Angiogenic response to passive movement and active exercise in individuals with peripheral arterial disease

Peripheral arterial disease (PAD) is caused by atherosclerosis and is associated with microcirculatory impairments in skeletal muscle. The present study evaluated the angiogenic response to exercise and passive movement in skeletal muscle of PAD patients compared with healthy control subjects. Twent...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied physiology (1985) Vol. 115; no. 12; pp. 1777 - 1787
Main Authors Hoier, B., Walker, M., Passos, M., Walker, P. J., Green, A., Bangsbo, J., Askew, C. D., Hellsten, Y.
Format Journal Article
LanguageEnglish
Published United States American Physiological Society 01.12.2013
Subjects
Online AccessGet full text
ISSN8750-7587
1522-1601
1522-1601
DOI10.1152/japplphysiol.00979.2013

Cover

Loading…
Abstract Peripheral arterial disease (PAD) is caused by atherosclerosis and is associated with microcirculatory impairments in skeletal muscle. The present study evaluated the angiogenic response to exercise and passive movement in skeletal muscle of PAD patients compared with healthy control subjects. Twenty-one PAD patients and 17 aged control subjects were randomly assigned to either a passive movement or an active exercise study. Interstitial fluid microdialysate and tissue samples were obtained from the thigh skeletal muscle. Muscle dialysate vascular endothelial growth factor (VEGF) levels were modestly increased in response to either passive movement or active exercise in both subject groups. The basal muscle dialysate level of the angiostatic factor thrombospondin-1 protein was markedly higher ( P < 0.05) in PAD patients compared with the control subjects, whereas soluble VEGF receptor-1 dialysate levels were similar in the two groups. The basal VEGF protein content in the muscle tissue samples was ∼27% lower ( P < 0.05) in the PAD patients compared with the control subjects. Analysis of mRNA expression for a range of angiogenic and angiostatic factors revealed a modest change with active exercise and passive movement in both groups, except for an increase ( P < 0.05) in the ratio of angiopoietin-2 to angiopoietin-1 mRNA in the PAD group with both interventions. PAD patients and aged individuals showed a similar limited angiogenic response to active exercise and passive movement. The limited increase in muscle extracellular VEGF combined with an elevated basal level of thrombospondin-1 in muscle extracellular fluid of PAD patients may restrict capillary growth in these patients.
AbstractList Peripheral arterial disease (PAD) is caused by atherosclerosis and is associated with microcirculatory impairments in skeletal muscle. The present study evaluated the angiogenic response to exercise and passive movement in skeletal muscle of PAD patients compared with healthy control subjects. Twenty-one PAD patients and 17 aged control subjects were randomly assigned to either a passive movement or an active exercise study. Interstitial fluid microdialysate and tissue samples were obtained from the thigh skeletal muscle. Muscle dialysate vascular endothelial growth factor (VEGF) levels were modestly increased in response to either passive movement or active exercise in both subject groups. The basal muscle dialysate level of the angiostatic factor thrombospondin-1 protein was markedly higher (P < 0.05) in PAD patients compared with the control subjects, whereas soluble VEGF receptor-1 dialysate levels were similar in the two groups. The basal VEGF protein content in the muscle tissue samples was ∼27% lower (P < 0.05) in the PAD patients compared with the control subjects. Analysis of mRNA expression for a range of angiogenic and angiostatic factors revealed a modest change with active exercise and passive movement in both groups, except for an increase (P < 0.05) in the ratio of angiopoietin-2 to angiopoietin-1 mRNA in the PAD group with both interventions. PAD patients and aged individuals showed a similar limited angiogenic response to active exercise and passive movement. The limited increase in muscle extracellular VEGF combined with an elevated basal level of thrombospondin-1 in muscle extracellular fluid of PAD patients may restrict capillary growth in these patients.Peripheral arterial disease (PAD) is caused by atherosclerosis and is associated with microcirculatory impairments in skeletal muscle. The present study evaluated the angiogenic response to exercise and passive movement in skeletal muscle of PAD patients compared with healthy control subjects. Twenty-one PAD patients and 17 aged control subjects were randomly assigned to either a passive movement or an active exercise study. Interstitial fluid microdialysate and tissue samples were obtained from the thigh skeletal muscle. Muscle dialysate vascular endothelial growth factor (VEGF) levels were modestly increased in response to either passive movement or active exercise in both subject groups. The basal muscle dialysate level of the angiostatic factor thrombospondin-1 protein was markedly higher (P < 0.05) in PAD patients compared with the control subjects, whereas soluble VEGF receptor-1 dialysate levels were similar in the two groups. The basal VEGF protein content in the muscle tissue samples was ∼27% lower (P < 0.05) in the PAD patients compared with the control subjects. Analysis of mRNA expression for a range of angiogenic and angiostatic factors revealed a modest change with active exercise and passive movement in both groups, except for an increase (P < 0.05) in the ratio of angiopoietin-2 to angiopoietin-1 mRNA in the PAD group with both interventions. PAD patients and aged individuals showed a similar limited angiogenic response to active exercise and passive movement. The limited increase in muscle extracellular VEGF combined with an elevated basal level of thrombospondin-1 in muscle extracellular fluid of PAD patients may restrict capillary growth in these patients.
