The Molecular and Mechanistic Insights Based on Gut–Liver Axis: Nutritional Target for Non-Alcoholic Fatty Liver Disease (NAFLD) Improvement
Non-alcoholic fatty liver disease (NAFLD) is recognized as the most frequent classification of liver disease around the globe. Along with the sequencing technologies, gut microbiota has been regarded as a vital factor for the maintenance of human and animal health and the mediation of multiple disea...
Saved in:
Published in | International journal of molecular sciences Vol. 21; no. 9; p. 3066 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
26.04.2020
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Non-alcoholic fatty liver disease (NAFLD) is recognized as the most frequent classification of liver disease around the globe. Along with the sequencing technologies, gut microbiota has been regarded as a vital factor for the maintenance of human and animal health and the mediation of multiple diseases. The modulation of gut microbiota as a mechanism affecting the pathogenesis of NAFLD is becoming a growing area of concern. Recent advances in the communication between gut and hepatic tissue pave novel ways to better explain the molecular mechanisms regarding the pathological physiology of NAFLD. In this review, we recapitulate the current knowledge of the mechanisms correlated with the development and progression of NAFLD regulated by the gut microbiome and gut–liver axis, which may provide crucial therapeutic strategies for NAFLD. These mechanisms predominantly involve: (1) the alteration in gut microbiome profile; (2) the effects of components and metabolites from gut bacteria (e.g., lipopolysaccharides (LPS), trimethylamine-N-oxide (TMAO), and N,N,N-trimethyl-5-aminovaleric acid (TMAVA)); and (3) the impairment of intestinal barrier function and bile acid homeostasis. In particular, the prevention and therapy of NAFLD assisted by nutritional strategies are highlighted, including probiotics, functional oligosaccharides, dietary fibers, ω-3 polyunsaturated fatty acids, functional amino acids (L-tryptophan and L-glutamine), carotenoids, and polyphenols, based on the targets excavated from the gut–liver axis. |
---|---|
AbstractList | Non-alcoholic fatty liver disease (NAFLD) is recognized as the most frequent classification of liver disease around the globe. Along with the sequencing technologies, gut microbiota has been regarded as a vital factor for the maintenance of human and animal health and the mediation of multiple diseases. The modulation of gut microbiota as a mechanism affecting the pathogenesis of NAFLD is becoming a growing area of concern. Recent advances in the communication between gut and hepatic tissue pave novel ways to better explain the molecular mechanisms regarding the pathological physiology of NAFLD. In this review, we recapitulate the current knowledge of the mechanisms correlated with the development and progression of NAFLD regulated by the gut microbiome and gut–liver axis, which may provide crucial therapeutic strategies for NAFLD. These mechanisms predominantly involve: (1) the alteration in gut microbiome profile; (2) the effects of components and metabolites from gut bacteria (e.g., lipopolysaccharides (LPS), trimethylamine-N-oxide (TMAO), and N,N,N-trimethyl-5-aminovaleric acid (TMAVA)); and (3) the impairment of intestinal barrier function and bile acid homeostasis. In particular, the prevention and therapy of NAFLD assisted by nutritional strategies are highlighted, including probiotics, functional oligosaccharides, dietary fibers, ω-3 polyunsaturated fatty acids, functional amino acids (L-tryptophan and L-glutamine), carotenoids, and polyphenols, based on the targets excavated from the gut–liver axis. Non-alcoholic fatty liver disease (NAFLD) is recognized as the most frequent classification of liver disease around the globe. Along with the sequencing technologies, gut microbiota has been regarded as a vital factor for the maintenance of human and animal health and the mediation of multiple diseases. The modulation of gut microbiota as a mechanism affecting the pathogenesis of NAFLD is becoming a growing area of concern. Recent advances in the communication between gut and hepatic tissue pave novel ways to better explain the molecular mechanisms regarding the pathological physiology of NAFLD. In this review, we recapitulate the current knowledge of the mechanisms correlated with the development and progression of NAFLD regulated by the gut microbiome and gut-liver axis, which may provide crucial therapeutic strategies for NAFLD. These mechanisms predominantly involve: (1) the alteration in gut microbiome profile; (2) the effects of components and metabolites from gut bacteria (e.g., lipopolysaccharides (LPS), trimethylamine-N-oxide (TMAO), and N,N,N-trimethyl-5-aminovaleric acid (TMAVA)); and (3) the impairment of intestinal barrier function and bile acid homeostasis. In particular, the prevention and therapy of NAFLD assisted by nutritional strategies are highlighted, including probiotics, functional oligosaccharides, dietary fibers, ω-3 polyunsaturated fatty acids, functional amino acids (L-tryptophan and L-glutamine), carotenoids, and polyphenols, based on the targets excavated from the gut-liver axis.Non-alcoholic fatty liver disease (NAFLD) is recognized as the most frequent classification of liver disease around the globe. Along with the sequencing technologies, gut microbiota has been regarded as a vital factor for the maintenance of human and animal health and the mediation of multiple diseases. The modulation of gut microbiota as a mechanism affecting the pathogenesis of NAFLD is becoming a growing area of concern. Recent advances in the communication between gut and hepatic tissue pave novel ways to better explain the molecular mechanisms regarding the pathological physiology of NAFLD. In this review, we recapitulate the current knowledge of the mechanisms correlated with the development and progression of NAFLD regulated by the gut microbiome and gut-liver axis, which may provide crucial therapeutic strategies for NAFLD. These mechanisms predominantly involve: (1) the alteration in gut microbiome profile; (2) the effects of components and metabolites from gut bacteria (e.g., lipopolysaccharides (LPS), trimethylamine-N-oxide (TMAO), and N,N,N-trimethyl-5-aminovaleric acid (TMAVA)); and (3) the impairment of intestinal barrier function and bile acid homeostasis. In particular, the prevention and therapy of NAFLD assisted by nutritional strategies are highlighted, including probiotics, functional oligosaccharides, dietary fibers, ω-3 polyunsaturated fatty acids, functional amino acids (L-tryptophan and L-glutamine), carotenoids, and polyphenols, based on the targets excavated from the gut-liver axis. |
Author | Yin, Yue Ji, Yun Sun, Lijun Zhang, Weizhen |
AuthorAffiliation | Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China; jean500@163.com (Y.J.); sunlj9002@163.com (L.S.) |
AuthorAffiliation_xml | – name: Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China; jean500@163.com (Y.J.); sunlj9002@163.com (L.S.) |
Author_xml | – sequence: 1 givenname: Yun orcidid: 0000-0002-3483-0729 surname: Ji fullname: Ji, Yun – sequence: 2 givenname: Yue surname: Yin fullname: Yin, Yue – sequence: 3 givenname: Lijun surname: Sun fullname: Sun, Lijun – sequence: 4 givenname: Weizhen orcidid: 0000-0001-8791-2798 surname: Zhang fullname: Zhang, Weizhen |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32357561$$D View this record in MEDLINE/PubMed |
