Electrospun Functional Materials toward Food Packaging Applications: A Review

Electrospinning is an effective and versatile method to prepare continuous polymer nanofibers and nonwovens that exhibit excellent properties such as high molecular orientation, high porosity and large specific surface area. Benefitting from these outstanding and intriguing features, electrospun nan...

Full description

Saved in:
Bibliographic Details
Published inNanomaterials (Basel, Switzerland) Vol. 10; no. 1; p. 150
Main Authors Zhao, Luying, Duan, Gaigai, Zhang, Guoying, Yang, Haoqi, He, Shuijian, Jiang, Shaohua
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 15.01.2020
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electrospinning is an effective and versatile method to prepare continuous polymer nanofibers and nonwovens that exhibit excellent properties such as high molecular orientation, high porosity and large specific surface area. Benefitting from these outstanding and intriguing features, electrospun nanofibers have been employed as a promising candidate for the fabrication of food packaging materials. Actually, the electrospun nanofibers used in food packaging must possess biocompatibility and low toxicity. In addition, in order to maintain the quality of food and extend its shelf life, food packaging materials also need to have certain functionality. Herein, in this timely review, functional materials produced from electrospinning toward food packaging are highlighted. At first, various strategies for the preparation of polymer electrospun fiber are introduced, then the characteristics of different packaging films and their successful applications in food packaging are summarized, including degradable materials, superhydrophobic materials, edible materials, antibacterial materials and high barrier materials. Finally, the future perspective and key challenges of polymer electrospun nanofibers for food packaging are also discussed. Hopefully, this review would provide a fundamental insight into the development of electrospun functional materials with high performance for food packaging.
AbstractList Electrospinning is an effective and versatile method to prepare continuous polymer nanofibers and nonwovens that exhibit excellent properties such as high molecular orientation, high porosity and large specific surface area. Benefitting from these outstanding and intriguing features, electrospun nanofibers have been employed as a promising candidate for the fabrication of food packaging materials. Actually, the electrospun nanofibers used in food packaging must possess biocompatibility and low toxicity. In addition, in order to maintain the quality of food and extend its shelf life, food packaging materials also need to have certain functionality. Herein, in this timely review, functional materials produced from electrospinning toward food packaging are highlighted. At first, various strategies for the preparation of polymer electrospun fiber are introduced, then the characteristics of different packaging films and their successful applications in food packaging are summarized, including degradable materials, superhydrophobic materials, edible materials, antibacterial materials and high barrier materials. Finally, the future perspective and key challenges of polymer electrospun nanofibers for food packaging are also discussed. Hopefully, this review would provide a fundamental insight into the development of electrospun functional materials with high performance for food packaging.Electrospinning is an effective and versatile method to prepare continuous polymer nanofibers and nonwovens that exhibit excellent properties such as high molecular orientation, high porosity and large specific surface area. Benefitting from these outstanding and intriguing features, electrospun nanofibers have been employed as a promising candidate for the fabrication of food packaging materials. Actually, the electrospun nanofibers used in food packaging must possess biocompatibility and low toxicity. In addition, in order to maintain the quality of food and extend its shelf life, food packaging materials also need to have certain functionality. Herein, in this timely review, functional materials produced from electrospinning toward food packaging are highlighted. At first, various strategies for the preparation of polymer electrospun fiber are introduced, then the characteristics of different packaging films and their successful applications in food packaging are summarized, including degradable materials, superhydrophobic materials, edible materials, antibacterial materials and high barrier materials. Finally, the future perspective and key challenges of polymer electrospun nanofibers for food packaging are also discussed. Hopefully, this review would provide a fundamental insight into the development of electrospun functional materials with high performance for food packaging.
Electrospinning is an effective and versatile method to prepare continuous polymer nanofibers and nonwovens that exhibit excellent properties such as high molecular orientation, high porosity and large specific surface area. Benefitting from these outstanding and intriguing features, electrospun nanofibers have been employed as a promising candidate for the fabrication of food packaging materials. Actually, the electrospun nanofibers used in food packaging must possess biocompatibility and low toxicity. In addition, in order to maintain the quality of food and extend its shelf life, food packaging materials also need to have certain functionality. Herein, in this timely review, functional materials produced from electrospinning toward food packaging are highlighted. At first, various strategies for the preparation of polymer electrospun fiber are introduced, then the characteristics of different packaging films and their successful applications in food packaging are summarized, including degradable materials, superhydrophobic materials, edible materials, antibacterial materials and high barrier materials. Finally, the future perspective and key challenges of polymer electrospun nanofibers for food packaging are also discussed. Hopefully, this review would provide a fundamental insight into the development of electrospun functional materials with high performance for food packaging.
Author Yang, Haoqi
Zhang, Guoying
Jiang, Shaohua
Zhao, Luying
Duan, Gaigai
He, Shuijian
AuthorAffiliation 2 College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266000, China; zhanggy@qust.edu.cn
1 Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; zhaoluying1@163.com (L.Z.); shuijianhe@njfu.edu.cn (S.H.)
3 College of Material Science and Engineering, Jilin University, Changchun 130022, China
AuthorAffiliation_xml – name: 2 College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266000, China; zhanggy@qust.edu.cn
– name: 1 Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; zhaoluying1@163.com (L.Z.); shuijianhe@njfu.edu.cn (S.H.)
– name: 3 College of Material Science and Engineering, Jilin University, Changchun 130022, China
Author_xml – sequence: 1
  givenname: Luying
  surname: Zhao
  fullname: Zhao, Luying
– sequence: 2
  givenname: Gaigai
  surname: Duan
  fullname: Duan, Gaigai
– sequence: 3
  givenname: Guoying
  surname: Zhang
  fullname: Zhang, Guoying
– sequence: 4
  givenname: Haoqi
  orcidid: 0000-0001-6706-8470
  surname: Yang
  fullname: Yang, Haoqi
– sequence: 5
  givenname: Shuijian
  surname: He
  fullname: He, Shuijian
– sequence: 6
  givenname: Shaohua
  surname: Jiang
  fullname: Jiang, Shaohua
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31952146$$D View this record in MEDLINE/PubMed
BookMark eNptks1LHDEYh0OxVKveei4DvfTQrfmayaSHwiKuFZQWac_hnXxss51NpsmM0v_erKtlFXNJSJ734cf75i3aCzFYhN4R_JkxiU8ChEgwJpjU-BU6oFjIGZeS7O2c99FxzitcliSsrdkbtM-IrCnhzQG6OuutHlPMwxSqxRT06GOAvrqC0SYPfa7GeAvJVIsYTfUD9B9Y-rCs5sPQew0bOn-p5tW1vfH29gi9dqXGHj_sh-jX4uzn6bfZ5ffzi9P55Uxz0Y4zkLIWrqEgwTjuOu4E1JiKlpZUtpWSCmtAYELrxhEG3FDjGi5JA84Ip9khuth6TYSVGpJfQ_qnInh1fxHTUkEave6tajvHWmYa2lnHjdNAcceNqB3tCG05FNfXrWuYurU12oYxQf9E-vQl-N9qGW-UwJQKIYvg44Mgxb-TzaNa-6xt30OwccqKMk6a0uy2KeiHZ-gqTqn0u1A1b2UjWb2h3u8m-h_lcWoFoFtAl8HlZJ3SfryfRQnoe0Ww2vwOtfs7StGnZ0WP3hfxO-hIuz4
CitedBy_id crossref_primary_10_1016_j_ijbiomac_2023_128424
