Oxidized LDL Modify the Human Adipocyte Phenotype to an Insulin Resistant, Proinflamatory and Proapoptotic Profile
Little information exists in humans on the regulation that oxidized low-density lipoprotein (oxLDL) exerts on adipocyte metabolism, which is associated with obesity and type 2 diabetes. The aim was to analyze the oxLDL effects on adipocytokine secretion and scavenger receptors (SRs) and cell death m...
Saved in:
Published in | Biomolecules (Basel, Switzerland) Vol. 10; no. 4; p. 534 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.04.2020
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Little information exists in humans on the regulation that oxidized low-density lipoprotein (oxLDL) exerts on adipocyte metabolism, which is associated with obesity and type 2 diabetes. The aim was to analyze the oxLDL effects on adipocytokine secretion and scavenger receptors (SRs) and cell death markers in human visceral adipocytes. Human differentiated adipocytes from visceral adipose tissue from non-obese and morbidly obese subjects were incubated with increasing oxLDL concentrations. mRNA expression of SRs, markers of apoptosis and autophagy, secretion of adipocytokines, and glucose uptake were analyzed. In non-obese and in morbidly obese subjects, oxLDL produced a decrease in insulin-induced glucose uptake, a significant dose-dependent increase in tumor necrosis factor-α (TNF-α), IL-6, and adiponectin secretion, and a decrease in leptin secretion. OxLDL produced a significant increase of Lox-1 and a decrease in Cxcl16 and Cl-p1 expression. The expression of Bnip3 (marker of apoptosis, necrosis and autophagy) was significantly increased and Bcl2 (antiapoptotic marker) was decreased. OxLDL could sensitize adipocytes to a lower insulin-induced glucose uptake, a more proinflammatory phenotype, and could modify the gene expression involved in apoptosis, autophagy, necrosis, and mitophagy. OxLDL can upregulate Lox-1, and this could lead to a possible amplification of proinflammatory and proapoptotic effects of oxLDL. |
---|---|
AbstractList | Little information exists in humans on the regulation that oxidized low-density lipoprotein (oxLDL) exerts on adipocyte metabolism, which is associated with obesity and type 2 diabetes. The aim was to analyze the oxLDL effects on adipocytokine secretion and scavenger receptors (SRs) and cell death markers in human visceral adipocytes. Human differentiated adipocytes from visceral adipose tissue from non-obese and morbidly obese subjects were incubated with increasing oxLDL concentrations. mRNA expression of SRs, markers of apoptosis and autophagy, secretion of adipocytokines, and glucose uptake were analyzed. In non-obese and in morbidly obese subjects, oxLDL produced a decrease in insulin-induced glucose uptake, a significant dose-dependent increase in tumor necrosis factor-α (TNF-α), IL-6, and adiponectin secretion, and a decrease in leptin secretion. OxLDL produced a significant increase of Lox-1 and a decrease in Cxcl16 and Cl-p1 expression. The expression of Bnip3 (marker of apoptosis, necrosis and autophagy) was significantly increased and Bcl2 (antiapoptotic marker) was decreased. OxLDL could sensitize adipocytes to a lower insulin-induced glucose uptake, a more proinflammatory phenotype, and could modify the gene expression involved in apoptosis, autophagy, necrosis, and mitophagy. OxLDL can upregulate Lox-1, and this could lead to a possible amplification of proinflammatory and proapoptotic effects of oxLDL.Little information exists in humans on the regulation that oxidized low-density lipoprotein (oxLDL) exerts on adipocyte metabolism, which is associated with obesity and type 2 diabetes. The aim was to analyze the oxLDL effects on adipocytokine secretion and scavenger receptors (SRs) and cell death markers in human visceral adipocytes. Human differentiated adipocytes from visceral adipose tissue from non-obese and morbidly obese subjects were incubated with increasing oxLDL concentrations. mRNA expression of SRs, markers of apoptosis and autophagy, secretion of adipocytokines, and glucose uptake were analyzed. In non-obese and in morbidly obese subjects, oxLDL produced a decrease in insulin-induced glucose uptake, a significant dose-dependent increase in tumor necrosis factor-α (TNF-α), IL-6, and adiponectin secretion, and a decrease in leptin secretion. OxLDL produced a significant increase of Lox-1 and a decrease in Cxcl16 and Cl-p1 expression. The expression of Bnip3 (marker of apoptosis, necrosis and autophagy) was significantly increased and Bcl2 (antiapoptotic marker) was decreased. OxLDL could sensitize adipocytes to a lower insulin-induced glucose uptake, a more proinflammatory phenotype, and could modify the gene expression involved in apoptosis, autophagy, necrosis, and mitophagy. OxLDL can upregulate Lox-1, and this could lead to a possible amplification of proinflammatory and proapoptotic effects of oxLDL. Little information exists in humans on the regulation that oxidized low-density lipoprotein (oxLDL) exerts on adipocyte metabolism, which is associated with obesity and type 2 diabetes. The aim was to analyze the oxLDL