BookMark | eNptkstuEzEUhkeoiF5gxxpZYlMkAr7MxWaBFFpSIqVhE9aWx3Mm42jGTm1PRHc8ARvekCfBVVoUKryxJX__f34fn9PsyDoLWfaS4HeMCfzebIZACRYMl-WT7ITklE4wLqujg_NxdhrCBmPKaCGeZceMsqIqSnKS_Vx1gK5dD3rslUfKNugadKesCdFoNLfBrLsY0CcVoEHOoqsx_v7xa2F24NH0uwkf0HKM3kTjrOrRSvk1RNQ6j5bOTqa9dp3rk9FMxXiL9rJLEyDZofPldLa4fIPmw9a7HQxg4_Psaav6AC_u97Ps2-zz6uLLZPH1an4xXUx0XvE4qSsiakF5AZUAzhsuSl3koJoWGlqqvE5vLhlmLWZckLrMaU2EgKJQTaVznrOz7OPedzvWAzQ6lfaql1tvBuVvpVNG_ntjTSfXbicrmlclJ8ng_N7Au5sRQpSDCRr6XllwY5CUiapMq-AJff0I3bjRp27tKUI5pzhRrw4T_Y3y8FUJoHtAexeCh1ZqE9Vd31NA00uC5d08yMN5SKK3j0QPvv_F_wAJqrhK |
CitedBy_id | crossref_primary_10_1016_j_jare_2024_08_009 crossref_primary_10_3390_jcm10173819 crossref_primary_10_3390_molecules29225245 crossref_primary_10_3390_pathogens12091087 crossref_primary_10_1111_ijcp_13737 crossref_primary_10_3390_nu16152454 crossref_primary_10_1177_03000605211055378 crossref_primary_10_18632_aging_103962 crossref_primary_10_1111_ijcp_14744 crossref_primary_10_2174_1874467215666220222105004 crossref_primary_10_1155_2022_4897463 crossref_primary_10_1155_2021_7764817 crossref_primary_10_3389_fmed_2024_1490929 crossref_primary_10_2174_1386207326666230119101011 crossref_primary_10_1016_j_jff_2023_105963 crossref_primary_10_3390_chemosensors11040241 crossref_primary_10_1111_apt_17362 crossref_primary_10_1016_j_toxlet_2024_08_009 crossref_primary_10_1080_19490976_2023_2221450 crossref_primary_10_1097_HEP_0000000000000406 crossref_primary_10_3390_plants13040523 crossref_primary_10_1039_D1FO00448D crossref_primary_10_3390_nu16193231 crossref_primary_10_3390_ijms241914918 crossref_primary_10_13005_bbra_3237 crossref_primary_10_11569_wcjd_v29_i23_1355 crossref_primary_10_3390_metabo12060514 crossref_primary_10_1186_s13063_021_05529_6 crossref_primary_10_1016_j_scitotenv_2024_177071 crossref_primary_10_1016_j_cca_2025_120223 crossref_primary_10_1021_acs_jafc_2c02654 crossref_primary_10_1038_s41598_021_88913_1 crossref_primary_10_1097_MEG_0000000000002654 crossref_primary_10_3389_fcvm_2021_650140 crossref_primary_10_1016_j_phrs_2020_105277 crossref_primary_10_3389_fendo_2023_1253584 crossref_primary_10_3389_fimmu_2022_949746 crossref_primary_10_1017_S0007114524000564 crossref_primary_10_1016_j_lfs_2023_122304 crossref_primary_10_3390_ijms22010199 crossref_primary_10_3390_gidisord5040038 crossref_primary_10_3748_wjg_v30_i24_3106 crossref_primary_10_1016_j_biopha_2024_116942 crossref_primary_10_1016_j_biopha_2022_113154 crossref_primary_10_1186_s13020_023_00752_6 crossref_primary_10_17816_CS399808 crossref_primary_10_3390_antiox10020174 crossref_primary_10_3390_livers4030032 crossref_primary_10_3390_nu15102361 crossref_primary_10_3389_fendo_2022_812610 crossref_primary_10_3389_fimmu_2023_1292679 crossref_primary_10_1016_j_tjnut_2023_12_019 crossref_primary_10_3390_plants11050607 crossref_primary_10_3389_fcimb_2022_855008 crossref_primary_10_1042_BSR20212791 crossref_primary_10_3390_biom10121702 crossref_primary_10_3390_nu15030586 crossref_primary_10_3389_fnut_2022_861854 crossref_primary_10_3390_nu14091965 crossref_primary_10_1111_acer_15148 crossref_primary_10_3390_life13102023 crossref_primary_10_1007_s11010_021_04302_2 crossref_primary_10_1007_s00203_023_03752_0 crossref_primary_10_1111_jvh_13595 crossref_primary_10_21215_kjfp_2022_12_5_361 crossref_primary_10_3389_fcvm_2023_1119005 crossref_primary_10_1016_j_bbrc_2020_08_036 crossref_primary_10_3389_fendo_2022_1014670 crossref_primary_10_1080_10408398_2022_2094889 crossref_primary_10_3233_NHA_231504 crossref_primary_10_3390_ijms232213675 crossref_primary_10_3389_fimmu_2022_865273 crossref_primary_10_3390_biomedicines9070728 crossref_primary_10_3389_fimmu_2022_968799 crossref_primary_10_3389_fmicb_2022_908011 crossref_primary_10_1080_10408398_2023_2254383 crossref_primary_10_1016_j_jnutbio_2024_109581 crossref_primary_10_48175_IJARSCT_18773 crossref_primary_10_3389_fphar_2023_1266168 crossref_primary_10_20517_2394_5079_2024_76 crossref_primary_10_1016_j_jhip_2025_02_001 crossref_primary_10_3389_fendo_2023_1121540 crossref_primary_10_1186_s13568_023_01561_8 crossref_primary_10_1177_17562848231174299 |
Cites_doi | 10.1002/hep4.1256 10.1002/oby.21212 10.1155/2010/453563 10.3390/nu9111220 10.1159/000073798 10.1152/ajpgi.00048.2015 10.3390/ijms18122645 10.1007/s00018-015-2061-5 10.1002/hep.22848 10.1038/s41575-019-0212-0 10.1016/j.clnu.2019.05.003 10.1021/acs.jafc.8b07306 10.1159/000450981 10.1128/aem.51.1.32-38.1986 10.1002/hep.28356 10.3390/ijms21051579 10.3389/fmicb.2018.00737 10.20944/preprints201809.0459.v1 10.1371/journal.pone.0080169 10.3389/fmicb.2016.00608 10.3390/md17070391 10.1080/19490976.2017.1290756 10.3390/md16110455 10.3945/ajcn.117.158493 10.1186/1476-9255-7-15 10.1016/j.taap.2017.06.023 10.3390/ijms19020554 10.1038/emm.2005.42 10.1016/j.mehy.2015.04.021 10.1053/j.gastro.2020.02.033 10.1038/srep29142 10.3390/microorganisms7090340 10.1371/journal.pone.0175406 10.1038/s41467-018-07859-7 10.3920/BM2018.0151 10.1002/hep.26319 10.3390/nu11081712 10.1016/j.metabol.2010.03.006 10.1186/s12986-019-0420-1 10.1177/2050640618804444 10.1016/B978-0-12-800100-4.00003-9 10.1177/1535370218763760 10.1038/s41575-020-0269-9 10.1007/s00253-016-8006-6 10.1016/j.cmet.2019.08.018 10.3390/ijms19030911 10.1016/j.molimm.2007.09.003 10.1111/lam.12051 10.1186/s12944-016-0357-6 10.1111/j.1365-2125.2012.04374.x 10.1016/j.celrep.2014.02.032 10.1002/mnfr.201900257 10.1038/srep40128 10.1002/mnfr.201700942 10.1097/MD.0000000000012271 10.2147/DMSO.S146339 10.1016/j.jhep.2006.02.011 10.4172/2329-8901.1000159 10.1016/j.nut.2015.01.004 10.1124/mol.117.108829 10.1038/s41418-018-0070-2 10.1136/bmj.l4697 10.3390/nu11010139 10.1080/10408398.2016.1152230 10.1111/apm.12696 10.2174/1875044301205010047 10.1128/mBio.03263-19 10.1371/journal.pone.0098294 10.1038/s41598-020-59485-3 10.4103/2008-7802.188083 10.1016/S0022-2275(20)40615-7 10.1016/j.cgh.2012.08.012 10.1155/2018/6031074 10.1080/17474124.2017.1343143 10.1038/srep11276 10.1371/journal.pone.0161635 10.1073/pnas.1904099116 10.3389/fphar.2018.00939 10.1093/jn/137.3.781S 10.1159/000496293 10.1017/S095442241700004X 10.1002/cphy.c120023 10.1007/s00726-014-1773-4 10.1039/C5FO01100K 10.1186/s12944-016-0190-y 10.15403/jgld.2014.1121.271.kby 10.3390/nu2121231 10.1016/j.jad.2012.02.023 10.1016/j.jhepr.2019.09.001 10.3389/fimmu.2016.00538 10.1007/s00232-014-9715-3 10.3181/0711-MR-311 10.1016/j.cmet.2016.05.005 10.3390/ijms19103228 10.1152/ajpgi.00396.2007 10.1002/hep.31115 10.1159/000498946 10.1002/hep.26093 10.3390/nu7064995 10.1080/10408398.2014.952399 10.3390/nu8010056 10.1002/hep.29466 10.1128/mBio.02481-14 10.1152/ajpgi.00300.2018 10.1007/s11695-008-9549-0 10.1016/j.jnutbio.2009.05.006 10.3390/nu11092062 10.1089/1044549041562267 10.1186/s12944-015-0052-z 10.4061/2010/262179 10.1177/1756284819858039 10.1371/journal.pone.0073571 10.1093/cdn/nzz031.P06-131-19 10.1152/ajpgi.00223.2019 10.3945/an.112.002907 10.1038/nrgastro.2014.66 10.1097/MPG.0b013e31816bf4bf 10.1016/j.cyto.2008.01.006 10.3390/nu8030128 10.1515/jpem-2017-0252 10.1016/j.metabol.2018.11.014 10.1016/j.clnu.2017.01.006 10.1038/s12276-019-0293-4 10.1186/s13046-018-0781-8 10.1016/j.jhep.2019.08.005 10.1038/s41419-017-0124-2 10.1155/2019/4625279 10.1111/1574-6976.12075 10.1002/hep.27964 10.1155/2017/9474896 10.1186/s12986-018-0245-3 10.1155/2018/9340316 10.3390/nu10121971 10.3945/jn.117.253815 10.3748/wjg.v18.i21.2609 10.3390/nu10111793 10.1039/C7RA10248H 10.1186/s12967-017-1175-y 10.3390/nu11030541 10.1007/s00125-007-0791-0 10.1093/jn/134.3.489 10.1371/journal.pone.0162368 10.1016/j.cgh.2013.04.016 10.3390/nu9070667 10.1097/MCO.0000000000000209 10.1371/journal.pone.0020460 10.1007/s40495-017-0085-2 10.1016/j.cmet.2017.04.001 10.1155/2019/7659509 10.1111/apt.13327 10.3945/jn.112.164947 10.1007/s12328-018-0841-9 10.1177/0148607111413772 10.1016/j.atherosclerosis.2015.05.005 10.1080/19490976.2015.1127483 10.3390/nu10091215 10.3390/microorganisms7010014 10.1038/s41467-018-05470-4 10.3168/jds.2008-1698 10.1007/s13197-019-04041-9 10.1016/j.metabol.2015.12.012 10.1371/journal.pone.0062885 10.5625/lar.2018.34.4.140 10.3390/nu11061424 10.3389/fmicb.2018.02494 10.1186/s40168-019-0713-7 10.1016/j.cell.2015.11.055 10.1038/srep32002 10.1186/s40168-018-0494-4 10.1007/s11418-019-01364-x 10.1186/s12263-017-0566-2 10.1016/j.cmet.2013.03.013 |