crossref_primary_10_3390_nano10030517
crossref_primary_10_3390_nano11092377
crossref_primary_10_1016_j_fpsl_2020_100570
crossref_primary_10_3390_polym14204257
crossref_primary_10_1007_s42765_021_00116_5
crossref_primary_10_1016_j_matlet_2021_130117
crossref_primary_10_3390_ma15134540
crossref_primary_10_1016_j_ifset_2024_103896
crossref_primary_10_1016_j_jece_2024_114998
crossref_primary_10_1016_j_giant_2024_100301
crossref_primary_10_1016_j_mlblux_2021_100074
crossref_primary_10_3390_coatings13040785
crossref_primary_10_1016_j_foodres_2022_112093
crossref_primary_10_3390_foods12173159
crossref_primary_10_1515_epoly_2022_0013
crossref_primary_10_1016_j_fpsl_2022_100962
crossref_primary_10_1016_j_jhazmat_2021_125260
crossref_primary_10_1016_j_lwt_2023_115683
crossref_primary_10_3390_antiox10030426
crossref_primary_10_1021_acs_jafc_0c02801
crossref_primary_10_3390_gels9020077
crossref_primary_10_3390_nano10102041
crossref_primary_10_1016_j_foodchem_2023_137822
crossref_primary_10_1002_admi_202100809
crossref_primary_10_1002_vnl_22183
crossref_primary_10_1016_j_fbio_2024_104159
crossref_primary_10_1515_epoly_2020_0063
crossref_primary_10_3390_foods12050960
crossref_primary_10_1080_09593330_2023_2283405
crossref_primary_10_1515_epoly_2020_0068
crossref_primary_10_1080_10408398_2022_2124506
crossref_primary_10_1007_s13399_023_04733_5
crossref_primary_10_3390_fib12030026
crossref_primary_10_3390_nano12071077
crossref_primary_10_1002_adsu_202400360
crossref_primary_10_1021_acsaelm_1c00827
crossref_primary_10_1021_acsanm_3c03716
crossref_primary_10_1016_j_foodchem_2024_142318
crossref_primary_10_3390_foods11172641
crossref_primary_10_1007_s10853_024_09416_8
crossref_primary_10_1039_D2DT00080F
crossref_primary_10_1016_j_foodchem_2020_127850
crossref_primary_10_3390_gels8080505
crossref_primary_10_3390_cryst12081164
crossref_primary_10_1021_acs_jpcc_1c01673
crossref_primary_10_3390_foods13132040
crossref_primary_10_1007_s43153_020_00083_1
crossref_primary_10_3390_polym15051181
crossref_primary_10_1080_10408398_2021_1899128
crossref_primary_10_3390_molecules28145497
crossref_primary_10_2174_2210298101666201012121522
crossref_primary_10_3390_coatings12050644
crossref_primary_10_1016_j_foodchem_2021_129922
crossref_primary_10_1016_j_nantod_2021_101204
crossref_primary_10_1002_fsh3_12007
crossref_primary_10_1016_j_dyepig_2020_109039
crossref_primary_10_3390_molecules26206307
crossref_primary_10_1016_j_foodhyd_2022_108324
crossref_primary_10_1016_j_ijfoodmicro_2024_110976
crossref_primary_10_1111_1750_3841_15843
crossref_primary_10_1007_s12221_024_00698_y
crossref_primary_10_1016_j_coco_2021_100773
crossref_primary_10_1016_j_fpsl_2023_101135
crossref_primary_10_1515_epoly_2023_0009
crossref_primary_10_1007_s12221_021_0091_1
crossref_primary_10_1039_D0AN00440E
crossref_primary_10_1002_star_202300138
crossref_primary_10_1007_s40242_021_1037_2
crossref_primary_10_3390_polym13020265
crossref_primary_10_3390_polym14142911
crossref_primary_10_15251_JOR_2024_206_813
crossref_primary_10_1016_j_saa_2020_119214
crossref_primary_10_1016_j_compositesa_2021_106309
crossref_primary_10_3390_molecules26051353
crossref_primary_10_3390_polym15132820
crossref_primary_10_1002_pc_29321
crossref_primary_10_1016_j_jmbbm_2024_106810
crossref_primary_10_1111_1541_4337_12941
crossref_primary_10_1149_1945_7111_ab732e
crossref_primary_10_1016_j_cej_2022_136744
crossref_primary_10_1016_j_ifset_2023_103550
crossref_primary_10_3390_polym14173462
crossref_primary_10_1007_s13204_020_01499_4
crossref_primary_10_3390_ijms25116073
crossref_primary_10_1080_15583724_2023_2234464
crossref_primary_10_1016_j_afres_2024_100417
crossref_primary_10_1021_acs_iecr_1c02650
crossref_primary_10_1002_app_52622
crossref_primary_10_1039_D1GC03898B
crossref_primary_10_3390_polym14173622
crossref_primary_10_1016_j_carbpol_2022_119899
crossref_primary_10_1016_j_mtchem_2022_101227
crossref_primary_10_1208_s12249_022_02414_6
crossref_primary_10_1016_j_porgcoat_2024_108235
crossref_primary_10_3390_polym12040870
crossref_primary_10_1007_s41783_022_00144_5
crossref_primary_10_1016_j_fshw_2022_07_064
crossref_primary_10_1002_jbm_a_37199
crossref_primary_10_1016_j_colsurfb_2023_113609
crossref_primary_10_3390_met11010092
crossref_primary_10_1016_j_carres_2021_108443
crossref_primary_10_1016_j_lwt_2023_115408
crossref_primary_10_1021_acsomega_3c06024
crossref_primary_10_1111_1541_4337_12715
crossref_primary_10_3390_su15076153
crossref_primary_10_1007_s12221_021_0378_2
crossref_primary_10_1515_epoly_2020_0034
crossref_primary_10_1007_s12602_023_10174_3
crossref_primary_10_1016_j_jconrel_2020_07_038
crossref_primary_10_1016_j_jfoodeng_2024_112440
crossref_primary_10_1002_adem_202100153
crossref_primary_10_1007_s11483_024_09832_y
crossref_primary_10_1021_acsomega_3c00798
crossref_primary_10_3390_molecules28031507
crossref_primary_10_1021_acs_jafc_1c00230
crossref_primary_10_1134_S2075113324700618
crossref_primary_10_3390_membranes11100750
crossref_primary_10_1016_j_indcrop_2023_117696
crossref_primary_10_1007_s10118_021_2634_8
crossref_primary_10_1016_j_surfin_2021_101140
crossref_primary_10_1016_j_tifs_2023_104253
crossref_primary_10_3390_nano10091714
crossref_primary_10_1002_app_53208
crossref_primary_10_1016_j_carpta_2021_100064
crossref_primary_10_1111_1750_3841_16948
crossref_primary_10_1016_j_fpsl_2023_101234
crossref_primary_10_3390_polym16213061
crossref_primary_10_1016_j_nxmate_2024_100172
crossref_primary_10_1016_j_ifset_2021_102804
crossref_primary_10_1016_j_foodchem_2021_129021
crossref_primary_10_1039_D2RA00912A
crossref_primary_10_1002_zaac_202000119
crossref_primary_10_1016_j_ijbiomac_2024_130651
crossref_primary_10_3390_polym17060767
crossref_primary_10_3390_foods11030387
crossref_primary_10_1515_epoly_2020_0023
crossref_primary_10_1016_j_apsusc_2021_149710
crossref_primary_10_3390_polym14153177
crossref_primary_10_1080_10408398_2023_2202256
crossref_primary_10_1080_25740881_2023_2234459
crossref_primary_10_1016_j_jmrt_2022_04_110
crossref_primary_10_1039_D2RA04911B
crossref_primary_10_3390_app11083532
crossref_primary_10_1007_s10661_023_11227_4
crossref_primary_10_3390_ma16175937
crossref_primary_10_1002_app_51716
crossref_primary_10_3390_nano11051331
crossref_primary_10_3390_polym15020451
crossref_primary_10_1016_j_cclet_2021_03_073
crossref_primary_10_3390_antiox12071387
crossref_primary_10_1021_acsanm_3c05572
crossref_primary_10_1021_acsomega_2c05105
crossref_primary_10_3390_polym14194065
crossref_primary_10_1080_10408398_2021_2004991
crossref_primary_10_1016_j_foodchem_2023_137236
crossref_primary_10_1515_epoly_2020_0056
crossref_primary_10_3390_foods11131884
crossref_primary_10_1038_s43246_024_00597_y
crossref_primary_10_3390_foods11182727
crossref_primary_10_1021_acsami_2c15311
crossref_primary_10_3390_polym14020315
crossref_primary_10_1002_jsfa_11220
crossref_primary_10_3390_nano10122356
crossref_primary_10_1088_1757_899X_877_1_012043
crossref_primary_10_1016_j_foodcont_2021_108184
crossref_primary_10_1021_acs_nanolett_2c00246
crossref_primary_10_3390_gels9060433
crossref_primary_10_1007_s10965_024_03951_3
crossref_primary_10_1016_j_foodres_2025_116270
crossref_primary_10_1021_acsami_1c06230
crossref_primary_10_1016_j_polymertesting_2022_107677
crossref_primary_10_1021_acs_jafc_4c11712
crossref_primary_10_3390_molecules25245878
crossref_primary_10_1080_10408398_2022_2147900
crossref_primary_10_1111_1541_4337_13275
crossref_primary_10_1016_j_tifs_2020_05_004
crossref_primary_10_1021_acs_jafc_1c05352
crossref_primary_10_3390_macromol3010001
crossref_primary_10_1016_j_ijbiomac_2024_138517
crossref_primary_10_1039_D2AY01434C
crossref_primary_10_1177_00405175211073349
crossref_primary_10_1002_pat_70044
crossref_primary_10_1007_s11483_023_09824_4
crossref_primary_10_1007_s40820_023_01122_5
Cites_doi 10.1021/ma4013253
10.1002/masy.200851209
10.1016/j.saa.2018.04.045
10.1016/j.foodhyd.2012.12.007
10.3390/ijms12031908
10.1111/jam.12158
10.1016/j.ijbiomac.2017.08.183
10.1080/09205063.2015.1111717
10.1155/2014/475280
10.4028/www.scientific.net/AMR.941-944.400
10.1016/j.cclet.2019.07.033
10.1016/j.actbio.2017.02.029
10.1088/2053-1591/1/4/045304
10.1126/science.aay9033
10.1016/j.carbpol.2011.09.017
10.1016/j.carbpol.2013.04.068
10.1557/PROC-1134-BB08-18
10.1002/app.48199
