: B48 doi: 10.1152/japplphysiol.00827.2005 – ident: B2 doi: 10.1177/205873920601900104 – ident: B52 doi: 10.1042/BST20110646 – ident: B13 doi: 10.1152/japplphysiol.01103.2006 – ident: B29 doi: 10.1073/pnas.90.22.10705 – ident: B27 doi: 10.1177/1358863X11436334 – ident: B20 doi: 10.1113/jphysiol.2011.216135 – ident: B10 doi: 10.1023/A:1009018702832 – ident: B47 doi: 10.1152/japplphysiol.00822.2006 – ident: B5 doi: 10.1093/cvr/23.11.913 – ident: B30 doi: 10.1152/ajpheart.00743.2002 – reference: 17569764 - J Appl Physiol (1985). 2007 Sep;103(3):1012-20 – reference: 22733658 - J Physiol. 2012 Sep 1;590(Pt 17):4391-400 – reference: 15609080 - Angiogenesis. 2004;7(3):255-67 – reference: 22890714 - J Physiol. 2012 Nov 1;590(Pt 21):5361-70 – reference: 15886664 - J Vasc Surg. 2005 May;41(5):802-7 – reference: 14517432 - Angiogenesis. 1999;3(2):147-58 – reference: 16402918 - Clin Sci (Lond). 2006 May;110(5):587-95 – reference: 11001762 - Am J Physiol Endocrinol Metab. 2000 Oct;279(4):E806-14 – reference: 11943724 - Am J Pathol. 2002 Apr;160(4):1393-403 – reference: 12543634 - Am J Physiol Heart Circ Physiol. 2003 May;284(5):H1668-78 – reference: 22962287 - Exp Physiol. 2013 Feb;98(2):585-97 – reference: 20693292 - J Physiol. 2010 Oct 1;588(Pt 19):3833-45 – reference: 16166239 - J Appl Physiol (1985). 2006 Jan;100(1):178-85 – reference: 15135259 - Atherosclerosis. 2004 May;174(1):111-20 – reference: 19297388 - Exp Physiol. 2009 Jun;94(6):749-60 – reference: 20179634 - J Hypertens. 2010 Jun;28(6):1176-85 – reference: 21868709 - Arterioscler Thromb Vasc Biol. 2011 Nov;31(11):2742-8 – reference: 9204896 - Science. 1997 Jul 4;277(5322):55-60 – reference: 10600843 - Am J Physiol. 1999 Dec;277(6 Pt 2):H2247-52 – reference: 9872925 - FASEB J. 1999 Jan;13(1):9-22 – reference: 12663256 - Am J Physiol Regul Integr Comp Physiol. 2003 Jul;285(1):R143-8 – reference: 22402934 - Vasc Med. 2012 Apr;17(2):94-100 – reference: 19775917 - Eur J Vasc Endovasc Surg. 2009 Dec;38(6):689-96 – reference: 18704490 - Pflugers Arch. 2009 Mar;457(5):963-77 – reference: 6775957 - Eur J Clin Invest. 1980 Aug;10(4):301-5 – reference: 17381066 - Growth Factors. 2006 Dec;24(4):253-9 – reference: 1378311 - Semin Cancer Biol. 1992 Apr;3(2):65-71 – reference: 22103486 - Biochem Soc Trans. 2011 Dec;39(6):1556-9 – reference: 8828685 - J Appl Physiol (1985). 1996 Jul;81(1):355-61 – reference: 10338463 - Circulation. 1999 May 25;99(20):2682-7 – reference: 16928196 - Clin Sci (Lond). 2006 Dec;111(6):401-9 – reference: 18094062 - Am J Physiol Regul Integr Comp Physiol. 2008 Mar;294(3):R975-82 – reference: 9256279 - Nat Med. 1997 Aug;3(8):879-86 – reference: 2611800 - Cardiovasc Res. 1989 Nov;23(11):913-20 – reference: 23709615 - FASEB J. 2013 Sep;27(9):3496-504 – reference: 9950871 - Am J Physiol. 1999 Feb;276(2 Pt 2):H679-85 – reference: 8248162 - Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10705-9 – reference: 20686173 - Am J Physiol Regul Integr Comp Physiol. 2010 Oct;299(4):R1059-67 – reference: 14981457 - J Vasc Surg. 2004 Mar;39(3):621-8 – reference: 12754306 - J Physiol. 2003 Jul 1;550(Pt 1):217-25 – reference: 8840857 - Circulation. 1996 Oct 1;94(7):1647-54 – reference: 16569344 - Int J Immunopathol Pharmacol. 2006 Jan-Mar;19(1):35-48 – reference: 20543089 - Am J Physiol Heart Circ Physiol. 2010 Sep;299(3):H857-62 – reference: 16293647 - J Physiol. 2006 Feb 1;570(Pt 3):445-54 – reference: 578111 - Arch Pathol Lab Med. 1977 Sep;101(9):500-3 – reference: 12763746 - Am J Physiol Heart Circ Physiol. 2003 Oct;285(4):H1759-63 – reference: 17602951 - Free Radic Biol Med. 2007 Aug 1;43(3):353-61 – reference: 17884919 - J Physiol. 