ContentType | Journal Article |
Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 by the authors. 2020 |
Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 by the authors. 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH K9. M0S M1P M2O MBDVC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.3390/ijms21093066 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection PML(ProQuest Medical Library) Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: AUTh Library subscriptions: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1422-0067 |
ExternalDocumentID | PMC7247681 32357561 10_3390_ijms21093066 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: the National Key R&D Program of China grantid: 2017YFC0908900 – fundername: the National Natural Science Foundation of China grantid: 81730020 and 81930015 – fundername: the Projects funded by China Postdoctoral Science Foundation grantid: 2018M641113 |
GroupedDBID | --- 29J 2WC 53G 5GY 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8G5 A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 DWQXO E3Z EBD EBS EJD ESX F5P FRP FYUFA GNUQQ GUQSH GX1 HH5 HMCUK HYE IAO IHR ITC KQ8 LK8 M1P M2O M48 MODMG O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TR2 TUS UKHRP ~8M 3V. ABJCF BBNVY BHPHI CGR CUY CVF ECM EIF GROUPED_DOAJ HCIFZ KB. M7P M~E NPM PDBOC 7XB 8FK K9. MBDVC PJZUB PKEHL PPXIY PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c478t-b719b9285e79e88d896c54eadfed26a4b0676303f03891b642b199e55ad7c4843 |
IEDL.DBID | M48 |
ISSN | 1422-0067 1661-6596 |
IngestDate | Thu Aug 21 14:34:17 EDT 2025 Mon Jul 21 09:25:13 EDT 2025 Fri Jul 25 10:02:11 EDT 2025 Wed Feb 19 02:30:32 EST 2025 Tue Jul 01 04:15:16 EDT 2025 Thu Apr 24 23:07:34 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | nutrition liver disease gut–liver axis barrier function gut microbiota |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c478t-b719b9285e79e88d896c54eadfed26a4b0676303f03891b642b199e55ad7c4843 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-8791-2798 0000-0002-3483-0729 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijms21093066 |
PMID | 32357561 |
PQID | 2397128820 |
PQPubID | 2032341 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7247681 proquest_miscellaneous_2397666658 proquest_journals_2397128820 pubmed_primary_32357561 crossref_citationtrail_10_3390_ijms21093066 crossref_primary_10_3390_ijms21093066 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200426 |
PublicationDateYYYYMMDD | 2020-04-26 |
PublicationDate_xml | – month: 4 year: 2020 text: 20200426 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | International journal of molecular sciences |
PublicationTitleAlternate | Int J Mol Sci |
PublicationYear | 2020 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Zolfaghari (ref_95) 2016; 7 ref_139 Robben (ref_179) 1986; 51 Estes (ref_2) 2018; 67 Wong (ref_31) 2013; 8 Vieira (ref_152) 2008; 47 ref_13 Musolino (ref_162) 2020; 10 ref_11 Cieslak (ref_148) 2018; 2018 Lyte (ref_141) 2016; 15 ref_132 Chiang (ref_78) 2020; 318 Frazier (ref_35) 2011; 35 Brown (ref_129) 2019; 366 ref_134 Li (ref_61) 2016; 6 Miyauchi (ref_176) 2009; 92 Kim (ref_96) 2010; 20 Fabbrini (ref_1) 2015; 7 Calder (ref_138) 2018; 37 Li (ref_9) 2019; 7 Cani (ref_108) 2007; 50 Wang (ref_171) 2015; 163 Henke (ref_170) 2019; 116 Chiang (ref_74) 2017; 35 ref_24 Singh (ref_22) 2017; 15 Belei (ref_56) 2017; 30 ref_120 ref_122 ref_20 Jones (ref_94) 2013; 4 ref_121 Tan (ref_49) 2019; 63 Wu (ref_123) 2004; 134 Menjivar (ref_26) 2018; 9 Lu (ref_44) 2008; 42 ref_28 Maes (ref_155) 2012; 141 Hou (ref_116) 2018; 25 Stellwag (ref_178) 1979; 20 Bai (ref_159) 2005; 37 Miele (ref_55) 2009; 49 Tyrovolas (ref_37) 2019; 12 Simopoulos (ref_133) 2017; 106 Wang (ref_19) 2016; 6 Chiang (ref_25) 2013; 3 Wells (ref_154) 2017; 312 Eslam (ref_5) 2020; 17 Sobhonslidsuk (ref_32) 2018; 2018 Vancamelbeke (ref_53) 2017; 11 Yang (ref_103) 2020; 57 Cleland (ref_130) 2003; 92 Tsao (ref_161) 2010; 2 Sartini (ref_58) 2018; 9 Corthesy (ref_82) 2007; 137 Ridlon (ref_69) 2016; 7 Cui (ref_91) 2018; 37 Fasano (ref_60) 2012; 10 ref_157 ref_156 Finn (ref_79) 2019; 316 Zeng (ref_54) 2016; 7 Calenda (ref_73) 2018; 2 Buzzetti (ref_3) 2016; 65 ref_160 Simopoulos (ref_131) 2008; 233 Yuan (ref_137) 2016; 15 Boursier (ref_18) 2013; 11 Zambom (ref_126) 2015; 31 Apper (ref_112) 2018; 15 ref_83 Hammam (ref_158) 2015; 10 Kim (ref_71) 2018; 34 Culpepper (ref_89) 2019; 10 Wang (ref_125) 2015; 47 Koek (ref_163) 2017; 57 Staley (ref_67) 2017; 101 Boursier (ref_33) 2016; 63 Hoving (ref_110) 2018; 62 Murphy (ref_8) 2015; 18 Rao (ref_124) 2012; 5 ref_85 Yan (ref_135) 2018; 97 ref_146 ref_145 Seko (ref_4) 2018; 11 Li (ref_143) 2008; 45 Roager (ref_115) 2018; 9 Gerard (ref_15) 2016; 73 Armstrong (ref_50) 2017; 3 Hill (ref_80) 2014; 11 Krumbeck (ref_174) 2018; 6 Lu (ref_136) 2016; 2016 Yuan (ref_64) 2019; 30 Calder (ref_128) 2013; 75 Guo (ref_7) 2017; 2017 Romano (ref_47) 2015; 6 Wang (ref_76) 2019; 2019 Xia (ref_97) 2020; 17 Duranti (ref_14) 2017; 12 ref_172 Rau (ref_180) 2018; 6 ref_175 Mouzaki (ref_30) 2013; 58 ref_177 ref_52 Wiese (ref_151) 2019; 2019 Mouries (ref_59) 2019; 71 Hendy (ref_62) 2017; 125 Tripolt (ref_88) 2015; 242 Bibbo (ref_43) 2018; 2018 Maoka (ref_150) 2020; 74 Tarling (ref_66) 2013; 17 Yu (ref_142) 2017; 2017 Degirolamo (ref_90) 2014; 7 ref_169 Videhult (ref_21) 2016; 19 Spruss (ref_10) 2009; 20 Polyzos (ref_17) 2019; 92 Pitocco (ref_12) 2020; 24 Loomba (ref_34) 2017; 25 Cavalcanti (ref_23) 2015; 6 ref_164 Harte (ref_39) 2010; 7 Sarwar (ref_16) 2018; 11 ref_165 Zhao (ref_149) 2004; 23 Kaliannan (ref_140) 2015; 5 Woo (ref_81) 2013; 56 Chai (ref_72) 2015; 8 Singh (ref_100) 2019; 67 Boehm (ref_111) 2008; 294 Zhao (ref_166) 2019; 3 Kobyliak (ref_86) 2018; 27 Jang (ref_84) 2019; 51 Zhu (ref_41) 2013; 57 Tan (ref_99) 2014; 121 ref_117 ref_119 Rodrigues (ref_147) 2015; 14 Wahlstrom (ref_68) 2016; 24 ref_113 Selma (ref_181) 2016; 7 Zhao (ref_118) 2019; 51 Gostner (ref_114) 2020; 79 Stephen (ref_93) 2017; 30 Sellmann (ref_127) 2017; 147 (ref_27) 2014; 38 Sarenac (ref_65) 2018; 9 Boutagy (ref_87) 2015; 23 Bastian (ref_29) 2019; 13 ref_104 ref_106 ref_105 ref_107 ref_109 ref_46 Wong (ref_38) 2015; 42 ref_45 ref_42 ref_102 Yang (ref_168) 2017; 57 Mannisto (ref_40) 2019; 1 Cai (ref_70) 2014; 247 ref_101 Haukeland (ref_36) 2006; 44 Schumacher (ref_92) 2017; 330 Liu (ref_144) 2012; 142 ref_48 Kalhan (ref_77) 2011; 60 Singh (ref_167) 2019; 10 Chen (ref_173) 2019; 43 Zheng (ref_51) 2017; 92 Holscher (ref_98) 2017; 8 (ref_63) 2015; 85 Ilan (ref_57) 2012; 18 Lyu (ref_153) 2018; 243 ref_6 Chiang (ref_75) 2015; 62 |