10.1016/j.electacta.2019.06.132
10.1002/mabi.201300058
10.1002/pi.2893
10.1021/acsami.8b09656
10.1016/j.biomaterials.2005.01.066
10.1016/j.colsurfa.2007.04.122
10.1021/nl203817r
10.1016/S0266-3538(03)00178-7
10.1252/jcej.28.288
10.1021/acs.biomac.7b00852
10.1016/j.apsusc.2016.06.054
10.1007/12_2011_123
10.1021/ma301207t
10.1016/j.memsci.2018.03.085
10.1021/acsami.5b06007
10.1021/acsami.8b19839
10.1021/bm3009389
10.1016/j.msec.2010.05.003
10.1016/j.coco.2019.07.001
10.1002/adma.200700963
10.1016/j.biomaterials.2004.06.051
10.2174/138161209788186344
10.1002/pi.1829
10.1016/j.carbpol.2018.10.105
10.1088/1748-6041/6/5/055008
10.1007/BF03218905
10.1016/j.foodhyd.2007.02.005
10.1016/j.foodhyd.2013.12.023
10.1002/pat.1781
10.1021/la900660v
10.1111/j.1551-2916.2008.02299.x
10.1088/1757-899X/459/1/012016
10.3390/nano9121737
10.1039/c2ce26758f
10.3168/jds.2007-0464
10.1016/j.polymertesting.2018.02.026
10.4028/www.scientific.net/NHC.14.39
10.1007/s10854-019-00760-z
10.1016/j.lwt.2010.01.021
10.1016/j.foodhyd.2016.03.020
10.3390/nano8100745
10.2174/187221009787003285
10.1007/s10118-010-9094-x
10.1002/app.48299
10.1088/0957-4484/22/34/345301
10.1007/s10924-015-0713-z
10.1016/j.polymer.2014.06.032
10.1007/s12274-014-0600-2
10.1177/0040517517723026
10.1002/pc.21149
10.1088/1757-899X/290/1/012003
10.1186/s40691-017-0090-4
10.1039/C8TB02491J
10.1115/1.2838033
10.1007/s40005-012-0014-7
10.1007/s13197-014-1508-2
10.1111/jfpp.13374
10.1186/s12938-017-0334-y
10.1016/j.jfoodeng.2011.11.032
10.1021/am500837s
10.1016/j.matlet.2006.09.004
10.1039/C5NR06611E
10.1016/j.carbon.2019.04.029
10.34133/2019/4152536
10.1016/j.tsf.2007.04.086
10.1016/j.ifset.2014.09.012
10.1007/s12034-008-0054-9
10.1002/adem.201180041
10.1016/j.jfoodeng.2013.11.022
10.1007/s10404-018-2043-7
10.3390/nano9010052
10.1016/j.jcis.2016.08.021
10.1016/j.carbon.2012.04.018
10.1039/C3TC31680G
10.1021/am1005089
10.3390/nano9070937
10.1016/j.jpowsour.2011.01.090
10.1007/s004250050096
10.1111/1541-4337.12128
10.1039/C7RA13125A
10.1016/j.tifs.2014.03.004
10.1021/ie501827b
10.1039/C8PY00378E
10.1002/pi.2905
10.1080/07373937.2016.1162797
10.1002/mame.201800336
10.1016/j.polymer.2010.07.046
10.1016/j.cplett.2005.09.035
10.1016/j.biomaterials.2007.11.024
10.1016/j.matlet.2009.09.043
10.1088/1757-899X/202/1/012011
10.1016/j.jcis.2016.11.062
10.1088/1742-6596/1166/1/012012
10.1016/j.colsurfa.2015.11.075
10.1002/smll.201604293
10.1002/star.201400193
10.1016/j.carbpol.2009.07.052
10.1007/s10570-017-1409-4
10.1016/j.polymer.2004.01.026
10.1002/adma.200400719
10.1002/app.27664
10.1002/pen.21377
10.1016/j.eurpolymj.2017.12.025
10.1002/marc.200400253
10.1016/j.ijpharm.2018.05.013
10.1002/app.30891
10.3390/nano6070129
10.3390/polym11081239
10.1179/026708310X12798718274476
10.1016/j.polymer.2017.07.008
10.1002/pen.23329
10.1016/j.foodres.2009.05.005
10.1016/j.foodchem.2013.06.018
10.1007/s11947-018-2207-1
10.1021/acsami.9b16458
10.1021/acs.jafc.8b06226
10.1021/acsami.6b02177
10.1021/ma100750e
10.1016/j.coco.2019.01.008
10.1016/j.progpolymsci.2018.07.006
10.1007/s10853-010-5226-5
10.1002/pts.2366
10.1021/acsami.9b01508
10.1016/j.foodcont.2015.06.005
10.1016/j.indcrop.2018.11.004
10.1016/j.coco.2018.06.006
10.1016/j.coco.2019.07.004
10.1016/j.eurpolymj.2018.05.034
10.1016/j.polymer.2014.10.073
10.1002/mame.201600353
10.1111/1750-3841.13723
10.1002/app.44853
10.1016/j.foodchem.2012.01.040
10.1080/15583724.2014.881374
10.1016/j.biomaterials.2005.06.024
ContentType Journal Article
Copyright 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 by the authors. 2020
Copyright_xml – notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
8FH
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
F28
FR3
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
KB.
KR7
L7M
LK8
L~C
L~D
M7P
P64
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/nano10010150
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
ProQuest Materials Science Database (NC LIVE)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biological Science Database
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Materials Research Database
ProQuest Central Student
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
ANTE: Abstracts in New Technology & Engineering
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
Ceramic Abstracts
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
Materials Science Collection
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
Biotechnology Research Abstracts
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Materials Science & Engineering Collection
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
PubMed
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ (selected full-text)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-4991
ExternalDocumentID oai_doaj_org_article_8bf383d62bef4dfca20b4d75f2b1284a
PMC7022779
31952146
10_3390_nano10010150
Genre Journal Article
Review
GrantInformation_xml – fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20180770, and BK20190760
– fundername: Opening Project of Division of Chemistry from Qingdao University of Science and Technology
  grantid: QUSTHX201921
– fundername: Priority Academic Program Development of Jiangsu Higher Education Institutions
  grantid: PAPD
– fundername: National Natural Science Foundation of China
  grantid: 51803093, and 51903123
GroupedDBID 53G
5VS
8FE
8FG
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ABJCF
ADBBV
ADMLS
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
D1I
GROUPED_DOAJ
HCIFZ
HYE
I-F
KB.
KQ8
LK8
M7P
MODMG
M~E
OK1
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
NPM
PQGLB
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
DWQXO
F28
FR3
GNUQQ
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c478t-a9957f62a9adf4fb4f7a502782521e89927eda701256f13a4d2df64916afd7fc3
IEDL.DBID BENPR
ISSN 2079-4991
IngestDate Wed Aug 27 01:17:19 EDT 2025
Thu Aug 21 18:33:43 EDT 2025
Fri Jul 11 02:49:49 EDT 2025
Fri Jul 25 12:00:26 EDT 2025
Mon Jul 21 06:00:03 EDT 2025
Thu Apr 24 22:54:59 EDT 2025
Tue Jul 01 01:16:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords food packaging
electrospinning
nanofibers
functional membrane
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c478t-a9957f62a9adf4fb4f7a502782521e89927eda701256f13a4d2df64916afd7fc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-6706-8470
OpenAccessLink https://www.proquest.com/docview/2548969356?pq-origsite=%requestingapplication%
PMID 31952146
PQID 2548969356
PQPubID 2032354
ParticipantIDs doaj_primary_oai_doaj_org_article_8bf383d62bef4dfca20b4d75f2b1284a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7022779
proquest_miscellaneous_2341614686
proquest_journals_2548969356
pubmed_primary_31952146
crossref_citationtrail_10_3390_nano10010150
crossref_primary_10_3390_nano10010150
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200115
PublicationDateYYYYMMDD 2020-01-15
PublicationDate_xml – month: 1
  year: 2020
  text: 20200115
  day: 15
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Nanomaterials (Basel, Switzerland)
PublicationTitleAlternate Nanomaterials (Basel)
PublicationYear 2020
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_139
Yue (ref_101) 2019; 206
Yao (ref_4) 2019; 15
Klimov (ref_155) 2010; 43
ref_14
ref_13
Kayaci (ref_140) 2012; 133
Arkoun (ref_150) 2018; 31
Yarin (ref_57) 2011; 22
ref_99
Bhullar (ref_131) 2015; 23
Tomaszewski (ref_138) 2008; 272
Ajalloueian (ref_11) 2014; 2014
Thoppey (ref_89) 2012; 45
Thoppey (ref_91) 2010; 51
Fabra (ref_152) 2016; 483
Sriyanti (ref_56) 2019; 1166
Rezaei (ref_19) 2015; 14
Duan (ref_21) 2017; 18
Ohkawa (ref_68) 2004; 25
Sajeev (ref_84) 2008; 31
Miyoshi (ref_72) 2005; 54
Schaub (ref_120) 2017; 123
Zheng (ref_85) 2014; 53
Komur (ref_93) 2017; 16
ref_129
Fabra (ref_153) 2013; 32
Wolf (ref_100) 2018; 556
Han (ref_60) 2017; 53
Varesano (ref_65) 2010; 59
Venugopal (ref_20) 2009; 15
Choi (ref_23) 2016; 8
Li (ref_45) 2004; 16
Lallave (ref_58) 2010; 19
Jiang (ref_3) 2018; 9
Liu (ref_46) 2019; 137
Kumar (ref_110) 2017; 14
Jegina (ref_54) 2018; 459
Sawai (ref_116) 1995; 28
Ashwar (ref_42) 2015; 67
Acik (ref_49) 2019; 136
ref_28
ref_27
Yang (ref_39) 2018; 200
Zhang (ref_64) 2018; 8
Amna (ref_117) 2015; 52
Wang (ref_51) 2019; 30
Han (ref_52) 2010; 79
Li (ref_15) 2019; 13
Jiang (ref_61) 2014; 6