2007 Nov 15;585(Pt 1):231-9 – reference: 17255365 - J Appl Physiol (1985). 2007 Jun;102(6):2346-51 – reference: 10500044 - Circulation. 1999 Sep 28;100(13):1423-31 – reference: 21481871 - Atherosclerosis. 2011 Jul;217(1):240-8 – reference: 21512146 - J Appl Physiol (1985). 2011 Jul;111(1):81-6 – reference: 15661835 - J Appl Physiol (1985). 2005 Jun;98(6):2137-46 – reference: 15531204 - Eur J Vasc Endovasc Surg. 2004 Dec;28(6):660-9 – reference: 12234794 - Am J Physiol Heart Circ Physiol. 2002 Oct;283(4):H1430-8 – reference: 22155930 - J Physiol. 2012 Feb 1;590(Pt 3):595-606 |
SSID | ssj0014451 |
Score | 2.329378 |
Snippet | Peripheral arterial disease (PAD) is caused by atherosclerosis and is associated with microcirculatory impairments in skeletal muscle. The present study... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1777 |
SubjectTerms | Aged Angiopoietin-2 - genetics Angiopoietin-2 - metabolism Atherosclerosis Case-Control Studies Exercise Exercise - physiology Female Humans Male Middle Aged Movement Muscle, Skeletal - metabolism Muscle, Skeletal - physiology Musculoskeletal diseases Neovascularization, Physiologic - physiology Peripheral Arterial Disease - genetics Peripheral Arterial Disease - metabolism Peripheral Arterial Disease - physiopathology Peripheral Arterial Disease - therapy RNA, Messenger - genetics Thrombospondin 1 - genetics Thrombospondin 1 - metabolism Tissues Vascular endothelial growth factor Vascular Endothelial Growth Factor A - genetics Vascular Endothelial Growth Factor A - metabolism Vascular Endothelial Growth Factor Receptor-1 - genetics Vascular Endothelial Growth Factor Receptor-1 - metabolism |
Title | Angiogenic response to passive movement and active exercise in individuals with peripheral arterial disease |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24157526 https://www.proquest.com/docview/1474346557 https://www.proquest.com/docview/1469218015 https://www.proquest.com/docview/1534824354 https://pubmed.ncbi.nlm.nih.gov/PMC3882938 |
Volume | 115 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgSIgXBBsfgYGMhHhBHU0cO85jhTZVsI0itaJvke3aENElE2QP8Ndz_shH1wGDl6i1ndbp_Xy9s-9-h9DL3Cj4VydiZFZ5Cg4KLEXOVmIkjYqpSnmilWP7PGXTRfpuSZf9Zo7LLmnkgfp5ZV7J_0gV2kCuNkv2HyTbfSg0wGuQL1xBwnC9lown1eeyhl5Hw-xiXV0hjHMwiG1A0FntyMB9DLlwiq0rsWT3OcouGSvkuFnWY0czsH7tQj3LSyc420asCEas2yDxdE6W-SnndLDFMK1LD4zueOeTWIdojm7jZwaT9iF_J9ujZuH0KmxPxGQQ6hE0Kni7MQtN-oq2Vg37tM4Wb8lAq8aZL_Wyre5p4soMwLOG5zywiSk2AclnuG4SbJ9-KI4Wx8fF_HA5v4luJVnmTvbff-wPnixfm6PYDTMMIYHw_s1vvmbToNnyUi4H2w6sl_k9dDdIDE88hu6jG7raRXuTSjT12Q_8Cs86-e2i2ych3mIPfe0RhluE4abGAWG4RRgGhGGPMNwiDJcVHiAMW4ThHmG4RRgOCHuAFkeH87fTUSjPMVJpxhu4ylQSZVYqT03KTc4l2JuGKEIYeNk0yXWayVWslK1MKyVTTPAxNxkVVOksIQ_RTlVX-jHCcSwMpyYxYCynWjIhxVjGgoIiGRujSYRY-xsXKnDX2xIq68L5sDQphsIpnHAKK5wIjbsbzz19y99v2W-FWIS1_h0cZLC0LdVgFqEXXTdoYnu8JipdX9gxLAeDGezrP4yhlkwKXJQ0Qo88Lrp5WVs6owmLULaBmG6AZYLf7KnKL44RnoCfnBP-5Bpze4ru9Mt0H-003y70M7CrG_ncrYRfnavV9Q |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Angiogenic+response+to+passive+movement+and+active+exercise+in+individuals+with+peripheral+arterial+disease&rft.jtitle=Journal+of+applied+physiology+%281985%29&rft.au=Hoier%2C+B&rft.au=Walker%2C+M&rft.au=Passos%2C+M&rft.au=Walker%2C+P+J&rft.date=2013-12-01&rft.issn=1522-1601&rft.eissn=1522-1601&rft.volume=115&rft.issue=12&rft.spage=1777&rft_id=info:doi/10.1152%2Fjapplphysiol.00979.2013&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8750-7587&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8750-7587&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8750-7587&client=summon |