References_xml | – volume: 2 start-page: 1379 year: 2018 ident: ref_73 article-title: FXR and TGR5 Agonists Ameliorate Liver Injury, Steatosis, and Inflammation After Binge or Prolonged Alcohol Feeding in Mice publication-title: Hepatol. Commun. doi: 10.1002/hep4.1256 – volume: 23 start-page: 2357 year: 2015 ident: ref_87 article-title: Probiotic supplementation and trimethylamine-N-oxide production following a high-fat diet publication-title: Obes. (Silver Spring) doi: 10.1002/oby.21212 – ident: ref_24 doi: 10.1155/2010/453563 – ident: ref_20 doi: 10.3390/nu9111220 – volume: 92 start-page: 152 year: 2003 ident: ref_130 article-title: Omega-6/omega-3 fatty acids and arthritis publication-title: World Rev. Nutr. Diet. doi: 10.1159/000073798 – volume: 312 start-page: G171 year: 2017 ident: ref_154 article-title: Homeostasis of the gut barrier and potential biomarkers publication-title: Am. J. Physiol. Gastrointest. Liver Physiol. doi: 10.1152/ajpgi.00048.2015 – ident: ref_139 doi: 10.3390/ijms18122645 – volume: 73 start-page: 147 year: 2016 ident: ref_15 article-title: Gut microbiota and obesity publication-title: Cell Mol. Life Sci. doi: 10.1007/s00018-015-2061-5 – volume: 49 start-page: 1877 year: 2009 ident: ref_55 article-title: Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease publication-title: Hepatology doi: 10.1002/hep.22848 – volume: 2016 start-page: 1459790 year: 2016 ident: ref_136 article-title: Effects of Omega-3 Fatty Acid in Nonalcoholic Fatty Liver Disease: A Meta-Analysis publication-title: Gastroenterol. Res. Pr. – volume: 17 start-page: 40 year: 2020 ident: ref_5 article-title: Genetic contributions to NAFLD: Leveraging shared genetics to uncover systems biology publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/s41575-019-0212-0 – ident: ref_13 doi: 10.1016/j.clnu.2019.05.003 – volume: 67 start-page: 9124 year: 2019 ident: ref_100 article-title: Review on Bile Acids: Effects of the Gut Microbiome, Interactions with Dietary Fiber, and Alterations in the Bioaccessibility of Bioactive Compounds publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.8b07306 – volume: 35 start-page: 241 year: 2017 ident: ref_74 article-title: Intestinal Farnesoid X Receptor and Takeda G Protein Couple Receptor 5 Signaling in Metabolic Regulation publication-title: Dig. Dis. doi: 10.1159/000450981 – volume: 51 start-page: 32 year: 1986 ident: ref_179 article-title: ISOLATION OF A RAT INTESTINAL CLOSTRIDIUM STRAIN PRODUCING 5-ALPHA AND AND 5-BETA-BILE SALT 3-ALPHA-SULFATASE ACTIVITY publication-title: Appl. Environ. Microbiol. doi: 10.1128/aem.51.1.32-38.1986 – volume: 63 start-page: 764 year: 2016 ident: ref_33 article-title: The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota publication-title: Hepatology doi: 10.1002/hep.28356 – ident: ref_120 doi: 10.3390/ijms21051579 – ident: ref_169 doi: 10.3389/fmicb.2018.00737 – ident: ref_122 doi: 10.20944/preprints201809.0459.v1 – ident: ref_83 doi: 10.1371/journal.pone.0080169 – ident: ref_175 doi: 10.3389/fmicb.2016.00608 – ident: ref_109 doi: 10.3390/md17070391 – volume: 8 start-page: 172 year: 2017 ident: ref_98 article-title: Dietary fiber and prebiotics and the gastrointestinal microbiota publication-title: Gut Microbes doi: 10.1080/19490976.2017.1290756 – ident: ref_106 doi: 10.3390/md16110455 – volume: 106 start-page: 953 year: 2017 ident: ref_133 article-title: Mediterranean diet: Omega-6 and omega-3 fatty acids and diabetes publication-title: Am. J. Clin. Nutr. doi: 10.3945/ajcn.117.158493 – volume: 7 start-page: 15 year: 2010 ident: ref_39 article-title: Elevated endotoxin levels in non-alcoholic fatty liver disease publication-title: J. Inflamm. (Lond.) doi: 10.1186/1476-9255-7-15 – volume: 330 start-page: 1 year: 2017 ident: ref_92 article-title: The effect of fibroblast growth factor 15 deficiency on the development of high fat diet induced non-alcoholic steatohepatitis publication-title: Toxicol. Appl. Pharm. doi: 10.1016/j.taap.2017.06.023 – ident: ref_105 doi: 10.3390/ijms19020554 – volume: 37 start-page: 323 year: 2005 ident: ref_159 article-title: beta-Carotene inhibits inflammatory gene expression in lipopolysaccharide-stimulated macrophages by suppressing redox-based NF-kappaB activation publication-title: Exp. Mol. Med. doi: 10.1038/emm.2005.42 – volume: 85 start-page: 148 year: 2015 ident: ref_63 article-title: Is nonalcoholic fatty liver disease an endogenous alcoholic fatty liver disease? A mechanistic hypothesis publication-title: Med. Hypotheses doi: 10.1016/j.mehy.2015.04.021 – ident: ref_52 doi: 10.1053/j.gastro.2020.02.033 – volume: 6 start-page: 29142 year: 2016 ident: ref_61 article-title: Zonulin Regulates Intestinal Permeability and Facilitates Enteric Bacteria Permeation in Coronary Artery Disease publication-title: Sci. Rep. doi: 10.1038/srep29142 – ident: ref_121 doi: 10.3390/microorganisms7090340 – ident: ref_107 doi: 10.1371/journal.pone.0175406 – volume: 10 start-page: 89 year: 2019 ident: ref_167 article-title: Enhancement of the gut barrier integrity by a microbial metabolite through the Nrf2 pathway publication-title: Nat. Commun. doi: 10.1038/s41467-018-07859-7 – volume: 10 start-page: 497 year: 2019 ident: ref_89 article-title: Three probiotic strains exert different effects on plasma bile acid profiles in healthy obese adults: Randomised, double-blind placebo-controlled crossover study publication-title: Benef. Microbes doi: 10.3920/BM2018.0151 – volume: 58 start-page: 120 year: 2013 ident: ref_30 article-title: Intestinal microbiota in patients with nonalcoholic fatty liver disease publication-title: Hepatology doi: 10.1002/hep.26319 – ident: ref_45 doi: 10.3390/nu11081712 – volume: 60 start-page: 404 year: 2011 ident: ref_77 article-title: Plasma metabolomic profile in nonalcoholic fatty liver disease publication-title: Metabolism doi: 10.1016/j.metabol.2010.03.006 – volume: 17 start-page: 4 year: 2020 ident: ref_97 article-title: Insoluble dietary fibre intake is associated with lower prevalence of newly-diagnosed non-alcoholic fatty liver disease in Chinese men: A large population-based cross-sectional study publication-title: Nutr. Metab. (Lond.) doi: 10.1186/s12986-019-0420-1 – volume: 19 start-page: 208 year: 2016 ident: ref_21 article-title: Nutrition, gut microbiota and child health outcomes publication-title: Curr. Opin. Clin. Nutr. Metab. Care – volume: 6 start-page: 1496 year: 2018 ident: ref_180 article-title: Fecal SCFAs and SCFA-producing bacteria in gut microbiome of human NAFLD as a putative link to systemic T-cell activation and advanced disease publication-title: United Eur. Gastroenterol. J. doi: 10.1177/2050640618804444 – volume: 121 start-page: 91 year: 2014 ident: ref_99 article-title: The role of short-chain fatty acids in health and disease publication-title: Adv. Immunol. doi: 10.1016/B978-0-12-800100-4.00003-9 – volume: 243 start-page: 613 year: 2018 ident: ref_153 article-title: Carotenoid supplementation and retinoic acid in immunoglobulin A regulation of the gut microbiota dysbiosis publication-title: Exp. Biol. Med. doi: 10.1177/1535370218763760 – ident: ref_11 doi: 10.1038/s41575-020-0269-9 – volume: 101 start-page: 47 year: 2017 ident: ref_67 article-title: Interaction of gut microbiota with bile acid metabolism and its influence on disease states publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-016-8006-6 – volume: 30 start-page: 675 year: 2019 ident: ref_64 article-title: Fatty Liver Disease Caused by High-Alcohol-Producing Klebsiella pneumoniae publication-title: Cell Metab. doi: 10.1016/j.cmet.2019.08.018 – volume: 51 start-page: 1 year: 2019 ident: ref_118 article-title: Indole-3-propionic acid inhibits gut dysbiosis and endotoxin leakage to attenuate steatohepatitis in rats publication-title: Exp. Mol. Med. – ident: ref_6 doi: 10.3390/ijms19030911 – volume: 45 start-page: 1356 year: 2008 ident: ref_143 article-title: n-3 polyunsaturated fatty acids prevent disruption of epithelial barrier function induced by proinflammatory cytokines publication-title: Mol. Immunol. doi: 10.1016/j.molimm.2007.09.003 – volume: 56 start-page: 307 year: 2013 ident: ref_81 article-title: Probiotic-mediated competition, exclusion and displacement in biofilm formation by food-borne pathogens publication-title: Lett. Appl. Microbiol. doi: 10.1111/lam.12051 – volume: 15 start-page: 186 year: 2016 ident: ref_141 article-title: Postprandial serum endotoxin in healthy humans is modulated by dietary fat in a randomized, controlled, cross-over study publication-title: Lipids Health Dis. doi: 10.1186/s12944-016-0357-6 – volume: 75 start-page: 645 year: 2013 ident: ref_128 article-title: Omega-3 polyunsaturated