Neo (ref_148) 2013; 141
Zhang (ref_29) 2017; 13
Qiao (ref_26) 2019; 11
Han (ref_31) 2019; 128
Agarwal (ref_149) 2014; 26
Goh (ref_125) 2016; 387
Tao (ref_77) 2007; 61
Wang (ref_80) 2009; 49
Nagiah (ref_133) 2012; 14
Park (ref_94) 2012; 42
Wang (ref_87) 2014; 1
Song (ref_106) 2005; 415
Lv (ref_37) 2019; 11
Zhu (ref_36) 2017; 302
Bustos (ref_43) 2016; 60
Casasola (ref_135) 2014; 55
Kim (ref_41) 2009; 17
Wei (ref_108) 2011; 6
Wen (ref_141) 2016; 59
Yu (ref_62) 2015; 7
ref_145
Nasikhudin (ref_112) 2017; 202
Han (ref_102) 2019; 149
Duling (ref_128) 2008; 130
Lim (ref_147) 2009; 42
Yang (ref_103) 2011; 32
Peralta (ref_44) 2008; 91
Sun (ref_30) 2014; 2
Ignatova (ref_124) 2018; 545
Yakub (ref_126) 2018; 107
Surip (ref_50) 2018; 290
Ding (ref_74) 2018; 10
Gao (ref_10) 2019; 7
Kang (ref_144) 2008; 313–314
ref_55
Zhang (ref_33) 2013; 15
Dong (ref_12) 2011; 196
Fabra (ref_154) 2014; 39
Abbasi (ref_47) 2018; 105
Yao (ref_92) 2017; 82
Bianco (ref_130) 2009; 89
Roman (ref_90) 2013; 46
Han (ref_59) 2009; 25
Lee (ref_119) 2008; 29
Barthlott (ref_143) 1997; 202
Yang (ref_79) 2013; 26
Alharbi (ref_95) 2018; 67
Chen (ref_40) 2018; 42
He (ref_97) 2017; 490
Liao (ref_5) 2019; 366
Ouyang (ref_22) 2018; 9
Zhu (ref_115) 2018; 12
Hu (ref_127) 2013; 53
Sundaramurthi (ref_6) 2014; 54
Khan (ref_114) 2017; 88
Yan (ref_32) 2016; 8
ref_63
Ding (ref_142) 2008; 516
Yao (ref_122) 2010; 28
Buttafoco (ref_9) 2006; 27
Jiang (ref_34) 2019; 2019
Ding (ref_86) 2004; 45
Han (ref_76) 2017; 24
Supaphol (ref_78) 2008; 108
Ignatova (ref_67) 2013; 13
Neo (ref_73) 2012; 109
Liu (ref_113) 2008; 91
George (ref_98) 2018; 86
Wang (ref_107) 2010; 64
Mascheroni (ref_146) 2013; 98
Gimenez (ref_71) 2008; 22
Li (ref_24) 2019; 15
Han (ref_25) 2015; 8
Niu (ref_81) 2009; 114
Aider (ref_66) 2010; 43
Geng (ref_69) 2005; 26
ref_111
Lee (ref_118) 2010; 59
Hou (ref_2) 2018; 42
Park (ref_132) 2016; 492
Li (ref_134) 2015; 56
Huang (ref_137) 2018; 99
Surucu (ref_123) 2016; 27
Liu (ref_53) 2012; 50
Huang (ref_38) 2003; 63
Anandharamakrishnan (ref_18) 2014; 38
Tang (ref_136) 2014; 941–944
Drosou (ref_17) 2016; 35
Feng (ref_82) 2012; 13
Hwang (ref_16) 2012; 12
ref_105
Han (ref_75) 2019; 318
Thoppey (ref_88) 2011; 22
Yang (ref_7) 2005; 26
Wang (ref_121) 2009; 3
Lv (ref_35) 2018; 303
Sencadas (ref_70) 2012; 87
ref_1
Korehei (ref_96) 2013; 114
Meng (ref_104) 2010; 30
Chowdhury (ref_109) 2011; 46
Fabra (ref_151) 2014; 127
ref_48
ref_8
Castano (ref_83) 2011; 12
References_xml – volume: 46
  start-page: 7352
  year: 2013
  ident: ref_90
  article-title: Maximizing Spontaneous Jet Density and Nanofiber Quality in Unconfined Electrospinning: The Role of Interjet Interactions
  publication-title: Macromolecules
  doi: 10.1021/ma4013253
– volume: 272
  start-page: 70
  year: 2008
  ident: ref_138
  article-title: Poly (L-lactide) Nano- and Microfibers by Electrospinning: Influence of Poly (L-lactide) Molecular Weight
  publication-title: Macromol. Symp.
  doi: 10.1002/masy.200851209
– volume: 200
  start-page: 339
  year: 2018
  ident: ref_39
  article-title: Molecular orientation in aligned electrospun polyimide nanofibers by polarized FT-IR spectroscopy
  publication-title: Spectrochim. Acta Part. A Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2018.04.045
– volume: 32
  start-page: 106
  year: 2013
  ident: ref_153
  article-title: High barrier polyhydroxyalcanoate food packaging film by means of nanostructured electrospun interlayers of zein
  publication-title: Food Hydrocoll.
  doi: 10.1016/j.foodhyd.2012.12.007
– volume: 12
  start-page: 1908
  year: 2011
  ident: ref_83
  article-title: Natural-synthetic hybrid polymers developed via electrospinning: The effect of PET in chitosan/starch system
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms12031908
– volume: 114
  start-page: 1425
  year: 2013
  ident: ref_96
  article-title: Incorporation of T4 bacteriophage in electrospun fibres
  publication-title: J. Appl. Microbiol.
  doi: 10.1111/jam.12158
– volume: 107
  start-page: 689
  year: 2018
  ident: ref_126
  article-title: Chitosan/ferulic acid-coated poly (epsilon-caprolactone) electrospun materials with antioxidant, antibacterial and antitumor properties
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2017.08.183
– volume: 27
  start-page: 111
  year: 2016
  ident: ref_123
  article-title: DBD atmospheric plasma-modified, electrospun, layer-by-layer polymeric scaffolds for L929 fibroblast cell cultivation
  publication-title: J. Biomater. Sci. Polym. Ed.
  doi: 10.1080/09205063.2015.1111717
– volume: 2014
  start-page: 475280
  year: 2014
  ident: ref_11
  article-title: Emulsion electrospinning as an approach to fabricate PLGA/chitosan nanofibers for biomedical applications
  publication-title: BioMed Res. Int.
  doi: 10.1155/2014/475280
– volume: 941–944
  start-page: 400
  year: 2014
  ident: ref_136
  article-title: Fabrication of PLA Nanoporous Fibers by DMF/CF Mixed Solvent via Electrospinning
  publication-title: Adv. Mater. Res.
  doi: 10.4028/www.scientific.net/AMR.941-944.400
– ident: ref_8
  doi: 10.1016/j.cclet.2019.07.033
– volume: 53
  start-page: 242
  year: 2017
  ident: ref_60
  article-title: Long-term antimicrobial effect of nisin released from electrospun triaxial fiber membranes
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2017.02.029
– volume: 1
  start-page: 045304
  year: 2014
  ident: ref_87
  article-title: Unconfined, melt edge electrospinning from multiple, spontaneous, self-organized polymer jets
  publication-title: Mater. Res. Express
  doi: 10.1088/2053-1591/1/4/045304
– volume: 366
  start-page: 1376
  year: 2019
  ident: ref_5
  article-title: High strength in combination with high toughness in robust and sustainable polymeric materials
  publication-title: Science
  doi: 10.1126/science.aay9033
– volume: 87
  start-page: 1295
  year: 2012
  ident: ref_70
  article-title: Determination of the parameters affecting electrospun chitosan fiber size distribution and morphology
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2011.09.017
– volume: 98
  start-page: 17
  year: 2013
  ident: ref_146
  article-title: Encapsulation of volatiles in nanofibrous polysaccharide membranes for humidity-triggered release
  publication-title: Carbohydr. Polym
  doi: 10.1016/j.carbpol.2013.04.068
– ident: ref_129
  doi: 10.1557/PROC-1134-BB08-18
– volume: 136
  start-page: 48199
  year: 2019
  ident: ref_49
  article-title: Polypropylene microfibers via solution electrospinning under ambient conditions
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.48199
– volume: 318
  start-page: 660
  year: 2019
  ident: ref_75
  article-title: An intrinsically self-healing and biocompatible electroconductive hydrogel based on nanostructured nanocellulose-polyaniline complexes embedded in a viscoelastic polymer network towards flexible conductors and electrodes
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.06.132
– volume: 13
  start-page: 860
  year: 2013
  ident: ref_67
  article-title: Electrospun Antibacterial Chitosan-B ased Fibers
  publication-title: Macromol. Biosci.
  doi: 10.1002/mabi.201300058
– volume: 59
  start-page: 1606
  year: 2010
  ident: ref_65
  article-title: Multi-jet nozzle electrospinning on textile substrates: Observations on process and nanofibre mat deposition
  publication-title: Polym. Int.
  doi: 10.1002/pi.2893
– volume: 10
  start-page: 27987
  year: 2018
  ident: ref_74
  article-title: Nanocellulose-Mediated Electroconductive Self-Healing Hydrogels with High Strength, Plasticity, Viscoelasticity, Stretchability, and Biocompatibility toward Multifunctional Applications
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b09656
– volume: 26
  start-page: 5427
  year: 2005
  ident: ref_69
  article-title: Electrospinning of chitosan dissolved in concentrated acetic acid solution
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2005.01.066
– volume: 313–314
  start-page: 411
  year: 2008
  ident: ref_144
  article-title: Preparation of superhydrophobic polystyrene membranes by electrospinning
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2007.04.122
– volume: 12
  start-page: 802
  year: 2012
  ident: ref_16
  article-title: Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes
  publication-title: Nano Lett.