Peripheral arterial disease (PAD) is caused by atherosclerosis and is associated with microcirculatory impairments in skeletal muscle. The present study evaluated the angiogenic response to exercise and passive movement in skeletal muscle of PAD patients compared with healthy control subjects. Twenty-one PAD patients and 17 aged control subjects were randomly assigned to either a passive movement or an active exercise study. Interstitial fluid microdialysate and tissue samples were obtained from the thigh skeletal muscle. Muscle dialysate vascular endothelial growth factor (VEGF) levels were modestly increased in response to either passive movement or active exercise in both subject groups. The basal muscle dialysate level of the angiostatic factor thrombospondin-1 protein was markedly higher ( P < 0.05) in PAD patients compared with the control subjects, whereas soluble VEGF receptor-1 dialysate levels were similar in the two groups. The basal VEGF protein content in the muscle tissue samples was ∼27% lower ( P < 0.05) in the PAD patients compared with the control subjects. Analysis of mRNA expression for a range of angiogenic and angiostatic factors revealed a modest change with active exercise and passive movement in both groups, except for an increase ( P < 0.05) in the ratio of angiopoietin-2 to angiopoietin-1 mRNA in the PAD group with both interventions. PAD patients and aged individuals showed a similar limited angiogenic response to active exercise and passive movement. The limited increase in muscle extracellular VEGF combined with an elevated basal level of thrombospondin-1 in muscle extracellular fluid of PAD patients may restrict capillary growth in these patients.
Peripheral arterial disease (PAD) is caused by atherosclerosis and is associated with microcirculatory impairments in skeletal muscle. The present study evaluated the angiogenic response to exercise and passive movement in skeletal muscle of PAD patients compared with healthy control subjects. Twenty-one PAD patients and 17 aged control subjects were randomly assigned to either a passive movement or an active exercise study. Interstitial fluid microdialysate and tissue samples were obtained from the thigh skeletal muscle. Muscle dialysate vascular endothelial growth factor (VEGF) levels were modestly increased in response to either passive movement or active exercise in both subject groups. The basal muscle dialysate level of the angiostatic factor thrombospondin-1 protein was markedly higher (P < 0.05) in PAD patients compared with the control subjects, whereas soluble VEGF receptor-1 dialysate levels were similar in the two groups. The basal VEGF protein content in the muscle tissue samples was similar to 27% lower (P < 0.05) in the PAD patients compared with the control subjects. Analysis of mRNA expression for a range of angiogenic and angiostatic factors revealed a modest change with active exercise and passive movement in both groups, except for an increase (P < 0.05) in the ratio of angiopoietin-2 to angiopoietin-1 mRNA in the PAD group with both interventions. PAD patients and aged individuals showed a similar limited angiogenic response to active exercise and passive movement. The limited increase in muscle extracellular VEGF combined with an elevated basal level of thrombospondin-1 in muscle extracellular fluid of PAD patients may restrict capillary growth in these patients.
Peripheral arterial disease (PAD) is caused by atherosclerosis and is associated with microcirculatory impairments in skeletal muscle. The present study evaluated the angiogenic response to exercise and passive movement in skeletal muscle of PAD patients compared with healthy control subjects. Twenty-one PAD patients and 17 aged control subjects were randomly assigned to either a passive movement or an active exercise study. Interstitial fluid microdialysate and tissue samples were obtained from the thigh skeletal muscle. Muscle dialysate vascular endothelial growth factor (VEGF) levels were modestly increased in response to either passive movement or active exercise in both subject groups. The basal muscle dialysate level of the angiostatic factor thrombospondin-1 protein was markedly higher (P < 0.05) in PAD patients compared with the control subjects, whereas soluble VEGF receptor-1 dialysate levels were similar in the two groups. The basal VEGF protein content in the muscle tissue samples was ∼27% lower (P < 0.05) in the PAD patients compared with the control subjects. Analysis of mRNA expression for a range of angiogenic and angiostatic factors revealed a modest change with active exercise and passive movement in both groups, except for an increase (P < 0.05) in the ratio of angiopoietin-2 to angiopoietin-1 mRNA in the PAD group with both interventions. PAD patients and aged individuals showed a similar limited angiogenic response to active exercise and passive movement. The limited increase in muscle extracellular VEGF combined with an elevated basal level of thrombospondin-1 in muscle extracellular fluid of PAD patients may restrict capillary growth in these patients.
Peripheral arterial disease (PAD) is caused by atherosclerosis and is associated with microcirculatory impairments in skeletal muscle. The present study evaluated the angiogenic response to exercise and passive movement in skeletal muscle of PAD patients compared with healthy control subjects. Twenty-one PAD patients and 17 aged control subjects were randomly assigned to either a passive movement or an active exercise study. Interstitial fluid microdialysate and tissue samples were obtained from the thigh skeletal muscle. Muscle dialysate vascular endothelial growth factor (VEGF) levels were modestly increased in response to either passive movement or active exercise in both subject groups. The basal muscle dialysate level of the angiostatic factor thrombospondin-1 protein was markedly higher (P < 0.05) in PAD patients compared with the control subjects, whereas soluble VEGF receptor-1 dialysate levels were similar in the two groups. The basal VEGF protein content in the muscle tissue samples was ~27% lower (P < 0.05) in the PAD patients compared with the control subjects. Analysis of mRNA expression for a range of angiogenic and angiostatic factors revealed a modest change with active exercise and passive movement in both groups, except for an increase (P < 0.05) in the ratio of angiopoietin-2 to angiopoietin-1 mRNA in the PAD group with both interventions. PAD patients and aged individuals showed a similar limited angiogenic response to active exercise and passive movement. The limited increase in muscle extracellular VEGF combined with an elevated basal level of thrombospondin-1 in muscle extracellular fluid of PAD patients may restrict capillary growth in these patients. [PUBLICATION ABSTRACT]
Author Hellsten, Y.
Passos, M.
Bangsbo, J.
Green, A.
Walker, P. J.
Askew, C. D.
Walker, M.
Hoier, B.
Author_xml – sequence: 1
  givenname: B.
  surname: Hoier
  fullname: Hoier, B.
  organization: Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
– sequence: 2
  givenname: M.
  surname: Walker
  fullname: Walker, M.
  organization: School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
– sequence: 3
  givenname: M.
  surname: Passos
  fullname: Passos, M.
  organization: Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark;, Department of Biochemistry and Immunology, University of São Paulo, Ribeirão Preto, Brazil
– sequence: 4
  givenname: P. J.
  surname: Walker
  fullname: Walker, P. J.
  organization: School of Medicine and Centre for Clinical Research, University of Queensland, Brisbane, Queensland, Australia; and, Department of Vascular Surgery, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
– sequence: 5
  givenname: A.
  surname: Green
  fullname: Green, A.
  organization: School of Medicine and Centre for Clinical Research, University of Queensland, Brisbane, Queensland, Australia; and
– sequence: 6
  givenname: J.
  surname: Bangsbo
  fullname: Bangsbo, J.
  organization: Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
– sequence: 7
  givenname: C. D.
  surname: Askew
  fullname: Askew, C. D.
  organization: School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
– sequence: 8
  givenname: Y.
  surname: Hellsten
  fullname: Hellsten, Y.
  organization: Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24157526$$D View this record in MEDLINE/PubMed
BookMark eNqFkktv1DAUhS1URKcDfwEiselmBj9jZwFSVbWAVKmbsrYc52bGQ2IH2xnov6-Hlqp0U8ny8ztXR9fnBB354AGhDwSvCRH0085M0zBtb5MLwxrjRjZrigl7hRblla5IjckRWigp8EoKJY_RSUo7jAnngrxBx5QTIQWtF-jnmd-4sAHvbBUhTcEnqHKoJpOS20M1hj2M4HNlfFcZmw938AeidYVzvozO7V03myFVv13eVhNEN20hmqEyMZdD2XQFNgneotd94eDdw7pEPy4vbs6_ra6uv34_P7taWS5VLnPLW2b7zja856pvVIul6pllrCaEC9oAl21HrBUNxm1b29oorHopjLAgKVuiL_d1p7kdobPFfrGjp-hGE291ME7__-LdVm_CXjOlaMNUKXD6UCCGXzOkrEeXLAyD8RDmpIlgXFHOBH8Z5XVDicJFskQfn6G7MEdfOlEoyRmvhZCFev_U_KPrf19WAHkP2BhSitA_IgTrQzj003Dov-HQh3AU5ednSuuyyS4cuuCGF_V3sZXIcw
CitedBy_id crossref_primary_10_1186_s12877_021_02636_6
crossref_primary_10_1016_j_neurobiolaging_2023_12_004
crossref_primary_10_1042_BST20140197
crossref_primary_10_1152_ajpheart_00048_2016
crossref_primary_10_3389_fphys_2017_00523
crossref_primary_10_1152_physiolgenomics_00125_2014
crossref_primary_10_1161_CIRCRESAHA_121_318242
crossref_primary_10_1249_MSS_0000000000002665
crossref_primary_10_1371_journal_pcbi_1005272
crossref_primary_10_1038_srep37030
crossref_primary_10_1155_2017_2390174
crossref_primary_10_3389_fphar_2015_00179