fatty acids and inflammatory processes: Nutrition or pharmacology? publication-title: Br. J. Clin. Pharm. doi: 10.1111/j.1365-2125.2012.04374.x – volume: 7 start-page: 12 year: 2014 ident: ref_90 article-title: Microbiota modification with probiotics induces hepatic bile acid synthesis via downregulation of the Fxr-Fgf15 axis in mice publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.02.032 – volume: 63 start-page: e1900257 year: 2019 ident: ref_49 article-title: Trimethylamine N-Oxide Aggravates Liver Steatosis through Modulation of Bile Acid Metabolism and Inhibition of Farnesoid X Receptor Signaling in Nonalcoholic Fatty Liver Disease publication-title: Mol. Nutr. Food Res. doi: 10.1002/mnfr.201900257 – ident: ref_177 doi: 10.1038/srep40128 – volume: 62 start-page: e1700942 year: 2018 ident: ref_110 article-title: Dietary Mannan Oligosaccharides Modulate Gut Microbiota, Increase Fecal Bile Acid Excretion, and Decrease Plasma Cholesterol and Atherosclerosis Development publication-title: Mol. Nutr. Food Res. doi: 10.1002/mnfr.201700942 – volume: 97 start-page: e12271 year: 2018 ident: ref_135 article-title: Omega-3 polyunsaturated fatty acid supplementation and non-alcoholic fatty liver disease: A meta-analysis of randomized controlled trials publication-title: Medicine doi: 10.1097/MD.0000000000012271 – volume: 11 start-page: 533 year: 2018 ident: ref_16 article-title: Obesity and nonalcoholic fatty liver disease: Current perspectives publication-title: Diabetes Metab. Syndr. Obes. doi: 10.2147/DMSO.S146339 – volume: 44 start-page: 1167 year: 2006 ident: ref_36 article-title: Systemic inflammation in nonalcoholic fatty liver disease is characterized by elevated levels of CCL2 publication-title: J. Hepatol. doi: 10.1016/j.jhep.2006.02.011 – ident: ref_172 doi: 10.4172/2329-8901.1000159 – volume: 31 start-page: 884 year: 2015 ident: ref_126 article-title: Oral supplementation with L-glutamine alters gut microbiota of obese and overweight adults: A pilot study publication-title: Nutrition doi: 10.1016/j.nut.2015.01.004 – volume: 92 start-page: 425 year: 2017 ident: ref_51 article-title: Altenusin, a Nonsteroidal Microbial Metabolite, Attenuates Nonalcoholic Fatty Liver Disease by Activating the Farnesoid X Receptor publication-title: Mol. Pharm. doi: 10.1124/mol.117.108829 – volume: 25 start-page: 1657 year: 2018 ident: ref_116 article-title: Lactobacillus accelerates ISCs regeneration to protect the integrity of intestinal mucosa through activation of STAT3 signaling pathway induced by LPLs secretion of IL-22 publication-title: Cell Death Differ. doi: 10.1038/s41418-018-0070-2 – volume: 366 start-page: l4697 year: 2019 ident: ref_129 article-title: Omega-3, omega-6, and total dietary polyunsaturated fat for prevention and treatment of type 2 diabetes mellitus: Systematic review and meta-analysis of randomised controlled trials publication-title: BMJ doi: 10.1136/bmj.l4697 – ident: ref_165 doi: 10.3390/nu11010139 – volume: 57 start-page: 3830 year: 2017 ident: ref_168 article-title: Regulation of the intestinal tight junction by natural polyphenols: A mechanistic perspective publication-title: Crit. Rev. Food Sci. Nutr. doi: 10.1080/10408398.2016.1152230 – volume: 125 start-page: 607 year: 2017 ident: ref_62 article-title: Evaluation of circulating zonulin as a potential marker in the pathogenesis of nonalcoholic fatty liver disease publication-title: APMIS doi: 10.1111/apm.12696 – volume: 5 start-page: 47 year: 2012 ident: ref_124 article-title: Role of Glutamine in Protection of Intestinal Epithelial Tight Junctions publication-title: J. Epithel. Biol. Pharm. doi: 10.2174/1875044301205010047 – volume: 43 start-page: 1139 year: 2019 ident: ref_173 article-title: Lactobacillus rhamnosus GG treatment improves intestinal permeability and modulates microbiota dysbiosis in an experimental model of sepsis publication-title: Int. J. Mol. Med. – ident: ref_42 doi: 10.1128/mBio.03263-19 – ident: ref_157 doi: 10.1371/journal.pone.0098294 – volume: 10 start-page: 2565 year: 2020 ident: ref_162 article-title: Bergamot Polyphenols Improve Dyslipidemia and Pathophysiological Features in a Mouse Model of Non-Alcoholic Fatty Liver Disease publication-title: Sci. Rep. doi: 10.1038/s41598-020-59485-3 – volume: 7 start-page: 98 year: 2016 ident: ref_95 article-title: Intake of Nutrients, Fiber, and Sugar in Patients with Nonalcoholic Fatty Liver Disease in Comparison to Healthy Individuals publication-title: Int. J. Prev. Med. doi: 10.4103/2008-7802.188083 – volume: 20 start-page: 325 year: 1979 ident: ref_178 article-title: 7-ALPHA-DEHYDROXYLATION OF CHOLIC-ACID AND CHENODEOXYCHOLIC ACID BY CLOSTRIDIUM-LEPTUM publication-title: J. Lipid Res. doi: 10.1016/S0022-2275(20)40615-7 – volume: 6 start-page: 612 year: 2015 ident: ref_23 article-title: Nutritional Keys for Intestinal Barrier Modulation publication-title: Front. Immunol. – volume: 10 start-page: 1096 year: 2012 ident: ref_60 article-title: Intestinal permeability and its regulation by zonulin: Diagnostic and therapeutic implications publication-title: Clin. Gastroenterol. Hepatol. doi: 10.1016/j.cgh.2012.08.012 – volume: 2018 start-page: 6031074 year: 2018 ident: ref_148 article-title: N-3 Polyunsaturated Fatty Acids Stimulate Bile Acid Detoxification in Human Cell Models publication-title: Can. J. Gastroenterol. Hepatol. doi: 10.1155/2018/6031074 – volume: 11 start-page: 821 year: 2017 ident: ref_53 article-title: The intestinal barrier: A fundamental role in health and disease publication-title: Expert Rev. Gastroenterol. Hepatol. doi: 10.1080/17474124.2017.1343143 – volume: 5 start-page: 11276 year: 2015 ident: ref_140 article-title: A host-microbiome interaction mediates the opposing effects of omega-6 and omega-3 fatty acids on metabolic endotoxemia publication-title: Sci. Rep. doi: 10.1038/srep11276 – ident: ref_85 doi: 10.1371/journal.pone.0161635 – volume: 116 start-page: 12672 year: 2019 ident: ref_170 article-title: Ruminococcus gnavus, a member of the human gut microbiome associated with Crohn’s disease, produces an inflammatory polysaccharide publication-title: Proc. Nati. Acad. Sci. USA doi: 10.1073/pnas.1904099116 – volume: 9 start-page: 939 year: 2018 ident: ref_65 article-title: Bile Acid Synthesis: From Nature to the Chemical Modification and Synthesis and Their Applications as Drugs and Nutrients publication-title: Front. Pharm. doi: 10.3389/fphar.2018.00939 – volume: 8 start-page: 15778 year: 2015 ident: ref_72 article-title: Mechanism of bile acid-regulated glucose and lipid metabolism in duodenal-jejunal bypass publication-title: Int. J. Clin. Exp. Pathol. – volume: 137 start-page: 781S year: 2007 ident: ref_82 article-title: Cross-talk between probiotic bacteria and the host immune system publication-title: J. Nutr. doi: 10.1093/jn/137.3.781S – volume: 79 start-page: 89 year: 2020 ident: ref_114 article-title: Tryptophan Metabolism and Related Pathways in Psychoneuroimmunology: The Impact of Nutrition and Lifestyle publication-title: Neuropsychobiology doi: 10.1159/000496293 – volume: 30 start-page: 149 year: 2017 ident: ref_93 article-title: Dietary fibre in Europe: Current state of knowledge on definitions, sources, recommendations, intakes and relationships to health publication-title: Nutr. Res. Rev. doi: 10.1017/S095442241700004X – volume: 3 start-page: 1191 year: 2013 ident: ref_25 article-title: Bile acid metabolism and signaling publication-title: Compr. Physiol. doi: 10.1002/cphy.c120023 – volume: 47 start-page: 2143 year: 2015 ident: ref_125 article-title: Glutamine and intestinal barrier function publication-title: Amino Acids doi: 10.1007/s00726-014-1773-4 – volume: 7 start-page: 1769 year: 2016 ident: ref_181 article-title: The human gut microbial ecology associated with