  doi: 10.1021/nl203817r
– volume: 63
  start-page: 2223
  year: 2003
  ident: ref_38
  article-title: A review on polymer nanofibers by electrospinning and their applications in nanocomposites
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/S0266-3538(03)00178-7
– volume: 28
  start-page: 288
  year: 1995
  ident: ref_116
  article-title: Evaluation of Growth Inhibitory Effect of Ceramics Powder Slurry on Bacteria by Conductance Method
  publication-title: J. Chem. Eng. Jpn.
  doi: 10.1252/jcej.28.288
– volume: 18
  start-page: 3215
  year: 2017
  ident: ref_21
  article-title: Exploration of Macroporous Polymeric Sponges As Drug Carriers
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.7b00852
– volume: 387
  start-page: 1
  year: 2016
  ident: ref_125
  article-title: Antibacterial polylactic acid/chitosan nanofibers decorated with bioactive glass
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.06.054
– ident: ref_1
  doi: 10.1007/12_2011_123
– volume: 45
  start-page: 6527
  year: 2012
  ident: ref_89
  article-title: Effect of Solution Parameters on Spontaneous Jet Formation and Throughput in Edge Electrospinning from a Fluid-Filled Bowl
  publication-title: Macromolecules
  doi: 10.1021/ma301207t
– volume: 556
  start-page: 393
  year: 2018
  ident: ref_100
  article-title: How the shape of fillers affects the barrier properties of polymer/non-porous particles nanocomposites: A review
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2018.03.085
– volume: 7
  start-page: 18891
  year: 2015
  ident: ref_62
  article-title: Nanofibers Fabricated Using Triaxial Electrospinning as Zero Order Drug Delivery Systems
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b06007
– volume: 11
  start-page: 5401
  year: 2019
  ident: ref_26
  article-title: Electrospun Nanobelt-Shaped Polymer Membranes for Fast and High-Sensitivity Detection of Metal Ions
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b19839
– volume: 13
  start-page: 3917
  year: 2012
  ident: ref_82
  article-title: Acetic-acid-mediated miscibility toward electrospinning homogeneous composite nanofibers of GT/PCL
  publication-title: Biomacromolecules
  doi: 10.1021/bm3009389
– volume: 30
  start-page: 1014
  year: 2010
  ident: ref_104
  article-title: Fabrication and characterization of three-dimensional nanofiber membrance of PCL–MWCNTs by electrospinning
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2010.05.003
– volume: 89
  start-page: 1028
  year: 2009
  ident: ref_130
  article-title: Structural characterization and cell response evaluation of electrospun PCL membranes: Micrometric versus submicrometric fibers
  publication-title: J. Biomed. Mater. Res. Part A
– volume: 15
  start-page: 92
  year: 2019
  ident: ref_4
  article-title: Robust strong electrospun polyimide composite nanofibers from a ternary polyamic acid blend
  publication-title: Compos. Commun.
  doi: 10.1016/j.coco.2019.07.001
– volume: 19
  start-page: 4292
  year: 2010
  ident: ref_58
  article-title: Filled and Hollow Carbon Nanofibers by Coaxial Electrospinning of Alcell Lignin without Binder Polymers
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200700963
– volume: 26
  start-page: 2603
  year: 2005
  ident: ref_7
  article-title: Electrospinning of nano/micro scale poly (l-lactic acid) aligned fibers and their potential in neural tissue engineering
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2004.06.051
– volume: 15
  start-page: 1799
  year: 2009
  ident: ref_20
  article-title: Continuous Nanostructures for the Controlled Release of Drugs
  publication-title: Curr. Pharm. Des.
  doi: 10.2174/138161209788186344
– volume: 54
  start-page: 1187
  year: 2005
  ident: ref_72
  article-title: Preparation of ultrafine fibrous zein membranes via electrospinning
  publication-title: Polym. Int.
  doi: 10.1002/pi.1829
– volume: 206
  start-page: 289
  year: 2019
  ident: ref_101
  article-title: Effects of nanocellulose on sodium alginate/polyacrylamide hydrogel: Mechanical properties and adsorption-desorption capacities
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2018.10.105
– volume: 6
  start-page: 055008
  year: 2011
  ident: ref_108
  article-title: Magnetic biodegradable Fe3O4/CS/PVA nanofibrous membranes for bone regeneration
  publication-title: Biomed. Mater.
  doi: 10.1088/1748-6041/6/5/055008
– volume: 17
  start-page: 544
  year: 2009
  ident: ref_41
  article-title: Modification of a crosslinked poly (acrylic acid) based new dehumidifying agent and its moisture absorbing characteristics
  publication-title: Macromol. Res.
  doi: 10.1007/BF03218905
– volume: 22
  start-page: 601
  year: 2008
  ident: ref_71
  article-title: Characterization of the morphology and thermal properties of Zein Prolamine nanostructures obtained by electrospinning
  publication-title: Food Hydrocoll.
  doi: 10.1016/j.foodhyd.2007.02.005
– volume: 39
  start-page: 77
  year: 2014
  ident: ref_154
  article-title: On the use of different hydrocolloids as electrospun adhesive interlayers to enhance the barrier properties of polyhydroxyalkanoates of interest in fully renewable food packaging concepts
  publication-title: Food Hydrocoll.
  doi: 10.1016/j.foodhyd.2013.12.023
– volume: 22
  start-page: 310
  year: 2011
  ident: ref_57
  article-title: Coaxial electrospinning and emulsion electrospinning of core-shell fibers
  publication-title: Polym. Adv. Technol.
  doi: 10.1002/pat.1781
– volume: 25
  start-page: 9454
  year: 2009
  ident: ref_59
  article-title: Superhydrophobic and oleophobic fibers by coaxial electrospinning
  publication-title: Langmuir ACS J. Surf. Colloids
  doi: 10.1021/la900660v
– volume: 91
  start-page: 1287
  year: 2008
  ident: ref_113
  article-title: ZnO Nanofiber and Nanoparticle Synthesized Through Electrospinning and Their Photocatalytic Activity Under Visible Light
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2008.02299.x
– volume: 459
  start-page: 012016
  year: 2018
  ident: ref_54
  article-title: Evaluation of aloe vera extract loaded polyvinyl alcohol nanofiber webs obtained via needleless electrospinning
  publication-title: IOP Conf. Ser. Mater. Sci. Eng.
  doi: 10.1088/1757-899X/459/1/012016
– ident: ref_27
  doi: 10.3390/nano9121737
– volume: 15
  start-page: 1607
  year: 2013
  ident: ref_33
  article-title: Formation of the modified ultrafine anatase TiO2 nanoparticles using the nanofiber as a microsized reactor
  publication-title: CrystEngComm
  doi: 10.1039/c2ce26758f
– volume: 91
  start-page: 11
  year: 2008
  ident: ref_44
  article-title: Release of butylated hydroxytoluene from an active film packaging to Asadero cheese and its effect on oxidation and odor stability
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2007-0464
– volume: 67
  start-page: 136
  year: 2018
  ident: ref_95
  article-title: Viscoelastic behavior of core-shell structured nanofibers of PLA and PVA produced by coaxial electrospinning
  publication-title: Polym. Test.
  doi: 10.1016/j.polymertesting.2018.02.026
– volume: 14
  start-page: 39
  year: 2017
  ident: ref_110
  article-title: Preparation of Magnetic Polylactic Acid Fiber Mats by Electrospinning
  publication-title: Nano Hybrids Compos.
  doi: 10.4028/www.scientific.net/NHC.14.39
– volume: 30
  start-page: 4665
  year: 2019
  ident: ref_51
  article-title: Preparation of Fe–C nanofiber composites by metal organic complex and potential application in supercapacitors
  publication-title: J. Mater. Sci. Mater. Electron.
  doi: 10.1007/s10854-019-00760-z
– volume: 43
  start-page: 837
  year: 2010
  ident: ref_66
  article-title: Chitosan application for active bio-based films production and potential in the food industry: Review
  publication-title: LWT Food Sci. Technol.
  doi: 10.1016/j.lwt.2010.01.021
– volume: 60
  start-page: 335
  year: 2016
  ident: ref_43
  article-title: Cross-linked methyl cellulose films with murta fruit extract for antioxidant and antimicrobial active food packaging
  publication-title: Food Hydrocoll.
  doi: 10.1016/j.foodhyd.2016.03.020
– ident: ref_105
  doi: 10.3390/nano8100745
– volume: 3
  start-page: 21
  year: 2009
  ident: ref_121
  article-title: Functional Polymeric Nanofibers from Electrospinning
  publication-title: Recent Pat. Nanotechnol.
  doi: 10.2174/187221009787003285
– volume: 28
  start-page: 581
  year: 2010
  ident: ref_122
  article-title: Antibacterial poly (D,L-lactide) (PDLLA) fibrous membranes modified with quaternary ammonium moieties
  publication-title: Chin. J. Polym. Sci.
  doi: 10.1007/s10118-010-9094-x
– volume: 137
  start-page: 48299
  year: 2019
  ident: ref_46
  article-title: High-fficiency preparation of polypropylene nanofiber by melt differential centrifugal electrospinning
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.48299
– volume: 22
  start-page: 345301
  year: 2011
  ident: ref_88
  article-title: Edge electrospinning for high throughput production of quality nanofibers
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/22/34/345301
– volume: 23
  start-page: 416
  year: 2015
  ident: ref_131
  article-title: Development of Bioactive Packaging Structure Using Melt Electrospinning
  publication-title: J. Polym. Environ.