crossref_primary_10_1152_ajpregu_00480_2015
crossref_primary_10_1152_japplphysiol_01110_2016
crossref_primary_10_1186_s12929_017_0346_8
crossref_primary_10_1111_apha_12857
crossref_primary_10_1089_ars_2017_7140
crossref_primary_10_1039_C7IB00218A
crossref_primary_10_1111_apha_12709
crossref_primary_10_1016_j_cophys_2019_06_005
crossref_primary_10_1016_j_heliyon_2023_e22905
crossref_primary_10_1016_j_atherosclerosis_2015_12_029
crossref_primary_10_1016_j_vph_2016_09_003
crossref_primary_10_1002_psp4_12261
crossref_primary_10_1111_apha_12501
crossref_primary_10_1016_j_stem_2022_10_009
crossref_primary_10_1016_j_ahjo_2023_100291
crossref_primary_10_3389_fmolb_2024_1363384
crossref_primary_10_1113_JP280684
crossref_primary_10_1152_ajpheart_00784_2020
crossref_primary_10_1111_micc_12117
crossref_primary_10_1139_apnm_2015_0336
crossref_primary_10_3389_fphys_2018_01807
crossref_primary_10_1152_japplphysiol_00799_2021
crossref_primary_10_1038_s41536_021_00127_1
crossref_primary_10_1177_1074248417735399
crossref_primary_10_1007_s40279_019_01146_1
crossref_primary_10_1152_ajpheart_00168_2014
crossref_primary_10_7759_cureus_73925
crossref_primary_10_1038_natrevmats_2015_6
crossref_primary_10_1515_med_2017_0022
crossref_primary_10_1152_ajpcell_00089_2020
crossref_primary_10_1111_jcmm_13565
crossref_primary_10_1113_EP091134
crossref_primary_10_1007_s40279_020_01290_z
crossref_primary_10_3389_fphys_2020_00028
crossref_primary_10_1152_ajpregu_00320_2021
crossref_primary_10_14814_phy2_12721
crossref_primary_10_15857_ksep_2018_27_1_1
Cites_doi 10.1152/ajpheart.00082.2010
10.1161/ATVBAHA.111.230441
10.1016/j.freeradbiomed.2007.02.029
10.1016/j.atherosclerosis.2011.03.018
10.1152/ajpheart.00082.2002
10.1042/CS20060151
10.1152/ajpendo.2000.279.4.E806
10.1113/jphysiol.2012.239053
10.1016/S0002-9440(10)62566-7
10.1111/j.1365-2362.1980.tb00037.x
10.1038/nm0897-879
10.1152/ajpregu.00029.2003
10.1007/s10456-004-4184-4
10.1152/ajpheart.00150.2003
10.1161/01.CIR.94.7.1647
10.1152/japplphysiol.00141.2011
10.1096/fj.12-224618
10.1113/jphysiol.2002.037051
10.1152/jappl.1996.81.1.355
10.1016/j.jvs.2005.01.037
10.1113/jphysiol.2005.095596
10.1016/j.atherosclerosis.2004.01.015
10.1152/ajpregu.00677.2007
10.1096/fasebj.13.1.9
10.1161/01.CIR.100.13.1423
10.1016/j.ejvs.2004.09.001
10.1152/ajpregu.00347.2010
10.1097/01.hjh.0000378840.37740.21
10.1161/01.CIR.99.20.2682
10.1152/ajpheart.1999.276.2.H679
10.1080/08977190601000111
10.1113/expphysiol.2008.045989
10.1042/CS20050185
10.1113/jphysiol.2007.143198
10.1007/s00424-008-0563-9
10.1152/ajpheart.1999.277.6.H2247
10.1152/japplphysiol.01402.2004
10.1113/expphysiol.2012.067967
10.1113/jphysiol.2012.235952
10.1016/j.jvs.2003.07.006
10.1126/science.277.5322.55
10.1016/j.ejvs.2009.08.005
10.1113/jphysiol.2010.190439
10.1152/japplphysiol.00827.2005
10.1177/205873920601900104
10.1042/BST20110646
10.1152/japplphysiol.01103.2006
10.1073/pnas.90.22.10705
10.1177/1358863X11436334
10.1113/jphysiol.2011.216135
10.1023/A:1009018702832
10.1152/japplphysiol.00822.2006
10.1093/cvr/23.11.913
10.1152/ajpheart.00743.2002
ContentType Journal Article
Copyright Copyright American Physiological Society Dec 15, 2013
Copyright © 2013 the American Physiological Society 2013 American Physiological Society
Copyright_xml – notice: Copyright American Physiological Society Dec 15, 2013
– notice: Copyright © 2013 the American Physiological Society 2013 American Physiological Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TS
7U7
8FD
C1K
FR3
P64
7X8
5PM
DOI 10.1152/japplphysiol.00979.2013
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Physical Education Index
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Physical Education Index
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Physical Education Index
MEDLINE
CrossRef
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1522-1601
EndPage 1787
ExternalDocumentID PMC3882938
3173693641
24157526
10_1152_japplphysiol_00979_2013
Genre Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-~X
.55
18M
29J
2WC
4.4
53G
5VS
85S
AAFWJ
AAYXX
ABCQX
ABDNZ
ABHWK
ABJNI
ABKWE
ABOCM
ACBEA
ACGFO
ACGFS
ACIWK
ACPRK
ADBBV
ADFNX
AEILP
AENEX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKKCC
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
EMOBN
F5P
FRP
GX1
H13
H~9
ITBOX
KQ8
L7B
OK1
P-O
P2P
P6G
PQQKQ
RAP
RHI
RPL
RPRKH
SJN
TR2
UHB
UKR
UPT
W8F
WH7
WOQ
X7M
XSW
YBH
YQT
YWH
~02
.GJ
1CY
39C
3O-
8M5
ACKIV
ACYGS
ADXHL
AETEA
AGCDD
AGNAY
AI.
AIDAL
AJUXI
C1A
C2-
CGR
CUY
CVF
ECM
EIF
J5H
MVM
NEJ
NPM
OHT
VH1
XOL
YQJ
ZXP
7QP
7QR
7TK
7TS
7U7
8FD
C1K
FR3
P64
7X8
5PM
ID FETCH-LOGICAL-c478t-c4b4b3cfdc94f48f98b078f3c336114529e47bd1cc5900bb6c6a808f75a5ce723
ISSN 8750-7587
1522-1601
IngestDate Thu Aug 21 18:05:16 EDT 2025
Fri Sep 05 09:12:25 EDT 2025
Thu Sep 04 19:55:57 EDT 2025
Mon Jun 30 08:41:18 EDT 2025
Mon Jul 21 05:55:44 EDT 2025
Tue Jul 01 01:13:40 EDT 2025
Thu Apr 24 22:52:14 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords microdialysis
skeletal muscle
capillary
vascular endothelial growth factor
intermittent claudication
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c478t-c4b4b3cfdc94f48f98b078f3c336114529e47bd1cc5900bb6c6a808f75a5ce723
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
ObjectType-Article-2
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3882938
PMID 24157526
PQID 1474346557
PQPubID 40905
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3882938
proquest_miscellaneous_1534824354
proquest_miscellaneous_1469218015
proquest_journals_1474346557
pubmed_primary_24157526
crossref_primary_10_1152_japplphysiol_00979_2013
crossref_citationtrail_10_1152_japplphysiol_00979_2013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-12-01
PublicationDateYYYYMMDD 2013-12-01
PublicationDate_xml – month: 12
  year: 2013
  text: 2013-12-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Bethesda
– name: Bethesda, MD
PublicationTitle Journal of applied physiology (1985)
PublicationTitleAlternate J Appl Physiol (1985)
PublicationYear 2013
Publisher American Physiological Society
Publisher_xml – name: American Physiological Society
References B20
B21
B22
B23
B24
B25
B26
B27
B28
B29
Hansen AH (B15) 2010; 28
B30
B31
B33
B34
B35
B36
B37
B38
B39
B1
B2
B3
B4
B5
B6
B7
B9
Folkman J (B8) 1992; 3
B40
B41
B42
B43
B44
B45
B46
B47
B48
B49
B50
B51
B52
B53
B10
B54
B11
B55
B12
B56
B13
B14
Makitie J (B32) 1977; 101
B16
B17
B18
B19
21512146 - J Appl Physiol (1985). 2011 Jul;111(1):81-6
17602951 - Free Radic Biol Med. 2007 Aug 1;43(3):353-61
17381066 - Growth Factors. 2006 Dec;24(4):253-9
14517432 - Angiogenesis. 1999;3(2):147-58
22402934 - Vasc Med. 2012 Apr;17(2):94-100
15135259 - Atherosclerosis. 2004 May;174(1):111-20
17255365 - J Appl Physiol (1985). 2007 Jun;102(6):2346-51
17884919 - J Physiol. 2007 Nov 15;585(Pt 1):231-9
8840857 - Circulation. 1996 Oct 1;94(7):1647-54
10338463 - Circulation. 1999 May 25;99(20):2682-7
8248162 - Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10705-9
15609080 - Angiogenesis. 2004;7(3):255-67
15886664 - J Vasc Surg. 2005 May;41(5):802-7
9256279 - Nat Med. 1997 Aug;3(8):879-86
9204896 - Science. 1997 Jul 4;277(5322):55-60
9872925 - FASEB J. 1999 Jan;13(1):9-22
6775957 - Eur J Clin Invest. 1980 Aug;10(4):301-5
2611800 - Cardiovasc Res. 1989 Nov;23(11):913-20
22733658 - J Physiol. 2012 Sep 1;590(Pt 17):4391-400
18094062 - Am J Physiol Regul Integr Comp Physiol. 2008 Mar;294(3):R975-82
1378311 - Semin Cancer Biol. 1992 Apr;3(2):65-71
10500044 - Circulation. 1999 Sep 28;100(13):1423-31
16402918 - Clin Sci (Lond). 2006 May;110(5):587-95
17569764 - J Appl Physiol (1985). 2007 Sep;103(3):1012-20
12754306 - J Physiol. 2003 Jul 1;550(Pt 1):217-25
11943724 - Am J Pathol. 2002 Apr;160(4):1393-403
578111 - Arch Pathol Lab Med. 1977 Sep;101(9):500-3
16928196 - Clin Sci (Lond). 2006 Dec;111(6):401-9
21481871 - Atherosclerosis. 2011 Jul;217(1):240-8
22890714 - J Physiol. 2012 Nov 1;590(Pt 21):5361-70
19297388 - Exp Physiol. 2009 Jun;94(6):749-60
20693292 - J Physiol. 2010 Oct 1;588(Pt 19):3833-45
22103486 - Biochem Soc Trans. 2011 Dec;39(6):1556-9
12663256 - Am J Physiol Regul Integr Comp Physiol. 2003 Jul;285(1):R143-8
19775917 - Eur J Vasc Endovasc Surg. 2009 Dec;38(6):689-96
9950871 - Am J Physiol. 1999 Feb;276(2 Pt 2):H679-85
10600843 - Am J Physiol. 1999 Dec;277(6 Pt 2):H2247-52
14981457 - J Vasc Surg. 2004 Mar;39(3):621-8
8828685 - J Appl Physiol (1985). 1996 Jul;81(1):355-61
20179634 - J Hypertens. 2010 Jun;28(6):1176-85
11001762 - Am J Physiol Endocrinol Metab. 2000 Oct;279(4):E806-14
12543634 - Am J Physiol Heart Circ Physiol. 2003 May;284(5):H1668-78
20543089 - Am J Physiol Heart Circ Physiol. 2010 Sep;299(3):H857-62
22962287 - Exp Physiol. 2013 Feb;98(2):585-97
12234794 - Am J Physiol Heart Circ Physiol. 2002 Oct;283(4):H1430-8
18704490 - Pflugers Arch. 2009 Mar;457(5):963-77
16569344 - Int J Immunopathol Pharmacol. 2006 Jan-Mar;19(1):35-48
21868709 - Arterioscler Thromb Vasc Biol. 2011 Nov;31(11):2742-8
15661835 - J Appl Physiol (1985). 2005 Jun;98(6):2137-46
22155930 - J Physiol. 2012 Feb 1;590(Pt 3):595-606
15531204 - Eur J Vasc Endovasc Surg. 2004 Dec;28(6):660-9
12763746 - Am J Physiol Heart Circ Physiol. 2003 Oct;285(4):H1759-63
16166239 - J Appl Physiol (1985). 2006 Jan;100(1):178-85
23709615 - FASEB J. 2013 Sep;27(9):3496-504
16293647 - J Physiol. 2006 Feb 1;570(Pt 3):445-54
20686173 - Am J Physiol Regul Integr Comp Physiol. 2010 Oct;299(4):R1059-67
References_xml – ident: B21
  doi: 10.1152/ajpheart.00082.2010
– ident: B6
  doi: 10.1161/ATVBAHA.111.230441
– ident: B16
  doi: 10.1016/j.freeradbiomed.2007.02.029
– ident: B49
  doi: 10.1016/j.atherosclerosis.2011.03.018
– ident: B45
  doi: 10.1152/ajpheart.00082.2002
– ident: B56
  doi: 10.1042/CS20060151
– ident: B42
  doi: 10.1152/ajpendo.2000.279.4.E806
– ident: B37
  doi: 10.1113/jphysiol.2012.239053
– ident: B44
  doi: 10.1016/S0002-9440(10)62566-7
– ident: B14
  doi: 10.1111/j.1365-2362.1980.tb00037.x
– ident: B50
  doi: 10.1038/nm0897-879
– ident: B36
  doi: 10.1152/ajpregu.00029.2003
– ident: B26
  doi: 10.1007/s10456-004-4184-4
– ident: B18
  doi: 10.1152/ajpheart.00150.2003
– ident: B53
  doi: 10.1161/01.CIR.94.7.1647
– ident: B46
  doi: 10.1152/japplphysiol.00141.2011
– ident: B23
  doi: 10.1096/fj.12-224618
– ident: B19
  doi: 10.1113/jphysiol.2002.037051
– ident: B3
  doi: 10.1152/jappl.1996.81.1.355
– ident: B1
  doi: 10.1016/j.jvs.2005.01.037
– ident: B54
  doi: 10.1113/jphysiol.2005.095596
– volume: 3
  start-page: 65
  year: 1992
  ident: B8
  publication-title: Semin Cancer Biol
– ident: B51
  doi: 10.1016/j.atherosclerosis.2004.01.015
– ident: B17
  doi: 10.1152/ajpregu.00677.2007
– ident: B35
  doi: 10.1096/fasebj.13.1.9
– ident: B25
  doi: 10.1161/01.CIR.100.13.1423
– ident: B4
  doi: 10.1016/j.ejvs.2004.09.001
– ident: B39
  doi: 10.1152/ajpregu.00347.2010
– volume: 28
  start-page: 1176
  year: 2010
  ident: B15
  publication-title: J Hypertens
  doi: 10.1097/01.hjh.0000378840.37740.21
– ident: B28
  doi: 10.1161/01.CIR.99.20.2682
– ident: B12
  doi: 10.1152/ajpheart.1999.276.2.H679
– ident: B38
  doi: 10.1080/08977190601000111
– ident: B33
  doi: 10.1113/expphysiol.2008.045989
– ident: B55
  doi: 10.1042/CS20050185
– ident: B9
  doi: 10.1113/jphysiol.2007.143198
– ident: B7
  doi: 10.1007/s00424-008-0563-9
– ident: B43
  doi: 10.1152/ajpheart.1999.277.6.H2247
– ident: B11
  doi: 10.1152/japplphysiol.01402.2004
– ident: B22
  doi: 10.1113/expphysiol.2012.067967
– ident: B34
  doi: 10.1113/jphysiol.2012.235952
– ident: B41
  doi: 10.1016/j.jvs.2003.07.006
– ident: B31
  doi: 10.1126/science.277.5322.55
– ident: B40
  doi: 10.1016/j.ejvs.2009.08.005
– ident: B24
  doi: 10.1113/jphysiol.2010.190439
– volume: 101
  start-page: 500
  year: 1977
  ident: B32
  publication-title: Arch Pathol Lab Med
– ident: B48
  doi: 10.1152/japplphysiol.00827.2005
– ident: B2
  doi: 10.1177/205873920601900104
– ident: B52
  doi: 10.1042/BST20110646
– ident: B13
  doi: 10.1152/japplphysiol.01103.2006
– ident: B29
  doi: 10.1073/pnas.90.22.10705
– ident: B27
  doi: 10.1177/1358863X11436334
– ident: B20
  doi: 10.1113/jphysiol.2011.216135
– ident: B10
  doi: 10.1023/A:1009018702832
– ident: B47
  doi: 10.1152/japplphysiol.00822.2006
– ident: B5
  doi: 10.1093/cvr/23.11.913
– ident: B30
  doi: 10.1152/ajpheart.00743.2002
– reference: 17569764 - J Appl Physiol (1985). 2007 Sep;103(3):1012-20
– reference: 22733658 - J Physiol. 2012 Sep 1;590(Pt 17):4391-400
– reference: 15609080 - Angiogenesis. 2004;7(3):255-67
– reference: 22890714 - J Physiol. 2012 Nov 1;590(Pt 21):5361-70
– reference: 15886664 - J Vasc Surg. 2005 May;41(5):802-7
– reference: 14517432 - Angiogenesis. 1999;3(2):147-58
– reference: 16402918 - Clin Sci (Lond). 2006 May;110(5):587-95
– reference: 11001762 - Am J Physiol Endocrinol Metab. 2000 Oct;279(4):E806-14
– reference: 11943724 - Am J Pathol. 2002 Apr;160(4):1393-403
– reference: 12543634 - Am J Physiol Heart Circ Physiol. 2003 May;284(5):H1668-78
– reference: 22962287 - Exp Physiol. 2013 Feb;98(2):585-97
– reference: 20693292 - J Physiol. 2010 Oct 1;588(Pt 19):3833-45
– reference: 16166239 - J Appl Physiol (1985). 2006 Jan;100(1):178-85
– reference: 15135259 - Atherosclerosis. 2004 May;174(1):111-20
– reference: 19297388 - Exp Physiol. 2009 Jun;94(6):749-60
– reference: 20179634 - J Hypertens. 2010 Jun;28(6):1176-85
– reference: 21868709 - Arterioscler Thromb Vasc Biol. 2011 Nov;31(11):2742-8
– reference: 9204896 - Science. 1997 Jul 4;277(5322):55-60
– reference: 10600843 - Am J Physiol. 1999 Dec;277(6 Pt 2):H2247-52
– reference: 9872925 - FASEB J. 1999 Jan;13(1):9-22
– reference: 12663256 - Am J Physiol Regul Integr Comp Physiol. 2003 Jul;285(1):R143-8
– reference: 22402934 - Vasc Med. 2012 Apr;17(2):94-100
– reference: 19775917 - Eur J Vasc Endovasc Surg. 2009 Dec;38(6):689-96
– reference: 18704490 - Pflugers Arch. 2009 Mar;457(5):963-77
– reference: 6775957 - Eur J Clin Invest. 1980 Aug;10(4):301-5
– reference: 17381066 - Growth Factors. 2006 Dec;24(4):253-9
– reference: 1378311 - Semin Cancer Biol. 1992 Apr;3(2):65-71
– reference: 22103486 - Biochem Soc Trans. 2011 Dec;39(6):1556-9
– reference: 8828685 - J Appl Physiol (1985). 1996 Jul;81(1):355-61
– reference: 10338463 - Circulation. 1999 May 25;99(20):2682-7
– reference: 16928196 - Clin Sci (Lond). 2006 Dec;111(6):401-9
– reference: 18094062 - Am J Physiol Regul Integr Comp Physiol. 2008 Mar;294(3):R975-82
– reference: 9256279 - Nat Med. 1997 Aug;3(8):879-86
– reference: 2611800 - Cardiovasc Res. 1989 Nov;23(11):913-20
– reference: 23709615 - FASEB J. 2013 Sep;27(9):3496-504
– reference: 9950871 - Am J Physiol. 1999 Feb;276(2 Pt 2):H679-85
– reference: 8248162 - Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10705-9
– reference: 20686173 - Am J Physiol Regul Integr Comp Physiol. 2010 Oct;299(4):R1059-67
– reference: 14981457 - J Vasc Surg. 2004 Mar;39(3):621-8
– reference: 12754306 - J Physiol. 2003 Jul 1;550(Pt 1):217-25
– reference: 8840857 - Circulation. 1996 Oct 1;94(7):1647-54
– reference: 16569344 - Int J Immunopathol Pharmacol. 2006 Jan-Mar;19(1):35-48
– reference: 20543089 - Am J Physiol Heart Circ Physiol. 2010 Sep;299(3):H857-62
– reference: 16293647 - J Physiol. 2006 Feb 1;570(Pt 3):445-54
– reference: 578111 - Arch Pathol Lab Med. 1977 Sep;101(9):500-3
– reference: 12763746 - Am J Physiol Heart Circ Physiol. 2003 Oct;285(4):H1759-63
– reference: 17602951 - Free Radic Biol Med. 2007 Aug 1;43(3):353-61
– reference: 17884919 - J Physiol. 2007 Nov 15;585(Pt 1):231-9
– reference: 17255365 - J Appl Physiol (1985). 2007 Jun;102(6):2346-51
– reference: 10500044 - Circulation. 1999 Sep 28;100(13):1423-31
– reference: 21481871 - Atherosclerosis. 2011 Jul;217(1):240-8
– reference: 21512146 - J Appl Physiol (1985). 2011 Jul;111(1):81-6
– reference: 15661835 - J Appl Physiol (1985). 2005 Jun;98(6):2137-46
– reference: 15531204 - Eur J Vasc Endovasc Surg. 2004 Dec;28(6):660-9
– reference: 12234794 - Am J Physiol Heart Circ Physiol. 2002 Oct;283(4):H1430-8
– reference: 22155930 - J Physiol. 2012 Feb 1;590(Pt 3):595-606
SSID ssj0014451
Score 2.329378
Snippet Peripheral arterial disease (PAD) is caused by atherosclerosis and is associated with microcirculatory impairments in skeletal muscle. The present study...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1777
SubjectTerms Aged
Angiopoietin-2 - genetics
Angiopoietin-2 - metabolism
Atherosclerosis
Case-Control Studies
Exercise
Exercise - physiology
Female
Humans
Male
Middle Aged
Movement
Muscle, Skeletal - metabolism
Muscle, Skeletal - physiology
Musculoskeletal diseases
Neovascularization, Physiologic - physiology
Peripheral Arterial Disease - genetics
Peripheral Arterial Disease - metabolism
Peripheral Arterial Disease - physiopathology
Peripheral Arterial Disease - therapy
RNA, Messenger - genetics
Thrombospondin 1 - genetics
Thrombospondin 1 - metabolism
Tissues
Vascular endothelial growth factor
Vascular Endothelial Growth Factor A - genetics
Vascular Endothelial Growth Factor A - metabolism
Vascular Endothelial Growth Factor Receptor-1 - genetics
Vascular Endothelial Growth Factor Receptor-1 - metabolism
Title Angiogenic response to passive movement and active exercise in individuals with peripheral arterial disease
URI https://www.ncbi.nlm.nih.gov/pubmed/24157526
https://www.proquest.com/docview/1474346557
https://www.proquest.com/docview/1469218015
https://www.proquest.com/docview/1534824354
https://pubmed.ncbi.nlm.nih.gov/PMC3882938
Volume 115
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgSIgXBBsfgYGMhHhBHU0cO85jhTZVsI0itaJvke3aENElE2QP8Ndz_shH1wGDl6i1ndbp_Xy9s-9-h9DL3Cj4VydiZFZ5Cg4KLEXOVmIkjYqpSnmilWP7PGXTRfpuSZf9Zo7LLmnkgfp5ZV7J_0gV2kCuNkv2HyTbfSg0wGuQL1xBwnC9lown1eeyhl5Hw-xiXV0hjHMwiG1A0FntyMB9DLlwiq0rsWT3OcouGSvkuFnWY0czsH7tQj3LSyc420asCEas2yDxdE6W-SnndLDFMK1LD4zueOeTWIdojm7jZwaT9iF_J9ujZuH0KmxPxGQQ6hE0Kni7MQtN-oq2Vg37tM4Wb8lAq8aZL_Wyre5p4soMwLOG5zywiSk2AclnuG4SbJ9-KI4Wx8fF_HA5v4luJVnmTvbff-wPnixfm6PYDTMMIYHw_s1vvmbToNnyUi4H2w6sl_k9dDdIDE88hu6jG7raRXuTSjT12Q_8Cs86-e2i2ych3mIPfe0RhluE4abGAWG4RRgGhGGPMNwiDJcVHiAMW4ThHmG4RRgOCHuAFkeH87fTUSjPMVJpxhu4ylQSZVYqT03KTc4l2JuGKEIYeNk0yXWayVWslK1MKyVTTPAxNxkVVOksIQ_RTlVX-jHCcSwMpyYxYCynWjIhxVjGgoIiGRujSYRY-xsXKnDX2xIq68L5sDQphsIpnHAKK5wIjbsbzz19y99v2W-FWIS1_h0cZLC0LdVgFqEXXTdoYnu8JipdX9gxLAeDGezrP4yhlkwKXJQ0Qo88Lrp5WVs6owmLULaBmG6AZYLf7KnKL44RnoCfnBP-5Bpze4ru9Mt0H-003y70M7CrG_ncrYRfnavV9Q
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Angiogenic+response+to+passive+movement+and+active+exercise+in+individuals+with+peripheral+arterial+disease&rft.jtitle=Journal+of+applied+physiology+%281985%29&rft.au=Hoier%2C+B&rft.au=Walker%2C+M&rft.au=Passos%2C+M&rft.au=Walker%2C+P+J&rft.date=2013-12-01&rft.issn=1522-1601&rft.eissn=1522-1601&rft.volume=115&rft.issue=12&rft.spage=1777&rft_id=info:doi/10.1152%2Fjapplphysiol.00979.2013&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8750-7587&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8750-7587&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8750-7587&client=summon