overweight and obesity determines ellagic acid metabolism publication-title: Food Funct. doi: 10.1039/C5FO01100K – volume: 15 start-page: 20 year: 2016 ident: ref_137 article-title: Fish oil alleviated high-fat diet-induced non-alcoholic fatty liver disease via regulating hepatic lipids metabolism and metaflammation: A transcriptomic study publication-title: Lipids Health Dis. doi: 10.1186/s12944-016-0190-y – volume: 27 start-page: 41 year: 2018 ident: ref_86 article-title: A Multi-strain Probiotic Reduces the Fatty Liver Index, Cytokines and Aminotransferase levels in NAFLD Patients: Evidence from a Randomized Clinical Trial publication-title: J. Gastrointestin. Liver Dis. doi: 10.15403/jgld.2014.1121.271.kby – volume: 2 start-page: 1231 year: 2010 ident: ref_161 article-title: Chemistry and biochemistry of dietary polyphenols publication-title: Nutrients doi: 10.3390/nu2121231 – volume: 141 start-page: 55 year: 2012 ident: ref_155 article-title: Increased IgA and IgM responses against gut commensals in chronic depression: Further evidence for increased bacterial translocation or leaky gut publication-title: J. Affect. Disord. doi: 10.1016/j.jad.2012.02.023 – volume: 1 start-page: 345 year: 2019 ident: ref_40 article-title: Serum lipopolysaccharides predict advanced liver disease in the general population publication-title: Jhep Rep. doi: 10.1016/j.jhepr.2019.09.001 – volume: 7 start-page: 538 year: 2016 ident: ref_54 article-title: Critical Roles of Kupffer Cells in the Pathogenesis of Alcoholic Liver Disease: From Basic Science to Clinical Trials publication-title: Front. Immunol. doi: 10.3389/fimmu.2016.00538 – volume: 247 start-page: 1067 year: 2014 ident: ref_70 article-title: The mechanism of enterohepatic circulation in the formation of gallstone disease publication-title: J. Membr. Biol. doi: 10.1007/s00232-014-9715-3 – volume: 233 start-page: 674 year: 2008 ident: ref_131 article-title: The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases publication-title: Exp. Biol. Med. (Maywood) doi: 10.3181/0711-MR-311 – volume: 24 start-page: 41 year: 2016 ident: ref_68 article-title: Intestinal Crosstalk between Bile Acids and Microbiota and Its Impact on Host Metabolism publication-title: Cell Metab. doi: 10.1016/j.cmet.2016.05.005 – ident: ref_48 doi: 10.3390/ijms19103228 – volume: 294 start-page: G540 year: 2008 ident: ref_111 article-title: Prebiotic oligosaccharides and the enterohepatic circulation of bile salts in rats publication-title: Am. J. Physiol. Gastrointest. Liver Physiol. doi: 10.1152/ajpgi.00396.2007 – ident: ref_117 doi: 10.1002/hep.31115 – volume: 13 start-page: 125 year: 2019 ident: ref_29 article-title: Gut Microbiota Profiles in Nonalcoholic Fatty Liver Disease and Its Possible Impact on Disease Progression Evaluated with Transient Elastography: Lesson Learnt from 60 Cases publication-title: Case Rep. Gastroenterol. doi: 10.1159/000498946 – volume: 57 start-page: 601 year: 2013 ident: ref_41 article-title: Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: A connection between endogenous alcohol and NASH publication-title: Hepatology doi: 10.1002/hep.26093 – volume: 7 start-page: 4995 year: 2015 ident: ref_1 article-title: Hepatic Steatosis as a Marker of Metabolic Dysfunction publication-title: Nutrients doi: 10.3390/nu7064995 – volume: 57 start-page: 834 year: 2017 ident: ref_163 article-title: The potential of flavonoids in the treatment of non-alcoholic fatty liver disease publication-title: Crit. Rev. Food Sci. Nutr. doi: 10.1080/10408398.2014.952399 – ident: ref_113 doi: 10.3390/nu8010056 – volume: 67 start-page: 123 year: 2018 ident: ref_2 article-title: Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease publication-title: Hepatology doi: 10.1002/hep.29466 – volume: 6 start-page: e02481 year: 2015 ident: ref_47 article-title: Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite trimethylamine-N-oxide publication-title: mBio doi: 10.1128/mBio.02481-14 – volume: 316 start-page: G412 year: 2019 ident: ref_79 article-title: Intestinal TGR5 agonism improves hepatic steatosis and insulin sensitivity in Western diet-fed mice publication-title: Am. J. Physiol. Gastrointest. Liver Physiol. doi: 10.1152/ajpgi.00300.2018 – volume: 20 start-page: 154 year: 2010 ident: ref_96 article-title: Nutritional assessments of patients with non-alcoholic fatty liver disease publication-title: Obes. Surg. doi: 10.1007/s11695-008-9549-0 – volume: 20 start-page: 657 year: 2009 ident: ref_10 article-title: Dietary fructose and intestinal barrier: Potential risk factor in the pathogenesis of nonalcoholic fatty liver disease publication-title: J. Nutr. Biochem. doi: 10.1016/j.jnutbio.2009.05.006 – ident: ref_119 doi: 10.3390/nu11092062 – volume: 23 start-page: 519 year: 2004 ident: ref_149 article-title: Polyunsaturated fatty acids are FXR ligands and differentially regulate expression of FXR targets publication-title: DNA Cell Biol. doi: 10.1089/1044549041562267 – volume: 14 start-page: 54 year: 2015 ident: ref_147 article-title: Dietary supplementation with omega-3 fatty acid attenuates 5-fluorouracil induced mucositis in mice publication-title: Lipids Health Dis. doi: 10.1186/s12944-015-0052-z – ident: ref_156 doi: 10.4061/2010/262179 – volume: 12 start-page: 1756284819858039 year: 2019 ident: ref_37 article-title: The anti-inflammatory potential of diet and nonalcoholic fatty liver disease: The ATTICA study publication-title: Ther. Adv. Gastroenterol. doi: 10.1177/1756284819858039 – ident: ref_146 doi: 10.1371/journal.pone.0073571 – volume: 3 start-page: nzz031.P006-131-019 year: 2019 ident: ref_166 article-title: Polyphenol Consumption on Human Bile Acids Metabolism: Preliminary Data of Bile Acid Profiles in Human Biological Samples publication-title: Curr. Dev. Nutr. doi: 10.1093/cdn/nzz031.P06-131-19 – volume: 318 start-page: G554 year: 2020 ident: ref_78 article-title: Bile acid receptors FXR and TGR5 signaling in fatty liver diseases and therapy publication-title: Am. J. Physiol. Gastrointest. Liver Physiol. doi: 10.1152/ajpgi.00223.2019 – volume: 4 start-page: 8 year: 2013 ident: ref_94 article-title: Dietary fiber future directions: Integrating new definitions and findings to inform nutrition research and communication publication-title: Adv. Nutr. doi: 10.3945/an.112.002907 – volume: 11 start-page: 506 year: 2014 ident: ref_80 article-title: Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/nrgastro.2014.66 – volume: 47 start-page: 652 year: 2008 ident: ref_152 article-title: Carotenoids, retinol, and intestinal barrier function in children from northeastern Brazil publication-title: J. Pediatr. Gastroenterol. Nutr. doi: 10.1097/MPG.0b013e31816bf4bf – volume: 42 start-page: 145 year: 2008 ident: ref_44 article-title: LPS/TLR4 signal transduction pathway publication-title: Cytokine doi: 10.1016/j.cyto.2008.01.006 – ident: ref_132 doi: 10.3390/nu8030128 – volume: 30 start-page: 1161 year: 2017 ident: ref_56 article-title: The relationship between non-alcoholic fatty liver disease and small intestinal bacterial overgrowth among overweight and obese children and adolescents publication-title: J. Pediatr. Endocrinol. Metab. doi: 10.1515/jpem-2017-0252 – volume: 92 start-page: 82 year: 2019 ident: ref_17 article-title: Obesity and nonalcoholic fatty liver disease: From pathophysiology to therapeutics publication-title: Metabolism doi: 10.1016/j.metabol.2018.11.014 – volume: 2018 start-page: 9321643 year: 2018 ident: ref_43 article-title: Gut Microbiota as a Driver of Inflammation in Nonalcoholic Fatty Liver Disease publication-title: Mediat. Inflamm. – volume: 37 start-page: 37 year: 2018 ident: ref_138 article-title: Non-alcoholic fatty liver disease and its treatment with n-3 polyunsaturated fatty acids publication-title: Clin. Nutr. doi: 10.1016/j.clnu.2017.01.006 – volume: 51 start-page: 95 year: 2019 ident: ref_84 article-title: A protective mechanism of probiotic Lactobacillus against hepatic steatosis via reducing host intestinal fatty acid absorption publication-title: Exp. Mol. Med. doi: 10.1038/s12276-019-0293-4 – volume: 37 start-page: 136 year: 2018 ident: ref_91 article-title: Up-regulation of FGF15/19 signaling promotes hepatocellular carcinoma in the background of fatty liver publication-title: J. Exp. Clin. Cancer Res. doi: 10.1186/s13046-018-0781-8 – volume: 71 start-page: 1216 year: 2019 ident: ref_59 article-title: Microbiota-driven gut vascular barrier disruption is a prerequisite for non-alcoholic steatohepatitis development publication-title: J. Hepatol. doi: 10.1016/j.jhep.2019.08.005 – volume: 9 start-page: 87 year: 2018 ident: ref_58 article-title: Non-alcoholic fatty liver disease phenotypes in patients with inflammatory bowel disease publication-title: Cell Death Dis. doi: 10.1038/s41419-017-0124-2 – volume: 2019 start-page: 4625279 year: 2019 ident: ref_151 article-title: Prebiotic Effect of Lycopene and Dark Chocolate on Gut Microbiome with Systemic Changes in Liver Metabolism, Skeletal Muscles and Skin in Moderately Obese Persons publication-title: Biomed. Res. Int. doi: 10.1155/2019/4625279 – volume: 38 start-page: 996 year: 2014 ident: ref_27 article-title: The first 1000 cultured species of the human gastrointestinal microbiota publication-title: Fems Microbiol. Rev. doi: 10.1111/1574-6976.12075 – volume: 62 start-page: 1315 year: 2015 ident: ref_75 article-title: Negative feedback regulation of bile acid metabolism: Impact on liver metabolism and diseases publication-title: Hepatology doi: 10.1002/hep.27964 – volume: 2017 start-page: 9474896 year: 2017 ident: ref_7 article-title: High Fat Diet Alters Gut Microbiota and the Expression of Paneth Cell-Antimicrobial Peptides Preceding Changes of Circulating Inflammatory Cytokines publication-title: Mediat. Inflamm. doi: 10.1155/2017/9474896 – volume: 15 start-page: 9 year: 2018 ident: ref_112 article-title: Fructo-oligosaccharides and glucose homeostasis: A systematic review and meta-analysis in animal models publication-title: Nutr. Metab. (Lond.) doi: 10.1186/s12986-018-0245-3 – volume: 2018 start-page: 9340316 year: 2018 ident: ref_32 article-title: The Association of Gut Microbiota with Nonalcoholic Steatohepatitis in Thais publication-title: Biomed. Res. Int. doi: 10.1155/2018/9340316 – ident: ref_46 doi: 10.3390/nu10121971 – volume: 147 start-page: 2041 year: 2017 ident: ref_127 article-title: Oral Supplementation of Glutamine Attenuates the Progression of Nonalcoholic Steatohepatitis in C57BL/6J Mice publication-title: J. Nutr. doi: 10.3945/jn.117.253815 – volume: 24 start-page: 1548 year: 2020 ident: ref_12 article-title: The role of gut microbiota in mediating obesity and diabetes mellitus publication-title: Eur. Rev. Med. Pharm. Sci. – volume: 18 start-page: 2609 year: 2012 ident: ref_57 article-title: Leaky gut and the liver: A role for bacterial translocation in nonalcoholic steatohepatitis publication-title: World J. Gastroenterol. doi: 10.3748/wjg.v18.i21.2609 – ident: ref_104 doi: 10.3390/nu10111793 – volume: 2017 start-page: 56655 year: 2017 ident: ref_142 article-title: Fish oil affects the metabolic process of trimethylamine N-oxide precursor through trimethylamine production and flavin-containing monooxygenase activity in male C57BL/6 mice publication-title: Rsc Adv. doi: 10.1039/C7RA10248H – volume: 15 start-page: 73 year: 2017 ident: ref_22 article-title: Influence of diet on the gut microbiome and implications for human health publication-title: J. Transl. Med. doi: 10.1186/s12967-017-1175-y – ident: ref_164 doi: 10.3390/nu11030541 – volume: 50 start-page: 2374 year: 2007 ident: ref_108 article-title: Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia publication-title: Diabetologia doi: 10.1007/s00125-007-0791-0 – volume: 134 start-page: 489 year: 2004 ident: ref_123 article-title: Glutathione metabolism and its implications for health publication-title: J. Nutr. doi: 10.1093/jn/134.3.489 – ident: ref_134 doi: 10.1371/journal.pone.0162368 – volume: 11 start-page: 876 year: 2013 ident: ref_18 article-title: Obese humans with nonalcoholic fatty liver disease display alterations in fecal microbiota and volatile organic compounds publication-title: Clin. Gastroenterol. Hepatol. doi: 10.1016/j.cgh.2013.04.016 – ident: ref_102 doi: 10.3390/nu9070667 – volume: 18 start-page: 515 year: 2015 ident: ref_8 article-title: Influence of high-fat diet on gut microbiota: A driving force for chronic disease risk publication-title: Curr. Opin. Clin. Nutr. Metab. Care doi: 10.1097/MCO.0000000000000209 – ident: ref_145 doi: 10.1371/journal.pone.0020460 – volume: 3 start-page: 92 year: 2017 ident: ref_50 article-title: Role of FXR in Liver Inflammation during Nonalcoholic Steatohepatitis publication-title: Curr. Pharm. Rep. doi: 10.1007/s40495-017-0085-2 – volume: 25 start-page: 1054 year: 2017 ident: ref_34 article-title: Gut Microbiome-Based Metagenomic Signature for Non-invasive Detection of Advanced Fibrosis in Human Nonalcoholic Fatty Liver Disease publication-title: Cell Metab. doi: 10.1016/j.cmet.2017.04.001 – volume: 2019 start-page: 7659509 year: 2019 ident: ref_76 article-title: Role of Bile Acids in Dysbiosis and Treatment of Nonalcoholic Fatty Liver Disease publication-title: Mediat. Inflamm. doi: 10.1155/2019/7659509 – volume: 42 start-page: 731 year: 2015 ident: ref_38 article-title: Bacterial endotoxin and non-alcoholic fatty liver disease in the general population: A prospective cohort study publication-title: Aliment. Pharm. doi: 10.1111/apt.13327 – volume: 142 start-page: 2017 year: 2012 ident: ref_144 article-title: Fish oil enhances intestinal integrity and inhibits TLR4 and NOD2 signaling pathways in weaned pigs after LPS challenge publication-title: J. Nutr. doi: 10.3945/jn.112.164947 – volume: 11 start-page: 97 year: 2018 ident: ref_4 article-title: The genetic backgrounds in nonalcoholic fatty liver disease publication-title: Clin. J. Gastroenterol. doi: 10.1007/s12328-018-0841-9 – volume: 35 start-page: 14S year: 2011 ident: ref_35 article-title: Gut microbiota, intestinal permeability, obesity-induced inflammation, and liver injury publication-title: Jpen J. Parenter. Enter. Nutr. doi: 10.1177/0148607111413772 – volume: 242 start-page: 141 year: 2015 ident: ref_88 article-title: Effect of Lactobacillus casei Shirota supplementation on trimethylamine-N-oxide levels in patients with metabolic syndrome: An open-label, randomized study publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2015.05.005 – volume: 7 start-page: 22 year: 2016 ident: ref_69 article-title: Consequences of bile salt biotransformations by intestinal bacteria publication-title: Gut Microbes doi: 10.1080/19490976.2015.1127483 – ident: ref_160 doi: 10.3390/nu10091215 – ident: ref_28 doi: 10.3390/microorganisms7010014 – volume: 9 start-page: 3294 year: 2018 ident: ref_115 article-title: Microbial tryptophan catabolites in health and disease publication-title: Nat. Commun. doi: 10.1038/s41467-018-05470-4 – volume: 92 start-page: 2400 year: 2009 ident: ref_176 article-title: Lactobacillus rhamnosus alleviates intestinal barrier dysfunction in part by increasing expression of zonula occludens-1 and myosin light-chain kinase in vivo publication-title: J. Dairy Sci. doi: 10.3168/jds.2008-1698 – volume: 57 start-page: 152 year: 2020 ident: ref_103 article-title: Insoluble dietary fiber from soy hulls regulates the gut microbiota in vitro and increases the abundance of bifidobacteriales and lactobacillales publication-title: J. Food Sci. Technol. doi: 10.1007/s13197-019-04041-9 – volume: 