  doi: 10.1007/s10924-015-0713-z
– volume: 55
  start-page: 4728
  year: 2014
  ident: ref_135
  article-title: Electrospun poly lactic acid (PLA) fibres: Effect of different solvent systems on fibre morphology and diameter
  publication-title: Polymer
  doi: 10.1016/j.polymer.2014.06.032
– volume: 8
  start-page: 1199
  year: 2015
  ident: ref_25
  article-title: In situ synthesis of graphitic-C3N4 nanosheet hybridized N-doped TiO2 nanofibers for efficient photocatalytic H2 production and degradation
  publication-title: Nano Res.
  doi: 10.1007/s12274-014-0600-2
– volume: 88
  start-page: 2493
  year: 2017
  ident: ref_114
  article-title: Self-cleaning effect of electrospun poly (1,4-cyclohexanedimethylene isosorbide terephthalate) nanofibers embedded with zinc oxide nanoparticles
  publication-title: Text. Res. J.
  doi: 10.1177/0040517517723026
– volume: 32
  start-page: 1280
  year: 2011
  ident: ref_103
  article-title: Electrospinning of polylactide and its composites with carbon nanotubes
  publication-title: Polym. Compos.
  doi: 10.1002/pc.21149
– volume: 290
  start-page: 012003
  year: 2018
  ident: ref_50
  article-title: Effect of Pineapple Leaf Fibers (PALF) concentration on nanofibers formation by electrospinning
  publication-title: IOP Conf. Ser. Mater. Sci. Eng.
  doi: 10.1088/1757-899X/290/1/012003
– ident: ref_63
  doi: 10.1186/s40691-017-0090-4
– volume: 7
  start-page: 709
  year: 2019
  ident: ref_10
  article-title: Stimuli-responsive bio-based polymeric systems and their applications
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C8TB02491J
– volume: 130
  start-page: 011006
  year: 2008
  ident: ref_128
  article-title: Mechanical characterization of electrospun polycaprolactone (PCL): A potential scaffold for tissue engineering
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.2838033
– volume: 42
  start-page: 89
  year: 2012
  ident: ref_94
  article-title: Fabrication of levofloxacin-loaded nanofibrous scaffolds using coaxial electrospinning
  publication-title: J. Pharm. Investig.
  doi: 10.1007/s40005-012-0014-7
– volume: 52
  start-page: 4600
  year: 2015
  ident: ref_117
  article-title: Electrospun antimicrobial hybrid mats: Innovative packaging material for meat and meat-products
  publication-title: J. Food Sci. Technol.
  doi: 10.1007/s13197-014-1508-2
– volume: 42
  start-page: e13374
  year: 2018
  ident: ref_40
  article-title: Development of moisture-absorbing and antioxidant active packaging film based on poly (vinyl alcohol) incorporated with green tea extract and its effect on the quality of dried eel
  publication-title: J. Food Process. Preserv.
  doi: 10.1111/jfpp.13374
– volume: 16
  start-page: 40
  year: 2017
  ident: ref_93
  article-title: Starch/PCL composite nanofibers by co-axial electrospinning technique for biomedical applications
  publication-title: Biomed. Eng. Online
  doi: 10.1186/s12938-017-0334-y
– volume: 109
  start-page: 645
  year: 2012
  ident: ref_73
  article-title: Influence of solution and processing parameters towards the fabrication of electrospun zein fibers with sub-micron diameter
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2011.11.032
– volume: 6
  start-page: 5918
  year: 2014
  ident: ref_61
  article-title: Highly flexible and tough concentric triaxial polystyrene fibers
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am500837s
– volume: 61
  start-page: 2325
  year: 2007
  ident: ref_77
  article-title: Molecular weight dependent structural regimes during the electrospinning of PVA
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2006.09.004
– volume: 8
  start-page: 9159
  year: 2016
  ident: ref_23
  article-title: Coaxial electrospinning of WO3 nanotubes functionalized with bio-inspired Pd catalysts and their superior hydrogen sensing performance
  publication-title: Nanoscale
  doi: 10.1039/C5NR06611E
– volume: 149
  start-page: 1
  year: 2019
  ident: ref_102
  article-title: A self-healable and highly flexible supercapacitor integrated by dynamically cross-linked electro-conductive hydrogels based on nanocellulose-templated carbon nanotubes embedded in a viscoelastic polymer network
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.04.029
– volume: 2019
  start-page: 4152536
  year: 2019
  ident: ref_34
  article-title: Virtually Wall-Less Tubular Sponges as Compartmentalized Reaction Containers
  publication-title: Research
  doi: 10.34133/2019/4152536
– volume: 516
  start-page: 2495
  year: 2008
  ident: ref_142
  article-title: Fabrication of a super-hydrophobic nanofibrous zinc oxide film surface by electrospinning
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2007.04.086
– volume: 26
  start-page: 424
  year: 2014
  ident: ref_149
  article-title: Effect of electrospun montmorillonite-nylon 6 nanofibrous membrane coated packaging on potato chips and bread
  publication-title: Innov. Food Sci. Emerg. Technol.
  doi: 10.1016/j.ifset.2014.09.012
– volume: 31
  start-page: 343
  year: 2008
  ident: ref_84
  article-title: Control of nanostructures in PVA, PVA/chitosan blends and PCL through electrospinning
  publication-title: Bull. Mater. Sci.
  doi: 10.1007/s12034-008-0054-9
– volume: 14
  start-page: B138
  year: 2012
  ident: ref_133
  article-title: Development and Characterization of Electropsun Poly (propylene carbonate) Ultrathin Fibers as Tissue Engineering Scaffolds
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.201180041
– volume: 127
  start-page: 1
  year: 2014
  ident: ref_151
  article-title: Nanostructured interlayers of zein to improve the barrier properties of high barrier polyhydroxyalkanoates and other polyesters
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2013.11.022
– ident: ref_48
  doi: 10.1007/s10404-018-2043-7
– ident: ref_55
  doi: 10.3390/nano9010052
– volume: 483
  start-page: 84
  year: 2016
  ident: ref_152
  article-title: Tailoring barrier properties of thermoplastic corn starch-based films (TPCS) by means of a multilayer design
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2016.08.021
– volume: 50
  start-page: 3963
  year: 2012
  ident: ref_53
  article-title: The electrochemical performance of porous carbon nanofibers produced by electrospinning
  publication-title: Carbon
  doi: 10.1016/j.carbon.2012.04.018
– volume: 2
  start-page: 1209
  year: 2014
  ident: ref_30
  article-title: Recent advances in flexible and stretchable electronic devices via electrospinning
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C3TC31680G
– ident: ref_111
  doi: 10.1021/am1005089
– volume: 42
  start-page: 551
  year: 2018
  ident: ref_2
  article-title: The recent progress on high-performance polymer nanofibers by electrospinning
  publication-title: J. Jiangxi Norm. Univ. (Nat. Sci.)
– ident: ref_28
  doi: 10.3390/nano9070937
– volume: 196
  start-page: 4886
  year: 2011
  ident: ref_12
  article-title: Electrospinning materials for energy-related applications and devices
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2011.01.090
– volume: 202
  start-page: 1
  year: 1997
  ident: ref_143
  article-title: Purity of the sacred lotus, or escape from contamination in biological surfaces
  publication-title: Planta
  doi: 10.1007/s004250050096
– volume: 14
  start-page: 269
  year: 2015
  ident: ref_19
  article-title: Application of Cellulosic Nanofibers in Food Science Using Electrospinning and Its Potential Risk
  publication-title: Compr. Rev. Food Sci. Food Saf.
  doi: 10.1111/1541-4337.12128
– volume: 8
  start-page: 6069
  year: 2018
  ident: ref_64
  article-title: Stable multi-jet electrospinning with high throughput using the bead structure nozzle
  publication-title: RSC Adv.
  doi: 10.1039/C7RA13125A
– volume: 38
  start-page: 21
  year: 2014
  ident: ref_18
  article-title: Electrospinning and electrospraying techniques: Potential food based applications
  publication-title: Trends Food Sci. Technol.
  doi: 10.1016/j.tifs.2014.03.004
– volume: 53
  start-page: 14876
  year: 2014
  ident: ref_85
  article-title: Electric Field Design for Multijet Electropsinning with Uniform Electric Field
  publication-title: Industrial & Engineering Chemistry Research
  doi: 10.1021/ie501827b
– volume: 9
  start-page: 2685
  year: 2018
  ident: ref_3
  article-title: Electrospun nanofiber reinforced composites: A review
  publication-title: Polym. Chem.
  doi: 10.1039/C8PY00378E
– volume: 59
  start-page: 1683
  year: 2010
  ident: ref_118
  article-title: Preparation and characterization of poly(vinyl alcohol) nanofiber mats crosslinked with blocked isocyanate prepolymer
  publication-title: Polym. Int.
  doi: 10.1002/pi.2905
– volume: 35
  start-page: 139
  year: 2016
  ident: ref_17
  article-title: Encapsulation of bioactive compounds through electrospinning/electrospraying and spray drying: A comparative assessment of food-related applications
  publication-title: Dry. Technol.
  doi: 10.1080/07373937.2016.1162797
– volume: 303
  start-page: 1800336
  year: 2018
  ident: ref_35
  article-title: Green Electrospun Nanofibers and Their Application in Air Filtration
  publication-title: Macromol. Mater. Eng.
  doi: 10.1002/mame.201800336
– volume: 51
  start-page: 4928
  year: 2010
  ident: ref_91
  article-title: Unconfined fluid electrospun into high quality nanofibers from a plate edge
  publication-title: Polymer
  doi: 10.1016/j.polymer.2010.07.046
– volume: 415
  start-page: 317
  year: 2005
  ident: ref_106
  article-title: Encapsulation of self-assembled FePt magnetic nanoparticles in PCL nanofibers by coaxial electrospinning
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2005.09.035
– volume: 29
  start-page: 1422
  year: 2008
  ident: ref_119
  article-title: The use of thermal treatments to enhance the mechanical properties of electrospun poly (epsilon-caprolactone) scaffolds
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2007.11.024
– volume: 64
  start-page: 9
  year: 2010
  ident: ref_107
  article-title: Preparation of Fe3O4/PVA nanofibers via combining in-situ composite with electrospinning
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2009.09.043
– volume: 202
  start-page: 012011
  year: 2017
  ident: ref_112
  article-title: Preparation of PVA/TiO2 Composites Nanofibers by using Electrospinning Method for Photocatalytic Degradation
  publication-title: IOP Conf. Ser. Mater. Sci. Eng.
  doi: 10.1088/1757-899X/202/1/012011
– volume: 490
  start-page: 270
  year: 2017
  ident: ref_97
  article-title: Fabrication of metronidazole loaded poly (epsilon-caprolactone)/zein core/shell nanofiber membranes via coaxial electrospinning for guided tissue regeneration
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2016.11.062
– volume: 1166
  start-page: 012012
  year: 2019
  ident: ref_56
  article-title: Synthesis of polyvinyl acetate (PVAc) fibers using needleless electrospinning technique with straight wire electrode
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1166/1/012012
– volume: 492
  start-page: 138
  year: 2016
  ident: ref_132
  article-title: Effects of heat-treatment on surface morphologies, mechanical properties of nanofibrous poly (propylene carbonate) biocomposites and its cell culture
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2015.11.075
– volume: 13
  start-page: 1604293
  year: 2017
  ident: ref_29
  article-title: Recent Advances of Electrospun Nanofibrous Membranes in the Development of Chemosensors for Heavy Metal Detection
  publication-title: Small
  doi: 10.1002/smll.201604293
– volume: 67
  start-page: 294
  year: 2015
  ident: ref_42
  article-title: Rice starch active packaging films loaded with antioxidants-development and characterization
  publication-title: Starch Stärke
  doi: 10.1002/star.201400193
– volume: 79
  start-page: 214
  year: 2010
  ident: ref_52
  article-title: Preparation of poly (ε-caprolactone)/poly (trimethylene carbonate) blend nanofibers by electrospinning
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2009.07.052
– volume: 24
  start-page: 4433
  year: 2017
  ident: ref_76
  article-title: Effects of nanocellulose on the structure and properties of poly (vinyl alcohol)-borax hybrid foams
  publication-title: Cellulose
  doi: 10.1007/s10570-017-1409-4
– volume: 45
  start-page: 1895
  year: 2004
  ident: ref_86
  article-title: Fabrication of blend biodegradable nanofibrous nonwoven mats via multi-jet electrospinning
  publication-title: Polymer
  doi: 10.1016/j.polymer.2004.01.026
– volume: 16
  start-page: 1151
  year: 2004
  ident: ref_45
  article-title: Electrospinning of Nanofibers: Reinventing the Wheel?
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200400719
– volume: 108
  start-page: 969
  year: 2008
  ident: ref_78
  article-title: On the electrospinning of poly (vinyl alcohol) nanofiber mats: A revisit
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.27664
– volume: 49
  start-page: 1582
  year: 2009
  ident: ref_80
  article-title: Needleless electrospinning of nanofibers with a conical wire coil
  publication-title: Polym. Eng. Sci.
  doi: 10.1002/pen.21377
– volume: 99
  start-page: 464
  year: 2018
  ident: ref_137
  article-title: Fabricating porous poly (lactic acid) fibres via electrospinning
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2017.12.025
– volume: 25
  start-page: 1600
  year: 2004
  ident: ref_68
  article-title: Electrospinning of Chitosan
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.200400253
– volume: 545
  start-page: 342
  year: 2018
  ident: ref_124
  article-title: Antibacterial and antioxidant electrospun materials from poly (3-hydroxybutyrate) and polyvinylpyrrolidone containing caffeic acid phenethyl ester—“in” and “on” strategies for enhanced solubility
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2018.05.013
– volume: 114
  start-page: 3524
  year: 2009
  ident: ref_81
  article-title: Needleless electrospinning. I. A comparison of cylinder and disk nozzles
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.30891
– ident: ref_14
  doi: 10.3390/nano6070129
– ident: ref_99
  doi: 10.3390/polym11081239
– volume: 26
  start-page: 1313
  year: 2013
  ident: ref_79
  article-title: Effect of solution concentration on diameter and morphology of PVA nanofibres in bubble electrospinning process
  publication-title: Mater. Sci. Technol.
  doi: 10.1179/026708310X12798718274476
– volume: 123
  start-page: 121
  year: 2017
  ident: ref_120
  article-title: Removal of Retained Electrospinning Solvent Prolongs Drug Release from Electrospun PLLA Fibers
  publication-title: Polymer (Guildf.)
  doi: 10.1016/j.polymer.2017.07.008
– volume: 53
  start-page: 833
  year: 2013
  ident: ref_127
  article-title: Processing and properties of hydrophilic electrospun polylactic acid/beta-tricalcium phosphate membrane for dental applications
  publication-title: Polym. Eng. Sci.
  doi: 10.1002/pen.23329
– volume: 42
  start-page: 933
  year: 2009
  ident: ref_147
  article-title: Controlled release of allyl isothiocyanate using soy protein and poly (lactic acid) electrospun fibers
  publication-title: Food Res. Int.
  doi: 10.1016/j.foodres.2009.05.005
– volume: 141
  start-page: 3192
  year: 2013
  ident: ref_148
  article-title: Evaluation of gallic acid loaded zein sub-micron electrospun fibre mats as novel active packaging materials
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2013.06.018
– volume: 12
  start-page: 281
  year: 2018
  ident: ref_115
  article-title: Electrospun Nanofibers Containing TiO2 for the Photocatalytic Degradation of Ethylene and Delaying Postharvest Ripening of Bananas
  publication-title: Food Bioprocess Technol.
  doi: 10.1007/s11947-018-2207-1
– ident: ref_13
  doi: 10.1021/acsami.9b16458
– ident: ref_145
  doi: 10.1021/acs.jafc.8b06226
– volume: 8
  start-page: 15700
  year: 2016
  ident: ref_32
  article-title: High Performance Flexible Piezoelectric Nanogenerators based on BaTiO3 Nanofibers in Different Alignment Modes
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b02177
– volume: 43
  start-page: 6152
  year: 2010
  ident: ref_155
  article-title: Designing Nanofibers via Electrospinning from Aqueous Colloidal Dispersions: Effect of Cross-Linking and Template Polymer
  publication-title: Macromolecules
  doi: 10.1021/ma100750e
– volume: 13
  start-page: 1
  year: 2019
  ident: ref_15
  article-title: Hierarchically structured electrospinning nanofibers for catalysis and energy storage
  publication-title: Compos. Commun.
  doi: 10.1016/j.coco.2019.01.008
– volume: 86
  start-page: 1
  year: 2018
  ident: ref_98
  article-title: A review on the very high nanofiller-content nanocomposites: Their preparation methods and properties with high aspect ratio fillers
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2018.07.006
– volume: 46
  start-page: 3378
  year: 2011
  ident: ref_109
  article-title: Process optimization and alignment of PVA/FeCl3 nano composite fibres by electrospinning
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-010-5226-5
– volume: 31
  start-page: 185
  year: 2018
  ident: ref_150
  article-title: Chitosan-based nanofibers as bioactive meat packaging materials
  publication-title: Packag. Technol. Sci.
  doi: 10.1002/pts.2366
– volume: 11
  start-page: 12880
  year: 2019
  ident: ref_37
  article-title: Ecofriendly Electrospun Membranes Loaded with Visible-Light-Responding Nanoparticles for Multifunctional Usages: Highly Efficient Air Filtration, Dye Scavenging, and Bactericidal Activity
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b01508
– volume: 59
  start-page: 366
  year: 2016
  ident: ref_141
  article-title: Encapsulation of cinnamon essential oil in electrospun nanofibrous film for active food packaging
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2015.06.005
– volume: 128
  start-page: 94
  year: 2019
  ident: ref_31
  article-title: Nanocellulose-templated assembly of polyaniline in natural rubber-based hybrid elastomers toward flexible electronic conductors
  publication-title: Ind. Crops Prod.
  doi: 10.1016/j.indcrop.2018.11.004
– volume: 9
  start-page: 76
  year: 2018
  ident: ref_22
  article-title: Ultrafine hollow TiO2 nanofibers from core-shell composite fibers and their photocatalytic properties
  publication-title: Compos. Commun.
  doi: 10.1016/j.coco.2018.06.006
– volume: 15
  start-page: 168
  year: 2019
  ident: ref_24
  article-title: Porous ceramic nanofibers as new catalysts toward heterogeneous reactions
  publication-title: Compos. Commun.
  doi: 10.1016/j.coco.2019.07.004
– volume: 105
  start-page: 257
  year: 2018
  ident: ref_47
  article-title: Novel polycaprolactone/hydroxyapatite nanocomposite fibrous scaffolds by direct melt-electrospinning writing
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2018.05.034
– volume: 56
  start-page: 572
  year: 2015
  ident: ref_134
  article-title: Study on structural and mechanical properties of porous PLA nanofibers electrospun by channel-based electrospinning system
  publication-title: Polymer
  doi: 10.1016/j.polymer.2014.10.073
– volume: 302
  start-page: 1600353
  year: 2017
  ident: ref_36
  article-title: Electrospun Nanofibers Membranes for Effective Air Filtration
  publication-title: Macromol. Mater. Eng.
  doi: 10.1002/mame.201600353
– volume: 82
  start-page: 1412
  year: 2017
  ident: ref_92
  article-title: Essential Oil Bioactive Fibrous Membranes Prepared via Coaxial Electrospinning
  publication-title: J. Food Sci.
  doi: 10.1111/1750-3841.13723
– ident: ref_139
  doi: 10.1002/app.44853
– volume: 133
  start-page: 641
  year: 2012
  ident: ref_140
  article-title: Encapsulation of vanillin/cyclodextrin inclusion complex in electrospun polyvinyl alcohol (PVA) nanowebs: Prolonged shelf-life and high temperature stability of vanillin
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2012.01.040
– volume: 54
  start-page: 348
  year: 2014
  ident: ref_6
  article-title: Electrospun Nanofibers as Scaffolds for Skin Tissue Engineering
  publication-title: Polym. Rev.
  doi: 10.1080/15583724.2014.881374
– volume: 27
  start-page: 724
  year: 2006
  ident: ref_9
  article-title: Electrospinning of collagen and elastin for tissue engineering applications
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2005.06.024
SSID ssj0000913853
Score 2.5350974
SecondaryResourceType review_article
Snippet Electrospinning is an effective and versatile method to prepare continuous polymer nanofibers and nonwovens that exhibit excellent properties such as high...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 150
SubjectTerms Antibacterial materials
Biocompatibility
Electric fields
Electrospinning
Fabrication
Food
Food packaging
Food quality
Functional materials
functional membrane
Hydrophobicity
Mechanical properties
Molecular weight
Morphology
Nanofibers
Packaging materials
Polymers
Polyvinyl alcohol
Porosity
Proteins
Review
Reviews
Shelf life
Solvents
Toxicity
Viscosity
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAlGdoqYwEJxQ1jl9xb0vVVYW0iAOVeov8GoFASUWz_79jO11lEYgL12QOjj32N19m_A0h73j0PPIGaoZgWAvlee26xteAUKOUM9G5dHd481ldXolP1_J60eor1YQVeeAycaedAyRRQbUuggjgbds4EbSE1qWjNYdGiHkLMpXPYMM4AlGpdOfI608HO4wsK6qlK_YLDMpS_X-KL38vk1zgzvoJeTwHjHRVBnpIHsThKXm0kBF8RjYXpZfN7c12oGsEqvJ_j27sVPyLTrk4lq7HMdAv1v_IrYnoapG8PqMrWvIEz8nV-uLr-WU9t0movdDdVFtjpAbVWmMDCHACtJUpodgiNEfkU62OwWpEIqmAcStCG0AJjAstBA2evyAHwzjEV4RC40GziGjmmADc7sGmPKE1TFrrDa_Ih_uJ6_2sIZ5aWfzskUukae6X01yR9zvrm6Kd8Re7j2kNdjZJ8To_QD_oZz_o_-UHFTm-X8F-3oa3PbLfzijDparI291r3EApK2KHOG7RhieOJ1SHNi_Lgu9GgueTTJ3PK6L3XGFvqPtvhu_fski3TtqM2rz-H992RB62ieY3rGbymBxMv7bxDcZCkzvJbn8HD0QKBw
  priority: 102
  providerName: Directory of Open Access Journals
Title Electrospun Functional Materials toward Food Packaging Applications: A Review
URI https://www.ncbi.nlm.nih.gov/pubmed/31952146
https://www.proquest.com/docview/2548969356
https://www.proquest.com/docview/2341614686
https://pubmed.ncbi.nlm.nih.gov/PMC7022779
https://doaj.org/article/8bf383d62bef4dfca20b4d75f2b1284a
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7R7QUOqLxDy8pIcEJWk9ixEy5oizZUSFtViEq9RX5CVZQs3ez_Z5xkQxYB12QOlmfsb17-BuANc4Y5FnuaIBhSLgyjOo8N9Qg1QujCaR3eDq8uxPkV_3ydXQ8Jt83QVrm7E7uL2jYm5MhPMZDJC1GwTHxY_6RhalSorg4jNA7gEK_gPJ_B4dny4vLLmGUJrJcISH3HO8P4_rRWdZN0zGrhqf0EizrK_r_5mX-2S07wpzyCh4PjSBa9ph_BPVc_hgcTOsEnsFr2M202621NSgSsPs9HVqrt7Yy0XZMsKZvGkktlbrsRRWQxKWK_JwvS1wuewlW5_PrxnA7jEqjhMm-pKopMepGqQlnPveZeqiwUFlOEaIdxVSqdVRIRKRM-YYrb1HrB0T9U3kpv2DOY1U3tXgDxsfEycYhqOuEej71VoV6oiiRTyhQsgne7javMwCUeRlr8qDCmCNtcTbc5grej9Lrn0PiH3FnQwSgTmK-7D83dt2o4SFWuPQbVVqTaeW69UWmsuZWZT3WAWhXByU6D1XAcN9Vv44ng9fgbD1KojqjaNVuUYSHW4yJHmee9wseV4D2VhQnoEcg9U9hb6v6f-uZ7R9YtA0ejLF7-f1nHcD8NgXyc0CQ7gVl7t3Wv0Ntp9RwO8vLTfDDseZcz-AV6IAO8
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAkaiJxQ1cRw7QUJogS5b2q04tFJvqZ-0AiVLNyvEn-I3Ms6LLAJuvcajyLLH83k8M98AvEisTmwSuTBGMAwZ10moskiHDqGGc5VbpXzt8PyQz47Zx5P0ZAN-9rUwPq2yt4mNoTaV9m_kO-jIZDnPk5S_WXwLfdcoH13tW2i0arFvf3xHl235eu897u82pdPdo3ezsOsqEGomsjqUeZ4Kx6nMpXHMKeaETH38jSKSWXQ_qLBGCjTcKXdxIpmhxnGG1yjpjHA6wf9egassQST3lenTD8ObjufYRPhr8-txPNopZVnFDY-bL-wfIV_TIOBvt9o_kzNHaDe9BTe7ayqZtHp1GzZseQdujMgL78J8t-2gs1ysSjJFeGxfFclc1q1Wk7pJySXTqjLkk9RfmoZIZDIKmb8iE9JGJ-7B8aUs433YLKvSPgTiIu1EbBFDVcwcGhkjfXRS5nEqpc6TAF72C1fojrncN9D4WqAH45e5GC9zANuD9KJl7PiH3Fu_B4OM59luPlQXn4vu2BaZcujCG06Vdcw4LWmkmBGpo8oDuwxgq9_Bojv8y-K3qgbwfBjGY-tjMbK01QplEu9ZMp6hzIN2w4eZoFVMfb_1AMSaKqxNdX2kPD9rqMGFZ4QU-aP_T-sZXJsdzQ-Kg73D_cdwnfonhCgO43QLNuuLlX2C96xaPW2Um8DpZZ-mX3QHPWE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9NADLdGJyF4QHwTGHBI7AlFTXKXuwYJoY612hitKsSkvWX3CQiUlDUV4l_jr8OXj5Ii4G2vOSs6-Wz_7LPPBnhOraaWRi6MEQxDxjUN1SjSoUOo4VxlVin_dng250en7O1ZerYDP7u3ML6ssrOJtaE2pfZ35EMMZEYZz2jKh64ti1gcTl8vv4V-gpTPtHbjNBoRObE_vmP4tnp1fIhnvZ8k08mHN0dhO2Eg1EyMqlBmWSocT2QmjWNOMSdk6nNxCaKaxVAkEdZIgUY85S6mkpnEOM7QpZLOCKcp_vcK7AofFQ1g92AyX7zf3PD4jpsIhk21PaVZNCxkUcZ1Vzf_zL-Hg_W4gL_5uH-Wavawb3oTbrROKxk3UnYLdmxxG673WhnegdmkmaezWq4LMkWwbO4YyUxWjYyTqi7QJdOyNGQh9Zd6PBIZ9xLoL8mYNLmKu3B6KYy8B4OiLOwDIC7STsQWEVXFzKHJMdLnKmUWp1LqjAbwomNcrts-5n6cxtcc4xnP5rzP5gD2N9TLpn_HP-gO_BlsaHzX7fpDefExb5U4HymHAb3hibKOGadlEilmROoS5WFeBrDXnWDemoJV_ltwA3i2WUYl9pkZWdhyjTTUx5mMj5DmfnPgm52gjUz99PUAxJYobG11e6X4_KluFC58f0iRPfz_tp7CVdSk_N3x_OQRXEv8fUIUh3G6B4PqYm0fo9NVqSetdBM4v2yF-gVQDkLz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrospun+Functional+Materials+toward+Food+Packaging+Applications%3A+A+Review&rft.jtitle=Nanomaterials+%28Basel%2C+Switzerland%29&rft.au=Zhao%2C+Luying&rft.au=Duan%2C+Gaigai&rft.au=Zhang%2C+Guoying&rft.au=Yang%2C+Haoqi&rft.date=2020-01-15&rft.pub=MDPI&rft.eissn=2079-4991&rft.volume=10&rft.issue=1&rft_id=info:doi/10.3390%2Fnano10010150&rft_id=info%3Apmid%2F31952146&rft.externalDocID=PMC7022779
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-4991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-4991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-4991&client=summon