effects on adipocytokine secretion and scavenger receptors (SRs) and cell death markers in human visceral adipocytes. Human differentiated adipocytes from visceral adipose tissue from non-obese and morbidly obese subjects were incubated with increasing oxLDL concentrations. mRNA expression of SRs, markers of apoptosis and autophagy, secretion of adipocytokines, and glucose uptake were analyzed. In non-obese and in morbidly obese subjects, oxLDL produced a decrease in insulin-induced glucose uptake, a significant dose-dependent increase in tumor necrosis factor-α (TNF-α), IL-6, and adiponectin secretion, and a decrease in leptin secretion. OxLDL produced a significant increase of Lox-1 and a decrease in Cxcl16 and Cl-p1 expression. The expression of Bnip3 (marker of apoptosis, necrosis and autophagy) was significantly increased and Bcl2 (antiapoptotic marker) was decreased. OxLDL could sensitize adipocytes to a lower insulin-induced glucose uptake, a more proinflammatory phenotype, and could modify the gene expression involved in apoptosis, autophagy, necrosis, and mitophagy. OxLDL can upregulate Lox-1, and this could lead to a possible amplification of proinflammatory and proapoptotic effects of oxLDL. Little information exists in humans on the regulation that oxidized low-density lipoprotein (oxLDL) exerts on adipocyte metabolism, which is associated with obesity and type 2 diabetes. The aim was to analyze the oxLDL effects on adipocytokine secretion and scavenger receptors (SRs) and cell death markers in human visceral adipocytes. Human differentiated adipocytes from visceral adipose tissue from non-obese and morbidly obese subjects were incubated with increasing oxLDL concentrations. mRNA expression of SRs, markers of apoptosis and autophagy, secretion of adipocytokines, and glucose uptake were analyzed. In non-obese and in morbidly obese subjects, oxLDL produced a decrease in insulin-induced glucose uptake, a significant dose- dependent increase in tumor necrosis factor-[alpha] (TNF-[alpha]), IL-6, and adiponectin secretion, and a decrease in leptin secretion. OxLDL produced a significant increase of Lox-1 and a decrease in Cxcl16 and Cl- p1 expression. The expression of Bnip3 (marker of apoptosis, necrosis and autophagy) was significantly increased and Bcl2 (antiapoptotic marker) was decreased. OxLDL could sensitize adipocytes to a lower insulin-induced glucose uptake, a more proinflammatory phenotype, and could modify the gene expression involved in apoptosis, autophagy, necrosis, and mitophagy. OxLDL can upregulate Lox-1, and this could lead to a possible amplification of proinflammatory and proapoptotic effects of oxLDL. Little information exists in humans on the regulation that oxidized low-density lipoprotein (oxLDL) exerts on adipocyte metabolism, which is associated with obesity and type 2 diabetes. The aim was to analyze the oxLDL effects on adipocytokine secretion and scavenger receptors (SRs) and cell death markers in human visceral adipocytes. Human differentiated adipocytes from visceral adipose tissue from non-obese and morbidly obese subjects were incubated with increasing oxLDL concentrations. mRNA expression of SRs, markers of apoptosis and autophagy, secretion of adipocytokines, and glucose uptake were analyzed. In non-obese and in morbidly obese subjects, oxLDL produced a decrease in insulin-induced glucose uptake, a significant dose-dependent increase in tumor necrosis factor-α (TNF-α), IL-6, and adiponectin secretion, and a decrease in leptin secretion. OxLDL produced a significant increase of and a decrease in and expression. The expression of (marker of apoptosis, necrosis and autophagy) was significantly increased and (antiapoptotic marker) was decreased. OxLDL could sensitize adipocytes to a lower insulin-induced glucose uptake, a more proinflammatory phenotype, and could modify the gene expression involved in apoptosis, autophagy, necrosis, and mitophagy. OxLDL can upregulate , and this could lead to a possible amplification of proinflammatory and proapoptotic effects of oxLDL. Little information exists in humans on the regulation that oxidized low-density lipoprotein (oxLDL) exerts on adipocyte metabolism, which is associated with obesity and type 2 diabetes. The aim was to analyze the oxLDL effects on adipocytokine secretion and scavenger receptors (SRs) and cell death markers in human visceral adipocytes. Human differentiated adipocytes from visceral adipose tissue from non-obese and morbidly obese subjects were incubated with increasing oxLDL concentrations. mRNA expression of SRs, markers of apoptosis and autophagy, secretion of adipocytokines, and glucose uptake were analyzed. In non-obese and in morbidly obese subjects, oxLDL produced a decrease in insulin-induced glucose uptake, a significant dose-dependent increase in tumor necrosis factor-α (TNF-α), IL-6, and adiponectin secretion, and a decrease in leptin secretion. OxLDL produced a significant increase of Lox-1 and a decrease in Cxcl16 and Cl-p1 expression. The expression of Bnip3 (marker of apoptosis, necrosis and autophagy) was significantly increased and Bcl2 (antiapoptotic marker) was decreased. OxLDL could sensitize adipocytes to a lower insulin-induced glucose uptake, a more proinflammatory phenotype, and could modify the gene expression involved in apoptosis, autophagy, necrosis, and mitophagy. OxLDL can upregulate Lox-1 , and this could lead to a possible amplification of proinflammatory and proapoptotic effects of oxLDL. |
Audience | Academic |
Author | Garrido-Sánchez, Lourdes Tatzber, Franz Santiago-Fernández, Concepción Tome, Mónica García-Fuentes, Eduardo Martin-Reyes, Flores Rivas-Becerra, Jose Pursch, Edith Ocaña-Wilhelmi, Luis Tinahones, Francisco J. |
AuthorAffiliation | 6 Unidad de Gestión Clínica de Cirugía General, Digestiva y Trasplantes, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain; luisowilhelmi@hotmail.com 8 Medical University of Graz, Centre of Molecular Medicine, Institute of Pathophysiology & Immunology, 8010 Graz, Austria; franz@tatzber.at 10 CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, 29010 Malaga, Spain 9 University of Applied Sciences Technikum Wien, Institute of Biochemistry, 1200 Vienna, Austria; werner.pursch@aon.at 7 Unidad de Gestión Clínica de Cirugía General, Digestiva y Trasplantes, Hospital Regional Universitario, 29010 Malaga, Spain; doctopep@hotmail.com 1 Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain; conchisantiagofernandez@gmail.com 2 Instituto de Investigación Biomédica de Málaga-IBIMA, 29010 Malaga, Spain; floresmarey@hotmail.com (F.M.-R.); lourgarrido@gmail.com (L.G.-S.) 5 Unidad de Gestión Clínica de End |
AuthorAffiliation_xml | – name: 3 Universidad de Málaga, 29010 Malaga, Spain – name: 7 Unidad de Gestión Clínica de Cirugía General, Digestiva y Trasplantes, Hospital Regional Universitario, 29010 Malaga, Spain; doctopep@hotmail.com – name: 1 Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain; conchisantiagofernandez@gmail.com – name: 4 Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain – name: 9 University of Applied Sciences Technikum Wien, Institute of Biochemistry, 1200 Vienna, Austria; werner.pursch@aon.at – name: 10 CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, 29010 Malaga, Spain – name: 8 Medical University of Graz, Centre of Molecular Medicine, Institute of Pathophysiology & Immunology, 8010 Graz, Austria; franz@tatzber.at – name: 2 Instituto de Investigación Biomédica de Málaga-IBIMA, 29010 Malaga, Spain; floresmarey@hotmail.com (F.M.-R.); lourgarrido@gmail.com (L.G.-S.) – name: 6 Unidad de Gestión Clínica de Cirugía General, Digestiva y Trasplantes, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain; luisowilhelmi@hotmail.com – name: 5 Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Regional Universitario, 29010 Malaga, Spain; doctoratome@gmail.com |
Author_xml | – sequence: 1 givenname: Concepción orcidid: 0000-0003-4439-6863 surname: Santiago-Fernández fullname: Santiago-Fernández, Concepción – sequence: 2 givenname: Flores orcidid: 0000-0002-3633-8367 surname: Martin-Reyes fullname: Martin-Reyes, Flores – sequence: 3 givenname: Mónica surname: Tome fullname: Tome, Mónica – sequence: 4 givenname: Luis surname: Ocaña-Wilhelmi fullname: Ocaña-Wilhelmi, Luis – sequence: 5 givenname: Jose surname: Rivas-Becerra fullname: Rivas-Becerra, Jose – sequence: 6 givenname: Franz surname: Tatzber fullname: Tatzber, Franz – sequence: 7 givenname: Edith surname: Pursch fullname: Pursch, Edith – sequence: 8 givenname: Francisco J. surname: Tinahones fullname: Tinahones, Francisco J. – sequence: 9 givenname: Eduardo orcidid: 0000-0002-3491-2724 surname: García-Fuentes fullname: García-Fuentes, Eduardo – sequence: 10 givenname: Lourdes surname: Garrido-Sánchez fullname: Garrido-Sánchez, Lourdes |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32244787$$D View this record in MEDLINE/PubMed |
BookMark | eNptkttrFDEUxgep2Fr75rMM-OJD1-Yyl-RFWOqlCystouBbOJPLbspMMiZZcfzrzbi1bKUhkOScXz6-k5znxZHzThfFS4zeUsrRRWf9gBGqUE2rJ8UJIZgtSEu_Hx3sj4uzGG9RHixPQp8Vx5SQqmpZe1KE619W2d9alev36_KzV9ZMZdrq8mo3gCuXyo5eTkmXN1vtfJpGXSZf5szKxV1vXflFRxsTuHRe3gRvnelhgOTDlCE1h2D0Y_LJyvlgbK9fFE8N9FGf3a2nxbePH75eXi3W159Wl8v1QmZraSGxaRrEGcMcA6VaEq6YwrIzXMscBZQrJB1RjABruASMuEKsboATqUhNT4vVXld5uBVjsAOESXiw4m_Ah42AkH31WgBBiLYdR63sqo7WUBuQrTbGkAbVeNZ6t9cad92gldQuBegfiD7MOLsVG_9TtIQ0uEZZ4M2dQPA_djomMdgodd-D034XBaGsIQwRTjP6eo9uIFvLL-qzopxxsWwortuKcZypV4eO7q38-9oMnO8BGXyMQZt7BCMxN484bJ6Mk_9waRMk6-d6bP_4pT98Gsfl |
CitedBy_id | crossref_primary_10_3390_antiox11081537 crossref_primary_10_1016_j_metabol_2024_156129 crossref_primary_10_1155_tswj_1732653 crossref_primary_10_4093_dmj_2022_0332 crossref_primary_10_1111_jre_13319 crossref_primary_10_3390_biomedicines9111715 crossref_primary_10_3390_ijms25147943 crossref_primary_10_1093_eurheartj_ehaa770 crossref_primary_10_1111_apt_15945 crossref_primary_10_1186_s12944_021_01457_1 crossref_primary_10_1016_j_gene_2025_149274 crossref_primary_10_1089_met_2020_0083 crossref_primary_10_3390_antiox10081184 crossref_primary_10_3390_nu16234251 crossref_primary_10_3889_oamjms_2022_9302 crossref_primary_10_1016_j_bbrc_2023_07_043 crossref_primary_10_1155_2023_3595992 crossref_primary_10_1016_j_phrs_2023_106821 |
Cites_doi | 10.1210/en.2004-0809 10.2337/dc08-0930 10.1111/j.1468-3083.2011.03982.x 10.1042/BST20150014 10.1111/j.1365-2362.2007.01910.x 10.1074/jbc.M112.399345 10.5966/sctm.2015-0161 10.1038/ijo.2017.145 10.2337/db11-1716 10.1161/ATVBAHA.115.306032 10.1016/j.jnutbio.2015.08.001 10.1161/01.ATV.21.6.955 10.1371/journal.pone.0081379 10.1001/jama.299.19.2287 10.1093/oxfordjournals.jbchem.a021286 10.1016/j.atherosclerosis.2017.06.816 10.1161/01.RES.0000119171.44657.45 10.1007/s11695-009-0021-6 10.1097/MOL.0b013e32832fa58d 10.2337/dc12-0194 10.1097/00041433-200310000-00004 10.1007/s12272-013-0023-8 10.1016/S0891-5849(00)00227-6 10.1161/01.RES.0000113782.07824.BE 10.1016/j.febslet.2006.03.068 10.1111/j.1399-5448.2009.00640.x 10.1016/j.atherosclerosis.2004.07.015 10.1016/j.cytogfr.2014.04.002 10.1371/journal.pone.0031280 10.1016/j.celrep.2017.01.064 10.1161/CIRCULATIONAHA.111.066589 10.1161/01.ATV.16.12.1573 10.3389/fphys.2018.00640 10.1111/j.1365-2362.2006.01642.x 10.1161/01.ATV.0000190675.08857.3d 10.1016/j.febslet.2008.05.029 10.1016/S0008-6363(00)00218-2 10.1371/journal.pone.0020277 10.1042/BJ20100285 10.1096/fj.12-211516 10.1111/j.1467-789X.2009.00699.x 10.1046/j.1432-1327.2000.01682.x 10.1016/j.atherosclerosis.2004.03.010 10.1042/BJ20091045 10.1371/journal.pone.0123971 10.1016/j.freeradbiomed.2008.10.024 10.1093/cvr/cvq076 10.1016/j.bbrc.2004.10.015 10.1006/bbrc.1998.9004 10.1161/CIRCULATIONAHA.109.897330 10.1038/sj.cdd.4401936 10.1111/j.1365-2265.2007.02849.x 10.1074/jbc.275.2.1439 10.1074/jbc.M209649200 10.1016/S1388-1981(02)00343-8 10.4049/jimmunol.144.6.2343 10.1093/cvr/cvt008 10.3390/ijms20020245 10.1194/jlr.M800402-JLR200 10.1161/ATVBAHA.117.309880 10.1016/S0006-291X(02)00666-6 10.1007/s10753-014-9914-1 10.1016/S0021-9258(19)49737-8 10.1016/j.atherosclerosis.2006.08.002 10.1016/j.ijcard.2015.02.007 10.1159/000339574 10.1093/ajcn/83.1.30 10.1152/ajpendo.00311.2017 10.1159/000492257 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2020 MDPI AG 2020 by the authors. 2020 |
Copyright_xml | – notice: COPYRIGHT 2020 MDPI AG – notice: 2020 by the authors. 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.3390/biom10040534 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 2218-273X |
ExternalDocumentID | oai_doaj_org_article_a20037b907cb4b35a5fac7efff260515 PMC7226150 A631574891 32244787 10_3390_biom10040534 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Spain |
GeographicLocations_xml | – name: Spain |
GrantInformation_xml | – fundername: Instituto de Salud Carlos III grantid: CP13/00188 |
GroupedDBID | 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AADQD AAFWJ AAYXX ABDBF ABUWG ACUHS ADBBV AFKRA AFPKN AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU CITATION EBD ESX FYUFA GROUPED_DOAJ HCIFZ HMCUK HYE IAO IHR KQ8 LK8 M1P M48 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RPM UKHRP 3V. CGR CUY CVF ECM EIF NPM 7X8 PJZUB PPXIY PQGLB 5PM PUEGO |
ID | FETCH-LOGICAL-c478t-c1f660988191a33ec29d8d1cbf9ec881a02212b2d82a869ca109d0856a92cd253 |
IEDL.DBID | M48 |
ISSN | 2218-273X |
IngestDate | Wed Aug 27 01:30:08 EDT 2025 Thu Aug 21 14:02:27 EDT 2025 Mon Jul 21 11:43:09 EDT 2025 Tue Jun 17 21:20:41 EDT 2025 Thu Jan 02 22:57:48 EST 2025 Thu Apr 24 23:09:05 EDT 2025 Tue Jul 01 00:43:12 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | apoptosis oxidized low-density lipoprotein inflammation adipocyte scavenger receptors |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c478t-c1f660988191a33ec29d8d1cbf9ec881a02212b2d82a869ca109d0856a92cd253 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These have contributed equally to this work. |
ORCID | 0000-0002-3633-8367 0000-0002-3491-2724 0000-0003-4439-6863 |
OpenAccessLink | https://doaj.org/article/a20037b907cb4b35a5fac7efff260515 |
PMID | 32244787 |
PQID | 2386280293 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a20037b907cb4b35a5fac7efff260515 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7226150 proquest_miscellaneous_2386280293 gale_infotracmisc_A631574891 pubmed_primary_32244787 crossref_primary_10_3390_biom10040534 crossref_citationtrail_10_3390_biom10040534 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-01 20200401 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Biomolecules (Basel, Switzerland) |
PublicationTitleAlternate | Biomolecules |
PublicationYear | 2020 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Salvayre (ref_11) 2002; 1585 Neuenschwander (ref_47) 1992; 267 ref_50 Knerr (ref_70) 2006; 36 Cardona (ref_27) 2008; 31 Serena (ref_18) 2016; 5 Zhao (ref_28) 2004; 177 Tinahones (ref_58) 2013; 36 ref_52 ref_15 Liu (ref_39) 2009; 425 Ishigaki (ref_6) 2009; 20 Ishii (ref_66) 2004; 94 Wintergerst (ref_13) 2000; 267 Valdes (ref_22) 2017; 41 Huang (ref_69) 2015; 26 Hammes (ref_72) 2012; 5 Kaur (ref_42) 2011; 25 Mao (ref_65) 2018; 48 Ghigliotti (ref_41) 2014; 37 Xu (ref_56) 2018; 22 ref_21 Sjogren (ref_26) 2005; 25 Scazzocchio (ref_9) 2008; 582 Unno (ref_37) 2004; 325 Kuniyasu (ref_14) 2002; 295 Izquierdo (ref_51) 2014; 25 Demers (ref_53) 2015; 35 Zhang (ref_31) 2010; 121 Chartoumpekis (ref_36) 2018; 315 Holvoet (ref_4) 2008; 299 Cuffe (ref_10) 2018; 38 Chisolm (ref_12) 2000; 28 Scazzocchio (ref_33) 2009; 50 Yagishita (ref_34) 2017; 18 Zhu (ref_62) 2013; 288 Masella (ref_20) 2006; 580 Shan (ref_19) 2013; 27 Lee (ref_1) 2013; 36 Mehta (ref_49) 1998; 248 Weinbrenner (ref_3) 2006; 83 Hsieh (ref_59) 2001; 49 Holvoet (ref_5) 2007; 194 (ref_38) 2009; 46 Demirel (ref_25) 2007; 67 Yu (ref_29) 2010; 11 ref_30 Chen (ref_55) 2004; 94 Kunjathoor (ref_8) 2002; 277 Soriguer (ref_16) 2008; 38 Brasier (ref_64) 2010; 86 Rosenson (ref_32) 2012; 125 Valdes (ref_17) 2016; 56 Xu (ref_35) 2012; 61 Wardyn (ref_63) 2015; 43 Barbarroja (ref_71) 2010; 430 Porreca (ref_43) 2004; 175 Francisco (ref_40) 2018; 9 Kelly (ref_24) 2010; 11 Mollace (ref_57) 2015; 184 Jovinge (ref_44) 1996; 16 Brady (ref_61) 2007; 14 Castillo (ref_23) 1996; 119 Miller (ref_7) 2003; 14 ref_2 Kataoka (ref_54) 2001; 21 Alcaide (ref_48) 2017; 263 Murri (ref_68) 2010; 20 Lappas (ref_45) 2005; 146 Ray (ref_60) 2000; 275 Hamilton (ref_46) 1990; 144 Ruotsalainen (ref_67) 2013; 98 |
References_xml | – volume: 146 start-page: 1491 year: 2005 ident: ref_45 article-title: Sulfasalazine and BAY 11-7082 interfere with the nuclear factor-kappa B and I kappa B kinase pathway to regulate the release of proinflammatory cytokines from human adipose tissue and skeletal muscle in vitro publication-title: Endocrinology doi: 10.1210/en.2004-0809 – volume: 31 start-page: 2258 year: 2008 ident: ref_27 article-title: Improved carbohydrate metabolism after bariatric surgery raises antioxidized LDL antibody levels in morbidly obese patients publication-title: Diabetes Care doi: 10.2337/dc08-0930 – volume: 25 start-page: 1328 year: 2011 ident: ref_42 article-title: The levels of adiponectin and leptin and their relation to other markers of cardiovascular risk in patients with psoriasis publication-title: J. Eur. Acad. Dermatol. Venereol. doi: 10.1111/j.1468-3083.2011.03982.x – volume: 43 start-page: 621 year: 2015 ident: ref_63 article-title: Dissecting molecular cross-talk between Nrf2 and NF-κB response pathways publication-title: Biochem. Soc. Trans. doi: 10.1042/BST20150014 – volume: 38 start-page: 126 year: 2008 ident: ref_16 article-title: Incidence of type 2 diabetes in southern Spain (Pizarra Study) publication-title: Eur. J. Clin. Invest. doi: 10.1111/j.1365-2362.2007.01910.x – volume: 288 start-page: 1099 year: 2013 ident: ref_62 article-title: Modulation of serines 17 and 24 in the LC3-interacting region of Bnip3 determines pro-survival mitophagy versus apoptosis publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.399345 – volume: 5 start-page: 464 year: 2016 ident: ref_18 article-title: Obesity Determines the Immunophenotypic Profile and Functional Characteristics of Human Mesenchymal Stem Cells From Adipose Tissue publication-title: Stem Cells Transl. Med. doi: 10.5966/sctm.2015-0161 – volume: 41 start-page: 1547 year: 2017 ident: ref_22 article-title: Growth hormone-releasing hormone is produced by adipocytes and regulates lipolysis through growth hormone receptor publication-title: Int. J. Obes. doi: 10.1038/ijo.2017.145 – volume: 61 start-page: 3208 year: 2012 ident: ref_35 article-title: Enhanced Nrf2 activity worsens insulin resistance, impairs lipid accumulation in adipose tissue, and increases hepatic steatosis in leptin-deficient mice publication-title: Diabetes doi: 10.2337/db11-1716 – volume: 35 start-page: 2517 year: 2015 ident: ref_53 article-title: PCSK9 Induces CD36 Degradation and Affects Long-Chain Fatty Acid Uptake and Triglyceride Metabolism in Adipocytes and in Mouse Liver publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.115.306032 – volume: 26 start-page: 1401 year: 2015 ident: ref_69 article-title: The complexity of the Nrf2 pathway: Beyond the antioxidant response publication-title: J. Nutr. Biochem. doi: 10.1016/j.jnutbio.2015.08.001 – volume: 21 start-page: 955 year: 2001 ident: ref_54 article-title: Oxidized LDL Oxidized LDL modulates Bax/Bcl-2 through the lectinlike Ox-LDL receptor-1 in vascular smooth muscle cells publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/01.ATV.21.6.955 – ident: ref_2 doi: 10.1371/journal.pone.0081379 – volume: 299 start-page: 2287 year: 2008 ident: ref_4 article-title: Association between circulating oxidized low-density lipoprotein and incidence of the metabolic syndrome publication-title: JAMA doi: 10.1001/jama.299.19.2287 – volume: 119 start-page: 610 year: 1996 ident: ref_23 article-title: Coconut oil affects lipoprotein composition and structure of neonatal chicks publication-title: J. Biochem. doi: 10.1093/oxfordjournals.jbchem.a021286 – volume: 263 start-page: e251 year: 2017 ident: ref_48 article-title: Effect of hypoxia on scavenger receptors and inflammation in adipocytes publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2017.06.816 – volume: 94 start-page: 609 year: 2004 ident: ref_66 article-title: Role of Nrf2 in the regulation of CD36 and stress protein expression in murine macrophages publication-title: Circ. Res. doi: 10.1161/01.RES.0000119171.44657.45 – volume: 20 start-page: 363 year: 2010 ident: ref_68 article-title: Changes in oxidative stress and insulin resistance in morbidly obese patients after bariatric surgery publication-title: Obes. Surg. doi: 10.1007/s11695-009-0021-6 – volume: 20 start-page: 363 year: 2009 ident: ref_6 article-title: Circulating oxidized LDL: A biomarker and a pathogenic factor publication-title: Curr. Opin. Lipidol. doi: 10.1097/MOL.0b013e32832fa58d – volume: 36 start-page: 513 year: 2013 ident: ref_58 article-title: Caspase induction and BCL2 inhibition in human adipose tissue: A potential relationship with insulin alteration publication-title: Diabetes Care doi: 10.2337/dc12-0194 – volume: 14 start-page: 437 year: 2003 ident: ref_7 article-title: Oxidized low density lipoprotein and innate immune receptors publication-title: Curr. Opin. Lipidol. doi: 10.1097/00041433-200310000-00004 – volume: 36 start-page: 208 year: 2013 ident: ref_1 article-title: Adipose tissue macrophages in the development of obesity-induced inflammation, insulin resistance and type 2 Diabetes publication-title: Arch. Pharm. Res. doi: 10.1007/s12272-013-0023-8 – volume: 28 start-page: 1697 year: 2000 ident: ref_12 article-title: Regulation of cell growth by oxidized LDL publication-title: Free Radic. Biol. Med. doi: 10.1016/S0891-5849(00)00227-6 – volume: 94 start-page: 370 year: 2004 ident: ref_55 article-title: Role of Caspases in Ox-LDL-Induced Apoptotic Cascade in Human Coronary Artery Endothelial Cells publication-title: Circ. Res. doi: 10.1161/01.RES.0000113782.07824.BE – volume: 580 start-page: 2421 year: 2006 ident: ref_20 article-title: Oxidised LDL modulate adipogenesis in 3T3-L1 preadipocytes by affecting the balance between cell proliferation and differentiation publication-title: FEBS Lett. doi: 10.1016/j.febslet.2006.03.068 – volume: 22 start-page: 3199 year: 2018 ident: ref_56 article-title: Tacrolimus alleviates Ox-LDL damage through inducing vascular endothelial autophagy publication-title: Eur. Rev. Med. Pharmacol. Sci. – volume: 11 start-page: 552 year: 2010 ident: ref_24 article-title: Relation of circulating oxidized LDL to obesity and insulin resistance in children publication-title: Pediatr. Diabetes doi: 10.1111/j.1399-5448.2009.00640.x – volume: 177 start-page: 255 year: 2004 ident: ref_28 article-title: Fenofibrate enhances CD36 mediated endocytic uptake and degradation of oxidized low density lipoprotein in adipocytes from hypercholesterolemia rabbit publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2004.07.015 – volume: 25 start-page: 317 year: 2014 ident: ref_51 article-title: CXCL16 in kidney and cardiovascular injury publication-title: Cytokine Growth Factor Rev. doi: 10.1016/j.cytogfr.2014.04.002 – ident: ref_15 doi: 10.1371/journal.pone.0031280 – volume: 18 start-page: 2030 year: 2017 ident: ref_34 article-title: Nrf2 Improves Leptin and Insulin Resistance Provoked by Hypothalamic Oxidative Stress publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.01.064 – volume: 125 start-page: 1905 year: 2012 ident: ref_32 article-title: Cholesterol efflux and atheroprotection: Advancing the concept of reverse cholesterol transport publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.111.066589 – volume: 16 start-page: 1573 year: 1996 ident: ref_44 article-title: Human monocytes/macrophages release TNF-alpha in response to Ox-LDL publication-title: Arter. Thromb. Vasc. Biol. doi: 10.1161/01.ATV.16.12.1573 – volume: 9 start-page: 1 year: 2018 ident: ref_40 article-title: Obesity, fat mass and immune system: Role for leptin publication-title: Front. Physiol. doi: 10.3389/fphys.2018.00640 – volume: 36 start-page: 389 year: 2006 ident: ref_70 article-title: Leptin and ghrelin expression in adipose tissues and serum levels in gastric banding patients publication-title: Eur. J. Clin. Invest. doi: 10.1111/j.1365-2362.2006.01642.x – volume: 56 start-page: 1743 year: 2016 ident: ref_17 article-title: The pro-/anti-inflammatory effects of different fatty acids on visceral adipocytes are partially mediated by GPR120 publication-title: Eur. J. Nutr. – volume: 25 start-page: 2580 year: 2005 ident: ref_26 article-title: Measures of oxidized low-density lipoprotein and oxidative stress are not related and not elevated in otherwise healthy men with the metabolic syndrome publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/01.ATV.0000190675.08857.3d – volume: 582 start-page: 2291 year: 2008 ident: ref_9 article-title: Oxidised LDL up-regulate CD36 expression by the Nrf2 pathway in 3T3-L1 preadipocytes publication-title: FEBS Lett. doi: 10.1016/j.febslet.2008.05.029 – volume: 49 start-page: 135 year: 2001 ident: ref_59 article-title: Oxidized low density lipoprotein induces apoptosis via generation of reactive oxygen species in vascular smooth muscle cells publication-title: Cardiovasc. Res. doi: 10.1016/S0008-6363(00)00218-2 – ident: ref_50 doi: 10.1371/journal.pone.0020277 – volume: 430 start-page: 141 year: 2010 ident: ref_71 article-title: The obese healthy paradox: Is inflammation the answer? publication-title: Biochem. J. doi: 10.1042/BJ20100285 – volume: 27 start-page: 277 year: 2013 ident: ref_19 article-title: Fatty acid binding protein 4 expression marks a population of adipocyte progenitors in white and brown adipose tissues publication-title: FASEB J. doi: 10.1096/fj.12-211516 – volume: 11 start-page: 560 year: 2010 ident: ref_29 article-title: Cholesterol imbalance in adipocytes: A posible mechanism of adipocytes dysfunction in obesity publication-title: Obes. Rev. doi: 10.1111/j.1467-789X.2009.00699.x – ident: ref_30 – volume: 267 start-page: 6050 year: 2000 ident: ref_13 article-title: Apoptosis induced by oxidized low density lipoprotein in human monocyte-derived macrophages involves CD36 and activation of caspase-3 publication-title: Eur. J. Biochem. doi: 10.1046/j.1432-1327.2000.01682.x – volume: 175 start-page: 139 year: 2004 ident: ref_43 article-title: Circulating leptin is associated with oxidized LDL in postmenopausal women publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2004.03.010 – volume: 425 start-page: 41 year: 2009 ident: ref_39 article-title: Transcriptional and post-translational regulation of adiponectin publication-title: Biochem. J. doi: 10.1042/BJ20091045 – ident: ref_21 doi: 10.1371/journal.pone.0123971 – volume: 46 start-page: 127 year: 2009 ident: ref_38 article-title: Activation of transcription factors and gene expression by oxidized low-density lipoprotein publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2008.10.024 – volume: 86 start-page: 211 year: 2010 ident: ref_64 article-title: The nuclear factor-kappaB-interleukin-6 signalling pathway mediating vascular inflammation publication-title: Cardiovasc. Res. doi: 10.1093/cvr/cvq076 – volume: 325 start-page: 151 year: 2004 ident: ref_37 article-title: Advanced glycation end products-modified proteins and oxidized LDL mediate down-regulation of leptin in mouse adipocytes via CD36 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2004.10.015 – volume: 248 start-page: 511 year: 1998 ident: ref_49 article-title: Identification and autoregulation of receptor for ox-LDL in cultured human coronary artery endothelial cells publication-title: Biochem. Biophys. Res. Commun. doi: 10.1006/bbrc.1998.9004 – volume: 121 start-page: 1347 year: 2010 ident: ref_31 article-title: Adipocyte modulation of high-density lipoprotein cholesterol publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.109.897330 – volume: 14 start-page: 146 year: 2007 ident: ref_61 article-title: Response to myocardial ischemia/reperfusion injury involves Bnip3 and autophagy publication-title: Cell Death Differ. doi: 10.1038/sj.cdd.4401936 – volume: 67 start-page: 129 year: 2007 ident: ref_25 article-title: Serum leptin, oxidized low density lipoprotein and plasma asymmetric dimethylarginine levels and their relationship with dyslipidaemia in adolescent girls with polycystic ovary syndrome publication-title: Clin. Endocrinol. doi: 10.1111/j.1365-2265.2007.02849.x – volume: 275 start-page: 1439 year: 2000 ident: ref_60 article-title: BNIP3 heterodimerizes with Bcl-2/Bcl-X(L) and induces cell death independent of a Bcl-2 homology 3 (BH3) domain at both mitochondrial and nonmitochondrial sites publication-title: J. Biol. Chem. doi: 10.1074/jbc.275.2.1439 – volume: 277 start-page: 49982 year: 2002 ident: ref_8 article-title: Scavenger receptors class A-I/II and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages publication-title: J. Biol. Chem. doi: 10.1074/jbc.M209649200 – volume: 1585 start-page: 213 year: 2002 ident: ref_11 article-title: Oxidized low-density lipoprotein-induced apoptosis publication-title: Biochim. Biophys. Acta doi: 10.1016/S1388-1981(02)00343-8 – volume: 144 start-page: 2343 year: 1990 ident: ref_46 article-title: Oxidized low density lipoprotein suppresses the expression of tumor necrosis factor-alpha mRNA in stimulated murine peritoneal macrophages publication-title: J. Immunol. doi: 10.4049/jimmunol.144.6.2343 – volume: 98 start-page: 107 year: 2013 ident: ref_67 article-title: The absence of macrophage Nrf2 promotes early atherogenesis publication-title: Cardiovasc. Res. doi: 10.1093/cvr/cvt008 – ident: ref_52 doi: 10.3390/ijms20020245 – volume: 50 start-page: 832 year: 2009 ident: ref_33 article-title: Oxidized LDL impair adipocyte response to insulin by activating serine/threonine kinases publication-title: J. Lipid Res. doi: 10.1194/jlr.M800402-JLR200 – volume: 38 start-page: 733 year: 2018 ident: ref_10 article-title: Targeted Deletion of Adipocyte Abca1 (ATP-Binding Cassette Transporter A1) Impairs Diet-Induced Obesity publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.117.309880 – volume: 295 start-page: 319 year: 2002 ident: ref_14 article-title: Adipocytes recognize and degrade oxidized low density lipoprotein through CD36 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/S0006-291X(02)00666-6 – volume: 37 start-page: 1337 year: 2014 ident: ref_41 article-title: Adipose tissue immune response: Novel triggers and consequences for chronic inflammatory conditions publication-title: Inflammation doi: 10.1007/s10753-014-9914-1 – volume: 267 start-page: 14477 year: 1992 ident: ref_47 article-title: Deletion of the membrane anchoring region of tissue factor abolishes autoactivation of factor VII but not cofactor function: Analysis of a mutant with a selective deficiency in activity publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)49737-8 – volume: 194 start-page: 245 year: 2007 ident: ref_5 article-title: The relationship between oxidized LDL and other cardiovascular risk factors and subclinical CVD in different ethnic groups: The Multi-Ethnic Study of Atherosclerosis (MESA) publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2006.08.002 – volume: 184 start-page: 152 year: 2015 ident: ref_57 article-title: Oxidized LDL attenuates protective autophagy and induces apoptotic cell death of endothelial cells: Role of oxidative stress and LOX-1 receptor expression publication-title: Int. J. Cardiol. doi: 10.1016/j.ijcard.2015.02.007 – volume: 5 start-page: 452 year: 2012 ident: ref_72 article-title: Parallel down-regulation of FOXO1, PPARγ and adiponectin mRNA expression in visceral adipose tissue of class III obese individuals publication-title: Obes. Facts doi: 10.1159/000339574 – volume: 83 start-page: 30 year: 2006 ident: ref_3 article-title: Circulating oxidized LDL is associated with increased waist circumference independent of body mass index in men and women publication-title: Am. J. Clin. Nutr. doi: 10.1093/ajcn/83.1.30 – volume: 315 start-page: E180 year: 2018 ident: ref_36 article-title: Nrf2 deletion from adipocytes, but not hepatocytes, potentiates systemic metabolic dysfunction after long-term high-fat diet-induced obesity in mice publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.00311.2017 – volume: 48 start-page: 1468 year: 2018 ident: ref_65 article-title: Zedoarondiol Attenuates Endothelial Cells Injury Induced by Oxidized Low-Density Lipoprotein via Nrf2 Activation publication-title: Cell Physiol. Biochem. doi: 10.1159/000492257 |
SSID | ssj0000800823 |
Score | 2.2477539 |
Snippet | Little information exists in humans on the regulation that oxidized low-density lipoprotein (oxLDL) exerts on adipocyte metabolism, which is associated with... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 534 |
SubjectTerms | adipocyte Adipocytes - cytology Adipocytes - drug effects Adipocytes - metabolism Adipose tissue Adult Apoptosis Apoptosis - drug effects Autophagy - drug effects Biological Transport Biomarkers - metabolism Cell Differentiation - drug effects Cholesterol - chemistry Cholesterol - metabolism Esterification Female Genetic aspects Health aspects Humans inflammation Inflammation - chemically induced Inflammation - pathology Insulin Resistance Lipoproteins, LDL - metabolism Lipoproteins, LDL - pharmacology Low density lipoproteins Male oxidized low-density lipoprotein Phenotype Phenotypes scavenger receptors |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT1wQUD4CBRkJuEDUxIkT-7h8VAW1gBCVeovssS2CIFltU4nl1zPjpKtECHHhGNuJJvZz5o0zfmbsqZZ0-g1AmhlRY4ACRapE8KnMjK6DFk46ChRPP1THZ-X7c3k-O-qLcsJGeeCx4w4NZU_VFmM4sKUtpJHBQO1DCMTE4_ZygT5vFkx9m3iQEsWY6V5gXH9Iu9lJHQ1BVy58UJTq__ODPPNIy2zJmfs5usluTLyRr0Z7b7FrvrvN9lcdxsw_tvw5j5mccYl8n20-_mxd-8s7fvLmhJ_2rg1bjkSPxxV7vnLtuoft4PEm3_W0CMuHnmPNuzExnX_2F0Qru-El_7TpEYMIm_g3Hhs5KjLrfj30aApdkLTTHXZ29PbL6-N0OlshhbJWQwp5qKpMK4rXTFF4ENopl4MN2gOWGvTtubDCKWFUpcHkmXZIzyqjBTghi7tsr-s7f59xJZ0wtVFeVFCKYC1klfFOCFBW4hMS9uKqtxuYhMfp_IvvDQYgNDbNfGwS9mzXej0Kbvyl3SsauF0bksmOBQieZgJP8y_wJOyAhr2hyYwmAU4taFZVkUsS5ckT9uQKDg1VUT5a5_vLiwaJTiVUhlwpYfdGeOwswU9kSZJHCasXwFmYuqzp2q9R2btGMowM_cH_eLeH7LqgtYGYZXTA9obNpX-EBGqwj-Nc-Q16sRqb priority: 102 providerName: Directory of Open Access Journals |
Title | Oxidized LDL Modify the Human Adipocyte Phenotype to an Insulin Resistant, Proinflamatory and Proapoptotic Profile |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32244787 https://www.proquest.com/docview/2386280293 https://pubmed.ncbi.nlm.nih.gov/PMC7226150 https://doaj.org/article/a20037b907cb4b35a5fac7efff260515 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_t44UXBIyPsFEZCXiBQOLEsfOAUAebBlrHNFGpb5FjO1A0kq7NpJW_njs3rVoNJB5jO5Fl3_l-dzn_DuBFLqj6jTFhpLlEB8UkoeKVC0Wkc1nl3ApLjuLgLDsZpl9GYrQFy2qj3QLO_uraUT2p4fTy7c3V_AMq_HvyONFlf0cX1Yn4DOUp3YZdtEmSVHTQAf2fHS5SvtYbR5tG91FGiyz4Wx_YsE-exv_2Yb1mrTYzKddM0_E9uNthStZfCMF92HL1A9jr1-hP_5qzV8xnefrw-R5Mv96M7fi3s-z00ykbNHZczRmCQOaj-axvx5PGzFuHL7m6oQAtaxuGPZ8XSevsws0IctbtG3Y-bXDFUKT8n3ocZKlJT5pJ2-BU6IFonx7C8Pjo28eTsKu7EJpUqjY0cZVlUa7Il9NJ4gzPrbKxKavcGWzVaPdjXnKruFZZbnQc5RahW6ZzbiwXySPYqZvaPQGmhOVaauV4ZlJelaWJMu0s50aVAr8QwOvlahemIyWn2hiXBTontDfF-t4E8HI1erIg4_jHuEPauNUYotD2Dc30e9FpZKEpLU-WeSRNmZaJ0KLSRrqqqsjFi0UAB7TtBYkeTsmg2pminyWxIMKeOIDnS3EoqIty1WrXXM8KBEEZVxHiqAAeL8RjNRM8PlOiQwpAbgjOxlQ3e-rxD8_6LREoI3p_-p9rsA93OIUGfJLRAey002v3DPFTW_ZgW45kD3YPj87OL3o-CtHz6vIHphAcZw |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oxidized+LDL+Modify+the+Human+Adipocyte+Phenotype+to+an+Insulin+Resistant%2C+Proinflamatory+and+Proapoptotic+Profile&rft.jtitle=Biomolecules+%28Basel%2C+Switzerland%29&rft.au=Santiago-Fern%C3%A1ndez%2C+Concepci%C3%B3n&rft.au=Martin-Reyes%2C+Flores&rft.au=Tome%2C+M%C3%B3nica&rft.au=Oca%C3%B1a-Wilhelmi%2C+Luis&rft.date=2020-04-01&rft.issn=2218-273X&rft.eissn=2218-273X&rft.volume=10&rft.issue=4&rft.spage=534&rft_id=info:doi/10.3390%2Fbiom10040534&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_biom10040534 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2218-273X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2218-273X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2218-273X&client=summon |