65 start-page: 1038 year: 2016 ident: ref_3 article-title: The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD) publication-title: Metabolism doi: 10.1016/j.metabol.2015.12.012 – volume: 8 start-page: e62885 year: 2013 ident: ref_31 article-title: Molecular characterization of the fecal microbiota in patients with nonalcoholic steatohepatitis—A longitudinal study publication-title: PLoS ONE doi: 10.1371/journal.pone.0062885 – volume: 34 start-page: 140 year: 2018 ident: ref_71 article-title: Crosstalk between FXR and TGR5 controls glucagon-like peptide 1 secretion to maintain glycemic homeostasis publication-title: Lab. Anim. Res. doi: 10.5625/lar.2018.34.4.140 – ident: ref_101 doi: 10.3390/nu11061424 – volume: 9 start-page: 2494 year: 2018 ident: ref_26 article-title: Altered Gut Microbiota and Compositional Changes in Firmicutes and Proteobacteria in Mexican Undernourished and Obese Children publication-title: Front. Microbiol. doi: 10.3389/fmicb.2018.02494 – volume: 7 start-page: 98 year: 2019 ident: ref_9 article-title: Dietary fructose-induced gut dysbiosis promotes mouse hippocampal neuroinflammation: A benefit of short-chain fatty acids publication-title: Microbiome doi: 10.1186/s40168-019-0713-7 – volume: 163 start-page: 1585 year: 2015 ident: ref_171 article-title: Non-lethal Inhibition of Gut Microbial Trimethylamine Production for the Treatment of Atherosclerosis publication-title: Cell doi: 10.1016/j.cell.2015.11.055 – volume: 6 start-page: 32002 year: 2016 ident: ref_19 article-title: Altered Fecal Microbiota Correlates with Liver Biochemistry in Nonobese Patients with Non-alcoholic Fatty Liver Disease publication-title: Sci. Rep. doi: 10.1038/srep32002 – volume: 6 start-page: 121 year: 2018 ident: ref_174 article-title: Probiotic Bifidobacterium strains and galactooligosaccharides improve intestinal barrier function in obese adults but show no synergism when used together as synbiotics publication-title: Microbiome doi: 10.1186/s40168-018-0494-4 – volume: 74 start-page: 1 year: 2020 ident: ref_150 article-title: Carotenoids as natural functional pigments publication-title: J. Nat. Med. doi: 10.1007/s11418-019-01364-x – volume: 12 start-page: 18 year: 2017 ident: ref_14 article-title: Obesity and microbiota: An example of an intricate relationship publication-title: Genes Nutr. doi: 10.1186/s12263-017-0566-2 – volume: 10 start-page: 275 year: 2015 ident: ref_158 article-title: Effects of rosuvastatin and/or beta-carotene on non-alcoholic fatty liver in rats publication-title: Res. Pharm. Sci. – volume: 17 start-page: 657 year: 2013 ident: ref_66 article-title: Pleiotropic roles of bile acids in metabolism publication-title: Cell Metab. doi: 10.1016/j.cmet.2013.03.013 |
SSID | ssj0023259 |
Score | 2.5482605 |
SecondaryResourceType | review_article |
Snippet | Non-alcoholic fatty liver disease (NAFLD) is recognized as the most frequent classification of liver disease around the globe. Along with the sequencing... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 3066 |
SubjectTerms | Animals Bacteria Bacteria - classification Bacteria - metabolism Bile Deoxyribonucleic acid Diet Dietary Fiber - pharmacology Dietary Fiber - therapeutic use Disease Progression DNA DNA methylation Dysbiosis - complications Dysbiosis - diet therapy Epigenetics Fatty liver Gastrointestinal Microbiome - drug effects Gene expression Homeostasis Humans Inflammation Insulin resistance Liver diseases Metabolism Metabolites Microbiota Non-alcoholic Fatty Liver Disease - microbiology Non-alcoholic Fatty Liver Disease - pathology Non-alcoholic Fatty Liver Disease - prevention & control Obesity Pathogenesis Permeability Polyunsaturated fatty acids Probiotics - pharmacology Probiotics - therapeutic use Review |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k2gICOBBEJWG8fxgwtaKGlB3T21Um-RXxFblaSQrERv_QW98A_5JYzjJGxBcPYkjjLj-Wbs8TcIPecZ9YqB96t8ZQnjFtacsZYAEkOwL43Rebg7PF_wvUP26Sg_Gjbc2qGscvSJvaN2jQ175FsUgBN8KQDW29OvJHSNCqerQwuNq-haCkgTSrpksTslXBntm6WlgEGE54rHwvcM0vyt5fGXlgYqpe2eH3ENkv6KM_8sl1zDn-IWujkEjngWNX0bXfH1HXQ9tpI8u4suQN94Pva6xbp2eO7Drd6eiBl_rNuQhbf4HaCWw02Nd1fdz_Mf-6EsA8--L9s3eDES88M0B32BOIaIFi-amsxiI114UaG77gzHx3bi4Q5-uZgV-zuvcNyg6Pcb76HD4sPB-z0y9FoglgnZESNSZRSVuRfKS-mk4jZnYGaVd5RrZgDVOMBdFQj5UgNZi0mV8nmunbBMsuw-2qib2j9EuEqdsppyJ71hwknjBNOKeg2hsdNWJOj1-LtLOxCRh34YJyUkJEE55bpyEvRikj6NBBz_kNscNVcOy7AtfxtNgp5Nw7CAwqmIrn2zijKQw0EklqAHUdHTRFkgA4IIM0HikglMAoGc-_JIvfzck3QLyiCTSx_9_7Meoxs0JPDbjFC-iTa6byv_BKKczjztTfkXfdr_Aw priority: 102 providerName: ProQuest |
Title | The Molecular and Mechanistic Insights Based on Gut–Liver Axis: Nutritional Target for Non-Alcoholic Fatty Liver Disease (NAFLD) Improvement |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32357561 https://www.proquest.com/docview/2397128820 https://www.proquest.com/docview/2397666658 https://pubmed.ncbi.nlm.nih.gov/PMC7247681 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1da9RAFL30A6Uv4rfRuoygoEjUzE4yGUFka5tW6QaRLuxbmK_gljarTRa6_8Ef7Z3MJnStfcnLTDKQeyfnnMzMuQAvkyG1guHXr7SlDlmicc4prUNEYiT7qVIydmeHx3lyNGHfpvF0A7pqo6sXWP9X2rl6UpOLs3eXv5efccJ_cooTJfv72el5TZ0tEsLnJmwjJnFXy2DM-vUEpA2x8Nver92xA7eHzvMlTqJ1bLpGOP_dN3kFiLK7cGfFIMnIh_webNjqPtzyNSWXD-APBp6Mu6K3RFaGjK073ts6MpOvVe3keE32EL4MmVfkcNGEx253BhldzuqPJO_8-XGQk3afOEFiS_J5FY58PV18TCabZkn8bft-jYe8zkfZ8f4b4v9TtL8dH8IkOzj5chSuSi6EmvG0CRWPhBI0jS0XNk1NKhIdM8y20hqaSKYQ3BJEvdL58kUKxYuKhLBxLA3XLGXDR7BVzSv7BEgZGaElTUxqFeMmVYYzKaiVyJCN1DyAt93LLvTKj9yVxTgrUJe4KBVXoxTAq773L-_DcUO_3S5uRZdMBUXShTiMZCeAF30zziO3OCIrO1_4PijlkJAF8NiHuR-oy48A-FoC9B2cR_d6SzX72Xp1c8pQ0EVPb3zmM9ihTsJ_YCFNdmGruVjY58hzGjWATT7leE2zwwFs7x3k338MHPLEgza5_wK1pAIv |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NjtMwELaWRQguiH8CCxiJlUAo2sZxnBgJoULJtmybU1faW9Z_EUWQLCQV9MYTcOE9eCiehHHchC4IbnvOJLE84_mxx9-H0CMWEsMpeL_CFMqnTMGak0r5EIkh2U-kFJG9OzzL2PiQvjmKjrbQj-4ujG2r7Hxi66h1pewe-R6BwAm-FALWi5OPvmWNsqerHYWGM4sDs_oMJVv9fDIC_e4Skr6evxr7a1YBX9E4aXwZB1xykkQm5iZJdMKZiihMaGE0YYJK8N8MHHthoecCCfm5DDg3USR0rGhCQ_juOXSehjAgezM93e8LvJC05GwBxDyfRZy5RnsQHOwt3n2oiYVuGrR4jBsh8K-89s_2zI14l15Bl9eJKh46y7qKtkx5DV1w1JWr6-gb2Beeddy6WJQaz4y9RdwCP-NJWduqv8YvIUpqXJV4f9n8_Pp9attA8PDLon6Gs44IAH4zbxvSMWTQOKtKf-iIe-FDqWiaFXavjdxhEn6cDdPp6Al2GyLt_uYNdHgmWriJtsuqNLcRLgLNlSBMJ0bSWCdSx1RwYgSk4lqo2ENPu-nO1Rr43PJvvM-hALLKyTeV46HdXvrEAX78Q26n01y-XvZ1_ttIPfSwfwwL1p7CiNJUSycDNSNkfh665RTd_yi04EOQ0XooPmUCvYAFAz_9pFy8bUHBY0Khcgzu_H9YD9DF8Xw2zaeT7OAuukTs5sGA-oTtoO3m09Lcgwyrkfdbs8bo-KzX0S_R2jr4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtNAEB2VVCBeEHcCBRaJSiBkJV6vL4uEUEpqGppYFWqlvhnvxSIInIIdQd74Al74Gz6HL2HWa5sUBG993vVFO7MzZ2ZnzwA8DDyqOUPrl-tcOiyQuOeElA56YgT7kRCZb-4Oz5Jg74i9OvaPN-BHexfGlFW2NrE21GohTY58QNFxoi1FhzXIm7KIg3H8_OSjYzpImZPWtp2GVZF9vfqM4Vv5bDJGWW9TGu8evthzmg4DjmRhVDkidLngNPJ1yHUUqYgH0me4uLlWNMiYQFseoJHPDQ2dKxCrC5dz7fuZCiWLmIfvPQeboYmKerC5s5scvO7CPY_Wrdpc9IBO4PPAlt17Hh8O5u8-lNQQOQ1rdsY1h_gXyv2zWHPN-8WX4VIDW8nI6tkV2NDFVThvG1mursE31DYyazvtkqxQZKbNneKaBppMitLkAEqygz5TkUVBXi6rn1-_T01RCBl9mZdPSdK2BcDPHNbl6QTxNEkWhTOybXzxRXFWVStiHxvboyXyKBnF0_FjYtMjdbbzOhydiRxuQK9YFPoWkNxVXGY0UJEWLFSRUCHLONUZAnOVybAPT9rlTmVDg266cbxPMRwywknXhdOH7W72iaX_-Me8rVZyaWMEyvS3yvbhQTeM29ecyWSFXiztHIwgEQf24aYVdPchz1ARIb7tQ3hKBboJhhr89Egxf1tThIeUYRzp3v7_b92HC7iH0ukk2b8DF6nJJAyZQ4Mt6FWflvouwq1K3Gv0msCbs95KvwCMEUCK |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Molecular+and+Mechanistic+Insights+Based+on+Gut-Liver+Axis%3A+Nutritional+Target+for+Non-Alcoholic+Fatty+Liver+Disease+%28NAFLD%29+Improvement&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Ji%2C+Yun&rft.au=Yin%2C+Yue&rft.au=Sun%2C+Lijun&rft.au=Zhang%2C+Weizhen&rft.date=2020-04-26&rft.eissn=1422-0067&rft.volume=21&rft.issue=9&rft_id=info:doi/10.3390%2Fijms21093066&rft_id=info%3Apmid%2F32357561&rft.externalDocID=32357561 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon |